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Abstract Notwithstanding the presence of some boo-
ks summarizing specific research bodies on structural
systems, reviews on nonlinear dynamics and chaos
in mechanical systems and structures are quite few.
This paper aims at giving a first contribution in this
direction, focusing on chaos in one-dimensional struc-
tural mechanics, and reviewing fundamental studies
andmain outcomes obtained for macromechanical sys-
tems and applications in classical areas of mechanical,
aeronautical and civil engineering. Research material
is presented according to a tentatively comprehensive
perspective, by suitably framing the overviewed com-
plex dynamic phenomena of a given class of struc-
tures within the underlying continuous/reduced mod-
elling context and the regular phenomena from which
they ensue. This is a demanding perspective, which
also entails leaving a number of important topics
aside. Chaos in cable, beam/arch, and coupled cable-
beam structures is reviewed, as highlighted in both
engineering-oriented studies and theoretically driven
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ones, paying attention also to some relevant applica-
tions.
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1 Introduction

Dating back to the times of Kepler, Newton and
Lagrange, the historyof nonlinear dynamics inmechan-
ics is quite long, with the more recent chaotic phe-
nomena being addressed in about the last century, first
within the dynamical systems community according to
a theoretical perspective, and then also in the mechan-
ical community, according to a more application-
oriented perspective. The review by Holmes [1], later
on complemented with references to specific achieve-
ments on chaos in about the last fifty years [2], reports
on history and themes of dynamical systems the-
ory, whereas the meaningful developments of non-
linear dynamics occurred in the last forty years in
mechanics and engineering have been recently sum-
marized by Rega [3]. Reviews on nonlinear dynam-
ics and chaos in mechanical systems and structures
are relatively few. Shaw and Balachandran [4] pro-
vided an overview of studies in nonlinear dynamics
and vibrations of mechanical systems, covering both
traditional topics in structural dynamics, rotating sys-
tems and machines, vehicle dynamics, machining and
manufacturing systems and newer topics in micro-
and nano-electromechanical systems and other spe-
cific areas. At least two books specifically devoted
to chaos in structural systems [5,6] have to be men-
tioned, out of the many published by Awrejcewicz and
coauthors in the area of nonlinear dynamics. Indeed,
they provide literature reviews and extensively dwell
on a variety of issues of theoretical or engineering
interest, which also include nonlinear phenomena and
scenarios of transition from regular to chaotic dynam-
ics. Chaotic behaviour in plates and shells has recently
been addressed also in the wave turbulence perspec-
tive, dwelling, e.g. on the effects of the structure finite
size on the involved nonlinear interaction of a sea of
coupled waves with energy flow through different time
scales [7]. In the area of complex dynamics, control
of chaos in dynamical systems has been the subject
of extensive theoretical and numerical investigations
since beginning of the 90s, with several review papers,
journal special issues and archival material focusing
on the underlying methodological aspects, illustrated
through applications to a variety of systems of differ-
ent nature (see, e.g. [8]).

This paper does not aim at reviewing the general and
indeed wide literature on chaos in structural mechan-
ics, as it is nowadays possible to get a huge amount

of relevant material and state-of-the-art information by
directly searching them on the web. In contrast, we aim
at overviewing and synthesizing some main complex
dynamic phenomena as highlighted for a given class of
structures, however, suitably framing them within the
considered modelling context and the regular phenom-
ena from which complex ones ensue, that are generally
ofmajor interest from the engineering viewpoint. Thus,
a first contribution in this direction focuses on chaos
in one-dimensional structural mechanics and reviews
fundamental studies and main outcomes on macrome-
chanical systems and applications in classical areas of
mechanical, aeronautical and civil engineering. Owing
just to the assumed, tentatively comprehensive, per-
spective, we had to leave aside a number of important
topics, whose adequate treatment would have rendered
the review nearly unreadable. These include chaos in
axially moving continua or under moving loads, non-
smooth systems involving impact, friction and clear-
ance, delay systems, all multiphysics problems with
particular emphasis on micro-/nano-electromechanical
systems.Also left out of the review are general topics of
global dynamics (e.g. escape) associated with a wider
notion of chaos, as well as chaos control in the twofold
alternative perspective of suppressing/avoiding it or
exploiting it for design.

Systems in structuralmechanics are generally infini-
te-dimensional, i.e. mathematically described by non-
linear partial differential equations (PDEs). Since
description and in-depth understanding of nonlin-
ear/complex dynamic phenomena involve using a com-
bination of rather sophisticated techniques (analytical,
numerical and geometrical), possibly complemented
by proper experimental investigations, they can be real-
ized on the actual PDEs with considerable difficul-
ties, even though relevant asymptotic and numerical
treatments are also possible. This generally entails pre-
liminarily formulating suitable, and of course reliable,
reduced order models (ROMs), obtained via Galerkin
discretization and the assumedmode technique for spa-
tial variables, thus ending up to a set of ordinary differ-
ential equations (ODEs) in the system time-dependent
generalized coordinates. In this respect, it is worth
distinguishing between single-mode and multi-mode
models, which also reflects the modelling sequence
historically pursued for investigating the nonlinear
dynamics of structural systems, with the former being
nearly solely used up to about the end of the 80s,
although representing invaluable sources of knowl-
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edge and information still nowadays. Of course, single-
mode (or minimal) models are often quite poor ide-
alizations of actual infinite-dimensional systems, pre-
senting, however, several advantages. Indeed, (i) they
can be addressed with relative ease through different
approaches to be also compared with each other; (ii)
they allow us to understand a variety of basic features
of systems nonlinear dynamics; (iii) they permit, in par-
ticular, to smoothly enter the rather involved issue of
complex dynamics, where local bifurcation phenom-
ena leading to chaos, which is a dynamical behaviour
of essentially global nature, are indeed complemented
just by global bifurcation events whose description
and understanding in a multidimensional setting is
highly demanding, if not even impractical. Most of
these single-mode models of structures can be referred
to archetypal oscillators widely used for the analy-
sis of nonlinear, bifurcation and chaotic phenomena
within the dynamical systems community, yet with the
nontrivial difference that the parameters in the asso-
ciated ODEs are now linked with actual geometrical
and mechanical properties of a continuous structure
in the background. Among the main archetypal sys-
tems, the Duffing and the Helmholtz–Duffing oscilla-
tors, along with some relevant modifications, play a
special role because of representing also single-mode
approximations of a number of underlying structures.
This is one more advantage of referring to archetypal
oscillators, which allow us to highlight features of the
dynamic response common to a meaningful variety of
continuous one-dimensional systems, along with the
relevant differences. Transition from single- to multi-
mode modelling for nonlinear dynamic investigations
in structural mechanics started occurring at the pas-
sage from the 80s to the 90s. It was progressively
driven also by the outcomes of refined experimental
investigations of nonlinear dynamics highlighting lim-
itations associated with the use of single-mode mod-
els and providing important hints on the number and
mechanical meaning of natural modes of vibration to
be taken into account in the Galerkin discretization,
in order not to miss important phenomena of non-
linear interaction. Since then, the issue of dimension
reduction has become a major research topic in the
background of structural nonlinear dynamics, in view
of selecting proper reduced order models (ROMs) to
refer to for capturing the main response features of the
underlying infinite-dimensional system. Within a the-
oretical framework, establishing system dimensional-

ity consists of determining the ‘active’ modes of the
system, whose amplitudes evolution in time preserves
all of the main features of the continuous system [9].
Yet, decisive information may be obtained also from
experimental investigations, which can provide mean-
ingful hints for the construction of corresponding min-
imal theoretical models able to reproduce the observed
behaviours. In the theoretical/numerical context, active
modes depend on the considered, possibly resonant,
excitation and on the occurrence of specific internal res-
onances between system natural frequencies. In turn,
other non-trivially contributing modes (also possibly
non-resonant) to retain in the discretization procedure
are identified through systematic analysis of their influ-
ence either on some system parameter (e.g. [10]), to be
evaluated a priori, or on some variable of regular non-
linear response (e.g. [11]), to be calculated a posteriori
also through convergence analyses. In any case, notably
different situations may occur in various frequency
ranges, with participation to the response, and possi-
ble combination, of different prevailing modal com-
ponents. Hints about the minimum number of modes
needed to reproduce the dynamics of actual infinite-
dimensional systems are given also by the compari-
son of ROM results, generally obtained through ana-
lytical treatments, with numerical outcomes of high-
dimensional (e.g. finite element) models. Using ana-
lytical models with few prescribed modes, properly
selected on the base of existing external/internal reso-
nances, can furnish comparable results with respect to
high-dimensional numerical models in specific regions
of control space, but in general cannot account for the
highly varied response picture occurring in different
regions. Indeed, it is not practicable to build theoret-
ical models working satisfactorily in regions of con-
trol space associated with different resonance condi-
tions, where there is need of specific reduced mod-
els able to reproduce the most robust classes of reg-
ular motion observed experimentally. In the complex
regime, the situation is even more complicated, and
a major interest stands in investigating whether the
nonregular dynamics ensuing from bifurcation scenar-
ios evolving in a potentially infinite-dimensional phase
space can be actually finite-dimensional. This entails
detecting just minimum numbers and spatial features
of the configuration variables, i.e. activemodes, needed
to characterize such dynamics, which has to be done
numerically or, more reliably, based on the outcomes
of experimental investigations.
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At least two distinct way to address and classify the
occurrence of chaos in structural mechanics are pos-
sible, according to whether (i) a chaos-driven or (ii) a
structure-driven criterion is assumed, as more referable
to the dynamical systems- or the engineering-oriented
community, respectively. The former criterion distin-
guishes between chaotic phenomena in a substantially
independent manner of the structure for which they
are detected, the latter groups and summarizes those
phenomena within classes of structures for which they
are seen to occur, even running the risk of some repeti-
tion. In this paper, consistentwith the authors’ scientific
environment of reference, outcomes on chaos in struc-
tural mechanics will be reviewed according to the sec-
ond criterion. Namely, one-dimensional systems will
be distinguished from each other in terms of the inher-
ent structural (i.e. geometrical andmechanical) proper-
ties, e.g. whether exhibiting only axial or also bending,
shear and torsional stiffnesses, whether being isolated
or coupled systems, and so on. Within this structure-
driven classification scheme (see Table 1), for each
considered one-dimensional structure attention will be
focused first on themain chaotic outcomes obtained for
correspondingminimal ROMs, and then on results pro-
vided by multi-mode theoretical models, with possible
experimental outcomes in the background. Attempts
will also be made to relate results obtained for differ-
ent structures, in such a way to get tentative guidelines
for their possible occurrence. In all cases, focus will
be on features of chaotic dynamics, in terms of both
mechanisms of transition to chaos and characteriza-
tion of the relevant response, this being, however, a
perspective to be fully grasped only by properly fram-
ing complex phenomena within the underlying regu-
lar ones. Indeed, reporting on the chaotic behaviour
of whatever kind of systems, and thus also structural
ones, cannot prescind from also referring to the rel-
evant regular nonlinear vibrations from which chaos
is originated via some sequence of bifurcation events.
Thus, for the various considered structures, first the
modelling framework and the main features of regular
nonlinear dynamics will be addressed. Approximate
PDEs of motion obtained from geometrically exact
equations by properly discarding higher-order terms
will be referred to, along with their Galerkin discretiza-
tion providing the ROMs used for nonlinear dynamics
investigations. Indeed, exact models are solely consid-
ered in purely numerical treatments based on using, e.g.
space-time finite differences coupled with a predictor-

corrector iterative algorithm or a finite element proce-
dure, with the major advantage of capturing the spatial
richness of structure nonlinear response and its time-
varying content, and obtaining information about the
possibly significant involvement of higher order modes
which is allowed by the considered multi-degree-of-
freedom (dof) model. However, if being interested in
highlighting features of nonlinear dynamics in dif-
ferent external/internal resonance conditions, approxi-
mate reduced models turn out to be much more hand-
able, also because their analysis can be performed via
analytical or mixed analytical-numerical approaches.
The ensuing nonlinear response may then be validated
against those of underlying exact models via numer-
ical (e.g. finite differences) techniques, thus allowing
for a proper selection of approximate continuous mod-
els to be used in different technical situations. Solu-
tions of ROMs are generally obtained with asymp-
totic techniques suitable to deal with weakly nonlinear
problems, like the method of multiple time scales (e.g.
[12]) or the averaging method (e.g. [13,14]), providing
amplitude and phase modulation equations (AMEs),
also called averaged equations, whose stable steady
(equilibrium) solutions correspond to stable periodic
solutions of the underlying reduced ODEs. Depend-
ing on the system/reduced model and a number of
control parameters (primarily linked with the consid-
ered external/parametric excitation, and the existing
internal resonances), different classes of steady reg-
ular (unimodal or multimodal) responses of different
amplitudes, generally competing with each other, may
occur. Then, nonregular responses mostly characteriz-
ing a system’s strongly nonlinear regime within vari-
ous ranges of the control parameters space of (techni-
cal) interest will be addressed, shortly dwelling also
on some main numerical techniques mostly used to
highlight them, although suitably complemented with
theoretical analyses playing a fundamental role for
the understanding/interpretation of global phenomena.
Indeed, numerical indications about possible transition
to quasiperiodic and chaotic responses with a vary-
ing control parameter are obtained primarily through
the analysis of the AMEs after the occurrence of a
local bifurcation entailing instability of the underlying
steady solutions at some critical point. Upon detecting
a Hopf bifurcation, AMEs are numerically integrated
to find the limit cycles (dynamic solutions) giving rise
to periodic modulations in the solution of the reduced
ODEs, which represent quasiperiodic responses. Suc-

123



Chaos in one-dimensional structural mechanics 789

cessive bifurcations of the amplitudes may lead to
chaotically modulated motions of the original reduced
variables. Alternatively, in discretized models, transi-
tions from regular to nonregular motions and features
of complex attractors are identified via direct computer
simulations of the reduced ODEs, with the two proce-
dures being also used combinedly to get complemen-
tary information.

However, complex responses are usually associated
with a marked fractality in phase space and also possi-
bly in control parameter space, with their actual occur-
rence, strength and robustnessmeaningfully depending
on the values assumed for both the initial conditions of
model variables and a remarkable number of system
parameters. So, there is need to suitably complement
analytical/numerical investigations of possibly com-
plex responses, based on local bifurcation analyses,
with more theoretical studies providing mathematical
conditions for their actual occurrence, based on global
bifurcation analyses. Several global methods may be
used for detecting chaos in systems that possess homo-
clinic or heteroclinic orbits [15–17]. In this respect, it
is worth mentioning that analytical/numerical investi-
gations are mostly aimed at highlighting possible tran-
sition to complex response from an underlying regular
one expected to be the ‘normal’ operating condition for
an engineering system,whereasmore theoretical analy-
ses pursuing the detection of conditions for existence of
chaos are generally accomplished within more dynam-
ical systems-oriented environments. In terms of scien-
tific reliability, the shortage of generality of chaotic out-
comes provided for a given class of systems by a more
engineering-driven approach faces with the definitely
major rigour ofwell-foundedmathematical approaches
followed in theoretical analyses. The other side of the
coin consists of the sometime limited engineering sig-
nificance of assumptions possibly made to obtain those
general outcomes, e.g. as regards values assumed for
the coefficients of some nonlinear term which do not
actually reflect a physical system in the background;
this being a feature which occurs not so rarely in more
theoretical-driven studies on bifurcation and chaos in
nominally structural systems.

In general terms, analyzing bifurcation and chaos
phenomena in a systemmeans: (i) detecting localmech-
anisms of transition (routes) to chaos from regular
responses; (ii) characterizing seemingly chaotic attrac-
tors through different dynamic measures allowing us
to consistently support any chaoticity statement; (iii)

determining regions of nonregular response in con-
trol parameters space; (iv) describing bifurcations and
chaos in terms of global dynamics. One more step of
major importance in the analysis of complex systems
consists of controlling their chaotic responses, with the
aim of either avoiding/suppressing or exploiting them
for a variety of technical purposes. However, as already
mentioned, control of chaos inmodels of structural sys-
tems is a major topic in itself and is not addressed in
this review article. Before to proceed further, it is worth
to acknowledge the strong influence that some books
had in the development and spread of studies of chaos
in mechanics, not only for one-dimensional structures.
Among those having an engineering perspective, the
books byThompson andStewart [18] andbyMoon [19]
have attracted interest toward this topic in the mechan-
ical community. Also the book by Strogatz [20] had a
certain echo. From a theoretical and appliedmathemat-
ics point of view, on the other hand, the books byGuck-
eheimer and Holmes [21] and by Wiggins [15] stand
as milestones that introduced complex behaviours in a
manner understandable to engineers, also allowing to
fruitful apply analytical methods, like for example the
Melnikov one.

The paper is organized as follows. Section 2 deals
with chaos in cable structures, focusing on the behavio-
ur of taut strings and suspended cables in different geo-
metrical configurations, and considering the underlying
continuous/reduced models along with the associated
regimes of regular and, mostly, nonregular response.
Chaos in models of beams and arches is discussed in
Sect. 3, for a variety of situations of mechanical and
structural interest. Section 4 is devoted to chaos in
cable-beam coupled systems, as also associated with
possible technical applications. The discussion of liter-
ature studies in the various sections is complemented
by two summary tables which provide a relevant uni-
fied and comparative picture for single-mode (Table 2)
and multimode (Table 3) models, respectively, and are
useful for a though detailed overview. The review ends
with some concluding remarks.

2 Cable structures

Cable structures are endowed with only extensional
rigidity and can sustain sole tensile forces. Early rele-
vant studies on chaos go back to about the end of the 80s
and refer to the single cablewith either straight (i.e. taut
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Table 1 Structural models
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x

y

x

z

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

(l)(k)(j)

(o)(n)(m)

(r)(q)(p)

(u)(t)(s)

(x)(w)(v)

Beams:
(a) Cantilever
[95–100, 123, 132, 133, 136,
138, 139, 141–144, 162, 164–
166, 168, 169]
(b) Simply supported
[102, 104, 106, 108, 124,
131, 170, 171, 173, 177, 178,
180, 201, 202, 204, 205]
(c) Clamped
[94, 110–112, 117, 172]
(d) Rotating
[179, 181, 182]
(e) With stops [101, 176]
(f) Elastic foundation
[125–127]
(g) Sliding [109, 135]
(h) Shanley model
[184, 185, 188–190, 193–
200]
(i) Curved [164]
(j) Elastic support
[137, 174, 175]

Arches:
(k) Shallow clamped
[122, 147, 178]
(l) Shallow hinged/simply
supported
[113–116, 120, 121, 148–
152, 154, 155, 157, 158, 178,
206]
(m) Rigid link [118, 119]
(n) Elastic support [159]
(o) Non-shallow
[156, 160, 161]

Cables:
(p) Shallow horizontal [30–
32, 34, 35, 48, 52–59, 62–
64, 66, 67, 70, 71, 73, 74]
Inclined [61, 68]
(q) Arbitrarily sagged
horizontal [10, 90, 91]
Inclined [84]
(r) String
[23, 38–42, 44–47, 49, 50]
(s) Cable-suspended roof
[215]

Coupled structures:
(t) Suspension bridge
[216, 218, 219]
(u) String-beam [227–231]
(v) Cable-beam
[220, 224, 232, 233]
(w) Guyed mast [235]
(x) Cable-arch [234]
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Table 2 Single-mode models

Model Structure Model/system features; Bifurcation and chaos:
resonant excitation Methods. Phenomena

Duffing Buckled
beam

Symmetric two-well oscillator [94,95,100,102,
105,107,117]/experimental cantilever with two
[95–98,100] or two+two [99] forcing magnets;
base transverse harmonic [94–97,99,100,102,
107,117] or quasiperiodic [98,105]

Averaging [102]; numerical simulation [100,102,
107,117]; experiments [94–96,98,100]; Mel-
nikov [102,105]. Homoclinic bifurcations of sta-
ble/unstable manifolds, Smale horseshoe strange
attractor [96,97,102]; criteria for chaos: topo-
logical [102], heuristic semi-analytical [96], har-
monic balance approximation [94,107]; attrac-
tor dimension [100]; chaos in 4D phase-space
[98,105]; routes to chaos in symmetric vs asym-
metric system [99]

Sym two-well oscillator/Euler-Bernoulli,
Rayleigh, Timoshenko; transverse harmonic

Melnikov, numerical simulation [106]

Sym two-well oscillator with peculiar dissipa-
tive term/simply supported viscoelastic; trans-
verse harmonic

Melnikov, numerical simulation [202]

Asym two-well oscillator; transverse/axial har-
monic, sym couple forces

Melnikov, numerical simulation. Smale horse-
shoe chaos [180]

One-well, two-well oscillator/pinned elastic-
plastic (Shanley model); periodic pulse
[184,185,188], harmonic and square-wave
with/without hardening [189,190]

Numerics [184,189,190]; energy approach
[185]. Bifurcation structure [188]; transient
chaos [189,190]

Beam One-well oscillator with nonlinear inertia and
damping/cantilever; transverse harmonic

Numerical simulation, energy surfaces. Strange
attractor [123]

One-well, two-well oscillator/ simply sup-
ported; axial and transverse harmonic

Chirikov ((2n-1)th resonant separatrix), Mel-
nikov [124]

