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Abstract The aim of this study is to introduce a new
method for the evaluation of complexity properties of
time series by extending Higuchi’s fractal dimension
(HFD) over multiple scales. Multiscale Higuchi’s frac-
tal dimension (MSHG) is presented and demonstrated
on a number of stochastic time series and chaotic time
series, starting with the examination of the selection of
the effective scaling filter among several widely used
filtering methods and then diving into the application
of HFD through the scales obtained by coarse-graining
procedure. Moreover, on the basis of MSHG, fractal
dimension and Hurst exponent relationship are stud-
ied by employing MSHG method with computation of
Hurst value in multiple scales, simultaneously. Conse-
quently, it is found that the proposed method, MSHG
produces remarkable results by exposing unique com-
plexity features of time series in multiple scales. It
is also discovered that MSHG with multiscale Hurst
exponent calculation leads to revelation of distinguish-
ing patterns between verifying stochastic time series
and diverging chaotic time series. In light of these find-
ings, it can be inferred that the proposed methods can
be utilized for the characterization and classification of
time series in terms of complexity.
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1 Introduction

Fractal phenomenon, since it was first introduced by
Mandelbrot [1], has been attracting widespread inter-
est. Fractal characteristic basically is based on self-
similarity and refers to complexity of a system which
is represented by the fractal dimension. The fractal
dimension has found application in analysis of time
series and determination of the nonlinear dynamical
properties. As an example, it is used in bioscience
for the determination of anomalies of the human body
[2–4], in physics for the examination of solar activity
[5], in atmospheric research for the analysis of rainfall
data series [6], in mechanical engineering for damage
detection of steel beam [7], in materials science for the
measurement of silicon content in pig iron [8] and for
assessing structural properties of materials [9] and in
finance for the analysis of stock market indices [10].

There are number of algorithms used to calculate
fractal dimension. Among them, especially, Higuchi’s
algorithm [11] comes forward for its simplicity and
efficiency. In 1988, Higuchi introduced his algorithm
which approximates the fractal dimensiondirectly from
time series bymeans of the length of the irregular curve.
So, in comparison with other methods especially that
reconstructs the attractor phase space, Higuchi’s algo-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05826-w&domain=pdf
http://orcid.org/0000-0003-2695-9298


1442 A. Yilmaz, G. Unal

rithm runs faster and can be applied to shorter time
series for the estimation of the dimensional complex-
ity of time series.

In this work, we extend Higuchi’s fractal dimension
(HFD) analysis frommonoscale to multiscale. In 2005,
Costa et al. [12] introduced the multiscale complex-
ity measure for biological signals. According to Costa,
because of complexity of biological systems, they need
to work across multiple spatial and temporal scales. So,
they developed multiscale entropy (MSE) analysis by
combining sample entropy as a complexity measure
and coarse-graining procedure as a scaling filter.

Since then, multiscale analysis have been enrich-
ing by the works of scientists who noticed the benefits
of observing information in multiple scales. Entropy-
based multiscale evaluations have been the main focus
in these works. A number of versions of multiscale
permutation entropy have been applied for the observa-
tion of the dynamical characteristics of EEG data [13–
15]. Modified version for multiscroll chaotic systems
was introduced [16], and modified multiscale entropy
for short term time series was developed [17]. More
recently, improved version of multiscale permutation
entropy [18] and multiscale transfer entropy were pro-
posed [19].

We apply the same idea for HFD in order to inves-
tigate how complexity features of time series change
through multiple scales. For the choice of scaling filter,
several useful filter options were tested and the mean
filter as the coarse-graining procedure come forward
among them as the most efficient one. As a result,
we introduce multiscale Higuchi’s fractal dimension
(MSHG) analysis by putting together coarse-graining
procedure as a scaling filter and HFD as a complexity
measure. Then, we demonstrate theMSHG analysis on
stochastic time series and chaotic time series.

We also examine how the relationship between com-
plexity measure fractal dimension (D) and long-range
dependence measure Hurst exponent (H ) which is for-
mulized as D = 2 − H changes in multiscale. We
again experiment MSHG on the same set of chaotic
time series and stochastic time series. The results show
that as the relationship inmonoscale holds throughmul-
tiple scales withMSHG for the stochastic time series, it
diverges for the chaotic time series. Therefore, such dis-
tinguishing observations in multiscale based on H and
D can be useful for characterizing time series whether
they possess stochastic or chaotic properties.

