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Abstract The objective of this study is to develop,
simulate and verify experimentally amodel of a nonlin-
ear spring, based on the principle of a cantilevered beam
with a mass on its tip, and whose overall lateral vibra-
tion is constrained by a specially shaped rigid boundary.
The focus here is the use of this spring for vibration
reduction applications. The modeling approach uses
concepts of plane kinematics of rigid bodies, combined
with quasi-static analysis to develop suitable equations
of motion for a base-excited spring with a ninth-order
geometric nonlinearity. In addition, a parametric iden-
tification procedure is implemented for obtaining the
required coefficients for computational simulations.An
approximated analytical solution to the model is com-
pleted with the aid of the method of harmonic balance
and its stability is assessed through Floquet theory.
Finally, the model is experimentally verified, with the
use of two specimens, fabricated specifically for this
study. The model, simulations and experimental mea-
surements show the hardening and broadband behavior
of the nonlinear spring.

C. E. Silva (B)· J. M. Gibert · A. Maghareh · S. J. Dyke
Purdue University, 585 Purdue Mall, West Lafayette, IN
47907, USA
e-mail: chrsilvas@gmail.com

C. E. Silva
Facultad de Ingeniería Mecánica y Ciencias de la Producción,
Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía
Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador

Keywords Nonlinear spring · Nonlinear cantilever
beam · Nonlinear modeling

1 Introduction

Nonlinear springs can be constructed from many types
of physical systems that take advantage of geomet-
ric nonlinearities. Important applications of nonlinear
springs that have received notable attention in recent
years are nonlinear energy sinks (NESs) and energy
harvesting systems. The former are basically nonlinear
springs that can be attached to primary vibratory sys-
tems as nonlinear passive vibration dampers, to which
the vibratory energy is pumped from the primary oscil-
lator. However, the latter is implemented for an inverse
purpose, i.e., the energygenerated in the spring is stored
by conveying it to an accumulation system.

Several classes of physical realizations of NES
devices based on nonlinear spring systems have been
reported in the literature over the past twenty years. In
a recent review paper, Lu provides a comprehensive
overview of the contributions in the field of NES [10].
Amongst NES devices, a widely studied and physi-
cally implemented prototype is the wire NES, reported
in the literature by several scholars [11,21,25,29].
However, other classes of nonlinear springs based on
different physical phenomena have also been exten-
sively reported [27,28,30]. More recent developments
in nonlinear springs have been proposed by several
researchers. Rivlin used a type of nonlinear spring
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based on the concept of a cantilevered beam with spe-
cially shaped (indented) lateral boundaries for applica-
tions in gap-closing electrostatic actuators andmechan-
ical batteries [13,14,19,20]. Wang et al. proposed a
similar application of a wideband piezoelectric energy
harvester using a quadruple-well potential, induced by
a combination of boundary contact andmagnetoelastic-
ity [26]. Similarly, Liu compared the effect that differ-
ent curvature fixtures have on energy harvesters based
on cantilevered beams [9]. Kluger used a similar con-
cept for energy harvesting and high-resolution load
cells [6,7]. An interesting application related to auto-
motive vibration reduction was proposed by Spreeman
where he imposed a hardening behavior to a spring by
adding a boundary of predefined characteristic [22]. In
a recent study, Yuan et al. implemented amergedmodel
joining stiffness curves of two different source genera-
tors through the use of a cantilever of similar character-
istics as those described herein [31]. All these develop-
ments used the approach of modeling the dynamics of
the spring quasi-statically. Despite not being an exact
approach, this methodology has proved to be powerful
as the behavior of the nonlinear spring canbe accurately
described by its force–displacement characteristic pre-
viously determined in a force–displacement analysis.

This concept of a cantilever beam bounded by spe-
cially shaped rigid surfaces is not new. In fact, the
first scholar who proposed a similar idea was Huy-
gens in 1659, later reported in his famous Horologium
Oscillatorium in 1672 [1]. In his design, Huygens
used specially shaped boundaries around a pendulum
to enhance the isochronism of the pendulum, where
a strictly identical oscillation period regardless of the
amplitude was guaranteed.More recently, Timoshenko
included a particular mechanism consisting of a beam
with cylindrical boundaries as an example of a nonlin-
ear spring in his book Strength of Materials [24], while
Keer & Silva provided an analytical solution for such
a problem and compared the solution obtained using
theory of elasticity concepts, with that obtained from
beam theory [5].

A considerable amount of research on a somewhat
similar problem regarding centrifugal pendulum vibra-
tion absorbers can be found in the literature. After the
first attempt in proposing a centrifugal pendulumvibra-
tion absorber, made in France in 1935, whose pur-
pose was to control torsional vibrations in radial air-
craft engine propellers [15], Shaw and collaborators in
a series of papers reported on the theoretical dynam-

ics, bifurcations and chaotic motion of these types of
systems, followed by their industrial use as torsional
vibration absorbers for automotive engine crankshafts.
The centrifugal pendulum vibration absorber is a com-
bination of a tuned device with nonlinear characteris-
tics, but with a featured tautochronicity in its design
that allows it to remain tuned regardless of the dis-
turbance torque [2,4,15–18]. Several other researchers
have also proposed nonlinear springs based on beams
and pendulums, but based on different mechanics prin-
ciples. Canturu et al. reported on shape-varying can-
tilevered beams for obtaining different spring charac-
teristics depending on the chosen beam surface profile
[3].