One-well, two-well, three-well oscillator/ verti-
cal cantilever on elastic foundation: cubic [125]
and quintic [126] Duffing with nonlinear iner-
tia; axial load

Melnikov, numerical simulation.
Homo/heteroclinic bifurcations [125,126]

One-well softening oscillator/ simply supported
on nonlinear elastic foundation; axial and trans-
verse harmonic

Lindstedt-Poincaré, Melnikov. V-shaped escape
boundary [127]

Two-well slowly varying oscillator/simply sup-
ported rotating; applied torque (indirect para-
metric excitation)

Melnikov. Bifurcation structure, homoclinic
Smale horseshoe [179]

Two-well oscillator, integro-differential
Duffing-type/simply supported viscoelastic;
transverse harmonic

Numerics. In-/cross-well chaos [201]

Shallow arch One-well softening oscillator; parametric and
external excitation

Melnikov under different resonances, numerics
[120]
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Table 2 continued

Model Structure Model/system features; Bifurcation and chaos:
resonant excitation Methods. Phenomena

Sym two-well oscillator/pinned [121], clamped
[122]; static and dynamic transverse

Numerics (ODE,FEM) [121,122]; experiments
[122]. Snap-through boundaries

One-well softening oscillator/hinged; trans-
verse harmonic, antisym mode

Bifurcation, catastrophe: theory, classification;
numerical simulation [116]

One-well/two-well oscillator; static transverse
and periodic [157]/quasiperiodic [158] slow
parametric

Averaging, numerics, Melnikov. Invari-
ant manifolds, hyperbolic chaos, periodic
[157]/quasiperiodic [158] bursters

Two-well oscillator/ discrete pre-stressed two
rigid-link; external harmonic [118,119]

Harmonic balance [118]; numerics [118,119];
experiments [119]. Bifurcation structure [118];
in-/cross-well chaos [118,119]

Cable
suspended-
roof

One-well oscillator/saddle form; vertical Melnikov. Smale horseshoe [215]

Helmholtz-
Duffing

Shallow
cable

Asym one-well oscillator; transverse har-
monic at primary, 1/2-/1/3-subharmonic, 2-/3-
superharmonic

Harmonic balance predictions [28,29,31–33];
numerical simulation: ODE, chaosmeasures [30,
32,34,35], cell mapping [32,34,35]; geometri-
cal: direct/inverse saddles, invariant manifolds,
homo/ heteroclinic tangencies, crises [34,35].
Bifurcation structure, attractor-basin-manifold
phase portraits, high-period solutions [32,34,35]

Pedestrian
footbridge

Asym one-well oscillator/beam supported by
pretensioned cable; non-resonant transverse
distributed

Numerical simulation. Bifurcations, chaos
measures, attractor-basin phase portraits, sta-
ble/unstable manifolds, multistability, erosion
[220]

Buckled
beam

Asym softening/simply supp; external and
parametric [108]; /clamped-sliding; paramet-
ric [109]; /fixed-fixed; transverse harmonic
[110]. Duffing two-well/simply supp; paramet-
ric [108]

Multiple scales, numerics (ODE) [108]; exper-
iments [109,110]. In-/cross-well [108]; in-well
[109,110] chaos

Shallow arch Asym softening/pinned; two-frequency [113],
constant and 1/2-sub vertical [114], princi-
pal parametric [115]. Duffing two-well/pinned;
1/2-sub horizontal and vertical [115]

Numerics [113–115]; averaging, Melnikov
[114]; perturbation, harmonic balance [115].
In-/cross-well chaos [113–115]; bifurcation loci,
V-shaped region [115]

One-well hardening oscillator/hinged; trans-
verse harmonic, sym mode

Bifurcation, catastrophe: theory, classification;
numerical simulation [116]

Piecewise
linear oscil-
lator

Beam, with
nonlinear
boundary
conditions

Nonsmooth asym one-well/experimental can-
tilever beam with bilinear stiffness (tip free in
one direction and pinned in the other); base
transverse harmonic

Experiments, numerical simulation [101]

Suspension
bridge

Nonsmooth asym one-well/beam-cable con-
nected by one-sided spring hangers (piecewise
linear stiffness); external forcing (wind-induced
lateral periodic vortices) at resonances with
lowest order transverse mode

Numerical simulation. Interaction of resonances
and chaoticmotion,multistability, involved basin
boundary structure, safe basin erosion [216,218,
219]
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Table 3 Multimode models

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:
Resonance Structure/model features Methods; phenomena

1:1 String 1st in/out-of-plane; Asymptotics [23,38,39,41], numerics
primary external in-plane (ODEs) [23,38,39,44], experiments [40,

41], global perturbation [41,42];
whirling [23,41,42,44], bifurcation
structure [23], Shilnikov [23,42]

1st longitudinal/3rd transverse; Asymptotics;
primary external 3rd . Nonlinear material whirling [45]

6th in/out-of-plane; Numerics (AMEs);
boundary primary external bifurcation structure [46]

Shallow 1st antisym in/out; Experiments: delay embedding; hints
cable in/out-of-phase supports motion at primary, 1/2-sub of

antisymm out. Horizontal system of “rigid link” strings
with two masses

for Shilnikov [71]

1st in/out-of-plane; Asymptotics, global perturbation;
principal parametric in/out, 1/2-subharmonic external
in. Horizontal

Shilnikov single-pulse [48]

1st sym-in/sym-out-of-plane; Asymptotics, global perturbation;
principal parametric in/out,primary external out. Hori-
zontal

hyperchaos, Shilnikov multi-pulse [66,
67]

1st in/out-of-plane; Asymptotics, global perturbation;
primary external out-of-plane. Inclined Shilnikov [68]

Arbitrarily 4th sym-in/3rd antisym-in (2nd crossover); Asymptotics [10]
sagged
cable

primary external 4th . Horizontal/non-condensed vs con-
densed

In-hybrid/hybrid at veering points; Asymptotics [84]
primary external high-frequency mode. Inclined/non-
condensed

In-sym/antisym at crossover point; Global perturbation;
primary external sym. Horizontal/non-condensed Shilnikov multi-pulse [90]

Longitudinal/transverse at ‘elastic’ crossover point; Numerics (AMEs) [91]
primary external. Horizontal/non-condensed

Beam 1st in/out-of-plane; Asymptotics [131]
primary external. Simply supported

1st in/1st or 2nd out-of-plane; Asymptotics [132,133,136];
Principal parametric in [132,136], primary external in
[133]. Cantilever

whirling [132,133], bifurcation structure
[136]

1st in/out-of-plane; Asymptotics, numerics (ODEs);
principal parametric. Clamped-clamped sliding whirling [135]

1st in/out flex (3-mode flex/flex/tors); Numerics (ODEs);
principal and fundamental parametric, primary external
in. Cantilever

bifurcation structure [165]
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Table 3 continued

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:
Resonance Structure/model features Methods; phenomena

3rd (1st in)/4th(2nd out) flex (4-mode); primary Asymptotics, numerics (ODEs),
external 1st in (follower). Thin-walled cantilever experiments [164]

Shallow 1st in-sym/antisym; Asymptotics, experiments [147]
arch primary external sym. Clamped

1st in-sym/antisym; Asymptotics [149,154],
primary [149], 1/2-sub [151] external sym. global perturbation [149,151,154];
Simply supported Shilnikov one/multi-pulse

Coupled Beam at primary and combination external/string. Asymptotics,
string-beam Two-end coupling numerics (ODEs) [230]

Coupled 10th cable at primary external/4th arch. Asymptotics [234]
cable-arch Cable-stayed arch

1:2 String 1-dof at principal parametric/ Asymptotics, global perturbation;
1-dof at primary external Shilnikov single-pulse [47]

Beam 1st in/out-of-plane; Asymptotics, global perturbation;
principal/fundamental parametric in/out + 1/2-
sub/primary external in/out. Cantilever

Shilnikov single/multi-pulse [141–144]

1st in-flex-tors/1st out-flex at primary of in-flex-tors
[168]; 1st out-flex-tors/1st in-flex at primary in-flex
[169]. Cantilever composite

Asymptotics; whirling [168,169]

3rd /2nd , flex-torsional coupling (4 modes); Asymptotics [181]
primary external 3rd mode. Rotating

Shallow 1st in-antisym/sym; primary [148], 1/2-sub [150] Asymptotics [148,152,155], numerics
arch external sym, primary external sym + slow parametric

[155]. Simply supported
(ODEs) [155], global perturbation [148,
150]; bursters [155]

1st (sym)/2nd (antisym) in-plane; Asymptotics [159]
primary external sym. Elastic supports

Non-shallow 1st in-antisym/sym; Asymptotics [156], harmonic balance
arch Primary external sym. Hinged circular [160], numerics (ODEs), experiments

[161]

Coupled String at primary external/ Asymptotics, global perturbation;
string-beam beam at principal parametric. Two-end coupling Shilnikov single/multi-pulse [227,228]

Beam at principal parametric/string at Asymptotics,
1/2-subharmonic external. Two-end coupling numerics (ODEs) [231]

Coupled 1st (global)/ 1st (local); Numerics (ODEs) [224]
cable-beam primary external of global. Cable-stayed beam

1st beam/ 1st cable; external: 1/2-sub on beam; simulta-
neous primary or 1/2-sub on beam + 2-super or primary
on cable. Cable-stayed beam

Numerics (ODEs) [232,233]
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Table 3 continued

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:
Resonance Structure/model features Methods; phenomena

1:3 Shallow 1st /3rd in-plane sym; Asymptotics,
cable either one at primary external. Horizontal numerics (ODEs) [57,58]

Beam 1st /2nd in-plane; either one at primary external. Asymptotics [137]
Hinged-clamped with one-end spring

Coupled Beam at principal parametric/string. Asymptotics,
string-beam Two-end coupling numerics (ODEs) [229]

1:1+1:2 String 2nd in/2nd out + 1st out/2nd in; Asymptotics, numerics (ODEs);
primary external 2nd in-plane. Inclined bifurcation structure, Shilnikov [50]

1:1+1:3 Shallow 3rd sym-in/out + 1st /3rd sym-in; Asymptotics [59]
cable primary external 3rd in-plane. Horizontal

1:1:1 Beam 1st flex/flex/torsional; Numerics (ODEs);
Primary external in/out lateral. Cantilever bifurcation structure [166]

1:2+2:3 Beam 2nd /4th+2nd /3rd , flex-torsional coupling; primary Asymptotics,
external 2nd mode (follower). Curved cantilever numerics (ODEs) [164]

2:2:1:2 Shallow 1st in-sym/antisym/1st out-sym/antisym Asymptotics [52,56],
cable (1st crossover); primary in-sym. Horizontal numerics (AMEs,ODEs) [53]

1st in-sym/antisym/1st out-sym/antisym Experiments [55,62–64,73], numerics
(1st crossover); in/out-of-phase supports motion at 1/2-
sub, primary, 2-super of 1st in/out-antisym. Horizontal
cable-mass suspension

(ODEs) [54]; spatiotemporal dynamics,
bifurcation structure, response dimen-
sionality, homoclinic chaos [27,63,64,
73,74]

None String 1-dof transverse/1-dof torsional; Harmonic balance;
aerodynamic and external loads galloping [49]

Shallow Multi-dof in/out. Numerics (ODEs,FEM) [61]
cable Inclined with vertical displacement of lower support

Beam 1st transverse/1st torsional; Experiments [138], numerics (ODEs)
parametric excitation. Cantilever [139]; response dimensionality [138]

3-mode transverse; Experiments,
external concentrated. ‘Moon beam’ numerics (ODEs) [162]

Multimode transverse; primary [111], 1/2-sub [112] Asymptotics [112], numerics (ODEs)
external 1st mode. Clamped buckled [111,112], experiments [112]

Multi-dof transverse; Numerics (FDM) [176] (STSE) [177]
external distributed. Simply supported buckled [170,
171,177,178], with stops [176]

(FEM) [178], global perturbation; homo-
clinic chaos [170,171]
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Table 3 continued

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:
Resonance Structure/model features Methods; phenomena

Multimode transverse; Asymptotics, global perturbation;
quasiperiodic base motion. Clamped homoclinic chaos [172]

Multimode transverse; Global perturbation;
undamped unforced. Hinged buckled homoclinic chaos [173]

Infinite-dof transverse; Semigroup theory and Melnikov for
boundary transverse harmonic. Hinged buckled PDE; transversal intersection of sta-

ble/unstablemanifolds, Smale horseshoe
[104]

Multimode transverse; external load. Numerics (ODEs) [174],
Clamped buckled, axial spring at one end experiments [175]

Multi-dof; Numerics (FDM) [182],
angular velocity at both ends. Rotating

2-dof/mode transverse (Shanley model [193–
195]/Galerkin [196–198]); impulsive load (harmonic
load [197]). Clamped elastic-plastic

Numerics (ODEs) [193–198]

3-dof transverse; (Shanley model) Numerics (ODEs, FEM) [199,200]
impulsive load. Clamped elastic-plastic

2-mode transverse; Numerics (ODEs) [204,205]
Axial [204]/lateral [205] harmonic. Simply supported
viscoelastic

Multi-dof; external distributed harmonic. Numerics (FDM, FEM), Kolmogorov-
Simply supported, clamped, simply supported-clamped,
linear, curvilinear, elasto-plastic, multi-layer/Euler-
Bernoulli, Timoshenko, Sheremetev-Pelek

Sinai entropy, Kaplan-Yorke dimension,
2D/3D wavelets; hyperchaos, hyper-
hyperchaos, Lyapunov exponents charts,
intermittency [6]

Shallow Multi-dof transverse; Numerics (FEM) [178]
arch external concentrated. Simply supported, clamped

2-mode transverse; Numerics (ODEs) [206]
external distributed. Hinged viscoelastic

Coupled 80 dof; Numerics (FEM) [235]
string-beam external distributed. 3D guyed mast

string) or curved (i.e. suspended cable) initial configu-
ration. The symmetric versus asymmetric geometry of
the two systems is associated with the absence or pres-
ence of an initial curvature, respectively, and entails dif-
ferent kinds of geometric nonlinearities. In the string,
these are solely odd and owed to the axial stretch-
ing, whereas in the cable they are both odd and even,
the former accounting for axial stretching and the lat-
ter for system initial curvature. Corresponding single-

mode archetypal models are the Duffing oscillator with
cubic nonlinearities and the Helmholtz–Duffing oscil-
lator with quadratic and cubic nonlinearities, to be used
for the analysis of planar oscillations.

However, the different geometrical configurations of
the two systems havemeaningful consequences already
in linear dynamics. Indeed, the modal spectrum of
elastic suspended cables exhibits clearly distinct fre-
quencies of the in-plane and out-of-plane modes, with
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the former markedly depending on the elastogeomet-
ric parameter which summarizes cable properties [22].
Instead, the taut string (which corresponds to a vanish-
ing value of that parameter) has a modal spectrum with
identical frequencies of planar and nonplanar compo-
nents of each spatial mode, thus always realizing a
condition of 1:1 internal resonance. This entails modal
interactionof the twocomponents even thoughonlyone
of them is externally excited by a periodic forcing: the
planar directly excited motion possibly described by a
single-mode Duffing oscillator solely exists for quite
large damping values entailing exponential vanishing
of all out-of-plane disturbances and is swiftly destabi-
lized to a spatial, whirling motion by a damping reduc-
tion.Accordingly, string dynamics turns out to be inher-
ently nonplanar and such to be reliably addressed only
via at least a two-mode model, whose averaged equa-
tions indeed highlight how periodic solutions bifurcat-
ing to non-regular motions may exist only in the four-
dimensional system of corresponding first-order differ-
ential equations [23].

In contrast, for a suspended cable vibrating trans-
versely with its first symmetric mode—which is the
first mode of a cable with sag-to-span ratio up to about
1/20 and a technical value of the axial rigidity-to-initial
tension ratio—away from internal resonances, a single-
mode model describing the in-plane vibrations under
corresponding in-plane excitation can be reliably con-
sidered to obtain a meaningful amount of results also
as regards complex dynamics. As a matter of fact, the
archetypal Helmholtz–Duffing oscillator representing
the asymmetric single-mode model of a shallow cable
has been widely addressed in the literature, where it
played a kind of paradigmatic role for the analysis of
nonlinear, bifurcation and chaotic phenomena occur-
ring in a large class of elastic monodimensional sys-
tems with initial curvature. These are often encoun-
tered in applied mechanics and structural engineering
and include structures provided with bending stiffness,
too, such as arches and buckled beams. Of course, the
single-mode model of cable is also of basic theoretical
interest in itself for exhibiting a rich variety of local
and global dynamical phenomena associated just with
the coexistence of quadratic and cubic nonlinearities.
Nonlinear dynamics of shallow (i.e. parabolic) cables
hanging at supports at the same level and excited by
distributed loadings and/or support motions has been
extensively analyzed. Shallowness allows to kinemati-
cally condense the cable longitudinal displacement by

neglecting inertia and viscous damping in the longitu-
dinal equation of motion, which corresponds to assum-
ing that the cable nonlinearly stretches in a quasi-
static manner in the absence of longitudinal exter-
nal loading. Solutions of prestressed cables with val-
ues of the elastogeometric parameter away from inter-
nal resonances were first obtained through perturba-
tion techniques (mostly the method of multiple time
scales) allowing to study small but finite oscillations
in regular regimes, and then via extensive numerical
simulations also allowing to investigate non-regular
responses.Comprehensive reviewpapers on the nonlin-
ear dynamics of single- andmulti-modemodels of shal-
low cables, along with experimental models, appeared
at the beginning of the new millennium, with two parts
devoted to the analysis in deterministic conditions and a
third part concerned with random excitation and inter-
action with fluids. Models, methods of solution and
tools for nonlinear analysiswere presented in [24], non-
linear and complex phenomena under harmonic excita-
tions were extensively dealt with in [25], and methods
of analysis and features of cable stochastic dynamics
were discussed in [26], all of them containing a huge
amount of references. Moreover, several studies deal-
ing with the nonlinear vibrations of multimode mod-
els of shallow cables appeared in the last two decades,
with a number of them also exploring the occurrence
and features of chaotic responses in specific conditions.
Moving to arbitrarily sagged and inclined cables,which
entail differences in both modelling and dynamic phe-
nomena, further updates and new results provided by
both theoretical multi-mode and experimental models
are reported in [27].

The literature presentation and discussion in the
sequel will start with a summary of the main outcomes
in terms of chaotic dynamics provided already by the
archetypal single-modemodel of shallow cables. Then,
attention will be focused on outcomes frommultimode
and experimental models of taut strings, shallow cables
and sagged/inclined cables, respectively,mostly report-
ing on phenomenological aspects of the relevant com-
plex response, but also dwelling on somemodelling and
analysis features where this turns out to be suitable for
properly framing the highlighted response scenarios.
Overall, the strong richness and variety of nonlinear
interaction and complex phenomena which character-
ize the dynamics of flexible high-dimensional struc-
tures will be apparent.
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2.1 Shallow cables: archetypal single-mode model

An approximate route to chaos in an oscillator with
quadratic and cubic nonlinearities subjected to exter-
nal harmonic excitation in the neighbourhood of 1/2-
subharmonic resonance was detected in [28,29] by
analyzing the stability of solutions obtained with the
method of harmonic balance, however, without refer-
ring to any specific structural element in the back-
ground. Chaos in the Helmholtz–Duffing oscillator
describing a shallow elastic cable was first investigated
through numerical simulations in [30], considering the
range of excitation frequency between primary and 1/2-
subharmonic resonance. Thereafter, a sequence of stud-
ies investigated in-depth a variety of issues related with
the occurrence of chaos, which is worth to distinguish
based on either a local or a global dynamics viewpoint.
The former was concerned with [31,32]:

(i) Detecting mechanisms of transition from dom-
inant periodic solutions in secondary resonance
ranges through either smooth sequences of peri-
od-doubling (PD) bifurcations or sudden changes
(jumps), and showing the capability of simple
and properly chosen approximate analytical solu-
tions (obtained with harmonic balance) to satis-
factorily delimitate regions of possibly complex
and chaotic motions, to be detected numerically
in local (e.g. frequency-response curves) and/or
overall (response charts in excitation parame-
ter plane) control spaces. The occurrence of PD
bifurcations and chaos at 1/2-subharmonic reso-
nance [32] was later revisited by [33] in a more
general framework,with also qualitatively similar
results, making reference to the equivalent pure
cubic (Duffing-like) oscillator with an applied
constant force plus the harmonic one. This is one
example of the possibly paradigmatic role played
by the single-mode representation of the shal-
low cable via the Helmholtz–Duffing oscillator
to shed light also onto a wider class of nonlin-
ear/complex phenomena.

(ii) Characterizing strange chaotic attractors (gener-
ally topologically connected but also possibly dis-
connected) via qualitative (time histories, phase
portraits and Poincaré maps) and quantitative
(frequency power spectra, and global indicators
such as Lyapunov exponents and fractal dimen-
sion) dynamic measures, with differences and

similarity as regards chaos strength and robust-
ness in various resonance zones.