The rest of the paper is organized as follows. In
subsequent section, which filtering method, how and
why chosen is given in detail. All examined methods
are briefly explained, and the comparative results are
presented. Then, in Sect. 2, the most efficient method,
mean filter and Higuchi’s fractal dimension algorithm
which comprise MSHG are elaborated. In Sect. 3,
MSHG is demonstrated on selected chaotic time series
and stochastic time series extensively. Section 4 looks
into the relationship between D and H in multiple
scales in a fresh way by conducting MSHG and Hurst
algorithms in parallel in successively scaled group of
time series. In the final section, all findings are sum-
marized with concluding comments.

2 Methodology

The proposed method for the analysis of complex char-
acters of time series that we call it multiscale Higuchi’s
fractal dimension (MSHG) incorporates a scaling part
and the complexity measurement part. For the scaling
part, the coarse-graining algorithm is the most used in
the multiscale literature although there are many filters
especially employed in image processing. In this sec-
tion, we firstly look at some good candidates among
these filters by giving brief instructions and comparing
their effectiveness on all chaotic and stochastic time
series under examination. Gaussian filter, Wiener fil-
ter, mean shift filter, bilateral filter, total variation fil-
ter, standard deviation filter, max filter, harmonic mean
filter and gradient filter are the filters examined as an
alternative to mean filter.

2.1 Scaling filters

2.1.1 Coarse-graining procedure

Coarse-graining procedure or the mean filter is a mov-
ing average process. It is applied to time series in an
order by using a scale factor τ with a low-pass filter. In
our study, overlappingwindow is used tominimize data
loss to a single one in each step. As a result of window-
ing, in each step, data series change. The information
in each interval which is related to other intervals can
be captured by each window.
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Fig. 1 Multiscale overlapping coarse-graining algorithm

For one-dimensional time series of x1, x2, . . . , xN ,
coarse-graining procedure is described as

yn,τ = 1

τ

τ−1∑

i=0

xn+i , (1)

where, consecutively,n, N , i and τ denote the subscript
of coarse-grained data series, the length of data series,
the loop key and the scale factor. The length of each
coarse-grained time series becomes N − τ . Equation 1
gives each data point on each scale. The procedure is
also given with an illustration describing it visually in
Fig. 1. As scale 1 is the original time series, at each
scale, values of consecutive data pairs are averaged
to obtain the value of each point of subsequent scale.
As a consequence of this downsampling, the length of
data is shortened on each scale. However, it keeps the
loss of data at minimum by reducing the length of the
series only by one which serves to transfer more infor-
mation through scales, comparison with other coarse-
graining procedures which consume more number of
data points.

2.1.2 Gaussian filter

Gaussian filter has got many applications, especially in
image processing. In Gaussian filter, simply, the aver-
age of weighting values replace the intensity value of
the pixel and its neighbor pixels. TheGaussian filter use
convolution of requiredGaussian function g. This func-
tion that is governed by the variance σ 2 is described as

g(x, y, σ ) = 1

2πσ 2 e
−(

x2+y2

2σ2
)
, (2)

where x and y are the distances in the horizontal axis
and vertical axis consecutively. Equation 2 is used to
estimate the coefficients for a Gaussian template and

then convolved [20]. The Gaussian filter can be applied
in one or more dimensions. The advantage of the Gaus-
sian filter compared to direct averaging is the enhanced
performance as a result of maintaining more features.

2.1.3 Wiener filter

TheWiener filter is actually a linear estimation of a sig-
nal. It is, especially advantageous while working with
noisy signals. Therefore, it finds wide-range applica-
tions for linear prediction, signal restoration and system
identification. For an original signal x and an additive
noise n, the Wiener filter is described as

W (u, v) = H∗(u, v)Sxx (u, v)

| H(u, v) |2 Sxx (u, v) + Snn(u, v)
, (3)

where u, v are the location parameters of frequency.
H(u, v) is blurring or degradation filter, and H∗ is
its conjugate. Sxx (u, v) denotes the power spectrum
of the original signal which is computed by the Fourier
transform of the signal autocorrelation. Snn(u, v) is the
power spectrum of the additive noise which is acquired
by the Fourier transform of the noise autocorrelation
[21].

2.1.4 Mean shift filter

Mean shift filtering is primarily related to data cluster-
ing. It has many applications in the areas of computer
vision, smoothing, segmentation and tracking. As to
Fukunaga’s introduction, the mean shift vector is

m(x) =
∑n

i=1 g(
x−xi
h )xi∑n

i=1 g(
x−xi
h )

− x, (4)

where h is bandwidth radius, n is data point in obser-
vations xi where i = 1, . . . , n in d-dimension space
Rd and g(x) = −K (x). Here, K is a kernel (for
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instance Gaussian kernel which is the most popular
one) employed in order to estimate probability den-
sity. The algorithm works by iteratively calculating the
mean of a window around a data point as shifting the
center of the window until the convergence. The mean
shift vector is computed until the convergence for each
point xi according to a selected search window. The
algorithm looks for a local maximum of density of a
distribution [22,23].