In this study, a model and experimental verification
of the abovementioned nonlinear beam spring is devel-
oped. This model is able to capture the dynamics of
the beam element under reasonably large deformations.
Thenonlinear characteristics of the beam is providedby
two rigid boundaries placed on both sides of the beam,
thus limiting the free length of the beam as it gradually
wraps around said boundaries. These boundaries have
a carefully selected surface order in their shape profile,
so the beam fully wraps around them when oscillating.
This constraint to the lateral vibration produces a vari-
able nature on the modal characteristics of the system
as the beam does not have a preferred vibration fre-
quency and it is highly sensitive to initial conditions
and the amplitude of excitation. The model developed
is obtained in two stages: (1) the force–displacement
(F–D) characteristic obtained from a quasi-static anal-
ysis, which allows to generating an appropriate restor-
ing spring force term for the equation of motion of the
device; and (2) the derivation of the entire equation of
motion (EOM)of the device, using concepts fromplane
kinematics of rigid bodies, assuming that the system
behaves like a bar pivoted on a moving end, and rotat-
ing around a fixed axis. This model is then numerically
simulated using sine dwell signals that provide a rea-
sonable approximation of the response of the system
at its dominant harmonic at each frequency of inter-
est, thus obtaining frequency response functions. Fur-
thermore, the model is experimentally verified using
a set of devices fabricated for this purpose and tested
using base excitations generated by a shake table. The
results demonstrate that the proposed device possesses
a frequency response broadband in nature. This sug-
gests that the device has the capacity to engage in TET
(targeted energy transfer) regimes, suitable for appli-
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Fig. 1 Schematic and dimensions of the nonlinear spring

cations of nonlinear energy transfer such as vibration
attenuation.

2 Semi-analytical model

The EOM of the nonlinear spring is derived in this sec-
tion, first by studying the static behavior of the spring
with respect to the imparted force, and then, with the
obtained quasi-static behavior, a mathematical expres-
sion of the response of the system is obtained.

2.1 Quasi-static analysis

Consider a cantilever beam supported by a smooth rigid
curved boundary of height HS, and length LS, and with
a prescribed shape, described by a function f (l − x),
as shown in Fig. 1. The quantity l is the total length of
the beam, x is the length of the free end of the beam
beyond the last point of contact between itself and the
boundary surface (labeled contact point in Fig. 1), u′
is the transverse displacement of the neutral axis of
the beam at its joint with the tip mass, and u is the
displacement of the center of mass of the tip mass. For
the sake of clarity in the figure, only half of the system
is shown as another curved boundary is present on the
upper side of the beam, completely bounding its lateral
vibration. The beam is loaded by a concentrated load
P at the tip and, as it deflects, becomes gradually in
contact with the rigid support, such that part of the
beam is resting on the support (portion l − x), and
the remaining portion is free (portion x), working as
a regular cantilevered beam but with a shorter length,
and slightly tilted.

Depending on the applied load and order of curva-
ture, the beam will wrap around a certain portion of
the rigid support, and beyond the contact point, it will
deflect a certain distance u′ given by

Fig. 2 Effect of order n on the boundary surface curvature

u′ = f (l − x) + d[ f (l − x)]
d(x)

x + Px3

3E I
. (1)

The first term in Eq. (1) is associated with the vertical
distance from the equilibrium position to the contact
point, and it is equivalent to evaluating the surface func-
tion f at point (l−x). The second term is the additional
vertical distance due to the slope of the beam at the con-
tact point. After the beam wraps around portion l − x ,
the free portion of the beam x becomes a new inclined

cantilever beam with initial slope given by d[ f (l−x)]
d(x)

.
The distance between the equilibrium position and the
tip of this inclined beam is calculated by multiplying
the slope by the free end x . The third term is the static
deflection of the free portion x due to bending, where
E and I are the modulus of elasticity of the material,
and the second moment of area of the cross section,
respectively. An additional component of the deflec-
tion is also contributed by the deflection of the tip of
the mass (quantity u′ −u), which results from the mul-
tiplication of half the mass length lm by the cantilever
slope. By combining Eq. (1) with the expression of the
slope of a cantilever beam, the mass deflection is given
by

u = u′ + Px2

2E I
+ d[ f (l − x)]

d(l − x)
x, (2)

where u, u′ and x are clearly indicated in Fig. 1. Four
examples of surfaces with different orders of curvature
are shown in Fig. 2, to give the reader an idea of the
topological differences between surface orders.

A general expression for the curvature function of
the boundary surface is given by

f (l − x) = d(l − x)n, (3)
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where

d = HS

Ln
S

, (4)

The quantities HS and LS (depicted in Fig. 1) are the
height and length of the rigid surface, and n is the sur-
face order function of the boundary. In this analysis,
n ranges from 3 to 5 as it was demonstrated that the
spring achieves strongly nonlinear characteristics for
n ≥ 3 [6]. Depending on the order of the surface func-
tion, the length of the beam l is adjusted accordingly
to set it equal to the arc length AD, such that a theoret-
ical infinite stiffness is achieved when the beam com-
pletely wraps around the surface, leaving no portion of
the beam extending beyond the boundary edge.

To determine the characteristic of the nonlinear
spring, the force–displacement relationship must be
obtained. Thus, the location of the contact point is
required for a given applied load. Since the deflec-
tion of the beam in this system is not a function of
the applied force alone but of the contact point, the
calculation is carried out in two steps: (1) determina-
tion of the contact point; and (2) determination of the
deflection as a function of the contact point. The contact
point is obtained by equating the radius of curvature of
the surface, approximated by the second derivative of
the surface profile function, and the radius of curvature
of the beam at the contact point, given by the known
expression of radius of curvature for a cantilever beam:

d2

dx2
[d(l − x)n] = n(n − 1)d(l − x)n−2 = Px

E I
. (5)

Equation (5) has a single-valued solution for n ≤ 3.
For n > 3, distance x must be obtained using numerical
techniques as the expressions for x become polynomi-
als of order n − 2. Thus, a closed-form expression for
the deflection as a function of the applied force is not
realizable for a beam of any order greater than 3, and
a calculation of the total deflection must be carried out
for each surface order case, n, according to Table 1:

The nonlinear spring defined in Sect. 2.1 has several
parameters that can be selected to produce different
effects in the static and dynamic responses of the sys-
tem. Obvious choices are those related to the geometry
of the problem including the surface order of the bound-
ary, n, the aspect ratio d, and the length of the beam,

Table 1 Contact point x expressions for each order of n

n Expression for contact point x

2 Px = 2dE I

3 Px = 6dE I (l − x)

4 Px = 12dE I (l − x)2

5 Px = 20dE I (l − x)3

üb

m
u

Fig. 3 Proposed nonlinear spring subjected to base excitation

l. Moreover, non-geometrical parameters such as the
material properties and inertia of the beam will also
play a role. The resulting force–displacement curve (P
vs u) of the nonlinear spring is a function of the con-
tact point location x which is expressed implicitly in
the equation of motion of the system. An schematic
diagram of the nonlinear spring, considering base exci-
tation, is presented in Fig. 3.

The behavior of this spring can be described by a
general nonlinear function:

fsp = f (u). (6)

This spring force is equivalent to variable P in Sect. 2.1,
which is obtained by solving a two-step problem: (1)
finding the solution to the corresponding equation of
Table 1, for x ; and (2) replacing this solution from step
(1) into Eq.(1) for fsp . This result is then used to com-
pute a force versus deformation (F-D) characteristic
of the spring. The resulting nonlinear stiffness curve
is bounded by the surface height HS on one axis, and
the maximum applied force Pmax on the other axis, as
indicated in Fig. 4.

For a higher-order boundary surface, a higher force
is needed to reach the edge, which in practice means
that such system would produce a higher nonlinear
stiffness. Because of the nature of this problem, where
the stiffness theoretically reaches infinity when the
beam fully wraps around the surface and no portion of
the beam extends beyond the boundary edge, the F-D

123



Dynamic study of a bounded cantilevered nonlinear spring 897

Fig. 4 Variation of hardening behavior with the order of surface
curvature

diagram has an asymptotic behavior toward the max-
imum beam deflection (at u = ±Hs). This behavior
is difficult to interpolate into an analytic function that
can be incorporated into the fsp term in Eq. (6). One
approach is to model this system with an interpolation
lookup table as the source of the nonlinear stiffness, and
the other, to approximate this behavior with a general
power series of the form:

fsp =
N∑

j=1

k ju
j , (7)

where N is the order of nonlinearity. The result-
ing expression consists of odd powers only ( j =
1, 3, 5, . . . ) as the nonlinearity is assumed to be an odd
function (e.g., for a cubic nonlinearity, the spring force
is fsp = k1u + k3u3, for a quintic nonlinearity, it would
be fsp = k1u + k3u3 + k5u5, and so forth). The order
of nonlinearity is to be determined in a later section.

2.2 Dynamic model

A simple and reasonably accurate way to model this
system would be to use the beam model of a can-
tilever beam with a mass on its tip, attached to a non-
linear spring that captures the nonlinearities described
in Eq. (7). However, to account for the additional iner-
tia, the fact that the beam is bending, and the possible
gravitational implications of the device (if configured
in a vertical direction), a model is proposed based on
a concept, similar to Huygen’s pendulum clock with
the main difference being in the rigid boundary surface
order. The EOMs are derived using the equations of
plane kinematics of rigid bodies.

The system is idealized as massless bar of length
l, pivoted at point A with a concentrated mass m at

A üb

m
B

fsp

fd

l

Fig. 5 Beam NES schematic idealization

the tip (point B), and constrained by a spring force
fsp of nonlinear characteristics, given by the general
expression inEq. (7), and a damping force fd of viscous
characteristics. The pivot point is fixed to a moving
cart representing the host structure base acceleration
üb. The motion of the bar is defined completely by its
rotation angle from the vertical equilibrium position,
φ. This system is shown schematically in Fig. 5.

Several assumptions need to be made, namely that:
(1) the beam is rigid, so all bending characteristics from
its elastic physical features are assumed to be captured
by the nonlinear spring characteristic; (2) the radius of
curvature of the path described by the mass is constant,
which is not true in reality as the length of the beam
changes progressively as it wraps around the curved
surface of the boundary; and, (3) the beam is massless,
as its actual mass is much smaller than the concentrated
mass at its tip.

Consider the free body diagram shown in Fig. 6. The
external forces that produce a moment around point B
are the spring force ( fsp), damping force ( fd), and the
gravitational force (mg), each one multiplied by the
appropriate moment arm length to A.
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Fig. 6 Beam NES free body diagram

The vector equation of the acceleration of point B,
accounting for its relative motion with respect to point
A, is given by:

aB = aA + α × rB/A − ω2rB/A

= aA î + φ̈k̂ × [−l sin(φ)î + l cosφĵ]
+ [φ̇2l sin(φ)î − φ̇2l cos(φ)ĵ], (8)

where rB/A is the position vector from point B to point
A, α is the angular acceleration vector of the beam,
ω is the scalar angular velocity of the beam, and a
is an acceleration vector of its corresponding point in
the diagram indicated by the subscript. Note that bold
letters represent vector quantities. Now, expanding the
cross-products of the rightmost side ofEq.(8) produces:

aB = [aA − φ̈l cosφ + φ̇2l sin(φ)]î
+ [−φ̇2l cos(φ) − φ̈l sin(φ)]ĵ, (9)

and, enforcing Newton’s second law for rotational
motion, yields the angular acceleration relationship:

∑
MA = IBα + rB/A × maB, (10)

where IB is the rotationalmoment of inertia of themass,
α = φ̈k̂, and the sign convention for positive moments

is in the counterclockwise sense. Once more, from the
free body diagram, one obtains:

(mgl sin φ + fspl cosφ + fdl cosφ)k̂ = IG φ̈k̂

+ (−l sin φ î + l cosφĵ)

× m[(aA − φ̈l cosφ)î − φ̈l sin φĵ]. (11)

After computing all the cross-products, the resulting
expression is only in the k̂ direction, as expected for pla-
nar rotation, so the directional unit vector is dropped:

(mgl sin φ + fspl cosφ + fdl cosφ)

= IB φ̈ + mφ̈l2 − maAl cos θ. (12)

The remaining quantity to be determined is the form of
the nonlinear spring force. For the purpose of express-
ing the nonlinearity in the equation, the general expres-
sion fsp , which is a function of (lφ), is included. The
base acceleration variable name is changed to üb, thus
producing an equation in terms of angular moments,
and assuming small angle approximations yields:

(IB +ml2)φ̈ + cl(lφ̇) + fsp(lφ) −mgl(lφ) = −mlüb.

(13)

This constitutes the equation of motion (EOM) of
this class of nonlinear spring in terms of angular states.
For the present study, the gravitational effects included
in Eq. (13) are neglected as the device is oriented in a
horizontal plane, thus gravity points toward the paper
plane in Fig. 6. To retrieve the motion states in the u
direction, a simple substitution derived from the kine-
matics of the problem has to be made to the φ quantity,
recalling that u = lφ. Thus the angular and linear quan-
tities are related by:

u = lφ, u̇ = lφ̇, ü = lφ̈.

3 Approximate analytical solution

An approximation of the analytical solution of the
developed EOMs is presented. A preliminary step in
determining a set of adequate parameters for having a
fully described system is also required.
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Table 2 Material and geometric properties of the nonlinear
spring

Parameter Value Units Var.

Constant parameters

Beam width (measured) 12.7 mm b

Beam thickness
(measured)

0.9 mm h

Tip mass (measured) 0.13 kg m

Boundary height
(measured)

50.8 mm HS

Boundary length
(measured)

150 mm LS

2nd moment of area
(calculated)

0.743 mm4 I

Elastic modulus (steel) 200×109 Pa E

Gravitational
acceleration

9.81 m/s2 g

Variable parameters

Surface order 1 3 n

Surface order 2 5 n

Beam length (n = 3,
measured)

165 mm l

Beam length (n = 5,
meas.)

173 mm l

3.1 Parametric design

With the EOM and F-D characteristics completed,
a parametric model is generated from physical con-
straints defined beforehand for this nonlinear spring,
mainly ensuring that it would be easy to build, from
commercially available materials, and that it shall pro-
duce relevant results when attached to existing physi-
cal components available in the laboratory, which are
expected to be used during the experimental verifica-
tion of the model. Thus, physical characteristics for the
spring are defined accordingly and shown in Table 2.
The rigid boundaries are defined and assumed to be
of a material such that elasticity does not play a role
when interacting with the beams, and friction implica-
tions are considered to be within the status of a lightly
damped system. It should also be mentioned that the
tip mass considers the additional weight of the instru-
mentation and bolts that will be used in the physical
realization of the experiments.

With all the constant parameters defined and
assumed, MATLAB interpolation capabilities through

the function cftool.m are used to obtain a fit to the
curves generated in the static analysis. From the com-
bined use of Eq. (5), Table 1, and subsequent fitting
of the F-D curve, the resulting form of the nonlinear
stiffness defined in the power series of Eq. (7) is:

fsp = kLu + kNLu
9, (14)

where kL and kNL are the linear and nonlinear stiff-
ness coefficients, respectively. Several candidates for
the spring force were considered here, from a purely
cubic, to a quintic, an order 7 and an order 9 expression,
and also to different combinations thereof. The criteria
for selecting the final shape included the smoothness
of the interpolation, the coefficient of determination
given by the R2, and the root mean-squared error to
evaluate the degree of correlation between the calcu-
lated and interpolated F-D curves. The expression that
produced the highest R2 value with smoother behavior
was a ninth-order polynomial nonlinear force. It should
be mentioned that a combined polynomial including
intermediate powers of u would produce an undesired
wiggly behavior in the interpolated curve. The coef-
ficients corresponding to two boundary surface order
cases (n = 3, and n = 5) extracted from interpolating
the F-D curves of Fig. 7 are shown in Table 3.

Once these preliminary steps are completed, numer-
ical simulations of the determined nonlinear spring of
9th order, using the derived EOM corresponding to the
two cases in hand (n = 3 and n = 5), are carried
out using Simulink [23], with a Runge–Kutta (ode45)
integrator, running at a variable time step within the
ode45.m environment. Three numerically generated
sine dwell diagrams are run between frequencies of
interest: from 3.0 to 5Hz, for the case of n = 3, and
from 4 to 6Hz, for the case of n = 5 surface curvature
order. Each run is carried out at amplitudes of 0.8 and
1.2mm. To generate the frequency domain response
numerically, the integration is performed in ascending
order of frequencies (forward integration), and then in
descendingorder of frequencies (backward integration)
at each excitation frequency point, using the last steady-
statemaximumamplitude as the initial condition for the
next frequency point.

3.2 Damping identification

In order to identify the linear damping and linear natural
frequencyof the system, the cantileveredoscillatorwith
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(a)

(b)

Fig. 7 Nonlinear spring polynomial stiffness interpolation

Table 3 Non-dimensional parameters for different curvature
cases

Surface order λ ε Λn

n = 3 0.0528 1.307 × 1011 0.0014

n = 5 0.0536 1.084 × 1011 0.0001

mass attached is clamped horizontally to the table and
given an initial excitation (hammer hit) (Table 4). The
response is recorded and shown in Fig. 8.