(iii) Showing the meaningful influence of initial con-
ditions on the steady response, with the ensu-
ing coexistence of basins of periodic and chaotic
attractors, which highlights the need to comple-
ment local bifurcation analyses/predictions with
a deep insight into global nonlinear and chaotic
behaviour.

This was accomplished through systematic and
combined use of numerical (point-by-point computer
simulations, continuation procedures, cell mapping
algorithms) and geometrical (direct and inverse sad-
dles corresponding to unstable periodic solutions, their
invariant manifolds, homoclinic and heteroclinic tan-
gencies) tools of analysis allowing [34,35]:

(iv) To construct bifurcation diagrams, basins of
attraction in initial conditions space, and attractor-
basin-manifold phase portraits, and to interpret
their highly involved evolution with a varying
control parameter.

(v) To highlight the occurrence of rich and var-
ied bifurcation mechanisms in 1/2- and 1/3-
subharmonic ranges, with either boundary or
interior crises (of switching- or bursting-type)
[36] responsible for sudden changes of global
attractor-basin structure, and themeaningful roles
played by direct and inverse saddles, along with
theirmanifolds, in producing intricate bifurcation
scenarios.

(vi) To dwell on a variety of features of system global
dynamics, i.e.: fractal basin boundaries producing
response unpredictability; homoclinic and hete-
roclinic intersections entailing strong intertwin-
ing of basins; high periodicity solutions which,
although having very small basins of attraction,
play meaningful roles in the mechanisms through
which chaotic attractors are established, modi-
fied in size, or destroyed, and periodic windows
created within chaotic zones; sudden widenings
of chaotic attractors occurring through incorpora-
tion of portions of the chaotic saddle, which is the
topological set formed by the union of infinitely
many saddles corresponding to periodic orbits
become progressively unstable in the main and
secondary evolutions to chaos.

123



Chaos in one-dimensional structural mechanics 799

2.2 Taut strings: multimode models

Upon earlier analytical predictions as to the possi-
ble occurrence of amplitude-modulated quasiperiodic
whirling in the resonant nonplanarmotionof a stretched
string [37], nonregular forced vibrations of multimode
models of taut strings were investigated both numer-
ically [38,39] and experimentally [40,41], with the
global bifurcation theory being also utilized to explain
the existence of chaotic attractors numerically [23] and
analytically [41,42]. Tufillaro [38] studied a resonantly
forced model of an elastic string undergoing either pla-
nar motion described by a single-mode Duffing equa-
tion, if assuming, e.g. that the string ends are fastened in
such a way to allow only vibration in a single plane, or
circular motion described by a set of two coupled Duff-
ing equations. In both cases, bifurcation diagrams with
varying forcing amplitude highlighted possible occur-
rence of chaos, thereafter observed in [40] in the first
experimental investigation on chaotic oscillations of
strings, focused on the underlying torus doubling cas-
cade, with the actual chaotic nature of the observed
orbits being confirmed by the fractal value of the corre-
lation dimension computed from digitized time series.
Bajaj and Johnson [23,39] systematically analyzed the
nonplanar motions of a two-mode model ensuing from
single-mode truncation of the in-plane and out-of-plane
equations of the string [43], subjected to planar har-
monic excitation with frequency near a linear natu-
ral frequency, using the method of averaging and the
method of integral manifolds. For small enough damp-
ing, the nonplanar constant solutions of the averaged
equations, arisen from the resonantly forced planar
response solely occurring for large damping, become
unstable by a Hopf bifurcation, with the resulting limit
cycle solutions corresponding to amplitude-modulated
whirling (or ballooning) motions of the string. Two
limit cycle branches were found—one arising due to
Hopf bifurcation and exhibiting PD bifurcations not
directly ending up to chaos, and an isolated one due to
a global saddle-node bifurcation—merging with each
other upon further damping reduction. With variations
in detuning, the isolated branch exhibits PD bifur-
cations, chaotic attractors and merging of attractors,
with occurrenceofRössler- andLorentz-type solutions.
Homoclinic orbits to a saddle-focus in the context of the
Shilnikov mechanism, and chaos quenching through
boundary crises were highlighted. The truncated string
equations were also directly integrated, showing that

nonplanar periodic responses bifurcate into amplitude-
modulated motions on a two-torus, with changes in
detuning which result in torus-doubling, merging of
tori, and torus destruction leading to chaotic amplitude
modulations. Overall, asymptotic results were in qual-
itative agreement with both outcomes from numerical
simulations and experimental results in [40]. O’Reilly
and Holmes [41] studied the nonlinear vibrations of
a pretensioned string subject to harmonic transverse
excitation of one end, both experimentally and theoret-
ically. Besides planar and nonplanar (whirling) peri-
odic motions, the latter taking place in a clockwise
or anticlockwise direction, they observed quasiperi-
odic whirling and irregularly precessing oscillations
when the forcing frequency is near that of a trans-
verse mode. Analysis of the averaged equations of the
two-mode in-/out-of-plane model also considered in
[23,39] showed how the experimental quasiperiodic
and chaotic motions can be partially understood in
terms of the completely integrable Hamiltonian system
obtained as damping and forcing tend to zero. O’Reilly
[42] examined some global bifurcations present in
the averaged equations using a Shilnikov-type model,
focusing on those bifurcations which allow the string to
change its direction of whirling (which corresponds to
a mode coupling mechanism) and are directly related
to the structural instability of a homoclinic connec-
tion. From symmetry and stability considerations, this
instability was seen to produce gluing bifurcations
and homoclinic explosions and provide an explana-
tion for some of the observed chaotic motions. Mov-
ing from some discrepancy between theoretical and
experimental results noticed in [41], Rubin and Got-
tlieb [44] highlighted through numerical solutions of
forced vibrations with the theory of a Cosserat point
that the forcing amplitude for the onset of persistent
whirling and aperiodic response of a nonlinear string
is quite smaller than that observed in the experiments,
even when the uncertainty in the forcing function is
removed from the analysis, thus suggesting possible
occurrence of some non-properlymodelled experimen-
tal mechanism. Leamy and Gottlieb [45] enriched past
string models solely accounting for (in-/out-of-plane)
transverse motions of the string under transverse exci-
tation with the inclusion of also longitudinal motion,
whose geometrically nonlinear couplingwith the trans-
verse one results in resonant and non-resonant inter-
actions, and of a nonlinear material law, both aspects
being appropriate for the study of rubber-like strings. In
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the case of internal resonance betweenfirst longitudinal
and third transverse modes, the multiple scales method
directly applied to the PDEs highlighted a new class
of whirling motions with significant longitudinal con-
tent,whose existence, hardening/softening features and
stability were seen to be highly dependent on the mag-
nitude of the material nonlinearities, whereas numer-
ical simulations of the evolution equations revealed
likely chaotic responses attained through sequences
of PD bifurcations. Instead of focusing on individual-
modulated responses of strings subjected to harmonic
boundary excitations, Hu and Pai [46] investigated the
interrelation between neighbouring solutions via the
construction of bifurcation structures obtained by con-
necting the extreme values ofmodulated vibration limit
cycles. When built at various damping levels, bifurca-
tion structures allowed better understanding of forward
and reverse Hopf bifurcations through PD, appear-
ance of isolated solution branch, solution branch tran-
sitions between Hopf and isolated branches, appear-
ance of chaotic attractors and their transitions between
Rössler and Lorenz types, and attractor disappearance
by boundary crisis.

Contrary to previous studies considering the string’s
‘natural’1:1 internal resonance, Zhang and coauthors
[47] dealt with the occurrence of chaos in a 1:2 inter-
nally resonant taut string, under principal parametric
resonance of one dof and external primary resonance
of the other dof. Following a pattern pursued earlier
for studying chaos in a 1:1 internally resonant shallow
cable at first crossover (see, e.g. [48] in Sect. 2.3), after
transforming the multiple scales modulation equations
into a normal form, the global perturbation method of
Kovacic and Wiggins [16] was used to find explicit
sufficient conditions for chaos to occur, identifying the
existence of a Shilnikov-type homoclinic orbit. Actu-
ally, the authors interest was merely in applying con-
cepts/methods of dynamical systems theory to a set of
ODEs, without taking care of the mechanical mean-
ing of the considered situation. This is also confirmed
by the parameters values referred to in the numerical
simulation of both the original ODEs and the AMEs
(qualitatively confirming the theoretical occurrence of
chaos), selected in a substantially abstract way allow-
ing to detect complex phenomena. Still in a theoretical,
though different, context, the galloping instability of a
non-internally resonant, tightly stretched cable in an
overhead transmission line under flow-induced vibra-
tions was recently addressed via an analytical approach

to chaos based on the generalized harmonic balance
method [49]. Considering a two-dof Duffing model
accounting for single-mode transverse and torsional
vibrations due to aerodynamic and external loads, ana-
lytical solutions for period-m motions were obtained
with high-numbers of harmonic terms. Frequency-
response curves of transverse and torsional components
highlight bifurcation trees of period-1motions to chaos,
with analytical trajectories which compare very well
with numerical ones.

The context is quite different for the three-mode
model of inclined cable with only cubic nonlinearities
considered in [50] in the background of application as a
deck-supporting cable excited by the passing traffic in
a cable-stayed bridge. The model included the second
in-plane mode resonantly excited by harmonic vertical
excitation of the lower (deck) support and the 2:1 and
1:1 internally resonant first and second out-of-plane
modes. Averaging was applied to the reduced ODEs
originally provided by [51], and the solutions and bifur-
cations of the resulting averaged equations were inves-
tigated and mapped out with numerical continuation.
Upon cataloguing the different kinds of equilibria (cor-
responding to periodic responses of the reducedODEs)
through a comprehensive geometric picture of the sur-
faces of existence, attention was focused on bifurcat-
ing periodic orbits, which correspond to cable dynam-
ics with varying-amplitude whirling responses of the
participating second in- and out-of-plane modes. The
range of excitation amplitude and frequency where
such whirling motion can occur was determined. Fur-
ther bifurcations (PD cascades and a Shilnikov homo-
clinic bifurcation where the periodic orbit approaches a
saddle-focus) were found, leading to a chaotic response
in which cable motion changes irregularly between
clockwise and counterclockwise whirling. A similar
Shilnikov homoclinic bifurcation was found in a hori-
zontal vibrating string, with the merging of two reflec-
tionally symmetric orbits into a single symmetric one
[23]. Whirling and chaotic cable dynamics were con-
firmed by time-step simulations of the full three-mode
model.

2.3 Shallow cables: multimode models

Single-mode models of suspended cables allow us to
highlight the richness of regular and complex pla-
nar dynamics ensuing from the presence of quadratic
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and cubic nonlinearities. However, in practice, such
responses only occur when no further modes are
involved in the system response through some mecha-
nisms of in-plane and, mostly, out-of-plane nonlinear
coupling, the latter playing an important role as soon
as the excitation amplitude overcomes relatively low
threshold values due to the apparent cable flexibility
in the out-of-plane direction. Interaction phenomena
are strongly enhanced by the occurrence of internal
resonances, which entail meaningful contributions of
non-directly excited modes to the overall response. In
this respect, the spectrum of natural frequencies of the
parabolic cable is particularly rich, for it exhibits a vari-
ety of 1:1, 1:2 and 1:3 internal resonances between in-
plane, out-of-plane and in-/out-of-plane modes, with a
special role played by crossover points, where equal
frequency values of interchanging symmetric and anti-
symmetric in-plane modes entailing 1:1 internal reso-
nance repeatedly occur, overall ending up to a condi-
tion of multiple internal resonance also involving other
modes.

Since about beginning of the 90s, internally reso-
nant multimode models were formulated and used to
investigate via asymptotic techniques the richness and
variety of cable dynamic phenomena produced by non-
linear modal interaction already in regimes of regular
vibrations. When using models with a greater num-
ber of interacting modes—like the four-mode model
with the fundamental planar and nonplanar, symmetric
and antisymmetric, modes accounting for the multi-
ple 2:2:1:2 resonance occurring at first crossover, with
the first symmetric in-plane mode excited at primary
resonance, in the discretized asymptotic formulation
[52]—robustness of also incomplete classes of regu-
lar motion was investigated, highlighting the major or
minor strength of the bimodal internal resonances con-
tributing to the multiple one. As regards transition to
nonregular responses at higher excitation amplitudes
or in specific frequency ranges, whose analysis is more
involved than that for the single-mode model due to the
system higher dimensionality, first numerical results
were reported in [53] for the mentioned four-mode dis-
cretized model [52], by getting complementary indi-
cations from the non-stationary motions of the associ-
ated AMEs and outcomes from numerical simulations
of the system original ODEs. Alaggio and Rega [54]
provided a response chart aimed at qualitatively repro-
ducing some complex regimes observed in an experi-
mental cable-mass system ( [55], see Sect. 2.4 forward)

via a low-order reduced models making use of contin-
uous proper orthogonal modal functions obtained from
variable sets of experimental results. For the above
mentioned four-mode model at multiple internal res-
onance addressed with the direct asymptotic formula-
tion, Nayfeh and coauthors [56] obtained schematics
of dynamic solutions resulting from subcritical Hopf
bifurcations on branches of equilibrium solutions of the
AMEs, and of further bifurcations possibly ending in
quasiperiodic and chaotic oscillations. Complex non-
linear response and a sequence of PD bifurcations cul-
minating in chaos were observed, with chaotic attrac-
tors then disappearing through boundary crises, and
limit cycles undergoing cyclic-fold bifurcations.

Complex response in the planar dynamics of a cable
with 1:3 internal resonance between the first and third
symmetric modes was investigated based on the AMEs
obtained by themethodofmultiple scales applied either
directly to the original PDEs [57] or to a two-mode
sub-model [58] of the reduced four-mode model in
[52], in the latter case also comparing the dynamic
solutions with results from numerical simulations of
the two-mode ODEs. Although not performing strict
comparisons of outcomes from the two (direct vs. dis-
cretized) approaches, some relevant differences seem
to occur. Indeed, when considering primary resonance
of the third mode, cascades of PD bifurcations end-
ing up to chaotic attractors finally disappearing through
boundary crises were observed with both approaches.
In contrast, when exciting at primary resonance the first
mode, a sequence of torus bifurcations not ending up to
chaos occurred with the direct approach, whereas rich
and involved sequences of global bifurcations to chaos,
including direct and reverse PDs, jumping, cyclic-
fold bifurcations and boundary crises, were highlighted
with the discretized approach. Period-doubling cas-
cades to chaos and its disappearance though bound-
ary crisis also occurred in the nonplanar response of a
cable with 1:1 internal resonance between third sym-
metric in- and out-of-plane modes, in addition to the
1:3 resonance between first and third symmetric in-
planemodes,when investigating the primary resonance
of the third in-plane mode with the direct approach
[59]. Overall, it appears that possibly non-trivial dif-
ferences may occur as to the development, features
and robustness of complex response outcomes depend-
ing on whether direct- or dicretized-based AMEs are
used for obtaining dynamic solutions, with also slight
discrepancies possibly occurring when comparing dis-
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cretized AMEs dynamic solutions with results from
simulation of the reduced ODEs. The first set of dis-
crepancies is linked with possibly non-trivial effects
of non-resonant modes, which are neglected (implic-
itly accounted for) in the discretized (direct) approach,
mostly—even though not only [60]—in the presence
of quadratic nonlinearities; the second set of though
lower effects may be due to possibly non-trivial contri-
butions to ODEs simulation results from higher order
small terms neglected in the asymptotic approach.

Numerical simulation of a Galerkin reduced model
for in-plane and out-of-plane vibrations (and nonlin-
ear finite element verifications) highlighted the occur-
rence of complex responses also in a (seemingly non-
internally resonant) inclined cable with small sag-to-
span ratio and sinusoidal vertical displacement of its
lower (i.e. deck) support, in the framework of applica-
tions to real cable-stayed bridges [61]. Support motion
originated parametric and external excitations as in the
four-mode model of horizontal cable [52]. Consider-
ing multiple sinusoidal in-/out-of-plane shape func-
tions, regions of chaotic response were seen to occur
for higher frequency (apparently around principal para-
metric resonance) and larger amplitude excitations,
mostly when cable damping levels are low.

In most considered cases, rich and variable bifur-
cation scenarios to nonregular attractors (often coex-
isting with regular ones) in high-dimensional state
spaces (e.g. the eight-dimensional one entailed by the
four-mode model) generally occur, depending on the
assumed initial conditions and the rather large number
of control parameters. Of course, seemingly chaotic
responses have to be quantitatively characterized by
calculating measures such as the correlation dimen-
sion or the first Lyapunov exponent, either by working
directly on the actual vector field (e.g. the eight first-
order equations equivalent to the four-mode system),
or reconstructing an embedding phase-space from the
numerical scalar time series of, e.g. one or two dof [62].
It is anyway apparent that, in view of the richness and
variety of bifurcation scenarios and nonregular attrac-
tors to be possibly observed through heavy numerical
analyses and “brute”computer simulations, there is a
strong need to look at the relevant results against some
overall interpretative framework of regular and,mostly,
nonregular classes of motion. This can be achieved by
properly complementing analytical/numerical investi-
gations of possibly complex responses of continuous
systems based on local bifurcation analyses, with more

theoretical studies also providing mathematical condi-
tions for actual occurrence of the latter based on global
bifurcation analyses, as already illustrated for the taut
string. Global analysis was used in [63,64] as a theo-
retical interpretative framework of bifurcation scenar-
ios to complex responses observed in an experimental
cable-mass system (see Sect. 2.4 forward). However,
the first theoretical study on nonregular dynamics of
suspended cables exploting global bifurcation meth-
ods was likely due to Zhang and Tang [48]. Referring
to a two-dof model [65], yet considering an internal
resonance of lower practical significance, they inves-
tigated the global bifurcations and chaotic dynam-
ics arising in a 1:1 internally resonant cable at first
crossover due to tangential in-plane vibration of one
support, which causes simultaneous principal paramet-
ric and 1/2-subharmonic external resonances of the in-
plane symmetric mode and principal parametric reso-
nance of the out-of-plane mode. The averaged equa-
tions, derived from the original non-autonomous sys-
tem with the method of multiple scales, were first sim-
plified to their normal form associated with a double
zero and a pair of pure imaginary eigenvalues. Then,
a global bifurcation analysis performed with the per-
turbation method [16] indicated the occurrence of het-
eroclinic bifurcations and Shilnikov-type homoclinic
orbit to a saddle-focus, which correspond to amplitude-
modulated chaotic oscillations in the original ODEs.
Numerical simulations of the averaged equations con-
firmed the analytical predictions about occurrence of
chaos.

Other papers nominally dealing with suspended
cables somehow overlook the full consistence of mod-
elling and physics in the background, while being
nearly solely interested in highlighting bifurcations and
chaotic dynamics in numerical or theoretical terms.
They include considering, e.g. such low values of the
sag-to-span ratio (and associated initial curvature) to
actually set the system in the range of nearly taut
strings, however, with an extremely low shallowness
originating the quadratic nonlinearities which distin-
guish them from the perfect taut strings with only
cubic nonlinearities considered in Sect. 2.2. This is
the case of papers focusing on nonplanar bifurcations
and chaotic dynamics, under different excitation con-
ditions, of a horizontal [66,67] and inclined [68] cable
with sag-to-span ratio of 1/400 and 1/447, respec-
tively, which entitle the sine function assumption for
both the nearly coinciding in-plane and out-of-plane
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modes in the Galerkin reduction in the underlying
PDEs, the former mode being markedly different from
the Irvine’s symmetric planar one [22] of actually sus-
pended (although shallow) cables assumed, e.g. in [52].
A two-dof model with quadratic and cubic nonlinear-
ities describing the nonlinear dynamics of 1:1 inter-
nally resonant in-/out-of-plane modes of a horizontal
cable was considered in [66,67]. Although the model
was claimed to be valid also for antisymmetric modes,
it only holds for symmetric ones, as highlighted by a
comparison of the considered two ODEs with those
of the discretized four-mode model [52] from which
the two-dof one is derived. The in-/out-of-plane modes
were both subjected to a parametric resonant excita-
tion presumably ensuing from in-plane longitudinal
motion of one support, with the out-of-plane mode
being also subjected to an external resonant excitation
likely ensuing from a lateral (i.e. out-of-plane) hori-
zontal load distributed along the cable. Overall, simul-
taneous principal parametric and primary external reso-
nances occur. In [67], amplitude and phase modulation
equations were derived with the method of multiple
scales and branches of equilibrium solutions experi-
encing pitchfork, saddle-node and Hopf bifurcations
with varying excitation frequency were obtained with
a pseudo-arclength scheme. A combination of a two-
point boundary value scheme and a Newton–Raphson
procedure was used to calculate limit cycle solutions
of the AMEs, and then the Floquet theory was used to
assess their stability. A detailed bifurcation analysis of
dynamic solutions highlighted three branches emerg-
ing from two Hopf bifurcations, one primary and one
supercritical, and other two being isolated. Limit cycles
showed symmetry-breaking, cyclic-fold and PD bifur-
cations culminating to chaos, thereafter undergoing
attractor-merging and boundary crises. Simultaneous
limit cycles and chaotic attractors were also observed,
along with the occurrence of homoclinic explosions
and hyperchaos. Global bifurcation of the averaged
equations (rewritten in a suitable form through a canon-
ical transformation) was studied in [66] via the energy-
phasemethod [17,69], which differs from other higher-
dimensional Melnikov techniques because of provid-
ing a sufficient condition for Shilnikov type behaviour
using a Melnikov type integral in the presence of reso-
nant fixed points. The method was employed to prove
the transversal intersection of the unstable manifold
emanating from a fixed point in the resonance band and
the stablemanifold of the annulus around the resonance

band, and to show the formation of a homoclinic focus
giving rise to a Smale horseshoe type of chaos. Occur-
rence of Shilnikov-type multipulse chaotic attractors
was demonstrated theoretically and verified through
numerical simulationof the averaged equations. In turn,
Chen and Xu [68]] considered the 1:1 internally reso-
nant two-dofmodelwith quadratic and cubic nonlinear-
ities previously developed and used in [70], for a per-
turbation analysis of the coupling between in-plane and
resonantly forced out-of-plane vibrations of an inclined
cable. Averaged equations were numerically investi-
gated to obtain steady responses and chaotic solutions,
observing cascades of PD bifurcations and 3-period
solutions leading to chaos, Rössler type chaotic attrac-
tors and boundary crises. Global bifurcation analysis of
averaged equations was also performed via a perturba-
tion technique [16], which provided analytical results
for the critical parameter values at which the dynam-
ical system, through Shilnikov type homoclinic orbits
to the saddle focus, possesses a Smale horseshoe type
of chaos.