2.1.5 Bilateral filter

Bilateral filter operates as a smoothing filter by replac-
ing each point with the nonlinear combination of the
neigbouring values. Its applications can be found in
denoising, optical-flow estimation, texture editing and
so on. As I denotes an image and p, q represent some
pixel positions, bilateral filter is described as

BF[I ]p = 1

Wp

∑

q∈S
Gσs (‖p − q‖)Gσr

(
Ip − Iq

)
Iq .

(5)

The normalization factor Wp in Eq. 5 is

Wp =
∑

q∈S
Gσs (‖p − q‖)Gσr

(
Ip − Iq

)
, (6)

and the two-dimensional Gaussian kernel Gσ (x) in
Eq. 6 is

Gσ (x) = 1

2πσ 2 exp

(−x2

2σ 2

)
. (7)

So, based on Eq. 7, Gσs is the Gaussian kernel asso-
ciated with location which decreases the effects of far
points and Gσr is the Gaussian related to value which
decreases the effects of points q with an intensity value
different from Ip [24,25].

2.1.6 Total variation filter

The total variation algorithm was first introduced for
image denoising and reconstruction [26]. For a signal
x with an additive noise n which is observed in the
form of y = x + n, in order to estimate x , total varia-
tion filtering measures the amount of changes between
signal values and is described as the minimization of
following formula:

J (x) = ‖y − x‖22 + λ‖Dx‖1, (8)

where λ denotes the regularization parameter. The
L1 norm matrix ‖Dx‖1 given in Eq. 8 can also be
expressed as
N∑

n=2

|x(i) − x(i − 1)|, (9)

for 1 ≤ i ≤ N for N -point signal x(i) in Eq. 9 [27].

2.1.7 Standard deviation filter

As the name suggests, with the standard deviation filter,
the standard deviation of the data points in a particular
range neighborhood is used. Then, these are returned
to the place of every data point. The standard deviation
formula is given below as

SD =
√∑

(xi − x̄)2

r ∗ c − 1
, (10)

where xi denotes the value of particular pixel and x̄
denotes the mean of the pixel values in the filter range.
Besides, r and c are the size of the filter in rows and
columns, respectively [28].

2.1.8 Max and Min filter

Max filter and min filter are classified among nonlin-
ear filters. They filter an image by refining only the
minimum or maximum of all pixels in a local region
Ru,v of an image. Each pixel in an image is assigned a
new value equal to the maximum or minimum value in
a neighborhood around itself. This process is summa-
rized as

I ′(u, v) ← min{I (u + i, v + j) | (i, j) ∈ R}, (11)

I ′(u, v) ← max{I (u + i, v + j) | (i, j) ∈ R}, (12)

where R denotes the filter region, I and I ′ denote the
original image and thefiltered image,u andv denote the
position parameters. Algorithms replace every value in
time series by the maximum or minimum in a deter-
mined range [29].

2.1.9 Harmonic mean filter

Harmonic mean filter, in essence, is a different version
of mean filter. It is quite useful for the removal of Gaus-
sian noise as well as preserving edge features. For two
dimensional space, the harmonic mean filter is given as

HM(I ) = mn
∑

(i, j)∈W 1
I (x+i,y+ j)

, (13)
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where x and y denote coordinates over the image and
I , i and j denote the coordinates in a window W with
the size ofm, n which are the length of each dimension
[30,31]. The algorithm works as replacing every value
by the harmonic mean value in a determined range.

2.1.10 Gradient filter

The gradient of the function I at position (u, v) is given
as a vector:

∇ I (u, v) =
(
Ix (u, v)

Iy(u, v)

)
=

( ∂ I
∂x (u, v)
∂ I
∂y (u, v)

)
. (14)

Basically, the partial derivatives of horizontal and ver-
tical lines constitute the gradient function merely con-
sists of. There are the horizontal and vertical gradient
filters respond to swift changes in horizontal axis and
the vertical axis, respectively [29].

Gradient filter based on the vector given in Eq. 14
calculates the magnitude of the gradient of an image
which is the rate of increase and described as

|∇ I | =
√(

∂ I

∂x
(u, v)

)2

+
(

∂ I

∂y
(u, v)

)2

. (15)

Because themagnitude does not varywhen the image is
rotated or oriented in a different position, it is especially
used in edge detection.