Once these preliminary steps are completed, numer-
ical simulations of the determined nonlinear spring of
9th order, using the derived EOM corresponding to the
two cases in hand (n = 3 and n = 5) are carried out
using Simulink [23], with a Runge–Kutta integrator,
running at a variable time step within the ode45.m
environment. Three numerically generated sine dwell
diagrams are run between frequencies of interest: from

Table 4 Damping and natural frequency estimates due to small
perturbation

Experiment ωn (rad/s) ζ

n = 3

1 25.8393 0.0049

2 25.8393 0.0049

3 25.8393 0.0049

n = 5

1 29.1135 0.0056

2 29.1135 0.0056

3 29.1135 0.0056

Fig. 8 Time waveform for linear fit of ωn and ζ

3.0 to 5Hz, for the case of n = 3, and from 4 to 6Hz,
for the case of n = 5 surface order. Each run is car-
ried out at amplitudes of 0.8, and 1.2 mm. To generate
the frequency domain response numerically, the inte-
gration is performed in ascending order of frequencies
(forward integration), and then in descending order of
frequencies (backward integration) at each excitation
frequency point, using the last steady state maximum
amplitude as the initial condition for the next frequency
point.

3.3 Non-dimensionalization

With the obtained expression of the nonlinear force of
the spring, Eq. (13) can be rewritten as

(IG + ml2)φ̈ + cl(lφ̇)

+ kL l(lφ) + kNL l(lφ)9 − mgl(lφ) = −mlüb. (15)
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Here, the input excitation is given by

üb = F0ω
2 cosωt, (16)

where F0 is the amplitude and ω, the frequency of
excitation. Also, the gravitational term mgl(lφ) is
neglected as the configuration of the device is in the
horizontal plane. The relative contribution of constant
terms in Eq. (15) must be evaluated through non-
dimensionalization. By scaling the time variable by a
characteristic time, Tc, and noting that the displacement
is already in non-dimensional form (radians), let

τ = t

Tc
�⇒ φ(t) = ϕ(Tcτ), (17)

thus,

φ̇ = 1

Tc
ϕ′, φ̈ = 1

T 2
c

ϕ′′, (18)

with

Tc =
√

IG + ml2

kL l
2 = 1

ωn
, (19)

where ωn is the linear natural frequency of the spring.
Substituting Eqs. (16), (17), (18), and (19) in Eq. (15)
yields:

ϕ′′ + μϕ′ + λϕ + εϕ9 = ΛΩ2 cos(Ωτ), (20)

where

μ = cl√
(IG + ml2)kL

, ε = kNL
kL

l8, Λ = mF0
kL l

Ω.

(21)

The quantityΩ is the forcing frequency normalized by
the first linear natural frequency of the spring,Ω = ω

ωn
.

The relative difference between the linear and nonlinear
term of the stiffness confirms indeed that the system is
highly nonlinear.

3.4 System response near resonance

Due to the high-order terms present in the EOM, a
closed-form solution is rather difficult to obtain. There-
fore, a numerical approximation through perturbation

methods, specifically the method of harmonic balance,
is posted as an alternative as this method is suitable for
systems with polynomial nonlinear terms and strong
nonlinearities (hardening type). Therefore, a solution
to Eq. (20) is assumed of the form

ϕ(t) ≈ ϕh = A cos(Ωτ) + B sin(Ωτ), (22)

where A and B are the Fourier coefficients. Here, sin-
gle frequency is assumed as we are only interested in
low-frequency harmonics. The detailed procedure of
derivation is mathematically extensive, yielding long
expressions. Therefore, some steps of the procedure
are briefly mentioned herein. Substituting Eq. (22) in
Eq. (20) yields an expression in terms of powers of
sines and cosines:

− AΩ2 cos(Ωτ) − BΩ2 sin(Ωτ) − λAΩ sin(Ωτ)

+ λBΩ cos(Ωτ) + A cos(Ωτ) + B sin(Ωτ)

+ εA9 cos(Ωτ)9 + 9εA8 cos(Ωτ)8B sin(Ωτ)

+ 36εA7 cos(Ωτ)7B2 sin(Ωτ)2

+ 84εA6 cos(Ωτ)6B3 sin(Ωτ)3

+ 126εA5 cos(Ωτ)5B4 sin(Ωτ)4

+ 126εA4 cos(Ωτ)4B5 sin(Ωτ)5

+ 84εA3 cos(Ωτ)3B6 sin(Ωτ)6

+ 36εA2 cos(Ωτ)2B7 sin(Ωτ)7

+ 9εA cos(Ωτ)B8 sin(Ωτ)8

+ εB9 sin(Ωτ)9 + Ω2Λ sin(Ωτ) = 0. (23)

Expanding and using multiple-angle trigonometric
identities (e.g., sin3(Ωτ) = 3

4 sin(Ωτ) − 1
4 sin(3Ωτ),

and so on), produces an expression in terms of sines
and cosines of multiple angles up to (9Ωτ). All the
higher-order terms greater than 3Ωτ are dropped as
only lower harmonics are of interest here. Next, col-
lecting the fundamental sine harmonics yields:

A + (63/128)εA9 + (63/32)εA3B6

+ (63/128)εAB8 − MAΩ2 + CBΩ

+ (63/32)εA7B2 + (189/64)εA5B4 = 0, (24)
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and collecting the fundamental cosine harmonics, pro-
duces:

B + (63/128)εB9 + (189/64)εA4B5

+ (63/32)εA2B7 − MBΩ2 − CAΩ

+ (63/128)εA8B + (63/32)εA6B3 = −Ω2Λ.