2.4 Experimental cable-mass suspension

Another meaningful interpretative framework of reg-
ular and, mostly, nonregular classes of motion can be
obtained by looking at outcomes in terms of routes to
chaos and ensuing attractors from in-depth investiga-
tions of experimental cable models, that are able to
account for the flexibility, high modal density and vari-
ablemodal contributions to the response of actual cable
systemsmore realistically than theoreticalmodels often
assuming constrained modal shapes.

First experimental hints about chaos in suspended
cables were obtained for a system of ‘rigid link’ strings
connecting two hanging heavy masses (like two cou-
pled spherical pendulums), giving rise to a three-dof
system (and corresponding analytical model) whose
antisymmetric in-plane and out-of-plane frequencies
are at nearby 1:1 internal resonance [71]. Periodic in-
phase and out-of-phase vertical motions of the hanging
points entail regions of quasiperiodic and chaotic out-
of-plane motion (described by means of Fourier trans-
form, probability density function, and autocorrelation
function) when exciting the system around primary
and/or 1/2-subharmonic resonance of the antisymmet-
ric out-of-plane mode. The delay embedding technique
[72] was used to reconstruct the global properties of the
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chaotic attractor from a scalar time series. The struc-
ture of the experimental global attractor suggested a
Shilnikovmodel for the transition to chaotic behaviour.
Systematic analyses of regular and nonregular motions
were then conducted by considering a more refined
model of experimental cable-mass suspension [62],
under a variety of excitation conditions [55,63,64,73],
which is referred to in the sequel. The relevant out-
comes also provided hints about how properly formu-
lating theoretical ROMs capable of exhibiting distinct
nonlinear behaviours as experimentally observed indif-
ferent regions of control parameters space [54,74], to be
then used for possibly systematic analytical/numerical
investigations.

The experimental model was a small-sag nylon wire
carrying eight equally spaced concentrated masses and
hanging at supports that were given vertical sinusoidal
displacements [62]. Results were obtained mostly for
an elastogeometric parameter value slightly higher than
the first crossover one, and closely reproducing the
natural frequencies and mode shapes of a correspond-
ing theoretical cable-mass suspension [75], whose pat-
tern is in turn very similar to that of the bare continu-
ous cable. Experimental investigations were performed
systematically with in-phase or out-of-phase support
motions in the neighbourhoods of 1/2-subharmonic,
primary, and 2-superharmonic resonances of first in-
plane and out-of-plane antisymmetric modes having
nearby frequencies. They were aimed at obtaining both
local response pictures against variations of excita-
tion amplitude/frequency and overall response charts
in excitation parameters plane. Reliable interpretation
and classification of response of flexible continuous
systems are generally lengthy and hard, due to possi-
bly limited availability of measurements, system sen-
sitivity to variations of initial and environmental con-
ditions, and usual occurrence of long transients due to
very light damping. Nonetheless, a rich set of responses
were observed in various ranges of system parameters,
with strong modal interaction due to nearness to or
simultaneousness of conditions of external/internal res-
onance, also possibly involving higher or local modes.
It was possible to detect experimental counterparts
of practically all main theoretical classes of regu-
lar motion highlighted by the four-mode discretized
ROM [52], with well-identified mechanical contribu-
tions, although the unconstrained experimental sce-
nario was overall much richer. Widely extended zones
of quasiperiodic and chaotic motion, with different lev-

els of chaoticity, were detected at fairly high values of
excitation amplitude in between regions of clearly dom-
inating low-dimensional regular responses, mostly pri-
mary and 1/2-subharmonic resonances with in-phase
and out-of-phase support motion, respectively. First
characterization of seemingly chaotic responses was
obtained via qualitative tools (plots of different sec-
tions of phase space, Poincaré map projections, power
spectra) furnishing hints about their nature in geometric
or mechanical terms. Indeed, in the first respect, chaos
was much more developed when the 2D phase space
reconstruction of the attractor appeared more tangled,
when the power spectrum was broad-banded instead of
being organized around some main peaks, and when
the Poincaré section of a 3D reconstruction exhibited
no structure instead of looking like a section of a torus
with a fuzzy surface,which corresponds to a chaotically
modulated motion. In the second respect, identifying
in a nonregular motion a prevailing timely modulated
modification of a regular spatial shape or phase portrait
occurring in adjacent regions of the control parameter
space, with dominant modal contributions, helped in
the mechanical interpretation of the motion.

However, quantitative characterization of global
properties of experimental spatiotemporal dynamics
requires: (i) characterization of attractors in terms of
dimensionality, strangeness and possible chaoticity,
(ii) identification of number and shape of space con-
figuration variables mostly contributing to nonregular
response, (iii) description of bifurcation mechanisms
and scenarios from regular to nonregular response with
a varying control parameter, (iv) local and global char-
acterization of the flow structure in phase space and
of its evolution, which is often necessary for under-
standing the bifurcation scenario. All of this infor-
mation were obtained with rather sophisticated tech-
niques requiring considerable experimental and com-
putational efforts. Analysis of the asymptotic motion
in a nonregular condition was performed on attrac-
tors reconstructed by means of the delay-embedding
technique, which provides indications on the actual
number of dof taking meaningful part in the response.
The embedding dimension was evaluated at satura-
tion of an attractor dimension invariant, with a greater
value of the correlation dimension confirming qualita-
tive observations about higher strangeness—and cor-
responding major chaoticity—of the response under
in-phase than out-of-phase motion. In turn, the anal-
ysis of response spatial properties was performed by
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means of the proper orthogonal decomposition (POD)
based on the spatial coherence analysis of the flow [76].
Proper orthogonalmodes (POMs)were computed start-
ing from simultaneous time series datameasured at dif-
ferent positions throughout the system, with the corre-
sponding eigenvalues standing for the amount of energy
(signal power) captured by the eigenfunctions. Fur-
nishing the basis for capturing more power per mode
than any other basis, the POD allowed to identify the
mechanical configurations most visited, on average,
during a temporal evolution of the response, to be also
used in a theoretical context for decomposing the spa-
tial flow via a reduction method.

Different bifurcation paths from regular to nonregu-
lar dynamics were exhibited by the cable-mass system
depending on the kind of support motion and exter-
nal resonance, and on cable dynamic properties. They
were traced back to two canonical scenarios of dynam-
ical systems theory, also possibly competing with each
other, namely (i) the quasiperiodic (three-tori break-
down) scenario [63], and (ii) a scenario involvingglobal
bifurcation of a homoclinic invariant set of the sym-
metric flow [64,73]. The quasiperiodic scenario was
seen to be characterized by various types of bifurca-
tions, includingHopf from 2-torus to 3-torus, transition
to chaos through 3-tori breakdown and phase-locking.
Classes ofmotionwere characterized basedon topolog-
ical dimension of manifolds where the motion devel-
ops and correlation dimension of attractors. The spatial
coherence analysis showed successive involvement in
the system dynamics, at subsequent Hopf bifurcations,
of different cable-mass configuration variables, with
a meaningful amount (more than 90%) of power of
the chaotic response being captured by the first three
POMs, resembling the first in-/out-of-plane symmetric
modes and the first out-of-plane antisymmetric mode.
The quasiperiodic scenario was not seen to occur for
the cable at first crossover, whose nearly perfect multi-
ple (2:2:1:2) internal resonance prevents quasiperiodic
couplings and transition to chaos from occurring, while
replacing them in parameter space with wider regular
resonant couplings. The homoclinic bifurcation sce-
nario was of more general interest because of being
concernedwith each frequency zonewhere ballooning-
type classes ofmotion, involving couples of in/out anti-
symmetric (symmetric) modes in case of out-of-phase
(in-phase) support motion, are present. In-depth char-
acterisation of classes ofmotion and transition scenario
required working with a proper, thermally conditioned,

experimental setup, such to guarantee a steady tem-
perature and stabilize the response of the cable-mass
system, making it mechanically accessible without the
cable loosening possibly entailed by too high values of
excitation amplitude.

Bifurcation to homoclinic chaos occurred from a
couple of coexisting (e.g. antisymmetric) ballooning
periodic solutions, differing from each other for the
orbit clockwise or anticlockwise rotation in the con-
figuration plane ( [62]; see also Sect. 2.2 for compan-
ion mechanisms in taut strings). The ensuing chaotic
attractor showed the lowest observed dimensionality,
since transition from regular to nonregular behaviour
happened without increasing the number of involved
modes over the two of the periodic ballooning already
present in adjacent regular zones.Overall, the availabil-
ity of temperature as a third control parameter allowed:
(i) to qualitatively refer the experimental unfolding of
the dynamics to the theoretical one of the divergence-
Hopf (d-H) bifurcation normal form; (ii) to unfold
the dynamics not only in the strict neighbourhood of
the organising d-H bifurcation but also in the ensuing
post-critical regions where the dependence of mate-
rial damping on temperature affects secondary bifur-
cations to homoclinic chaos; (iii) to show the vari-
able involvement of a further POM with respect to the
reference two-mode normal form scenario ending up
to homoclinic chaos [73]. Construction of an exper-
imentally driven low-dimensional phenomenological
model allowed to interpret the experimental response
scenario in the framework of the symmetry break-
ing of a highly degenerated bifurcation set describ-
ing an O(2) symmetric Takens–Bogdanov bifurcation
[27,74], paving the way towards the independent for-
mulation of a refined theoretical ROM with all nec-
essary pre-requisites (likely including also hysteretic
damping) for reliably reproducing the experimentally
observed phenomena. For the sake of completeness,
it is indeed worth observing that no quasiperiodic or
chaotic responsewas observed in a detailed experimen-
tal study on regular resonant vibrations of a steel hor-
izontal cable vertically excited at one end, performed
by using a 3D motion analysis system [77]. This was
likely caused by the relatively high stiffness of the steel
cable, because of which the extension-related nonlin-
earity did not come into effective play for nonlinear
interactions.
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2.5 Arbitrarily sagged and inclined cables: multimode
models

More general models of suspended cable considered an
arbitrarily sagged [78] and possibly inclined [79] sys-
tem, based on a refined kinematical description of the
cable element deformation. Both exact and third-order
approximate nonlinear PDEs of 3D coupled, forced,
damped motion of the cable around static equilibrium
were obtained, the latter describing moderately large
vibration amplitudes based on the assumption of small
static strain. As for the shallow cable, they exhibit
quadratic and cubic nonlinearities associatedwith cable
initial curvature and axial stretching, respectively; how-
ever, due to the interaction between longitudinal and
transverse dynamics—which ensues from accounting
for the overall inertia effects—quadratic nonlinearities
occur even in the absence of initial sag, i.e. in the taut
string case, as also occurring in the motion equations
reported in [45]. Longitudinal and transverse (in- and
out-of-plane) dynamics are nonlinearly coupled, so that
the cable model is referred to as kinematically non-
condensed to distinguish it from the condensed model
typically considered in the shallow cable literature [80].
Contrary to symmetric horizontal cables, inclined ones
are inherently asymmetric. In the case of moderate sag
(i.e. with sag-to-span values somehow larger than the
limiting one for parabolic profile), a closed-form cubic
approximation of cable static equilibrium configura-
tion allows to account for the dynamic effects of sys-
tem asymmetry, which entails qualitative modification
from the crossover phenomenon occurring in the fre-
quency spectrum of symmetric cables to the frequency
avoidance (or veering [81]) occurring in the spectrumof
inclined cables for increasing values of the generalised
elastogeometric parameter. Veering entails occurrence
of hybrid, i.e. asymmetric, modes [82] resulting from
a mixture of symmetric and antisymmetric shapes,
which also affect the system nonlinear behaviour. Mul-
timode discretization of approximate PDEs of the non-
condensed model provided low-dimensional reduced
ODEs suitable for analytical solution via the multiple
scalesmethod [83], with ROMs suited to obtain nonlin-
ear normalmodes being identified through convergence
analyses and validated by finite difference investigation
of the original PDEs [10]. Amajor issuewas concerned
with the evaluation of variable contributions from res-
onant and non-negligible non-resonant modes to the
overall response, with the involvement of the latter

strongly depending on the role played by second-order
effects of quadratic nonlinearities coming into play
in second-order perturbation analysis [10,80,84,85].
Indeed, in view of developing reliableROMs, quadratic
nonlinearities highlight the importance of accounting
for also non-resonant (higher-order) modes in the reso-
nant dynamic solutions of cables with significant sags
and/or remarkable asymmetry features due to inclina-
tion, whose effects were generally overlooked in for-
mer studies on modal interactions at crossovers con-
sidering only resonant modes. This confirms how the
lowest dimensional discretization may yield quantita-
tively inaccurate or evenqualitatively crude resultswith
respect to the infinite-dimensional discretization [10],
or the direct application of the asymptotic method to
the original PDEs with no a priori assumptions of the
displacement solution form [86], whose outcomes are
equivalent provided enough modes are retained in the
discretization [87,88]. Again, a very rich pattern of
nominally activable internal resonances involving dif-
ferent in-/out-of-plane modes occurs at both crossover
(avoidance) frequencies of horizontal (inclined) cables
and away from them. Actually, not all of them are
activated because the involved modes may be nonlin-
early orthogonal with each other, the vanishing non-
linear orthogonality of modes representing a necessary
and sufficient condition for activation [89]. Anyway,
whether activated, they entail strong modal interaction
and energy exchange between the involved modes, to
an extent that depends on the specific resonance con-
dition and the nature of modes.

In the case of planar forced vibrations under uni-
formly distributed vertical harmonic excitation at pri-
mary resonance with some internally resonant mode,
analysis of the AMEs in 1:1 or 1:2 internal reso-
nance, with the associated nonlinear interaction coef-
ficients, allows to get a general description of var-
ious possible resonant solutions occurring for hori-
zontal [80] and inclined [84] cables. Depending on
the elastogeometric parameter, the kind of internal
resonance, and the primary resonance of a high- or
low-frequency mode, uncoupled and/or coupled solu-
tions may occur, the former only involving the directly
excited resonant mode, the latter driving into the
response also the non-excited mode via an internal res-
onance enhanced mechanism of energy transfer. In the
1:1 internal resonance of horizontal (inclined) cables
at crossovers (avoidances) of different order, modifi-
cation from symmetric/antisymmetric to hybrid modes
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entails meaningfully different scenarios of nonlinear
response. Even focusing on the solely planar dynamics,
where second-order analyses allow to refer to minimal
ROMs accounting for the sole two internally resonant
modes, the essential features of regular and non-regular
responses are seen to strongly depend on considering
horizontal or inclined cables, crossover (avoidance) or
non-crossover (non-avoidance) frequencies, different
internal/external resonances along with the involved
modes, approximate non-condensed/condensed con-
tinuous models underlying the reduced ones. Non-
linear interactions and complex phenomena charac-
terising the resonantly forced vibrations of horizon-
tal/inclined cables were investigated [80,84]. Fixed-
point solutions of the AMEs were evaluated by the
Newton–Raphson procedure, whereas their limit cycle
solutions were obtained by the shooting application.
Overall response paths were traced out via continua-
tion upon quasi-statically varying an excitation param-
eter. Stability of fixed points, and the ensuing bifur-
cations, were examined based on the eigenvalues of
the relevant Jacobian matrix, whereas those of limit
cycles were based on Floquet multipliers. Depending
on initial conditions, direct numerical simulation of
the AMEs via the fourth-order Runge–Kutta scheme
allowed to validate continuation results and to charac-
terise the post-bifurcation dynamics in terms of possi-
bly non-regular responses, using phase-plane projec-
tions, power spectral density and Poincaré maps to
characterise responses after decayed transient states.
Depending on control parameter values and initial con-
ditions, a variety of bifurcations and response ampli-
tudes were observed, with possibly meaningful differ-
ences between horizontal/inclined cables, 1:1/2:1 inter-
nal resonances and condensed/non-condensed models
as regards steady and dynamic solutions, with the latter
jumping back to steady via cyclic-fold bifurcations or
losing stability via PD bifurcations paving the way to
quasiperiodic or chaotic oscillations. Direct numerical
integration of the AMEs showed nonregular responses
attained through qualitatively different routes, also
including on-off intermittency mechanisms, sudden
switching back to steady solutions via boundary crises,
and exhibiting different features (e.g. funnel shaped
chaos) evidenced through qualitative/quantitative mea-
sures. Competing effects of dynamic solutions were
also evidenced, along with multi-harmonic response
features mainly due to contributions from higher-order
non-resonant modes. The dynamic deflections occur-

ring in chaotic resonant vibrations exhibit non-periodic
multi-mode features,with time-varying amplitudes that
may become significantly large. In the non-condensed
model, the availability of coupled dynamic configu-
rations of the cable at second-order multiple scales
analysis allows to account for the spatial corrections,
with respect to the reference linearly resonant modes,
due to the quadratic nonlinearity effects of all non-
resonant modes considered in a finite discretization.
This is also of major importance as regards the evalu-
ation of cable nonlinear dynamic tension. Indeed, the
non-condensed model allows for space-varying distri-
bution of the tension along the cable, against the spa-
tially constant tension inherently associated with the
condensed model. The multi-modal asymmetric spa-
tial response of, e.g. the 1:1 resonant inclined cable at
first avoidance is particularly evident when the cable
experiences chaos, with comparatively important con-
tributions from the two resonant modes and meaning-
ful second-order spatial corrections from non-resonant
modes and entails non-trivial effects alsoon the induced
space/time-varying tension, possibly increasing up to
unwanted tensile/compressive values to be carefully
considered in the dynamic design perspective.

Using the non-condensed model, occurrence of
chaos at first and second crossovers of the horizon-
tal cable was investigated in [90] via a global bifurca-
tion analysis, within a substantially theoretical context.
Upon transforming the modulation equations in [80] to
a form which can be considered as the perturbation of
a Hamiltonian system, the energy-phase method [69]
was employed to show the existence of the Shilnikov-
type multipulse homoclinic orbits (already highlighted
in [66] for the condensed model) asymptotic to cer-
tain invariant sets in the slow manifold, which repre-
sent a robust mechanism for the occurrence of complex
dynamics, for the two cases of Hamiltonian and dissi-
pative perturbation. The system was seen to undergo
chaotic dynamics in the sense of Smale horseshoes,
although the somehow unclear information on the con-
sidered cable parameters may raise some doubts about
the actual technical meaning of the obtained outcomes.

The non-condensed model accounting for non-
trivial quadratic contributions of higher-order longi-
tudinal modes also allowed to investigate the longi-
tudinal/transverse modal interactions occurring at the
“secondary” set of crossover points of highly extensi-
ble, e.g. synthetic, cables [91], which are of interest
in technical applications requiring long-span structural
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elements capable to withstand high dynamic stresses
without undergoing failure. Focusing on the first “elas-
tic mode transitions” [92], occurring for such cables
at low-order planar frequencies [93] with the involve-
ment of, e.g. the third (first longitudinal, i.e. elastic)
mode and the fourth (transversal symmetric) mode at
1:1 resonance, and considering primary resonance of
the latter, direct time integration of reduced AMEs
highlighted the existence of also chaotic oscillations
involving longitudinal modes, versus the solely peri-
odic transverse/transverse modal interactions occur-
ring at first “primary” crossover, similar to those of low-
extensible cables. This highlights a crucial role played
by the longitudinal inertia for even small-sagged cables
(see also [45] in Sect. 2.2).