2.1.11 Findings on scaling filters

All scaling filters selected for this study are the mem-
ber of low pass filter family. Among these filters, while
mean filter defined in Eq. 1 is one of themost used filter
in practice, Gaussian filter which exercises the convo-
lution of Gaussian function given in Eq. 2 is also very
popular in image processing applications. The Wiener
filter described in Eq. 3 as a dependent of the power
spectrum of the signal and additive noise with a degra-
dation filter is preferred in linear prediction. Mean shift
filterwhose algorithm is summarized in Eq. 4 computes
the mean of a window until the convergence. Bilateral
filter smoothes images while preserving edges accord-
ing to Eq. 5. Total variation filter is a slope-preserving
methodwhich searches for theminimumof Eq. 8. Stan-
dard deviation filter based on Eq. 10 is employed by
computing standard deviation of data points in the fil-
ter range. Max and min filter presented in Eqs. 11 and
12 basically calculate the maximum and minimum val-
ues of data points in filter region. Harmonic mean filter

as modification of mean filter operates by replacing
data points in a local region by the value calculated by
Eq. 13. In gradient filter algorithm, themagnitude of the
gradient given in Eq. 15 based on the partial derivatives
of horizontal and vertical lines is computed.

For the examination of these filters, built-in func-
tions of Mathematica v11.0.1.0 are used. Results are
presented in a way to allow comparisons. Because
almost each pair result is closely identical, only fig-
ures for fractional Brownian motion (fBm) are given
in Fig. 2 to avoid repetition and for clear presentation.
As the data sets, five different fBm processes are gen-
erated with Hurst exponent values of 0.25, 0.40, 0.50,
0.60 and 0.75 and represented with different colors for
providing distinguishable observations.

Figure 2 consists of ten subfigures. Each subfigure
belongs to each filter in the list of scaling filters under
investigation. These subfigures show fractal dimension
value on y axis and scale value on x axis. The number
of scales on which D values are calculated and plotted
is 12.

As observed in subfigures of Fig. 2, mean filter,
Gaussian filter, mean shift filter, bilateral filter, total
variation filter, standard deviation filter produce simi-
lar patterns albeit with different values in each scale. It
is not really clear to determine themost efficient scaling
filter because of such close patterns. However, the most
used filter, mean filter and Gaussian filter are applied to
upcoming analysis side by side and observations show
us mean filter is slightly more consistent for all the data
series. So, the choice of scaling filter for the rest of our
calculation arises as mean filter.

Although the mean filter acts slightly better with
Higuchi’s algorithm, it is not easy to generalize it to
other multiscale methods. In our previous studies, for
example, in the application of correlation dimension
algorithm in multiscale, Gaussian filter had generated
more stable results than mean filter as well as other
filters tested. Therefore, for now, for each algorithm,
when analysis is made in multiscale, the choice of scal-
ing filter is better to be made after testing variety of
filters until developing an efficient uniform method for
this purpose. For not diverging from the main purpose
of this study, this subject of the choice of scaling filter
is not presented in detail any further.
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1446 A. Yilmaz, G. Unal

Fig. 2 MSHG results of all filters. a Mean filter, b Gaussian filter, c Wiener filter, d Mean shift filter, e Bilateral filter, f Total variation
filter, g Standard deviation filter, h Max filter, i Harmonic mean filter, j Gradient filter
123
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2.2 Fractal dimension

Complex interlinked systems like stockmarkets, human
heart, neural structures, the digital networking systems
are generallymade up ofmultiple subsystems governed
hierarchically show nonlinear deterministic character-
istics and stochastic characteristics. A complex system
canbe examined for learning about its behavior bymea-
suring its particular signals that indicate nonlinearity,
sensitivity to initial conditions, long memory, severe
volatility and nonstationarity [32].

Fractal theory gives effective method for character-
izing complex structure of such systems. Fractals are
interpreted by a non-integral dimension named as frac-
tal dimension. The fractal phenomenon is found every-
where and studied in many fields of science like in
finance for the analysis of price variations [33] and
stock markets [34], in physics for the detection of peri-
odic components in seismograms [35] or in engineering
for porous media [36] and so on.

Fractal structure is characterizedwith self-similarity,
and its complexity is measured by its fractal dimension
which is easier to be computed from data sets. There
are numerous methods for the measurement of fractal
dimension like Higuchi, Kantz, Maragos and Sun or
Burlaga and Klein and so on. Among them, Higuchi’s
fractal dimension (HFD) is a fast nonlinear compu-
tational method which yields more accurate result in
comparison with others [37]. Shifts in the structure of
time series in a time domain over a specific charac-
teristic frequency make it hard to find out power law
indices and a characteristic time scale from the power
spectrum. Stable indices and time scale related to the
characteristic frequency can be provided by the HFD
method even there are very limited data points available
[11].