(25)

At this point, a polar substitution is made such that
A = a cos(θ), and B = b cos(θ), to both Eq. (24), and
Eq. (25). This produces two expressions in power terms
of sin(θ), and cos(θ), let us call them h1 and h2, respec-
tively. Now, equation h1 is againmultiplied by sin(θ) to
produce equation f1, and by cos(θ) to produce equa-
tion f2. Similarly, equation h2 is also multiplied by
sin(θ) to produce equation g1, and by cos(θ) to pro-
duce equation g2. The reason for doing these artifices
is to eliminate trigonometric terms by combining the
formed equations.After combining and reducing, using
trigonometric identities, equations f1+ f2, and g1+g2,
two-phase equations are generated, which are given by:

a + 63

128
εa9 − MaΩ2 = Ω2Λ cos(θ), (26)

and

λaΩ = Ω2Λ cos(θ). (27)

Squaring and adding Eqs. (26) and (27), and recall-
ing the relationship sin2(θ) + cos2(θ) = 1, the final
simplified expression of the frequency–amplitude rela-
tionship is

3969

16384
a18ε2 − 63

64
a10εΩ2 + 63

64
a10 ε

+ a2Ω4 − 2 a2Ω2 + a2 + λ2a2Ω2 = Λ2Ω4.

(28)

This equation produces a polynomial of order 18 in a
that can be solved numerically for the roots that consti-
tute the amplitude response level of the system for dif-
ferent forcing frequencies Ω . At each frequency point,
the polynomial produces nine roots, which contain both
real and imaginary values. From these, only the real
roots are of relevance in the present analysis for con-
structing the frequency response curve.

3.5 Stability analysis

Floquet theory is used to evaluate the stability of the
periodic solutions derived from the harmonic balance
technique in Sect. 3.4. The periodic solution φ(t) is
perturbed by a disturbance ξ(t), such that φh becomes
φh +ξ(t) (subscript ()h denotes ‘harmonic’). Then, the
system is expressed as a set of first-order differential
equations

ϕ̈1 = ϕ2

ϕ̈2 = −λφ2 − ϕ1 − εϕ9
1 .

(29)

Now, let us perturb the solutions to the system of
Eq. (29) by a small perturbation ξ , such that

φ1(t) = φ1,0 + ξ1(t)

φ2(t) = φ1,0 + ξ1(t), (30)

and noting that

φ1,0(t) = b cosωt

φ2,0(t) = u̇1,0(t) = −bω sinωt . (31)

After replacing Eq. (31) into Eq. (30), a system of
two first-order differential equations with state vari-
ables [ξ1 ξ2]ᵀ is obtained. Then, rearranging and sim-
plifying such that only first-order terms of ξ1, and ξ2
are retained, the perturbed system can be expressed in
state-space form as

[
ξ̇1
ξ̇2

]
=

[
0 1

−1 − 9εu810 −λ

] [
ξ1
ξ2

]
. (32)

To assess the stability of the linearized equations, the
monodromy matrix is obtained by integrating sys-
tem (32) from t = 0 to t = T = 2π/ω, i.e., a full
period of the excitation. This is accomplished by deter-
mining two solution vectors

ξ1(t) =
[
ξ11(t)
ξ12(t)

]
and ξ2(t) =

[
ξ21(t)
ξ22(t)

]
(33)

which satisfy the following initial conditions

[
ξ11(0)
ξ12(0)

]
=

[
1
0

]
and

[
ξ21(0)
ξ22(0)

]
=

[
0
1

]
; (34)
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The identity matrix is used as initial condition. This
allows the monodromy matrix to be

Φ =
[
ξ11(T ) ξ21(T )

ξ12(T ) ξ22(T )

]
. (35)

The eigenvalues of Φ, known as the Floquet or charac-
teristic multipliers, indicate whether the solution corre-
sponding to the associated frequency is stable, accord-
ing to the next criteria:

1. The Floquet multiplier leaves the unit circle through
Re = +1, resulting in a transcritical (TC), symme-
try breaking (SB), and cyclic fold (CF) bifurcation.

2. The Floquet multiplier leaves the unit circle through
Re = −1, resulting in a period doubling bifurcation
(PD).

3. The Floquet multiplier in the form of a pair of com-
plex conjugates leave the unit circle away from the
real axis resulting in a secondary Hopf or Neimark-
Sacker bifurcation [8,12]

It is expected that for the present case, the Floquet
multipliers start occurringwithin the unit circle as pairs
of complex conjugates, progressing toward Re + 1 at
which point they leave the unit circle the moment that
the system bifurcates into two solutions. They remain
outside of the unit circle, while the system is unstable
(in the folding region), and return inside the unit circle
once the system again reaches stability. This will be
apparent in the results section.

4 Numerical and experimental outcomes

The proposed dynamics of the ninth-order nonlin-
ear spring are numerically simulated and are con-
ducted using appropriate computational tools, and their
response is examined both in frequency and time
domains. Then, an experimental verification of the
strength of the model is provided.

4.1 Computational simulations

With the dynamic model constructed and its corre-
sponding numerical constants and parameters prop-
erly determined, numerical simulations of the ninth-
order spring corresponding to the two cases in hand
(n = 3 and n = 5) are carried out using Simulink

[23], with a Runge–Kutta (ode4) integrator, running at
a variable time step within the ode45.m environment.
Two numerically generated sine dwell diagrams are run
between the frequencies of interest: from 3.0 to 6Hz,
for both cases of surface curvature order. Each run is
conducted at amplitudes of 0.8 and 1.2mm. To gen-
erate the frequency domain response numerically, the
integration is performed in the ascending order of fre-
quencies (forward integration), with a simulation time
to reach steady state estimated in 500 cycles of oscil-
lation at each frequency point, using the last steady-
state maximum amplitude as the initial condition for
the next frequency point. The same procedure is fol-
lowed in descending order of frequencies (backward
integration). The reason to run simulations in ascending
and descending orders is to capture the unstable regions
of the plot. The obtained frequency responses are then
correlated both with the approximated analytical solu-
tion obtained in Sec. 3.4, and with the experimental
measurements to be explained in the next section.