3 Beam structures

Beams are one-dimensional models for structures
endowed with bending stiffness, besides extensional
one, with one dominant dimension with respect to the
others.Depending on themechanical assumptions, sev-
eral beam theories have been developed in the litera-
ture, which can be classified in threemain groups: shear
indeformable theories (Euler-Bernoulli (EB) models),
shear deformable theories (Timoshenko, third-order,
higher-order, and layer-wise) and three-dimensional
beam models, accounting for both in-plane and out-
of-plane warpings. The increasing complexity of these
theories, reflecting in the growing number of dependent
variables and PDEs governing the beam dynamics, has
meant that EB theory was first and most widely used to
investigate nonlinear dynamics and chaos of beams,
allowing the use of analytical techniques alongside
numerical and experimental analyses. As concerns the
nonlinear terms possibly affecting beam models, they
are mostly related to the adopted constitutive and geo-
metrical assumptions, which can introduce nonlinear
damping and nonlinear stiffness terms. Besides gov-
erning the features of modal interaction in internal res-
onance conditions, as in cable structures, geometrical
nonlinearities play a significant role in case of large
deflections of the beam, where they couple extension
and bending vibrations, and in case of high vibration
amplitudeswhich canoriginate nonplanarmotionswith
coupling between bendings in the two principal planes.
Geometrical nonlinearities are also crucial in analyzing

the dynamical stability and post-buckling behaviour of
straight and curved beams.

Similarly to cables, archetypal single-mode models
for beams are Duffing and Helmholtz–Duffing oscilla-
tors. The first one, with cubic (odd) nonlinearity, can
describe the dynamics of unbuckled as well as buck-
led beams, depending on the sign of the linear stiff-
ness: positive stiffness corresponds to the unbuckled
(straight) configuration characterized by a single-well
dynamics around the stable rest position; negative stiff-
ness, conversely, describes the response of a buckled
beam oscillating around the two varied (positive and
negative) equilibria, with a typical symmetric (globally
hardening, locally softening) two-well dynamics. The
Helmholtz–Duffing model, with additional quadratic
nonlinearity and an asymmetric two-well dynamics, is
adopted when beams are working in severe buckling
levels, or in case of curved beams or arches. In fact, the
quadratic term results from the presence of a curvature,
which is inherent in the arch geometry, or can represent
the varied configuration of a buckled beam. In the first
case, the Helmholtz–Duffing equation naturally ensues
from the 1-modeGalerkin formulation.However, when
the parameter setting specializes the two-well dynam-
ics to be symmetric, or studies are focused on the sole
symmetric configurations, a proper coordinate transfor-
mation allows to obtain a cubic Duffing equation. Con-
versely, theDuffing oscillator representing the equation
of motion of a buckled beam can be transformed into a
Helmholtz–Duffing oscillator when interest is devoted
to study the response around a specific buckled equilib-
rium. This entails a hybrid presence of the two models
in works dedicated to buckled beams and arches, with
alternation or co-presence depending on the objective
of the investigation. Single-mode models are diffusely
adopted to investigate nonlinear dynamics and chaos
of beams, as they are able to grasp the main qualitative
features of the model response—like the snap-through
phenomenon associated with buckling, which repre-
sents one of the main mechanisms originating chaos in
beam dynamics—while they are handy enough to be
treated with analytical techniques. However, already
in the first published works dedicated to this issue,
limitations and validity range of these reduced models
were pointed out, especiallywhen nonplanar vibrations
are investigated, and when other modes are strongly
involved in the dynamical response due to existing
internal resonances.
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Before specifically dwelling on studies about chaos
in beam structures, it is worth mentioning two gen-
eral aspects of the underlying research, as it devel-
oped from the beginning. The first aspect is concerned
with the meaningful role played by the experimental
investigation of beam models, since the end of the
70s, in providing evidence and understanding of com-
plex/strange phenomena (indeed, the first ones ever
observed in mechanics), with the ensuing validation of
earlier or parallel fundamental outcomes furnished by
abstract/theoretical studies of archetypal models. The
second aspect seems somehow to contradict the pre-
vious one. Indeed, a non-trivial number of successive
analytical/numerical investigations of archetypal oscil-
lators representative of beams single-mode dynamics,
conducted in the mechanics environment, were mostly
aimed at highlighting/understanding the variety of non-
linear/complex phenomena obtainable by varying sys-
tem parameters/coefficients rather than at verifying
their actual practical significance. This occurred at least
throughout the 1980s for a meaningful body of indeed
valuable researches accomplished by the best (and still
few) scientific groups active in nonlinear dynamics and
chaos of mechanical/structural systems. Although they
also entailed fruitful proposition of different analyti-
cal criteria for prediction of chaos (and related global
phenomena, like escape) in archetypal nonlinear oscil-
lators, only studies explicitly referring to beam/arch
systems (though sometimes only nominally) will be
addressed in the sequel. Moreover, in order to save
space, only single beam/arch elements will be con-
sidered. It is anyway worth noting that, starting with
the 90s, a meaningful body of experimental research
on nonlinear/complex dynamics of beam/arch struc-
tures was accomplished, as it also happened for the
already discussed cable systems, with a fruitful feed-
back towards proper reduced order modelling and the-
oretical/numerical investigations.

3.1 Buckled beam: early theoretical achievements and
experimental evidences

First evidence of nonregular motion in beam models
was presented in 1971 by Tseng and Dugundji [94],
who investigated the nonlinear response of a clamped–
clamped buckled beam under a base harmonic exci-
tation. In addition to periodic oscillations around the
two buckled equilibria, nonperiodic vibrations with

jumps from one equilibrium to the other—described as
continuous, intermittent snap-through—were detected
and experimentally verified, although without further
investigation to ascertain the chaotic nature of these
motions. The reduced order model was derived by
accounting for the first two modes, leading to a system
of two coupled Duffing equations of motion. The com-
parison between analytical and experimental results
suggested the possibility to adopt a single-mode model
as long as the secondmode is not parametrically excited
by thefirst-modeoscillations.Adeeper investigationon
the nature of the snap-through phenomenon was devel-
oped by Holmes andMoon at the end of the 70s, within
a combined theoretical/experimental framework, deal-
ing with a laterally excited cantilevered beam buckled
by two magnetic forces [95–97], which became known
as “the Moon beam”. A dense Poincaré map with Can-
tor properties and a continuous power spectrum of
the recorded signal revealed the occurrence of chaotic
motion in the form of a Smale horseshoe strange attrac-
tor, as firstly experimentally obtained from a physi-
cal system in mechanics. The relevant mathematical
model was derived by reducing the PDE continuous
model to a single-dof Duffing oscillator with negative
linear stiffness, able to reproduce the main experimen-
tal results due to the clear decoupling of modes in
the selected structural problem. Global dynamics was
also addressed by applying the asymptotic Holmes–
Melnikov method allowing to detect the occurrence
of homoclinic bifurcations of the stable and unstable
manifolds, which are shown to represent the lower
bound for the arise of transient chaos in the system.
These works firstly established chaotic dynamics as a
new phenomenon in nonlinear oscillations of beams
and inspired a series of papers focused on detecting
the main characteristics of chaotic motion with experi-
mental and numerical methods, which were accompa-
nied by theoretical works aimed at analytically char-
acterizing strange attractors and determining criteria
for chaos to appear. As concerns the former, experi-
ments on Moon beam forced by a quasiperiodic exci-
tation were developed to investigate chaos in multi-
dimensional phase space [98]. Realization of double
Poincaré sections of the four-dimensional phase space
allowed to firstly grasp the fractal nature of the chaotic
attractor in a systemwith phase space higher than three-
dimensional. Thompson and Mullin [99] added a pair
of beam magnets to the Moon experiment, arranging
them with opposite poles to the base magnets to avoid
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that attractive magnetic fields can trap the beam out-
side the latter. The magnets position enforces the sys-
tem to be symmetric or asymmetric, both cases being
experimentally realized by the authors. The results,
obtained for awide rangeof forcing frequency, unveiled
an unexpectedly rich dynamics with Hopf bifurcations,
period-2 limit cycles, multistability and coexistence of
chaotic andperiodic solutions, and routes to chaos char-
acterized by PD cascades and intermittency. Interest-
ingly, the symmetric system showed also frequency-
locking phenomenon with the frequency of the second
mode, which instead was not activated in the asym-
metric system. The experimental data furnished by the
Moon beam were elaborated by Moon and Li [100] to
define a quantitativemeasure of chaotic Poincarémaps.
Grassberger–Procaccia correlation function algorithm
was used to determine the fractal dimension of the
Duffing–Holmes attractor as a function of the damping.
Results were compared with a numerically obtained
fractal dimension, calculated from a Duffing model,
which confirmed the dimension insensitivity to the
phase of the Poincaré section, and a dimension of the
chaotic attractor between 1 and 2. Still dealing with
chaos in single-mode models, although not ascribable
to the archetypal Duffing equation, forced vibrations
of an elastic beam with nonlinear boundary conditions
were analytically and experimentally investigated by
Moon and Shaw [101]. The system consisted of a can-
tilever beam with the tip being free for motion in one
direction and pinned in the other, once the tip displace-
ment exceeds a critical value. Experiments unveiled the
existence of chaotic motion, which was numerically
reproduced by referring to a reduced one-dof bi-linear
spring model, characterized by a single-well dynam-
ics. Despite the somehow drastic single-mode approx-
imation, the analytical model proved to reproduce the
qualitative features of the observed strange attractor, in
terms of time histories, Poincarémaps and FFT spectra.

Experimental evidences stimulated works oriented
at reproducing and investigating peculiar dynamic and
chaotic phenomena with analytical and perturbative
approaches, also promoting an improvement of the the-
oretical tools aimed at defining thresholds for chaos
appearance. Starting from the Duffing oscillator and
using the Melnikov method, Holmes [102] proposed
as topological criterion for the onset of chaos the rela-
tion between damping and (amplitude, frequency) exci-
tation parameters corresponding to the tangency of
stable and unstable manifolds of the saddle of the

perturbed system, which entails homoclinic intersec-
tions and horseshoe chaos as the excitation ampli-
tude increases further. In turn, based on experimental
observations, Moon [96] furnished a heuristic semi-
analytical criterion for existence of a strange attractor
in terms of motion critical velocity, which is supposed
to be close to the maximum velocity of the unforced,
undamped oscillator. Other approximate predictive cri-
teria for strange phenomena to occur in a class of
softening nonlinear oscillators were proposed, too, as
later summarized in [103]. Using invariant manifolds,
nonlinear semigroup theory and an extension to infi-
nite dimensions (i.e. PDEs) of the Melnikov method
for ODEs, Holmes and Marsden [104] gave sufficient
mathematical conditions for a global bifurcation to
occur as the external force increases, which results
in the transversal intersection of stable and unstable
manifolds and leads to the complex dynamics of a
horseshoe, with the results being applied to the equa-
tions of a nonlinear, periodically forced, buckled beam.
With the aim to interpret the experimental results of
Moon and Holmes [98] about the chaotic attractor of a
buckled beam under quasiperiodic excitation, Wiggins
[105] applied a generalized Melnikov method to the
Duffing model with four-dimensional state space. The
ensuing dynamics corresponds to a generalization of
the Smale–Birkhoff homoclinic theorem to the case of
orbits homoclinic to normally hyperbolic invariant tori,
which are responsible for the Smale-horseshoe-like
fractal attractor detected by Moon and Holmes. This
form of chaotic dynamics can occur in systems with at
least two angular variables and at least two dimensions,
of which the simplest examples are quasiperiodically
forced one-dof models or two-dof dissipative systems.
Melnikov method was also applied by Baran [106] to
compare the behaviour of a buckled beam, modelled,
with increasing refinement, as Euler–Bernoulli beam,
Rayleigh beam (including rotatory inertia) and Timo-
shenko beam (considering also shear forces effects).
The homoclinic bifurcation was numerically detected
for the three models considering different (circular)
section dimensions, and chaotic motion was obtained
by means of Poincaré maps and phase portraits. The
outcomes showed a relatively small difference among
the three models as concerns the bifurcation occur-
rence, while the exhibited dynamical behaviour might
be completely different. Generally, more refined mod-
els showed to be more sensitive in catching chaotic
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responses, with also a shrinking tendency of the strange
attractor revealing a lower vibration level.

3.2 Beams and shallow arches: archetypal
single-mode models

From experiments byMoon andHolmes, themost criti-
cal region for the occurrence of chaotic motion in terms
of forcing frequency turned out to be the primary res-
onance one. Here, periodic and chaotic behaviours of
in-well oscillations were investigated by Rudowski and
Szemplinska-Stupnicka [107]. The harmonic balance
method applied to the small orbit periodic solutions
of the Duffing model allowed the authors to analyti-
cally define an approximate V-shaped stability thresh-
old, which was interpreted as a heuristic criterion for
existence of chaos, given the good agreement between
analytical and numerical results. To better distinguish
between in-well and cross-well oscillations, a shift of
coordinate was applied to move from the Duffing equa-
tion to the Helmholtz–Duffing one. Fundamental and
subharmonic resonance regions were then investigated
by Abou-Rayan et al. [108] in a model of simply sup-
ported buckled beam with steady and time-varying
parametric excitations. The model, which accounts for
an initial static deflection, was reduced to aHelmholtz–
Duffing equation with external and parametric excita-
tion. Again, a coordinate transformation was applied
to drop the quadratic term and derive a parametrically
excited two-well Duffing equation. The first model
was analytically investigated in low and high ampli-
tude regimes by means of the multiple scales method,
while Floquet theory was used to assess the stability
of the small amplitude asymptotic periodic responses.
Numerical simulations carried out using the Duffing
equation confirmed the occurrence of jumps, PD cas-
cades and coexistence of periodic and chaotic attrac-
tors and furnished a deeper insight on the quality of
chaotic motion, highlighting in-well chaos, as well as
chaotic snap-through and global chaos. The experi-
mental investigation of a clamped/sliding post-buckled
beamsubjected to harmonic axial load by Ji andHansen
[109] qualitatively confirmed the numerical results of
Abou-Rayan et al, showing the occurrence of PD bifur-
cations, period-three, and chaotic motion, along with
the effect of damping on the system dynamic instabil-
ity. Those numerical results were also referred to by
Kreider and Nayfeh [110] for interpreting a seemingly

incomplete PD route to chaos experimentally observed
at low buckling levels in a fixed-fixed buckled beam
subject to transverse harmonic excitation, while under-
lining the limits of a relevant single-mode approxima-
tion in the prediction of multi-period and quasiperi-
odic oscillations, the latter being later characterized
by Emam and Nayfeh [111,112]. Even if the physical
system described in [108–110] was a buckled beam,
the resulting mathematical models had the form of a
Helmholtz–Duffing equation due to the interest being
essentially focused on the post-buckled dynamics.

Since the 80s, a number of papers dealt with the
nonlinear vibrations of single-mode models of shallow
arches, described by the ‘natural’ Helmholtz–Duffing
equation, and also highlighting occurrence of chaos.
Plaut and Hsieh [113] analyzed a pinned shallow arch
under distributed two-frequency load. The subsequent
asymmetric two-well model was numerically inves-
tigated to determine the critical load responsible for
the arch snap-through. Resorting to the Budiansky–
Roth criterion, the proposed critical load was repre-
sented by the load corresponding to the maximum
amplitude of the response which firstly displays snap-
ping motion as the forcing amplitude increases. The
threshold had minima in correspondence of the main
resonances of the two forcing frequencies, and their
combination, confirming that resonance regions are the
most critical in terms of stability of periodic solutions.
For higher loads, in-well and cross-well periodic solu-
tions occurred together with chaotic motions. Focusing
on the subharmonic resonance region, Namachchivaya
and Doyle [114] and Szemplinska-Stupnicka et al.
[115] studied dynamics of a shallow arch under con-
stant and dynamic vertical loads, and under horizontal
and vertical harmonic loads, respectively. The ensuing
Helmholtz–Duffing equations were studied with aver-
aging and asymptotic methods in order to detect stabil-
ity boundaries of the buckled fixed points, as well as the
bifurcation loci of the 2-period solutions, which dom-
inate the response near the analyzed resonance. The
classical V-shaped curve, as deduced from the local
bifurcation analysis, was shown to represent the lower
bound for existence of chaotic regions, which were
numerically detected in the forcing parameter plane
and characterized by distinguishing between in-well
and cross-well chaos [115]. Alternatively, the Holmes–
Melnikov function was defined to detect the occur-
rence of global bifurcations of the homoclinic orbit
and interpreted as a tool to ascertain the presence of
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chaos; numerical simulations confirmed the existence
of (transient) chaotic motions just above the analytical
threshold [114].

Bifurcation characterization for a shallow arch
model, representing a buckled beam, was proposed
by Ramu et al. [116]. Notwithstanding the start-
ing Galerkin-based two-mode approximation, analyses
were developed by separately considering the first sym-
metric and the first antisymmetric modes, described
by Helmholtz–Duffing and Duffing equation, respec-
tively. Stability analysis, together with perturbation
approach, allowed to identify a supercritical cusp bifur-
cation for the antisymmetric mode, while the symmet-
ric one undergoes a fold bifurcation, which becomes a
cusp bifurcation if the model reduces to a bar with zero
axial load and no imperfection. For the latter case, the
bifurcation is subcritical if the buckling configuration
is positive, and in the subcritical regions snap-through
behaviour leading to chaotic motion via intermittency
chaos is observed. For the antisymmetric mode, PD
cascade to chaos is detected. Similarly to Ramu and
coauthors, Poon et al. [117] investigated the dynam-
ics of a curved beam by initially formulating a two-
mode model, while the assumption of small amplitude
of initial deflection and no effect associated with initial
geometric imperfections allowed to perform numeri-
cal analyses by referring to the uncoupled single-mode
Duffing equation. The dynamics of the buckled beam
was classified in three regions, corresponding to a
softening spring behaviour occurring for low forcing
amplitudes, a hardening spring behaviour at high forc-
ing amplitudes, and an intermediate connecting region,
characterized by chaotic snap-through motion between
the two equilibria. The onset of dynamic snap-through
was seen to occur significantly before the static snap-
through and demonstrates to be very sensitive to damp-
ing while rather insensitive to variations of the linear
frequency of the flat beam.

Other works dealt with models of shallow arches
described by the cubic Duffing equation, considering
either a representative discrete system or a single-
mode representation of the actual continuous sys-
tem. The dynamics of a two rigid-link single-dof arch
model under vertical harmonic forcing,whose equation
exhibits nonlinear inertia, stiffness and forcing terms,
was investigated by Blair et al. [118] and Wiebe et al.
[119]. Combinedly using harmonic balance, continua-
tion andFloquet theory, different, symmetric and asym-
metric, responses for varying forcing amplitude and

frequency were analyzed in [118], highlighting use-
ful hints provided by the Fourier coefficients of stable
and unstable trajectories for the qualitative and quan-
titative characterization of motion. Cross-well chaotic
motions originating from a PD cascade were numeri-
cally detected in medium and high forcing amplitude
regimes as the sole existing stable solutions within
periodic responses instability ranges. In turn, a com-
prehensive experimental and numerical (with a fourth-
order Runge–Kutta time stepping scheme) investiga-
tion of the snap-through phenomenon in a discrete arch
model wasmade in [119], by also using average kinetic
energy evaluations. They highlighted the occurrence of
(though less frequent) chaotic motions, mostly cross-
well, characterized by the largest Lyapunov exponent
and the peak-count criterion. Significantly, distinction
between snap-through and chaos was underlined, with
also a specification of tools for distinguishing between
the two phenomena, making clear that there can be
non-chaotic snap-through responses, just as there are
in-well chaotic motions (although relatively rare) with
no snap-through.

A number of studies dealt with single-mode rep-
resentations of shallow arches by considering Duff-
ing models, under specific hypotheses. Analyzing the
dynamics of an arch with parametric and external exci-
tations within a substantially theoretical context, Zhou
et al. [120] reduced the natural Helmholtz–Duffing
equation to a single-well softening (i.e. with positive
linear and negative cubic stiffnesses) Duffing equa-
tion, under the assumption of a non-resonant quadratic
term. The Melnikov method was applied to the two
heteroclinic orbits in order to parametrically define
the critical bifurcation thresholds separating chaotic
and non-chaotic regions in different resonance condi-
tions. The results showed uncontrollable regions in the
excitation parameter plane in which chaos is always
present, and a controllable frequency where the system
is not chaotic, underlining the crucial importance of a
proper parameter setting (however, with unclear prac-
tical significance) in determining the system dynami-
cal response. Moving from their previous work on the
snap-through dynamics of a discrete archmodel, Chan-
dra et al. [121,122] considered the two-well Duffing
model representative of the single-mode dynamics of
a pinned [121]/clamped [122] sinusoidal arch under
static and dynamic loads, which holds for the descrip-
tion of the sole symmetric configurations. After verify-
ing the effect of the arch rise on the equilibrium posi-
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tion, numerical and finite element analyses, and exper-
imental tests, were used to investigate possible snap-
through scenarios of arches under time-dependent sinu-
soidal loading, which are responsible for an increase
in fatigue. A quite rich behaviour including periodic,
quasiperiodic and chaotic responses was highlighted,
with also a specific attention devoted to the variabil-
ity of initial conditions. To assess the fatigue risk, the
numerical analysis included also the study of transient
behaviour, investigated by considering the number of
snap-through per forcing cycle, the kinetic energy, and
the peak count of the discrete Fourier transform. As
concerns reliability of the selected ROM, comparison
with FEM analysis showed that the Duffing equation is
able to capture the main features of the arch response
when its rise is not prominent, otherwise the asymmet-
ric mode comes into play and multi-mode models are
necessary to correctly grasp the response.