2.3 Higuchi’s fractal dimension algorithm

Higuchi’s fractal dimension algorithm is described as
follows [11]. Giving a N -length one-dimensional time
series with equal intervals x(1), x(2), . . . , x(n), a new
time series Xm

k is constructed as

Xm
k : x(m), x(m + k), x(m + 2k),

. . . , x

(
m + int

[
N − m

k

]
.k

)
, (16)

where k as an integer is the time interval and number of
new time series sets and m = 1, 2, . . . , k. Therefore,

Eq. 16 gives k number of new time series. The length
of each new time series obtained by Xm

k is defined as

Lm(k) =
⎛

⎜⎝
1

k

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
int[ N−m

k ]∑

i=1

|x(m + ik)

−x(m + (i − 1).k)|] N − 1

int[ N−m
k .k]

})
, (17)

where N−1
int[ N−m

k ] is the normalization factor for the curve

length of k sets of constructed time series. By Eq. 17,
the length of the curve for the interval k is obtained by
computing the average value over k series of Lm(k) as

L(k) = 1

k

k∑

m=1

Lm(k). (18)

Then, based on Eq. 18, the fractal dimension D f is
described by

L(k) ∼ kDf . (19)

So, the complexity measure Df can be calculated by
the least-squares linear best fit procedure as finding the
slope of the curve on the graph of ln(L(k)) − ln(1/k)
based on Eq. 19. Df takes values ranging between 1
and 2.

In our study, HFD, a measure of self-similarity and
complexity of time series, is extended tomultiple scales
which is provided by coarse-graining scaling filter. So,
new procedure named MSHG allows uncovering dif-
ferent characteristics which helps to understand and
identify the nature of time series under examination.
To do this, HFD value of each scale gathered by scal-
ing filter is calculated. Then, all HFD values in y axis
versus scale number in x axis are plotted. The pattern
of the plot and values shows the particular character-
istics of different time series. In the following section,
on various time series data sets in different classes,
namely stochastic and chaotic time series, MSHG is
demonstrated in detail.

3 Applications

3.1 Stochastic time series

Applications anddemonstrations on specific time series
ofMSHG algorithm start in this section with stochastic
time series of white noise, fractional Brownian motion
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Fig. 3 MSHG results of stochastic processes

(fBm) and fractional Gaussian noise (fGn) generated
by Mathematica’s related process functions.

As fBmand fGn are self-similar stochastic processes
with long-range dependence, white noise is a random
noise. fGn and fBm are related processes since fGn is
the increments of fBm. fBm is a Gaussian process with
mean functionμt and its covariance function is written
as

γ (t, s) = σ 2
(
s2H + t2H − |t − s|2H )

2
. (20)

Fractional Gaussian noise process is also a Gaussian
noise with mean function μ and covariance function

γ (t, s) = σ 2
(|t − s − 1|2H − 2|t − s|2H + |t − s + 1|2H )

2
,

(21)

where σ is volatility and H is the Hurst exponent H ∈
(0, 1).

TheHurst exponent quantifies theHurst phenomenon
which describes the long-range dependence of the fBm
given in Eq. 20 and fGn defined in Eq. 21 [38].

If H is set to 0.5, the process is Brownianmotion and
independently distributed. When H is different from
0.5, the observations are not independent and system is
short-term memory process if H < 0.5 and long-term
memory process if H > 0.5.

As a set of stochastic time series, white noise, fGn
(H = 0.5) and fBm (H = 0.25, 0.75) processes are
exercisedwith the length of 1250 time steps. The results
are presented in Fig. 3 which shows similar patterns for
every time series in different ranges.

3.2 Financial time series

MSHG is continued to be tested on stochastic time
series particularly with financial time series processes

in this section. For this purpose, two important pro-
cesses of FARIMA and FIGARCH are utilized.

3.2.1 FARIMA

Autoregressive fractionally integrated moving average
model (FARIMA), in a similar sense to FIGARCH, is a
modification of autoregressive process (AR) and mov-
ing average process (MA) models allowing fractional
differencing.

MA(q) model is written as

Xt = μ +
q∑

i=1

θiεt−i + εt . (22)

And AR(p) is given as

Xt = μ +
p∑

i=1

φi Xt−i + εt , (23)

where μ = E[yt ], θ and φ are the parameters of the
MAmodel and AR model consecutively. ε is the white
noise process with the properties of E(εt ) = 0 and
var(εt ) = σ 2 [39].