4.2 Experimental measurements

Todemonstrate the applicability of this dynamicmodel,
a set of experiments is conducted in the Intelligent
Infrastructure Systems Laboratory at Purdue Univer-
sity. First, a prototype device is designed and fabri-
cated, sized properly to fit and use the existing facilities
available in the lab. Next, a series of sine sweeps are
applied as base excitation to the device. Then, data are
collected for use in the process of model verification.
This process is repeated for both the n = 3 and n = 5
cases described in Sect. 4. Data are collected using a
VibPilot8 DAQ data acquisition box, manufactured by
m+p International, with built-in anti-aliasing filtering
and the capability to sample at frequencies up to 10kHz.
For these experiments, data are acquired at a sampling
rate of 256Hz to minimize large data set sizes. The
acceleration transducers utilized for this test were two
PCB Piezoelectric accelerometers model 333B40, ade-
quate for frequencies in the range of [0.5Hz to 10kHz],
with ICP® type excitation. Base displacement data are
also collected along the acceleration records, and were
measured with a built-in LVDT in the actuator of the
shake table.

The nonlinear spring is designed in such a way that
it can be mounted on any flat surface of appropriate
dimensions. A mounting bracket is used to attach the

123



904 C. E. Silva et al.

Fig. 9 Physical realization of the nonlinear device

device to any base structure with a flat face, on any
configuration. This bracket also works as a mounting
vise to fix the device to the rigid surfaceswhile applying
pressure to the beam to maintain a tight cantilevered
boundary condition. The device is fabricated in a CNC
machine at the Mechanical EngineeringMachine Shop
and is shown in Fig. 9.

The spring assembly is mounted on a six-DOF servo
hydraulic shake table manufactured by Shore West-
ern Manufacturing, controlled by a SC-6000 PID-type
servo controller at each DOF. The shake table dimen-
sions are 760 × 760mm, with a maximum payload
capacity of 200kg. The acceleration transducers are
tightly glued to the mass on the tip of the beam, for
recording the acceleration of the motion in both direc-
tions of the trajectory. Because the actual motion of the
mass travels on a curved trajectory, and the transducers
used are single direction, it is not possible to directly
record measurements in the rectilinear directions (u
and v), rather accelerations are recorded in normal and
tangential coordinates, which are later corrected with
the appropriate angle to horizontal and vertical compo-
nents (Fig. 10). It should be mentioned that although
only the horizontal component (ẍ) is being compared
in the present study, both components are collected for
completeness.

Post-processing of the collected data includes a step
of two-way (ascending and descending direction of the
data set) low-pass filtering to eliminate high-frequency
noise, and minimize phase shifts to the signals. The
filter used is a Butterworth low-pass filter of order 8
and a cutoff frequency of 12Hz.

atan

ẍ

ÿ

θ

Fig. 10 Angle correction of the measured data to convert accel-
eration from normal tangential to Euclidean

(a) (b)

Fig. 11 Physical realization of boundary surfaces

The rigid surface is interchangeable to different sets,
depending on the case of interest. For the present exper-
iment, following the numerical casesmentioned earlier,
two sets of surfaces are fabricated: one for curvature
degree n = 3 and the other for curvature n = 5. The
mass is attached as a separate insert and can conve-
niently slide the beam in or out to accommodate the
appropriate length, as the arc lengths of the boundaries
are different, depending on the order of curvature. The
fabricated pairs of boundaries are shown in Fig. 11.

The verification procedure starts by subjecting the
specimen to sine dwells at very slow frequency rates,
allowing the system to reach steady state and record-
ing the amplitude before a frequency step is made. The
excitation is imposed replicating the numerical simu-
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lations (i.e., from 3 to 6Hz with increments of 0.1Hz).
The excitation time at each frequency point is set such
that the device completes 250 to 400 cycles, depending
on the level of transiency (approximately from 45 to
70s).

The steady-state acceleration amplitudes measured
during the experiments are correlated with those found
in the numerical simulations, both in the forward and
backward integration schemes, and then comparedwith
the approximated analytical solution found from the
method of harmonic balance. All of the quantities
were corrected such that they could be depicted in the
u direction, as the experimental measurements were
made with linear directional accelerometers instead of
angular. The responses of the tested cases correspond-
ing to boundary curvature order n = 3 are presented
in Fig. 12, with the following clarifications: (1) Each
plot contains the numerical simulations both in for-
ward and backward integration fashion, superimposed
to the experimental measurements, limited to the first
Fourier frequency component in each frequency step,
to produce a fair comparison with the approximate ana-
lytical solution obtained in the same fashion (just the
first harmonic) from the harmonic balance, and the
approximated solution, as indicated in the legends; (2)
the top plot corresponds to the low amplitude case
(A = 0.8mm); and, (3) the bottom row corresponds
to the high amplitude case (A = 1.2mm).

The simulation results for n = 3 offer a reason-
ably close match between the approximate analytical
solution of the harmonic balance method for all of
the cases, both in frequency (peaking at approximately
4.3Hz on all cases), and in amplitude, differing only
at the end of the hardening peak, which is expected
as the harmonic balance shows a trend in hardening
toward higher frequencies. Moreover, the model devel-
oped earlier and the analytical solution compare rea-
sonably well both in frequency and amplitude. How-
ever, the measured response does not agree as close to
the analytical response as would be expected. Several
possible causes can be attributed for this outcome, some
of which include (1) unmodeled dynamics in the cho-
sen modeling approach; (2) measurement errors and
uncertainties in several parameters, such as the effec-
tive beam length, the actual mass, including the added
dynamics produced by the transducer cables; (3) trun-
cation of the approximate analytical solution to the
first Fourier harmonic only; (4) errors associated with
reaching steady state in the sine-dwell experiments; (5)