Considering different possible external resonances,
andmoving from thenumerical outcomesofBerdichev-
sky and coauthors about cantilever beamglobal dynam-
ics [123], Luo and Han [124] dealt with analytical pre-
diction of chaos in a simply supported, planar nonlinear
rod, whose mth-mode Galerkin dynamics is described
by the Duffing equation. All cases obtainable with dif-
ferent sign combinations of linear and cubic stiffnesses
were considered, corresponding to one-well/two-well
global dynamics with heteroclinic/homoclinic orbits.
In the undamped model, chaotic motion in the neigh-
bourhood of the (2n − 1)th resonant separatrix was
detected by means of the Chirikov resonance overlap
criterion, while for the weakly damped system, Mel-
nikov function was applied to define the subharmonic
bifurcation condition. Analytical predictions were val-
idated by numerical simulations showing the occur-
rence of steady chaos near various resonant separatri-
ces, the latter becoming transient chaos to steady peri-
odic motion when damping is added to the model.

Single-mode models represented by Duffing-like
equations are used also to study the dynamical response
of beams resting on elastic foundations. Lenci and
coauthors [125,126] investigated the global dynam-
ics of an elastic cantilever beam on Winkler-type soil
under axial load and transversal harmonic excitation,
by taking into account third-order [125] and fifth-order
[126] terms of the Galerkin one-mode approximation,
along with nonlinear inertia. The first model allowed
the authors to study the small amplitude response,while
the latter was used to analyze also the large ampli-

tude regime. Depending on the soil stiffness, the sys-
tem equilibrium can undergo a supercritical or sub-
critical pitchfork bifurcation at the critical buckling
load value, and different unperturbed scenarios can
occur, corresponding to single-well, double-well and
three-well dynamics. Melnikov method was applied
to analytically detect the intersection of homoclinic
and/or heteroclinic orbits, which represent the starting
points for successive route to full chaotic dynamics.
Such chaotic boundaries were described in the excita-
tion parameter plane for the different cases analyzed,
and theoretical predictions were confirmed by numeri-
cal simulations. Santee and Gonçalves [127] studied a
simply supported beam with axial force and transver-
sal harmonic excitation on nonlinear elastic founda-
tion, modelled with three-parameter Ramberg–Osgood
function, further approximated by a third-order Taylor
expansion. The one-mode reduced model is a forced
damped softening-type Duffing equation, with one sta-
ble equilibrium and two saddles connected by hete-
roclinic orbits. The influence of the nonlinear elastic
foundation on dynamical behaviour and stability of
the slender beam was investigated through comparison
with the system without/with linear foundation. The
latter are characterized by stable post-buckling path
and hardening frequency-amplitudes curves with small
nonlinear effects,while the presenceof a nonlinear soft-
ening foundation reflects on a strongly nonlinear soft-
ening behaviour and high imperfection sensitivity.Also
in this case, Melnikov method was used to analytically
define the lower bound of the dynamic buckling loads
leading to escape and chaotic motions.

3.3 Beams: two-mode models

The limits of one-dof models to comprehensively
describe the nonlinear dynamics of buckled beams and
arches in different possible operating conditions and
for high amplitude and high curvature levels, promoted
the study of multimode models. In particular, interac-
tion between two modes and its effects on the nonlin-
ear response of several structural systems were exten-
sively investigated in the 80s and 90s (see, e.g. [128–
130]), consideringmodelswith different nonlinearities,
and various internal and external/parametric resonance
conditions. Coupling and energy exchange among the
system’s modes due to the nonlinear interaction were
found to be responsible for many interesting phenom-
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ena, like instability of planar motions and arise of non-
planar responses, saturation of the system response and
modes energy transfer, and onset of complex responses,
including two-period quasiperiodic motions and chaot-
icallymodulated responses. Parallel to thismain stream
of mechanically driven researches on nonlinear vibra-
tions based on asymptotics, numerics and possible
experimental investigations, more dynamical system-
oriented studies (e.g. [130]) aimed at generally clar-
ifying the global bifurcation conditions for chaotic
dynamics and the ensuing features.

Within the first rich group, several works addressed
the effects of internal resonances in two-mode mod-
els of both beams and arches. In 1986, Maewal [131]
published one of the first examples of chaos in con-
tinuous structural models, by analyzing the effects of
the inherent 1:1 internal resonance between the first
planar and nonplanar modes of a simply supported
elastic beam with symmetry in both the cross-section
and the boundary conditions. When harmonically forc-
ing the beam in a symmetry plane, with a sufficiently
low damping, the planar directly excited motion in the
frequency-response curve destabilizes to a nonplanar
motion near the resonance peak, as already discussed
in Sect. 2.2 for the taut string [39]. A Hopf bifurca-
tion in the nonplanar curve defines a region of insta-
bility of both planar and nonplanar periodic solutions,
which corresponds to a chaotic response numerically
confirmed by the evaluation of the maximum Lya-
punov exponent and the attractor Lyapunov dimension.
1:1 internal resonance was investigated also by other
authors, considering the generic nth planar and mth
nonplanar flexural modes. In-plane principal paramet-
ric [132] and primary external [133] resonances of the
two interacting modes were investigated by the method
of multiple scales applied to the integro-PDEs equa-
tions of a cantilever beam [134], considering a square
or a rectangular cross-section involving the first planar
and nonplanar modes. The crucial role played by the
competing hardening geometric versus softening iner-
tia nonlinearities in describing the overall response was
highlighted, the former being essential for the predic-
tion of nonplanar motions and the correct evaluation of
first and higher modes behaviours. In resonance condi-
tions, nonplanar solutions undergo a Hopf bifurcation
which causes the arise of steady or unsteady whirling
motions, and eventually chaotic responses.With differ-
ent boundary conditions, a similar behaviour was also
detected by Restuccio and coauthors [135] in a two-

mode model of clamped–clamped/sliding beam under
principal parametric excitation and 1:1 internal reso-
nance, for which the inertial nonlinearities are seen to
dominate themodal response. Amore detailed analysis
of the bifurcation scenario characterizing the dynam-
ics of the beam model proposed in [132] can be found
in [136], where the multiple scales method is applied
to the system Lagrangian. The stability analysis of the
equilibrium solutions allowed to unveil a rich dynami-
cal behaviour, characterized by saddle-node, pitchfork
and Hopf bifurcations, and with periodic solutions pos-
sibly undergoing symmetry breaking, cyclic fold and
PD cascades to chaos. Moreover, numerical investiga-
tion showed the presence of symmetric and asymmet-
ric chaotic solutions which alternate due to attractor-
merging and boundary crises. 1:3 internal resonance
between the first and second planar modes of a hinged-
clamped beam with static axial load and a restraining
spring at one end was addressed in [137], considering
primary excitation of either thefirst or the secondmode.
Periodically and chaotically modulated motions of the
beam were determined by investigating the dynamic
solutions of the AMEs obtained by directly attacking
the PDEs with the method of multiple scales. Various
bifurcation mechanisms were highlighted, with com-
plex dynamics including bubble structures (cascades
of direct and reverse PDs), jump responses driven by
cyclic-fold bifurcations, subcritical PD bifurcations,
and boundary crises of the established chaotic attrac-
tors.

Without specifically focusing on a resonance condi-
tion, Cusumano and Moon [138,139] experimentally
and numerically investigated the dynamics of a flexi-
ble cantilevered rod (the elastica) with harmonic dis-
placement at the base. The experimental campaign was
developed to assess the effects of possible coupling
between bending and torsional modes. In the forc-
ing parameter plane, the planar bending response was
seen to become unstable in several V-shaped regions
corresponding to all in-plane bending frequencies,
and combinations. Inside the instability regions, cou-
pled bending-torsional responses and chaotic motions
occur, with also evidence of an energy cascading phe-
nomenon, in which lower frequency modes are excited
by high frequency input. A geometrically exact ana-
lytical model including warping effects in the rod the-
ory was formulated. Then, based on the experimen-
tal evidence for low-dimensionality of bending-torsion
instability, the ensuing two PDEs in the in-plane bend-
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ing and torsion variables were reduced to a 2-mode
Galerkin ODEs system under the hypothesis of slow
torsion variation along the rod, which allows to assume
a corresponding ad hoc functional form. The model
demonstrates to catch the main qualitative features of
the experimental system, being able to reproduce the
relevant coupled modes, which are numerically seen
to arise from a pitchfork bifurcation of the torsional
mode, as highlighted by a perturbation treatment [140].
Clearly, while highlighting that the presence of a low
order internal resonance is not critical for the loss of pla-
nar stability, the 2-mode reduction allows to describe
only the instability region near the first bending nat-
ural frequency, while the other regions experimentally
found could be investigated only by adding othermodes
into the model.

Zhang and coauthors [141–144] studied local and
global dynamics of a cantilever beam with axial and
transversal harmonic excitations applied at the free
end, in condition of 1:2 internal resonance between
the first planar and nonplanar flexural modes. In for-
mulating the asymptotic system through the multiple
scales method, the axial and transverse excitations are
in principal (fundamental) parametric resonance and
1/2-subharmonic (primary) external resonancewith the
planar (nonplanar) mode, respectively, with the lat-
ter entailing a constant force in the averaged out-of-
plane equation. Several high-period responses of in-
plane and out-of-plane modes are detected, together
with chaotic motions. Moreover, the transverse excita-
tion may work as a controlling force able to move the
response from chaotic to periodic or even to steady-
state. After reducing the averaged equations to a normal
form, the global dynamics is also investigated [142] by
applying a higher-dimensional Melnikov theory [16]
to determine the existence of Shilnikov-type single-
pulse homoclinic orbit to a saddle-focus. The exis-
tence of such an orbit implies the occurrence of chaotic
motion in the full 4D averaged system. Numerical sim-
ulations confirm the presence of several amplitude-
modulated chaotic responses of Shilnikov type, with
different shapes in the planar and nonplanar compo-
nents. If applying one further transversal excitation to
the model, multi-pulse Shilnikov homoclinic orbits are
then detected by evaluating the zeros of the energy dif-
ference function [143], according to the energy-phase
method [69], or by applying the extended Melnikov
method [145] [144]. As general observation, the anal-
yses highlight that parametric excitation, transversal

excitation and damping have important influence in
chaotic motions, and that internal resonances between
planar and nonplanar modes can produce an involved
chaotic scenario.

3.4 Shallow/non-shallow arches: internally resonant
two-mode models

Internal resonances are also important in the planar
dynamics of arch models, as for adequate values of
the arch initial rise the first and second flexural modes
can be in autoparametric resonance (see, e.g. [146]). A
two-mode Helmholtz–Duffing model was formulated
by Afaneh and Ibrahim [147] to study the 1:1 internal
resonance between the first and second planarmodes of
an initially buckled clamped beam. The ensuing ODEs
are studied with three different approaches, i.e. mul-
tiple scales method, numerical simulations and exper-
imental testing, which unveil the presence, inside the
resonance region, of unimodal, stationary bimodal and
modulated bimodal responses, together with nonregu-
larmotions including irregular beating responses, snap-
through oscillations and chaos. A similar model was
also investigated by Namachchivaya and coauthors,
with the aim to describe local and global dynamics of a
simply supported shallow arch with lateral harmonic
excitation in primary [148,149] or 1/2-subharmonic
[150,151] resonance. In both cases, 1:2 and 1:1 res-
onances between first antisymmetric and symmetric
modes (the corresponding 1:2 ratio being not too real-
istic for shallow arches) are examined by means of the
averaging method, in order to determine the asymp-
totic equations to be handled for the stability analysis.
A pitchfork bifurcation of the single-mode response is
seen to be responsible for the arise of the coupled-mode
solution, which in turn becomes unstable through a
Hopf bifurcation, producing chaoticmotion in the aver-
aged model. This corresponds to a modulated chaotic
solution in the original system. Numerical continua-
tion of the aforementioned bifurcations allows also to
define stability regions of single-mode, coupled-mode
and chaotic motions in the excitation parameter plane
[152]. Global dynamics is addressed for the 1:2 res-
onance case by the extended Melnikov method [153]
for higher-dimensional systems, which shows that the
shallow arch structure, in the absence of any dissi-
pation mechanism, can exhibit chaotic dynamics in
the sense of Smale horseshoe [148,150]. Differently,
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for the 1:1 resonance case the alternative approach by
Kovacic and Wiggins [16] allows us to consider the
dissipation effects and leads to define the existence
of a Shilnikov-type homoclinic orbit to a saddle-focus
in the perturbed system, and consequently of chaotic
dynamics [149,151]. Within a substantially theoreti-
cal context, a more detailed analysis of the Shilnikov
homoclinic orbitswas developedbyYuandChen [154],
who studied the existence of one-pulse and multi-pulse
Shilnikov homoclinic orbits relevant to the saddle and
to the sink of the system. These orbits, which are com-
posed of alternating slow and fast pieces, imply the
occurrence of complex dynamics, which is numerically
confirmed by detection of 4D chaotic motions. More-
over, results point out the possible occurrence, in cer-
tain parameter regions, of several families of one-pulse
and multi-pulse orbits which lead to a rather compli-
cated dynamical behaviour.

Referring to a shallow arch model similar to that
proposed by Tien and coauthors [148], the effect of
a slow imposed harmonic displacement at one hinged
end, acting as parametric excitation to be added to the
external periodic force, was investigated by Lakrad and
coauthors [155]. The dynamics of the two-mode system
under 1:2 internal resonance and near primary exter-
nal resonance was studied through the multiple scales
method in order to perform a local dynamical anal-
ysis below the snap-through threshold, and stability
charts with and without the base displacement were
obtained in the external excitation parameter plane. In
the absence of base displacement, four different regions
were detected, corresponding to one-mode, coupled
modes, coexisting one-mode and coupled modes and
chaotic motions (see also [156] for similar results).
The slow parametric force was seen to modify the type
of stable responses of the model, which move from
periodic to quasiperiodic motions. As the displacement
amplitude increases, transition areas arise and enlarge
around stability thresholds, where the solutions are
changing their nature and stability during one period of
the slow time scale, corresponding to periodic bursters.
Moreover, even for small amplitudes the slow base dis-
placement is able to suppress chaos in the region where
coupled and monomodal responses are unstable. The
same authors have investigated the presence of periodic
and quasiperiodic bursters also in a one-mode model
of shallow arches under slow horizontal periodic [157]
and quasiperiodic motion [158], respectively. In both
cases, Melnikov method and Lyapunov exponents are

used to describe the system response. The presence of
slow-fast dynamics implies a delay of the bifurcations
of the system and a change in the sequence of vis-
ited buckled states during the slow time period, which
depend on the initial conditions and the value of control
parameters. The presence of elastic supports as con-
straints of a shallow arch was considered by Yi and
coauthors [159] by applying themultiple scalesmethod
to the m-mode Galerkin model. In particular, occur-
rence of 1:2 internal resonance between mth and nth
mode was imposed, and results were presented by con-
sidering the first and second lower flexural modes and
primary resonance with the external harmonic excita-
tion. Frequency-response curves and bifurcation dia-
grams for different values of the constraint stiffnesses
allowed the authors to consider different configura-
tions; when constraints have same stiffness, the 1:2
internal resonance cannot be activated and the system
response reduces to a single-mode motion, behaving
like a clamped–clamped shallow arch which can be
seen as a limit case of the arch with elastic supports.
Differently, when different stiffnesses are considered,
the modal interaction between the lowest two modes,
with modal shapes neither symmetric nor antisymmet-
ric, is activated, and complex dynamics arises through
Hopf bifurcation around the resonance frequency with
chaotic motion occurring via PD cascade.

Internal resonances were also investigated in non-
shallow arch models by Thomsen [156], who stud-
ied the dynamics of a non-shallow circular arch with
a harmonic load at its crown, for which the natural
frequency of the second (symmetric) mode is nearly
twice the first (antisymmetric) mode natural frequency.
The study of the asymptotic equations, obtained by
applying the multiple scales method in case of exter-
nal excitation in primary resonance with the second
mode, allows to analytically define stability regions of
the twomonomodal responses, together with the occur-
rence of bimodal solutions and unstable regions charac-
terized by quasiperiodic and chaotic motions. The lat-
ter are characterized by a positive Lyapunov exponent
and a broadband frequency spectrum and arise through
a Ruelle–Takens–Newhouse (or quasiperiodic) route,
for which chaos occurs after three subsequent Hopf
bifurcations. A numerical chart plotting the value of
the largest Lyapunov exponent in the parameter plane
confirms the analytically obtained instability region,
highlighting how it represents a rather accurate cri-
terion to predict the onset of chaotic and quasiperi-
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odic motion, with chaos generating mechanisms also
including transient and intermittency routes. Based on
Thomsen’s results, Schmidt [160] applied the harmonic
balance up to the third order to study the influence of
the higher order approximations in correctly describing
the system response. The significant effect of a more
refined approximation in the behaviour of frequency-
response curves was used to propose a simple crite-
rion for the onset of chaos. In fact, for this system as
for other models, it corresponds to a sensible reduc-
tion (from 5 to 10 percent) of the response ampli-
tude around the resonance frequencies, which can be
caught comparing the first and third order curves. A
Cosserat-based model of non-shallow arch was stud-
ied by Benedettini and coauthors [161], who numeri-
cally and experimentally investigated the response of
a planar hinged circular arch with a sinusoidal forc-
ing applied to the tip. A two-mode Galerkin reduction
was performed, and 1:2 internal resonance between the
first antisymmetric and symmetric modes is consid-
ered, with the latter excited at primary resonance. Con-
tinuation techniques were applied to obtain frequency-
response curves and stability charts in the excitation
parameter plane. As for the previously presented shal-
low arches, the monomodal response becomes unsta-
ble around the resonance frequency due to a pitch-
fork bifurcation, which activates the coupled bimodal
solution. The subsequent Hopf bifurcation leads to
quasiperiodic and eventually chaotic motions. A good
qualitative agreement between numerical and experi-
mental outcomes confirms the ability of the two-mode
reduced model of correctly reproducing the dynamic
behaviour in both regular and nonregular regimes.

3.5 Multimode models

Despite the increase in computational burden due to the
enlargement of system dimension, and the greater dif-
ficulty in applying analytical techniques, some papers
analyzed the effect of higher modes on the chaotic
response of beams and arches. Tang and Dowell [162]
numerically and experimentally investigated the onset
of chaos in the dynamics of a cantilevered pipe-beam,
highlighting the importance of considering at least
three modes to correctly reproduce the chaotic bound-
aries in both low and high frequencies ranges. The cru-
cial role played by damping for chaos occurrence was
also stressed, suggesting the importance of its care-

ful modelling. As mentioned in Sect. 3.2, Emam and
Nayfeh dealt with the dynamics of a clamped buck-
led beam at primary resonance [111], moving from the
experimental results by Kreider and Nayfeh [110]. A
multi-mode Galerkin discretization was used to per-
form numerical analyses, considering up to four flexu-
ral modes. Upon verifying the reliability of the single-
mode model only for limited bucking levels, the out-
comes demonstrate the capability of a multi-mode dis-
cretization to provide a more detailed and complete
description of the dynamical responses exhibited by
the beam, and a deeper knowledge of the mecha-
nisms underlying the onset of chaotic motions. With
a four-mode discretization a sequence of PD bifur-
cations leading to chaos is detected, while a super-
critical PD bifurcation followed by a secondary Hopf
bifurcation results in a quasiperiodic motion, none of
these results being captured by the single-mode model.
Similar results were obtained when the beam under-
goes a 1/2-subharmonic resonance excitation [112];
in this case, a four-mode Galerkin discretization was
used to carry out dynamical analyses, confirmed also
by experimental tests, with the method of multiple
scales being used to obtain a second-order approxima-
tion of the response. The 2-period solutions existing
around subharmonic resonance undergo a Hopf bifur-
cation leading to limit cycles, snap-through and phase-
locked motions, up to generating chaotic responses
throughPDcascades.Dealingwith curved beams, Zulli
and coauthors [163,164] formulated a 3D model of
internally constrained clamped-free beam. The dynam-
ical analyses were developed by applying a 4-mode
reduction under different initial configurations, which
involve different internal resonance conditions, and
by applying a tip shear force of follower type. The
numerical investigation allowed the authors to iden-
tify regions of multimodal responses, with periodic,
quasiperiodic and chaoticmotions. As general observa-
tion, the outcomes highlight a great sensitivity to vari-
ations of initial configuration, which increases with the
number of considered modes. Moreover, experimental
tests on a straight cantilever beam suggest the involve-
ment, in the multimodal responses, of all the consid-
eredmodes, regardless ofwhich are internally resonant.
Interestingly, despite a good correspondence between
the experimental natural frequency and that analyti-
cally calculated for a straight beam, the forced dynam-
ics experimentally observed shows some features pecu-
liar of the internally curved beam, underlining the cru-

123



818 G. Rega et al.

cial role played by imperfections of the initial config-
uration in significantly affecting the beam nonlinear
behaviour. A similar model of 3D cantilever beam was
also analyzed by Carvalho and coauthors [165,166],
considering an initially straight configuration, and a
rectangular [165] or cruciform [166] beam section.
Moving from a nonlinear formulation including geo-
metric and inertial nonlinearities [134], and applying
a 3-mode reduction, a set of three coupled nonlinear
ODEs allowed the authors to numerically investigate
the beam flexural–flexural–torsional dynamics. In par-
ticular, attention was focused on verifying the effects
of axial (concentrated) static and harmonic loads, con-
currently applied with a harmonic lateral excitation,
on the system stability boundaries. Due to the sym-
metry of the considered cross-sections, 1:1 flexural–
flexural and 1:1:1 flexural–flexural–torsional internal
resonances can occur for the rectangular and cruci-
form sections, respectively. At these conditions, an
increase in the axial load is seen to strengthen the
importance of inertial nonlinearities, causing a reduc-
tion in the natural frequency and a lowering of stabil-
ity thresholds. The axial static load demonstrates also
to have a significant influence on equilibrium paths
and bifurcation sequences. Moreover, accounting for
flexural–flexural–torsional coupling proves crucial to
follow the nonplanar motions arising from pitchfork
bifurcations of the monomodal solution; conversely, its
neglection would change the nature of the local bifur-
cations from pitchfork to saddle-node, leading to erro-
neous results. Bifurcation diagrams and cross-sections
of multi-dimensional basins of attraction are realized
to detect often coexisting periodic, quasiperiodic and
chaotic responses, the latter occurring for high forcing
excitation and characterized by computation of Lya-
punov exponents.