ARIMA(p, d, q) as a combination ofAR(p) defined
in Eq. 23 and MA(q) given in Eq. 22 models is
described as follows [40]:
(
1 −

p∑

i=1

φi B
i

)
(1 − B)d(Xt − μ)

=
(
1 +

q∑

i=1

θi B
i

)
εt , (24)

where (1 − B)d is the difference operator as d takes
integer values. B represents the backshift operator. It
works in the notation as Bi Xt = Xt−i .

So, ARIMA models given in Eq. 24 are especially
powerful when it comes to short-range dependence
[41]. And, when d is allowed to take fractional val-
ues, it is suggested that the model becomes better at
capturing long-range dependence [42]. Then, as denot-
ing the autoregressive order, the difference coefficient
and the moving average order with p, d and q, in gen-
eral form FARIMA(p, d, q) process can be described
as

φ(B)(1 − B)d Xt = θ(B)εt , (25)

where d ∈ (−0.5, 0.5),φ(B) = 1−φ1B−· · ·−φp B p,
θ(B) = 1 + θ1B + · · · + θq Bq and (1 − B)d is the
fractional difference operator.
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3.2.2 FIGARCH

Fractionally integrated generalized autoregressive con-
ditional heteroskedastic (FIGARCH) process is a class
ofGARCHprocesswithmore persistence on the condi-
tional variance which allows estimation long memory
of conditional volatility.

The GARCH model allows the conditional vari-
ance to be dependent upon previous own lags. The
GARCH(p, q) is

σ 2
t = α0 +

q∑

i=1

αiε
2
t−i +

p∑

j=1

β jσ
2
t− j , (26)

where αi ≥ 0 and β j ≥ 0 are the parameters and σ 2
t

is the conditional variance. The conditional variance of
error term of a model εt with the properties of εt ∼
N (0, σ 2

t ) is written as

σ 2
t = var(εt |εt−1, εt−2, . . .)

= E[(εt )2|εt−1, εt−2, . . .]. (27)

The GARCH(p, q) model given in Eq. 26 can be
expressed in a form that shows that it is effectively
an ARMA(m, p) model for the conditional variance as

ε2t [1 − α1(B) − β1(B)] = α0 + [1 − β1(B)]vt , (28)

where vt is mean zero serially uncorrelated

vt = ε2t − σ 2
t , (29)

and m ≡ max{p, q}. The GARCH process is defined
to be integrated in variance. So, based on Eqs. 27, 28
and 29, IGARCH can be written in the same notation
as

[1 − α1(B) − β1(B)](1 − B)ε2t

= α0 + [1 − β1(B)]vt , (30)

when,
p∑

i=1

βi +
q∑

j=1

α j = 1. (31)

If fractional difference operator d is added to
IGARCH(p, q) given in Eq. 30 with the condition
of Eq. 31, then FIGARCH(p, d, q) is obtained and
described as

φ(B)(1 − B)du2t = ω + [1 − β(B)]vt , (32)

where 0 < d < 1 and φ(B) ≡ [1− α1(B) − β1(B)] is
of order m − 1 [43].

FIGARCHprocess has got fractional and longmem-
ory properties but does not possess chaotic properties

Fig. 4 MSHG results of FIGARCH and FARIMA

[44]. Identifying these properties is useful consider-
ing that MSHG results of the chaotic times series are
compared with stochastic time series in the subsequent
section.

3.2.3 MSHG results of FIGARCH and FARIMA

For the application of MSHG on FIGARCH(p, d, q)
in Eq. 32 and FARIMA(p, d, q) in Eq. 25, sample
data series for both processes are generated with the
length of 1250 data points, and then, figures of HFD
vs. number of scales are formed as presented in Fig. 4.
FIGARCH and FARIMA lines follow the same pat-
tern as it was in MSHG results of white noise, fGn and
fBm presented in previous section. These similar pat-
tern although occurring in various values may suggest
that it is a property of stochastic time series in mul-
tiscale. In the next section, MSHG is run on several
chaotic time series and its results are comparedwith the
findings in this section whether or not these time series
with different characteristics produce unique patterns.

3.3 Chaotic systems

Achaotic system is a complex dynamic nonlinear deter-
ministic systemwhich is unpredictable in the long term
because of its sensitivity to changes of initial condi-
tions. Even the smallest change at one point can cause
a very large shift in future point as a result of informa-
tion transmission through following data points. There
are various methods and algorithms like HFD to mea-
sure the complexity of such characteristic systems in
monoscale. In this section, MSHG is applied to exam-
ine the feature of complexity of chaotic time series in
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multiscale. The chaotic time series data setwe use com-
prises three chaotic time series which are generated
from two-dimensional chaotic discrete maps of Henon
map, Duffing map and Ikeda map.