(a)

(b)

(c)

Fig. 12 Approximated analytical, simulated and experimental
responses of the dynamic nonlinear spring system, n = 3
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frequency stepping up during the sine-dwell experi-
ments, which includes a fast ramp to zero between fre-
quency points; (6) possible inhomogeneity of the beam
material properties; (7) differences between command
and measured displacement in the shake table likely
due to measurement noise introduced by the system in
general, or by the hydraulic system in particular (both
base displacement and acceleration aremeasured quan-
tities) and; (8) the resolution of the experiment, which
is not very high, and may cause the system to loose
the continuity of amplitude at those locations. Higher
resolution in these types of experiments is difficult to
achieve due to the length needed for each sine dwell
to reach steady state. A trade-off between dwell time
and resolution is always a challenge. The stability of
these results is also checked by monitoring the evolu-
tion of the Floquet multipliers, in a unit circle diagram
where they are traced as the frequency of excitation
is increased. This can be observed in Fig. 12c, where
the leaving and reentry of the multipliers from the unit
circle occurs at 4.2 and 4.4Hz, respectively, which is
consistent with the simulated, experimental and ana-
lytical results.

Similarly, the simulation results for case n = 5, pre-
sented in the pair of plots in Fig. 13, show a close cor-
relation between the solution from harmonic balance
with the results of the simulations, both in ascending
and descending integration order. The resonant peak
occurs at around 4.9Hz with a slight divergence toward
higher amplitudes, returning to its stable branch at
around 5.2Hz. This result is also confirmed by look-
ing at the evolution of the Floquet multipliers (see
Fig. 13c,where the occurrence of the values leaving and
reentering the unit circle happens at exactly the same
frequencies listed above. Another interesting observa-
tion that can be derived from the results presented in
Figs. 12 and 13 is that the model is able to capture the
energy threshold in a similar way as the device behaves
in reality. Though the system is essentially nonlinear, as
at every amplitude of vibration the beam is oscillating
at a different frequency within the frequencies of study,
it is expected that at low amplitudes, the device would
behave more closely to a linear cantilever. Neverthe-
less, for the two cases presented here, the nonlinearity
appears clearly both in the modeled as well as in the
measured responses.

(b)

(a)

(c)

Fig. 13 Approximated analytical, simulated and experimental
responses of the dynamic nonlinear spring system, n = 5
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5 Conclusions

The application of a nonlinear spring, based on a
cantilever beam with a concentrated mass at the tip,
whose transverse vibration is constrained by a specially
shaped rigid boundary, is proposed here as a suitable
candidate for vibration attenuation applications as a
nonlinear spring. A semi-analytical dynamic model is
developed based on the equations of plane kinemat-
ics of rigid bodies. First, a static analysis is performed
to determine that the nonlinearity can be described
as a ninth-order spring, due to the pronounced F-D
behavior; and second, equations of motion are derived
inserting this F-D characteristic. Numerical simula-
tions demonstrate that the model captures the ampli-
tudes and frequencies of oscillation reasonably well
when the device is subjected to different amplitudes
of excitation, if compared to the approximate ana-
lytical solution obtained from the harmonic balance
approximation. However, these results compare in less
degree with the experimental measurements due to var-
ious possible reasons, some of which include unmod-
eled dynamics and uncertainties in the experimental
setup, and truncation of the solution obtained the har-
monic balance. The broadband capacity of the nonlin-
ear spring is demonstrated in the frequency domain,
for two amplitudes of excitation for two selected sur-
face curvature orders, one low and one high. Finally,
a series of laboratory experiments are conducted for
the two physical realizations of the proposed device.
The observed results as compared with the simulations
and with the approximate analytical solution show an
acceptable match in amplitude and frequency, after
extracting the first Fourier component of the mea-
sured signal for each case of physical realization. These
results suggest that this class of spring behaves as a non-
linear element suited for potential vibration absorption
applications as a nonlinear energy sink. From the per-
formed experimental studies, it became apparent that
as the surface order of the limiting boundary grows, the
nonlinear behavior of the spring also increases (behav-
ior hardens), which in turn demonstrate the intrinsic
amplitude dependency of most nonlinear systems of
this class.
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Appendix

The selection of a ninth-order polynomial of the form
P(u) = a1u + a9u9 as the form of the nonlinear char-
acteristic of the device was made based on analyzing
several possible fit options to the theoretical deforma-
tion of the beam for a set force, using a discretization
of 600 points for the fit.

1. The classic cubic shape, very common in other types
of NES, did not fit the special property of the beam

Fig. 14 Linear and cubic fit

Fig. 15 Full ninth-order polynomial fit
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Fig. 16 Linear and ninth-order fit

NES to have a quasi-asymptotic stiffness toward
the edge of the boundary. Figure 14 shows a cubic
fit case. The goodness of fit corresponding to this
case was found to be R2 = 0.952, for a root mean-
squared error of RMSE = 5.31%

2. A high-order full polynomial was also tested as an
option, including more terms to capture as most
of the behavior as possible. In this case, a better
fit was obtained, but at the cost of having a wavy
behavior (see Fig. 15) that would produce unwanted
dynamics in the model. The goodness of fit for this
case was increased to an R2 = 0.9982, and an
RMSE = 1.23%.

3. The final option analyzed was a pure ninth-order
function with a linear component. This case offered
a reasonably well fit curve, without compromis-
ing the smoothness or continuity. The goodness-
of-fit parameters were found to be fairly close to
those on the full polynomial, R2 = 0.9916, and an
RMSE = 2.65%. This fit is shown in Fig. 16. Addi-
tionally, this option resulted in a simplified deriva-
tion of the harmonic balance method for obtaining
the approximate exact solution of the EOM of the
system, thus providing a balance between computa-
tional efficiency and result accuracy.
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