Moving from isotropic to composite beams, Pai and
Nayfeh generalized the equations of motion derived
by Crespo da Silva and Glynn [134] taking into
account elastic couplings among extensional, bend-
ing and torsional stiffnesses characterizing compos-
ite structures. The ensuing system of equations con-
tains bending-twisting, bending-bending, extension-
twisting, and extension-bending coupling terms, toget-
her with cubic and quadratic nonlinearities due to cur-
vature, inertia and midplane stretching [167]. Dynam-
ical responses of the model under excitations in flap-
wise [168] and chordwise [169] directions were inves-
tigated, respectively. In the first case, condition of pri-

mary resonance of the flexural–torsional mode under
1:2 internal resonance with the first out-of-plane flex-
ural mode is treated by means of the multiple scales
method, while the same asymptotic technique was
applied in the second case under primary resonance
of the in-plane flexural mode in 2:1 internal res-
onance with the first out-of-plane flexural–torsional
mode. The outcomes highlight the crucial effect of
the bending-twisting coupling in inducing nonplanar
motions notwithstanding the presence of planar input
force. Symmetry-breaking bifurcations andHopf bifur-
cations were detected, the latter giving rise to chaotic
windows due to PD cascades and cyclic-fold bifurca-
tions.

Looking at the presence of chaos from a global
dynamics viewpoint, Smelova–Reynolds and Dowell
[170,171] applied the Melnikov method to a n-mode
Galerkin model of a simply supported buckled beam
with harmonic excitation. Firstly, a reduced model
including only N hyperbolic modes was investigated,
by applying a semi-analytical method to obtain the N-
dimensional homoclinic manifold. To detect the onset
of chaotic motion, the critical curve for the first compo-
nent of the Melnikov vector was calculated [170] and
then compared with those relevant to the higher com-
ponents [171]. The analyses assessed that the lower
threshold, to be considered as escape boundary leading
to chaos, is represented by the first component, corre-
sponding to the energy component, on which the inves-
tigation should focus. Further results show also that
accounting for non-hyperbolic modes does not mod-
ify the critical conditions obtained from the reduced
hyperbolic system. Based on the results of Wiggins
[105], Yagasaki investigated two simpler beammodels,
replacing the buckling condition with a quasiperiodic
base motion [172], and analyzing the dynamics of an
undamped unforced buckled beam [173], respectively.
Through the application of a Melnikov-type technique
to the finite-dof (averaged [172]) models, a very com-
plicated behaviourwas seen to occur also in very simple
models, with chaotic dynamics developing due to the
presence of orbits homoclinic to periodic orbits as well
as to normally hyperbolic invariant tori.

A multi-mode Galerkin discretization was used by
Nagai and coauthors [174] to describe the dynamical
response of a buckled clamped beam with an axial
spring at one end, under harmonic lateral forcing. The
ensuing nonlinear quadratic and cubic equations were
numerically solved considering the five lower modes,
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with the aim to reproduce and characterize chaotic
motions obtained from experimental tests [175]. The
set of experimental parameters led to a softening-
hardening behaviour of the response curve, where two
types of chaotic regions arise from the subharmonic
resonance curves of 1/2 and 1/3 order. Lyapunov expo-
nents proved the chaotic nature of the responses, and
FFTspectra confirmed the subharmonic frequency con-
tent.Moreover, evaluation of Lyapunov dimension sug-
gested that more than three modes contribute to chaos,
and principal component analysis showed that the low-
est mode dominates the chaotic response while higher
modes provide a relatively small contribution.

3.6 Finite difference/finite element approaches

Alongside Galerkin-type space-discretization meth-
ods, other works apply time and space discretiza-
tion techniques to numerically investigate the chaotic
dynamics of beams and arches. Abyhankar and coau-
thors [176] applied the second-order finite difference
method to the buckled beam studied by Holmes [102]
and verified the goodness of the procedure by compar-
ison with the outcomes of the single-mode Galerkin
reduction. When adding stops of finite length to the
beammodel, the Galerkin discretization becomes inap-
plicable due to the difficulty in finding a complete set
of functions for the mode shapes of the beam. Con-
versely, a slight modification of the numerical algo-
rithm allows to detect several chaotic motions, corre-
sponding to configurations of non-contacting, touch-
ing, and flat stopping between beam and stops. In the
latter case, the resulting motion is seen to be com-
bination of many modes, thus not being described
by a reduced-order Galerkin model. The same sys-
tem was also investigated by Bar-Yoseph and coau-
thors [177], who applied the space-time spectral ele-
ment formulation (STSE) to discretize the PDEs. The
spatial domain was discretized using cubic Hermitian
polynomials while, out of two different temporal dis-
cretizations, the one utilizing Lagrangian polynomi-
als and discontinuous Galerkin mixed formulation was
used to study the first and second mode behaviour of
the beam, showing to grasp the onset of chaos and to
correctly reproduce the phase portrait of the strange
attractor. As important observation, form and size of
the first mode chaotic attractor, as well as the symmet-
ric second mode solutions, are sensitive to spatial and

temporal discretization, in addition to the polynomial
order. Chaotic motions of geometrically exact rods and
shallow arches were investigated by Sansour and coau-
thors [178] by applying thefinite elementmethod. Two-
node elements with linear interpolation of kinemati-
cal functions were utilized, and examples of buckled
Euler beam and shallow arches are presented, forwhich
robust chaotic motions, localized around one equilib-
rium or encompassing all equilibria, are numerically
detected and PD cascades are identified as routes to
chaos. Provided a sufficient number of finite elements
is considered, the method is able to naturally account
for coupling of rotations and to overcome the need to
consider a larger number of modes, if using the stan-
dard Galerkin approach, when passive modes furnish a
considerable contribution to the dynamical response.

Spatio-temporal discretization techniques were also
applied by Awrejcewicz and coauthors in a series of
papers, collected in a book [6], concerning several
mechanical 1D and 2D systems. Monodimensional
models include single-layered/multi-layered Euler–
Bernoulli/Timoshenko linear/curvilinear beams with
different boundary conditions, whose chaotic dynam-
ics is investigated by applying finite difference method
and finite element method in the form of Bubnov–
Galerkin. The two approaches demonstrate to furnish
the same results, with a time-saving advantage of the
former. In order to trace temporal frequencies local-
ization, the time–frequency characteristics are detected
with use of the continuous wavelet transform instead of
the classical FFT approach. For the analyzed models,
the 3D Morlet wavelet result to be the optimal choice
and are used together with time histories, power spec-
trum, phase portraits, Poincaré maps and Lyapunov
exponents to detect transition from regular to chaotic
dynamics. As general comments, the analyses show
that the analyzed mechanical systems exhibit either
standard routes to chaos, such as Feigenbaum, Ruelle–
Takens–Newhouse, Poumeau–Manneville scenarios,
or simultaneous occurrence of some of them. Lyapunov
exponents unveil the existence of chaotic regimes asso-
ciated with hyper-chaos, hyper-hyper-chaos and deep
chaos (two, three and four positive Lyapunov expo-
nents, respectively),which reflect on the structure of the
Poincaré maps. Moreover, the temporal-space chaotic
dynamics is studied by analyzing the modal portraits
(in beam bending-tangent rotation-curvature space),
which are analogous to the phase portraits and allow
to represent the system evolution in time. Results show
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that transition from regular to chaotic dynamics occurs
simultaneously in space and time. Finally, inclusion of
transverse shears and inertia of rotation into the math-
ematical model leads to essential changes in the char-
acter of beam vibrations.

3.7 A few special topics

Chaoticmotions of spinning structures arewidely stud-
ied in the literature, as it is well known that complex
dynamical phenomena and chaos can occur in beam
type systems subjected to rotations about their longi-
tudinal axes. Most of the studies refer to rotordynam-
ics of machinery components, or drillistring systems
used in technologically advanced applications such as
in offshore operation. Yet, in the first systems several
peculiar featuresmust be considered into themodel for-
mulation, like, e.g. clearances in bearings, squeeze film
dampers, oil films in journal bearings, magnetic forces,
seals, frictions and stiffening effect in elongation of a
shaft centre line. The latter, conversely, must include
possible pipe mass imbalance, impact with the bore-
hole wall inducing stick-slip oscillations, bit-bounce
and fluid forces around the drillstring. Following the
same guidelines of the previous sections, works refer-
ring to single isolated beams are presented here, leaving
out all the other, albeit interesting, issues.

Shaw [179] firstly investigated the chaotic dynam-
ics of a slender beam undergoing rotations around its
longitudinal axis, due, e.g. to aerodynamics or mag-
netic forces. The dynamic model was approximated
by taking the time derivative of the angular momentum
equal to a prescribed torque, and by applying an n-mode
Galerkin reduction. In the ensuing system of equa-
tions, the applied rotating forcing term has the form of
an indirect parametric excitation, governed by a first-
order ODE in turn coupled with the second-order ODE
governing themodal amplitude dynamics. The reduced
single-mode model, corresponding to a slowly varying
oscillator, was studied in terms of bifurcation analy-
sis, highlighting the occurrence of a pitchfork bifurca-
tion with arise of a two-well dynamics separated by
homoclinic orbits. On the latter, Melnikov method was
applied and tangency leading to chaos of the horse-
shoe type was determined. Chaos in a buckled beam
controlled by disseminated couple forces was inves-
tigated by Oumarou and coauthors [180]. Attention
was focused on verifying whether the addition of cou-

ple moments, aimed at increasing the beam stiffness
and consequently the buckling load, can have effects
on the appearance of horseshoe chaos. The analyti-
cal model was that of a buckled beam under paramet-
ric and external excitation to which couple forces are
applied at selected points along the beam axis. Under
the assumption of two symmetric and identical couples,
the single-mode approximation led to a parametrically
and externally excited Duffing-like equation, in which
the presence of the moments as external time-constant
terms enforces the two-well potential to be asymmet-
ric. The Melnikov method applied to the homoclinic
orbit showed an overall reduction in the critical thresh-
old as the couple moment increases, promoting the
appearance of horseshoe chaos in the beam dynamical
behaviour, despite the displacement and velocity reduc-
tion and the enlargement of the basin area. As a general
observation, the work stressed the importance of con-
sidering possible enhancement of chaos when design-
ing control tools for reduction in amplitude vibrations.

Considering a more refined model, Reddy and
Ghosal [181] studied a rotating flexible link, possibly
representing a rotating blade of a wind turbine or a flex-
ible link manipulator, modelled as monodimensional
beam, under large deformation regime and with har-
monic rotating excitation. The PDEs were discretized
with the finite element method in order to obtain four
nonlinear non-autonomous coupled ODEs, as function
of two characteristic velocities, i.e. speed of sound
and velocity associated with the transverse bending
vibration of the beam. The multiple scale method was
then applied to investigate the dynamics under primary
external resonance with the third mode and 1:2 internal
resonance between third and second mode. The out-
comes demonstrated the presence of chaotic motions
below certain values of the characteristic velocities,
both for undamped and damped slow flow systems,
with chaos characterization developed through com-
putation of Lyapunov exponents, phase portraits and
Poincaré maps. Due to the dependence of the bending
velocity on the geometric and material properties of
the beam, detection of its critical value can be practi-
cally used to design the flexible link in order to avoid
possible appearance of chaos. Moving to a 3D formu-
lation, Chatjigeorgiou [182] analyzed a long slender
beam with circular cross section, rotating about its lon-
gitudinal axis due to equal angular velocities imposed
at both ends. The fully coupled 3D nonlinear system,
including a variety of possible dynamic effects, was
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solved with an appropriate combination of finite differ-
ence schemes. Chaotic responses governed by the 3D
lateral motions of the spinning beam were unveiled by
means of dense Poincaré sections, 3D power spectral
densities with indeterminable number of harmonics,
and positive Lyapunov exponents.
Outside the field of beams with purely elastic consti-
tutive relation, attention to the dynamical response of
elastic–plastic beams grew rapidly from 1985 when
Symonds and Yu [183] presented interesting results
about the behaviour of a fixed pin-ended, undamped
beam subjected to an impulsive transverse load produc-
ing plastic deflection. Due to the permanent axial elon-
gation caused by plastic deformations, the response
becomes that of a fixed-ended arch, and dynamic
instabilities typical of shallow arches may occur for
moderately small plastic deformations. The authors
described the beam dynamics bymeans of the Shanley-
type model, composed of two pinned rigid links con-
nected by an elastic-perfectly plastic element. The
main simplifying hypothesis is separation of elastic
and plastic responses, for which the initial elastic
response is followed by a rigid plastic one yielding
maximum deflection, and then elastic recovery occurs
until the motion reaches the steady configuration with
permanent deflection and residual stresses. Further-
more, equal yield stresses are assumed in tension and
compression.With these approximations, Shanley-type
model simplifies the continuous problem, reducing the
system to a low-dimensional discrete one. Solving the
equations of motion, the authors unveiled that perma-
nent deflection of the midspan point of the beam may
be located in the direction opposite to the applied load.
Such phenomenon, called “anomalous”or “counter-
intuitive”, was also detected by applying several finite
element codes, even if strongdifferenceswere observed
in the time histories after the first deflection peak, sug-
gesting a strong sensitivity of the system to physical
parameters. Poddar and coauthors [184] suggested that
in the Symonds’ problem a chaotic motion may be pos-
sible and studied a damped Shanley-type model under
impulse loading and under periodic excitation, respec-
tively. In the first case, fractal boundaries in the state
plane suggesting extreme sensitivity to initial condi-
tions are detected, while in the latter case numerical
phase portraits and Poincaré diagrams show transient
chaotic motions similar to those depicted in the two-
well dynamics of shallow arches [94,96]. A paper dis-
cussion by Symonds and coauthors [185] demonstrated

the incorrectness of the analyses under impulse loading
due to the applied numerical procedure, which allows
the change of the damping coefficient, absent at the
initial stage, during the solution calculation, thus erro-
neously assuming that plastic deformations are unaf-
fected by damping and that its effects do not depend
on when it is inserted into the model. Based on an
energy approach, Borino and coauthors [186] high-
lighted the combined roles of plastic deformation and
damping in determining the final rest position, showing
that for the Shanley beam model with a single-dof the
motion is fully determined. The absence of any chaotic
motion in the case of a short pulse loading is confirmed
by the observation that after the plastic strains have
reached their final constant values, the model is a stan-
dard autonomous Duffing-like dynamic system. More-
over, lower andupper bounds on the loadparameters for
possible occurrence of anomalous final response were
computed for the system under consideration [186].
High sensitivity to axial constraint and compressive
stresses, together with load magnitude, strain energy
and damping, was also highlighted [187]. In order to
understand the anomalous behaviour of elastic–plastic
beams, bifurcation analysis was performed by Xue and
Hasebe [188], using a continuous fourth-order ODE
Shanley-type model. A co-dimension three bifurcation
problem of four dimension flow with a pair of pure
imaginary eigenvalues and two simple zero eigenvalues
was presented, with a high degenerate case of singulari-
ties. A co-dimension two bifurcation problemwas then
derived in the incomplete normal form; its unfoldings
present rich bifurcation phenomena which can explain
the counter-intuitive behaviour and its great sensitiv-
ity to small parameter changes of elastic–plastic beam
dynamics. Savi and Pacheco [189,190] revisited the
Symonds’ model by removing the hypothesis of small
displacements and taking into account the hardening
effect, represented by a combination of kinematic and
isotropic hardening. The operator split technique asso-
ciated with an iterative numerical procedure was devel-
oped in order to deal with the nonlinearities in the equa-
tions of motion. The model response under harmonic
and square wave excitations was investigated in free
and forced vibration regimes, and comparison between
system responses with andwithout the hardening effect
allowed the authors to highlight the strengthening of
dynamical phenomena like jumps, sensitivity to ini-
tial conditions, chaos, and transient chaos due to the
hardening effect inclusion into the model. After being
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proved by experimental tests on thin elastic–plastic
beams [191,192], the anomalous behaviour was inves-
tigated by means of two or more degrees of freedom
models, which thanks to the increased phase dimen-
sion allow the occurrence of chaotic behaviour and
other complexity not shown by the single-dof model
under short pulse loading. Lee and coauthors [193,194]
derived a two-dof Shanley-type model (two coupled
autonomousDuffing equations)whichwas numerically
integrated using central difference algorithm to assess
the response of the undamped and damped systems
under short pulse loading. Quasiperiodic and chaotic
vibrations were observed. Various criteria, including
phase plane trajectories, wideband frequency content
in power spectra, positive Lyapunov exponents and
Poincaré section plots, confirmed the chaotic nature of
the vibrations of the undampedmodel. Sensitivity to the
load parameter (here playing the role of initial displace-
ment), a hallmark of chaotic vibration, was illustrated
also by calculation of a simpler Lyapunov-like expo-
nent. Three-dimensional energy diagrams, consisting
of quartic surfaces over the coordinate plane of the
two displacements, were used to determine the sys-
tem response, again with a marked sensitivity to varia-
tions of plastic strains associatedwith load and physical
parameters of the model [195].

Apart from the Shanley-type beam model, Lepik
[196,197] and Qian and Symonds [198] applied Galer-
kin method to models of fixed and pinned-end beams
under impulse loading [196,198] and harmonic exci-
tation [197], also comparing with finite element solu-
tions. Despite its limitation as a general approach to
elastic–plastic problems, Galerkin method can be a
valid approximation procedure under the hypothesis
of full elastic recovery, in which after the rigid plas-
tic phase the plastic strains are fixed and the dynamical
behaviour is that of a shallow elastic arch. The ensuing,
also multi-dof, Duffing-like equations in the transver-
sal displacementwere numerically solved, and counter-
intuitive behaviour and chaotic response of the beams
were established and characterized by computation of
Lyapunov exponents and power density spectra.

The previous works considered symmetric con-
straints and loading so that only symmetrical displace-
ments of the beam were unveiled. Moving from exper-
imental hints of Li and coauthors [191] which sug-
gested occurrence of possible asymmetrical final dis-
placements of thin clamped beams, Liu and coauthors
[199,200] proposed a 3-dof Shanley-type model which

is able to show symmetrical and asymmetrical chaotic
responses. The 2-dof Shanley model of Lee and coau-
thors [194] is used as benchmark for assess the valid-
ity of the 3-dof model, of which it can be seen as
special reduced case. Different kinds of geometrical
and loading imperfections are introduced to activate
the asymmetric dynamics, and the modal decomposi-
tion allows to clearly illustrate the chaotic behaviour of
both symmetric and asymmetric responses. According
to the authors, the chaotic asymmetrical motion is asso-
ciated with the second-order instability of the elastic–
plastic beam, whereas the anomalous behaviour is the
first order chaos for elastic–plastic thin beam subject
to impulsive load.
When dealing with materials such as polymers, vis-
coelasticitymust be taken into account in describing the
dynamical behaviour of beams and arches. Suire and
Cederbaum [201] investigated the response of a sim-
ply supported viscoelastic beam under harmonic exci-
tation by applyingBoltzmann stress–strain relationship
and a single-mode Galerkin approximation. By means
of phase portraits, Poincaré maps, Fourier spectra and
Lyapunov exponents, the authors detected periodic and
chaotic motions and identified different routes to chaos
associated with the variation of some model parame-
ters, corresponding to PD cascades for increasing forc-
ing amplitude, quasiperiodic route to chaos for varying
viscoelasticity coefficient, and sharp route to chaos in
some ranges of middle plane strain. Argyris and coau-
thors [202] modelled a simply supported axially com-
pressed viscoelastic beam under transversal harmonic
load by applying a constitutive model by Ambartsum-
ian and Minassian [203], able to incorporate the char-
acteristic features revealed by experimental tests. A
single-mode Galerkin reduction leads to a Duffing-
like equation of motion with peculiar dissipative term.
Melnikov method was applied to define analytically
the critical threshold for occurrence of homoclinic
orbit tangency, while numerical results highlighted the
possible coexistence of chaotic and periodic motions,
detected and characterized bymeans of Poincaré maps,
Lyapunov exponents and basins of attraction.