3.3.1 Henon map

Michel Henon introduced Henon map in 1976 with

xn+1 = 1 − ax2n + yn, (33)

yn+1 = bxn, (34)

where a, b parameters are given the values of 1.4 and
0.3 to obtain chaotic Henon time series for the calcu-
lation [45].

3.3.2 Duffing map

By assigning 2.75 and 0.2 values to a and b parameters
in

xn+1 = yn, (35)

yn+1 = −bxn + ayn − y3n , (36)

Duffing chaotic time series are acquired [46].

3.3.3 Ikeda map

These three equations,

xn+1 = 1 + u(xn cos(z) − yn sin(z)), (37)

yn+1 = u(xn sin(z) + yn cos(z)), (38)

z = 0.4 −
(

6

1 + x2n + y2n

)
, (39)

govern the Ikeda map [47]. Time series can be gener-
ated by setting u parameter to 0.918.

The result of MSHG calculations of these three
chaotic time series generated by using Eqs. 33, 34,
35, 36, 37, 38 and 39 with the length of 1250 data
points are summarized in Fig. 5. Lines emerging on D-
Scale plane seem quite irregular and leading through
uncertain directions. These patterns are very different
from the ones revealed with stochastic time series. In
comparison with stochastic time series, more irregu-
lar and jagged lines through consecutive scales of the

Fig. 5 MSHG results of chaotic maps

chaotic time series figure take the place of smooth and
horizontal lines of the stochastic time series.

4 HFD and Hurst exponent link in multiscale

The aim of this section is to investigate the relation-
ship between HFD and H in multiscale. Through pre-
vious sections,MSHGmethod has been introduced and
demonstrated on time series with different characteris-
tics. With MSHG method, HFD is expanded on mul-
tiple scales and its distinguishing revelations are pre-
sented. In a similar sense, Hurst exponent calculations
are exercised on multiple scales numerically, in order
to examine the link between H and HFD also holds in
multiple scales.

4.1 Hurst exponent

Hurst exponent (H ) as a measure of long memory
dependence has also been studied and applied in wide
range of different fields such as in hydrology [48],in
medicine and biology [49], in astrophysics [50], in
finance [51] and so on. Hurst exponent was introduced
in 1951 byH. E.Hurst while investigating river flows of
the Nile basin [52]. The method developed was called
rescaled range or R/S analysis. Letting Xn be the inflow
of to the dam in the original problem or any time series
in period n = 1, 2, . . . , k, the rescaled adjusted range
statistic is
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R/S(k) =
max 0≤ j≤k

{∑ j
n=1 Xn − j

k

∑k
n=1 Xn

}
− min 0≤ j≤k

{∑ j
n=1 Xn − j

k

∑k
n=1 Xn

}

√
1
k

∑k
j=1

(
X j − 1

k

∑k
j=1 X j

)2
. (40)

The numerator is called the adjusted range, and the
denominator is the sample standard deviation in Eq. 40
where j = 1, 2, . . . , k. After examination of many dif-
ferent time series, Hurst found that R/S(k) ≈ kHc for
large k where c denotes some constant [53].

Hurst exponent (H ) takes values between 0 and 1.
If H = 0.5, the system is independently distributed
and Brownian motion. However, if H value is differ-
ent from 0.5, then system possesses memory of previ-
ous points and no longer identified as independent. It
is described as a short-term memory or anti-persistent
system if H < 0.5 and long-termmemory or persistent
system if H > 0.5.

Mandelbrot later introduced a method which has
been widely used. H is computed by Mandelbrot’s
method [54] described as

R/St = ct H , (41)

after taking logarithms of both sides, formula becomes
linearized as,

log(R/St ) = log(c) + H log(t)), (42)

where R/St is,

R/St =
[
1/M

M∑

m=1

(
RIm/σIm

)
]

= ct H , (43)

RIm = max
(
Xk,m

) − min
(
Xk,m

)
, (44)

Xk,m =
n∑

k=1

(
Nk,m − μIm

)
, (45)

where, σ , μ, Im , N , Nk,m , successively denote the
standard deviation, the mean of M sub-periods for
m = 1, 2, . . . , M , each of the M subperiods, the num-
ber of points in time series, each element of a given time
series. Also, as c represents some constant, t = N/M
and k = 1, 2, . . . , t [55].

Time series of N observations are divided to t length
of M subperiods. Standard deviation and mean of each
subperiods are calculated. Then, by calculation of vari-
ation RIm given in Eq. 44 dependent on Xk,m calculated
as in Eq. 45 provides to estimation of the mean R/St in
Eq. 43 by RIm/σIm of all subperiods. Finally, H value
can be computed by a linear regression of Eq. 42 as a
solution of relationship given in Eq. 41.