Chen and Cheng [204,205] resorted to the Lead-
erman constitutive relation to describe the nonlinear
viscoelasticity of a simply supported column under
periodic axial loading [204] and of a simply supported
beam subjected to transverse load [205]. In both cases,
a 2-mode Galerkin reduction and a successive differen-
tiation via Leibnitz rule, under the hypothesis of relax-
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ation function equal to that of a standard linear solid,
lead to a system of 4 ODEs in terms of also auxiliary
variables. Comparison between 1-mode and 2-mode
models was carried out highlighting qualitatively sim-
ilar results even if with some quantitative differences.
Material coefficient and excitation amplitude have sig-
nificant effect on the system dynamics, moving the
response from equilibrium state, to periodic motion
and eventually chaos. Similarly to Chen and Cheng,
Yi and coauthors [206] studied the dynamics of a vis-
coelastic shallow arch with applied distributed load by
employing Leaderman constitutive relation and a 2-
mode Galerkin discretization. Numerical analyses of
the ODEs system point out the significant role played
by the rise of the shallow arch and by the arch material
in modifying the motion stability and conditioning the
appearance of chaotic responses, as originated through
a quasiperiodic route.

It should be noted that the existing literature boasts
the presence of other works dedicated to the chaotic
response of viscoelastic beams and arches, which
include also the presence of an axial acceleration/veloc-
ity. Indeed, axially moving materials dissipative mech-
anisms play an important role in determining the
dynamical response, and their modelling represents an
important research topic, which, however, is beyond
the interest of this review.

3.8 Spatial chaos

Chaos is usually associatedwith dynamics, i.e.with ini-
tial value problems defined on the infinite domain of the
time variable and is called temporal chaos. However,
since the end of the 80s, the phenomenon of spatial
chaos occurring in boundary value problems defined
on the finite domain of a physical system has been
highlighted, too, based on theKirchhoff static-dynamic
analogy between the large spatial deformations of long
elastic structures and the global dynamics of rigid pen-
dular bodies, with the arclength along the rod axis play-
ing the role of the time coordinate in an equivalent
dynamical system. An analogy which turns out to be
invaluable in numerous deformation problems of elas-
tic lines associated, e.g. withmolecular chains, biologi-
cal hairs and filaments, textiles, optical fibres, magnetic
tapes, wires and oil pipelines, and undersea cables.

Within a theoretical context, Mielke and Holmes
[207] investigated spatial aspects of equilibrium states

exhibited by infinitely or arbitrarily long rods buckled
by loads applied at their ends, by exploiting the Hamil-
tonian structure of the static equilibrium equations and
using theMelnikov theory. Considering a reduced two-
dof Hamiltonian system in canonical coordinates for
the analysis of typical global structures of perturbed
orbits, they obtained a qualitative description of classes
of solutions close to limiting (i.e. completely inte-
grable) cases corresponding to geometrical symmetries
and vanishing of certain stress components, highlight-
ing the existence of chaotic equilibrium states, char-
acterized by irregular spatial shapes of the rods, under
appropriate load conditions. In turn, within a structural
engineering framework, Thompson and Virgin [208]
presented an example of spatial chaos and localization
in the planar deformations of an elastic rod, pointing out
the correspondence between chaotic motion of a pen-
dulumundergoing random sequences of oscillation and
tumbling and the chaotic spatial sequence of random
looping in the deflected formof an axially loaded elastic
strut, and making some general speculations about the
role of homoclinic events in the localization of struc-
tural bucklingmodes. Laterworks confirmed that local-
ized bucklingmodes correspond to homoclinic orbits to
the trivial solution representing a straight rod, showing
that a localized form is the preferred mode of buckling
for sufficiently long rods with circular cross section
under a variety of loading configurations [209], and
highlighting how the buckling process can be explained
by the bifurcation of a homoclinic solution as a sin-
gle load parameter is varied [210]. For rods with non-
circular cross section, subject to end moment and ten-
sion, extensive numerical investigations revealed a vast
complexity of localized buckling modes correspond-
ing to N-pulse homoclinic orbits [211], as already con-
jectured in [210] on the basis of an analogy with the
problem of a strut resting on a nonlinear elastic founda-
tion. Breaking the circular symmetry causes a splitting
of the primary single-loop localized buckling solution
for the isotropic rod into physically distinct solutions.
Spatial behaviour becomes even more complex in con-
strained anisotropic (i.e. non-circular) rods, as numer-
ically highlighted for a rod constrained to lie in a plane
[212] or a rod constrained to a cylinder [213], as in the
buckling of drill strings inside a hole, with the bifur-
cation behaviour of localised solutions in constrained
configurations being far richer than in free-rod ones.
Torsion and flexure are coupled, with the trivial state
becoming a periodic orbit (instead of a fixed point) and,
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consistent with hints from dynamical systems theory
[207], the loss of integrability is accompanied by the
emergence of spatial chaos,which implies the existence
of infinitely many (i.e. multi-pulse) homoclinic orbits
corresponding to multi-looping localised solutions.

Within the dynamic context, spatial chaos occurs
in the framework of nonlinear wave motion, whose
wave-phase can be identified as an independent vari-
able replacing the time in an equivalent dynamical sys-
tem, with the chaotic property of the perturbed nonlin-
ear wave equation being studied through the relevant
methods. Wave propagation in one-dimensional struc-
tures is not in the scope of this review, yet it is worth
mentioning the occurrence of spatiotemporal chaos in
a Timoshenko beam, as theoretically detected by ana-
lyzing the propagation properties of nonlinear flexural
waves [214]. The nonlinear source generating a steady
travelling wave in the analytical model comes from
the midplane elongation of the finite-deflection beam,
whose flexural deformation, rotary inertia and shear
deformation are taken into account. The travellingwave
method was applied to move from PDEs to ODEs, end-
ing up to a Duffing-like equation in the wave-phase
independent variable. The undamped, unforced system
was solved by the Jacobi elliptic function method and
heteroclinic orbits were qualitatively detected. Appli-
cation of the Melnikov method to the perturbed system
provided the threshold condition for the occurrence of
transversal heteroclinic points, showing that the wave
motion in the finite-deflection Timoshenko beam has
chaotic properties in the Smale horseshoe sense, how-
ever, without going into the relevant details or perform-
ing numerical calculations.

4 Cable-beam coupled structures

The coupling between strings/cables and beams/arches
is fruitfully employed in a variety of engineering struc-
tures (cable-stayed bridges, suspended bridges, guyed
masts, tower cranes, suspended roofs, among others),
with different geometrical configurations and mechan-
ical features. The involved interaction between neigh-
bouring structural components is rather complicated,
with reliable modelling and investigations in a non-
linear dynamics environment requiring considerable
efforts. Traditionally, they were focused on some rele-
vant substructure, i.e. the string/cable (see [50,61] dis-
cussed in Sect. 2) or the beam/arch. Research on non-

linear dynamics of actually coupled structures has been
indeed quite extensive in about the last twenty years,
but it has been mostly focused on modelling and anal-
ysis of regular response, with special attention paid to
the features of nonlinear modal interaction entailed by
the occurrence of some internal resonance involving
global and/or local modes. In this respect, meaningful
results have been obtained mostly for multimode mod-
els of cable-stayed bridges in different geometrical and
dynamical configurations, as well as excitation condi-
tions, by various research groups (from, among others,
Bristol, L’Aquila and mostly, in the last decade, Hunan
Universities), by using multiple scales (discretized or
direct) treatments, numerical simulation of possibly
reduced ODEs, and also experimental investigations.
As for the uncoupled structures, clear understanding
of regular nonlinear phenomena is a necessary prereq-
uisite for further, reliable, investigation on the exis-
tence of also nonregular responses. Continuation of
equilibrium solutions of averaged equations highlight-
ing Hopf bifurcations with the onset of dynamic solu-
tions likely undergoing further bifurcations to nonregu-
lar responses has provided hints about the occurrence of
quasiperiodicity and chaos for several models of cable-
stayed bridges. However, to the best of our knowl-
edge, quite few specific in-depth analyses of complex
outcomes in cable-beam coupled structures have been
accomplished up to now, so that no actually meaning-
ful information about their robustness and strength are
available, yet. Accordingly, in the sequel, only stud-
ies explicitly reporting on bifurcation and chaos phe-
nomena in string/cable-beam/arch coupled systems, or
somehow including them within a more general analy-
sis, will be addressed and discussed. In this respect, it
is worth noting that, if being interested in grasping the
main aspects of the dynamic response to a given excita-
tion, which certainly include ascertaining the possible
occurrence of complex behaviour, recourse can still be
made to (even strongly) simplified models, whose non-
linear analysis may provide already significant infor-
mation. Accordingly, in the sequel, quasiperiodicity
and chaos as highlighted in selected single-dof models
of some cable suspension structures are presented, first.

4.1 Single-dof models

Within a substantially theoretical context, Fan and
coauthors [215] dwelled on the possible occurrence
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of chaos in a saddle form cable-suspended roof sub-
jected to vertical excitation. Based on a spectral rep-
resentation of the vertical displacement, the govern-
ing PDEs were reduced to a forced Duffing equation
whose Hamiltonian’s heteroclinic saddle connection
may become a transverse heteroclinic cycle (revealed
by the zeroing of the Melnikov function), thus giving
rise to chaotic motion in the sense of Smale horse-
shoe. De Freitas et al. [216] studied the dynamics of a
suspension bridge with a single-mode model in which
the bridge deck is assumed to be an elastic beam con-
nected to the main suspended cable by a large num-
ber of hangers, treated as one-sided springs responding
only to stretching and giving rise to a piecewise lin-
ear stiffness of the combined system [217]. The exter-
nal forcing is due to time-periodic vortices collinear
with the beam deflection, produced by impinging lat-
eral wind on the bridge structure and has different reso-
nances with the lowest order transverse mode. Numer-
ical simulation highlighted periodic, quasiperiodic and
chaotic responses in both conservative and weakly dis-
sipative forced regimes, with the resonances of the for-
mer becoming attractors of stable foci type in the latter,
the quasiperiodic tori around them disappearing to give
way to the basins of corresponding attractors, and the
chaotic trajectories of the conservative system being
replaced by chaotic transients which asymptote to the
attractors of the dissipative one. Overall, the dynam-
ics is found to be mainly multistable, with a variety of
periodic and chaotic attractors changing abruptly due
to boundary crises, and a highly involved basin bound-
ary structure. From a practical point of view, the coex-
istence of a large number of predominantly periodic
attractors with a complicated (although non necessarily
fractal) basin boundary structure turns out to be already
important, since external noisemay drive the systemoff
a given basin, with sudden jumps possibly causing par-
tial or total damage of the structure. The general issue of
safe basin erosion was addressed in [218], focusing on
the effect of model parameters on the set of initial con-
ditions which would lead to the ultimate collapse of the
bridge, yet choosing parameter values in an ad hoc way
to investigate the wide variety of dynamical features
present in the model. More proper parameter values
taking into account physical, structural and aerodynam-
ical factors of a number of real bridges were considered
in [219], where the matter of multistability and basins
of attraction structure was revisited, with the number
of coexisting attractors meaningfully decreasing as the

damping coefficient is augmented, and chaotic attrac-
tors being found only very rarely for their basins are
extremely small, even though trajectories near fractal
basin boundaries still exhibit long chaotic transients.
Thinking of application as a real pedestrian footbridge,
the simplest model dealing with chaos in a cable-
supported beam is the Helmholtz–Duffing oscillator,
with quadratic terms due to the cable pretension, rep-
resentative of the single-mode dynamics of the sys-
tem excited away from resonance [220]. Its extensive
numerical simulations and the combined use of bifur-
cation diagrams, attractor-basin phase portraits, Lya-
punov exponents, fractal dimension and stable/unstable
manifolds highlighted the occurrence of a variety of
complex phenomena, which include isola bifurcation,
transition to chaos by PD cascade and reverse boundary
crisis, multistability with coexistence of chaotic and
periodic attractors, fractal basins boundaries, erosion
of immediate basins and interrupted sequence of PD
bifurcations. Also, the effects of secondary attractors
were analyzed, showing that in general they cannot be
neglected even if their range of existence is very small.

4.2 Multi-dof models

Large amplitude vibrations and cable-beam interaction
in cable-stayed bridges were addressed since the 90s,
with analytical and experimental models being used
combinedly [51,221] to investigate global and local
modes, respectively, dominated by the beam and cable
eigenfunctions, also possibly undergoing localization
and frequency veering phenomena [222]. Consider-
ing technically relevant values of mechanical proper-
ties, chaotic responses were documented in the forced
dynamics of the reduced two-dofmodel (with complete
quadratic and cubic nonlinearities) obtained from the
coupled PDEs of a linear unshearable cantilever beam
and a nonlinear Irvine cable [223], by projecting the rel-
evant displacement fields in the space of a global mode
and a localmode in 1:2 internal resonance [224].Within
the study of the quadratic interactions responsible for
the superharmonic transfer of mechanical energy from
the low-frequency small-amplitude oscillations of the
global mode (externally excited) to the double fre-
quency high-amplitude oscillations of the local mode
(internally excited), the instability of steady solutions
in a small frequency range around primary resonance
was attributed to the onset of torus bifurcations in the
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frequency response functions obtained with a pseudo-
arclength continuation algorithm. Continuation of the
torus-bifurcated branches highlighted a series of PD
bifurcations, with the ensuing loss of motion period-
icity being qualitatively appreciated by the analysis of
Poincaré sections and Fourier spectra, and quantita-
tively confirmed by the evaluation of Lyapunov expo-
nents. Similar losses of stability and chaotic behaviours
were previously observed (analytically, numerically
and experimentally) in structural systems made of
two slender nonlinear beams [225,226], described by
reduced two-dof models in the modal coordinates of
two global modes. The analogies include identical
mathematical structure of the governing equations and
very similar conditions of internal and external reso-
nance, with the major difference of a nearly unitary
mass ratio between the global modes of the two-beam
system versus the very small mass ratio between the
local and global modes of the cable-stayed beam.

More systematic, numerical and theoretical, studies
on the occurrence of chaos in cable-beam systemswere
generally less concerned about the underlying techni-
cal significance. Zhang and Cao [227,228] investigated
bifurcation and chaotic dynamics of a 1:2 internally
resonant two-dof model of a string-beam system cou-
pled at the two ends and subjected to harmonic axial
and transverse excitations entailing principal paramet-
ric and primary external resonance of the beam and
string, respectively. Numerical simulation of the aver-
aged equations provided by the method of multiple
scales highlights variable shapes of chaotic response,
depending on the variation of a number of system
parameters, with existence of multi-pulse Shilnikov
orbit. Theoretical conditions for the existence of homo-
clinic bifurcations and Shilnikov single-pulse chaos in
the perturbed normal form of the averaged equations
were obtained in [228] by a global perturbationmethod
[16], with the analysis of the perturbed system being
accomplishedby the higher-dimensionalMelnikov the-
ory. The same model of coupled string-beam was ana-
lyzed also under different resonance conditions, i.e. 1:3
internal, with only principal parametric resonance of
the beam [229], 1:1 internal, with primary and combi-
nation resonances of the beam [230], and 1:2 internal,
with principal parametric and 1/2-subharmonic exter-
nal resonance of the beam and the string, respectively
[231]. Numerical simulation of original ODEs high-
lighted chaos in the response of both dof, although the

technical meaning of the considered resonances and
parameter variations is not always fully apparent.

Considering a shallow condensed cable, bifurcation
and chaos of a 1:2 internally resonant two-dof model of
coupled cable-beam, with quadratic and cubic nonlin-
earities, were investigated in [232] through numerical
simulations. External primary or subharmonic resonant
excitation of either the sole beam or both the beam
and the cable was considered. When exciting only the
beam, mostly chaotic response or exchange between
periodic and chaotic response (the latter also depend-
ing on variations of some key system parameters [233])
is found in the two resonance cases, respectively, with
the subharmonic one also entailing parametric reso-
nance of the cable. When exciting both the beam and
the cable, more robust periodic or chaotic response
is seen to occur in the two resonance cases, possibly
due also to the simultaneous superharmonic (primary)
resonance of the cable entailed by the primary (sub-
harmonic) resonance of the beam. Other authors have
recently highlighted occurrence of chaos in the non-
linear dynamic analysis of cable-beam/arch coupled
models aimed at reproducing situations of interest in
technical applications. Lv and Kang [234] considered
a planar two-mode reduced model of cable-stayed arch
representative of the first construction stage during the
erection of an actual cable-stayed bridge and investi-
gated the 1:1 nonlinear resonant interaction between
the tenth cable mode (excited at primary resonance)
and the fourth arch mode, by also finding a PD route to
chaos in the numerical solution of the multiple scales-
based amplitude equations.

Ballaben and Rosales [235] considered a 3D guyed
mast (a beam column with one level of three nonlinear
inclined cables) with real-life parameter values, sub-
jected to a uniformly distributed harmonic load, and
used a nonlinear 3D finite element formulation with
80 dof to show the occurrence of different bifurcation
patterns (in terms of top displacements of the mast),
turning from periodic to nonperiodic motions within
small ranges of variation of the guys initial pretension.
Besides state space plots, the periodicity ratio was used
as a quantitative indicator of potentially chaotic dynam-
ics. In the more theoretical perspective of the role
played by the homo/heteroclinic intersections of invari-
ant manifolds as regards systems’ safety, the influence
of a base harmonic excitation on the escape stability
boundary of a two-dof model of cable-stayed tower
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was analyzed in [236], by investigating the erosion and
integrity of basins of attraction of stable solutions.

5 Conclusions

Chaos in one-dimensional structures has been address-
ed in this review dwelling in detail on research out-
comes obtained in about the last forty years for
fundamental models of cables, beams and coupled
cable-beam systems, as occurring in the background
of applications in classical mechanics and macro-
engineering. The body of related research is impres-
sive. Yet, as pointed out in various parts of the text, an
important number of topics, with the underlying sys-
tems/applications, have been left out of consideration,
mostly due to the general mechanically driven perspec-
tive assumed in dealing with the matter, according to
which nonlinear dynamics methods and phenomena
paving theway to chaos are asmuch important as chaos
results in themselves, if aiming at a general andpossibly
comprehensive understanding. Among the untouched
topics, it is worth mentioning at least those connected
with systems and applications in multiphysics contexts
and at different space/time scales, where chaos also
plays a meaningful role, as progressively highlighted
in about the last twenty years. This might be the subject
of further, dedicated review papers.

Of course, one might wonder about directions of
further challenging research and yet unsolved prob-
lems of nonlinear and chaotic dynamics in one-
dimensional structural mechanics. Irrespective of the
topics/systems considered in this review, various spe-
cific directions could be mentioned. However, only
three main general lines of development are mentioned
here. (i) Chaotic phenomena in a huge variety of mul-
tifield problems, as typically occurring in macro- and,
mostly, micro/nano-engineering applications involving
mixed (solid/fluid/magneto/electric/thermal) physical
environments and different time scales, deserve inves-
tigations to be still accomplished via proper low-order
coupled models, which allow in-depth understanding
and systematic description of the main effects entailed
by the multiphysics interaction context on the sys-
tem nonlinear and complex dynamics. To this aim, the
issue of an effective, yet controllable, dimension reduc-
tion in the background remains fundamental. (ii) To
reliably describe the dynamics of infinite-dimensional

structural elements/systems in macro- up to nano-
mechanics, it is certainly necessary to pursue forward
the ongoing challenging transition from single/few- to
multi-dof models, also driven by experimental inves-
tigation outcomes, suitable to account for possibly
important interaction effects with higher-order modes.
This being a passage to be accomplished not only via
multidimensional- (e.g. finite element/finite difference-
) based spatiotemporal discretizations but also through
theories (e.g. the weak turbulence approach) mostly
applied to infinite-dimensional problems of non-struct-
ural nature and capable of describing slow transfers of
energy from one mode to another. (iii) It is by now
widely recognized that chaos denotes not only a system
response outcome to be avoided inmany circumstances
but also a cross-disciplinary class of complex phenom-
ena to be exploited for specific or general purposes.
Yet, although successful use of chaos has been high-
lighted also in the structural mechanics/engineering
framework (as regards, e.g. nonlinear identification,
structural health monitoring, or energy harvesting), a
lot has still to be done to get a full awareness of the
great potential of nonlinear and chaotic dynamics for
enhanced and innovative modelling, analysis, design,
and control of engineering systems, to be assessed by
also referring to the uncertainty quantification issue.

Anyway, in this respect, one more general, and final,
consideration seems to be in order. As the hallmark
of unpredictable dynamic outcomes, chaos is certainly
the most important phenomenon to be considered, and
properly characterized in both theoretical and practi-
cal terms, for the analysis and safe design of engineer-
ing systems and, specifically, of mechanical/structural
ones.Yet, the goal of a reliable and successful engineer-
ing design stands somehow beyond the precise charac-
terization and understanding of chaos phenomena in
dynamical systems terms. Indeed, it consists of more
generally and knowingly accounting for the whole bas-
ket of intriguing aspects and phenomena of nonlinear
dynamics—in both local and, mostly, global terms—
in order to guarantee the occurrence of some desired
operating conditions, with a special view to possibly
improve and refine them for novel and more advanced
technological applications, this being the challenging
new frontier of nonlinear and chaotic dynamics in
mechanics.
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