4.2 The relationship between fractal dimension and
Hurst exponent

Mandelbrot [1] first introduced the relationshipbetween
Hurst exponent and fractal dimension as

D = 2 − H (46)

where, H denotes the Hurst exponent and D denotes
fractal dimension which is calculated by Higuchi’s
algorithm in this study and denoted with HFD.

The relationship described in Eq. 46 that theoreti-
cally relates HFD to H value is investigated in multi-
scale by making use ofMSHG and calculating H value
scale by scale simultaneously on the same stochastic
time series and chaotic time series used in previous
section.

This algorithm is used to find H values on each scale
which is obtained by coarse-graining procedure. Num-
ber of scales are limited to 12. Each H value against
its related scale is plotted as it is repeated for MSHG
simultaneously. Besides, for each scale, sum of H and
D values are calculated and plotted to observe how
D + H = 2 relationship appears.

These calculations are made for all stochastic time
series (white noise, fGn, fBm, FIGARCH, FARIMA)
and chaotic time series (Henon, Duffing, Ikeda) sets
used in previous section. Each stochastic time series is
generated by computing mean path of numerous sam-
ple random processes. Plots obtained for each time
series are presented on a single figure (Fig. 6) in order
to provide efficient viewing. Subfigures are lined up
starting from stochastic time series through financial
time series to chaotic time series. In subfigures, when
y axis shows D and H values, x axis represents the
number of scale.

In Fig. 6, subfigures from a to e present the changes
of H and D values individually as well as D + H in
multiscale for the stochastic time series. As it is clearly
seen that even though H and D patterns are different
for almost all stochastic time series in various degrees,
D+H value converge at the value of 2, especially after
the scale 4 by supporting the relationship generalized
by Eq. 46.
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Fig. 6 Fractal dimension (D) and Hurst exponent (H) relationship in multiscale. a White noise, b fBm, c fGn, d FIGARCH, e FARIMA,
f Henon, g Duffing, h Ikeda
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However, the subfigures coming after e, displaying
the results of MSHG and H algorithms for the chaotic
time series, Henon, Duffing and Ikeda indicate irreg-
ular and diverging patterns from the relationship of
D + H = 2 observed in the subfigures of the stochas-
tic time series. While any firm convergence is not quite
detected, around the number of 2.5 or between ranges
of 2 and 2.5, the sum of D and H seems to fluctu-
ate through until the last computed scale of 12. These
such variant observations show that how distinguish-
ing properties the stochastic time series and the chaotic
time series possess in terms of H , D and the sum of
H and D in multiple scales revealed by MSHG and H
methods.

5 Conclusions

This study introduces the multiscale Higuchi’s frac-
tal dimension (MSHG) method as a new complex-
ity measure which captures multiscale properties for
time series by employing mean filter as the coarse-
graining procedure as a scaling filter and Higuchi’s
fractal dimension algorithm as a self-similarity and
complexity measurement method.

The choice of the most suitable scaling filter is
experimented by applying a number of popular filtering
methods on the stochastic and chaotic time series for
which several filters are shown to be potentially effec-
tive as an addition to commonly used coarse-graining
procedure in the multiscale literature. Consequently,
the mean filter with an overlapping window is used for
providing stable and effective results with the minimal
data loss at each step. Also, Higuchi’s fractal algorithm
is employed because of its more accurate and faster
execution even with the smaller data sets than the alter-
native algorithms for the computation of fractal dimen-
sion.

MSHG method is demonstrated on various selected
stochastic time series and chaotic time series. Distin-
guishing results between these two different class of
time series clearly are observed as supportingmethod’s
applicability and functionality as an alternative exten-
sion of current multiscale and monoscale complexity
measuring methods.

Hurst exponent quantifies the persistence or long-
range dependence of time series and has an infamous
relationship of D + H = 2 with the self-similarity
and complexity measure of fractal dimension. Further-

more, how this relationship between Hurst exponent
and fractal dimension stands inmultiple scales is exam-
ined by employing MSHG algorithm and stretching
Hurst calculation with long-established Maldelbrot’s
method through multiple scales simultaneously, once
again on the same time series data sets. While this
relationship is observed to be holding for the stochas-
tic time series, contrary evidence is emerged for the
chaotic time series. The outcomes of these calculations,
clearly, point out specific patterns for the stochastic
time series and chaotic time series, through multiple
scales with regard to the sum value of D and H which
suggests the possible use of these unique multiscale
features for the categorization of time series.
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