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Abstract A typical symptom of vibration signals

collected from rolling bearings with local faults is the

existence of periodic transients, which makes the

intrinsic structure of vibration signals become more

and more regular. Generally, the vibration always

contains multiple intrinsic oscillatory modes on

different scales, which generally is caused by the

interaction and coupling of machine components.

Therefore, it is necessary to detect the behavior change

of complexity of vibration signals in the view of

multiple scales for fault information representation.

The complexity and nonlinear failure symptom of

rolling bearing can be evaluated by the recently

proposed nonlinear dynamic tools, such as multiscale

entropy (MSE) and its variants. Recently, the

improved MSE method, multiscale dispersion entropy

(MDE) and its improvement refined composite MDE

(RCMDE) are developed to measure the complexity of

time domain data. However, the intrinsic shortages of

coarse graining approach that used in MDE and

RCMDE have limited their application to fault feature

representation. In this paper, an improved RCMDE

approach named generalized refined composite mul-

tiscale fluctuation-based fractional dispersion entropy

(GRCMFDE) is proposed to enhance MDE and

RCMDE in complexity measurement of time series.

GRCMFDEwas compared withMPE,MDE, RCMDE

by analyzing synthetic simulation signals to verify its

advantages. After that, an intelligent fault diagnosis

method was proposed by combining GRCMFDE with

supervised multi-clustering feature selection and gray

wolf optimized SVM for fault classification of rolling

bearing. Lastly, the proposed fault diagnostic method

was applied to two experimental data set analysis by

comparing with multiscale permutation entropy,

MDE- and RCMDE-based fault diagnostic methods

and the comparison results indicate that the proposed

method can effectively diagnose the fault locations

and severities of rolling bearing and get a higher fault

identifying rate than the comparative methods.

Keywords Complexity � Fault diagnostic method �
Multiscale dispersion entropy � Multiscale

permutation entropy � Rolling bearing

1 Introduction

Rolling bearing has been a key part of many rotating

machines and other equipment; meanwhile, it is also

the device most prone to failure. When the rolling
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bearing emerges local faults, a typical symptom of

their vibration signals is the existence of periodic

transients [1], which makes the intrinsic structure of

vibration signals become more and more regular. This

regularity is presented in the form of self-similarity or

complexity of vibration signals. In addition, the

vibration signal of rolling bearing always contains

multiple intrinsic oscillatory modes on different scales

caused by interaction and coupling effects of machine

components. Therefore, it is necessary to detect the

complexity or irregularity change of vibration signals

of rolling bearing in multiple scale views.

Generally speaking, many statistical and nonlinear

dynamic parameters can be used to evaluate the

complexity and nonlinear features of time domain data

of rolling bearing, among which, the entropy-based

complexity measure approaches have attracted lots of

researchers’ attention [2]. Multiscale entropy (MSE)

and multiscale permutation entropy (MPE) [3–5] are

two kinds of most often used methods for complexity

and randomness measure in mechanical fault detection

and diagnostics fields, and many fruitful research

results have achieved by scholars. For example, the

MSE-based statistical features were constructed and

employed to reflect the fault information of rolling

bearing by Zhang, et al. [6]. However, the computation

of sample entropy (SampEn) is time costing and the

similarity measurement of template changes suddenly

for its use of Heaviside step function. To improve the

performance of SampEn used in MSE, in Ref. [7, 8]

the improved MSE method called multiscale fuzzy

entropy was proposed and used to fault feature

extraction of machinery system. MPE was used to

represent the nonlinear fault features of rolling bearing

by Li et al. [9]. GCMPE was developed for enhancing

MPE in entropy fluctuation at large scales and utilized

to fault detection of rolling bearing in Ref. [10].

However, in the computation of permutation entropy

(PE) used in MPE, the amplitude information of time

series is ignored. Besides, the coarse-grained process

used in MSE and MPE in nature is linear mean

filtering, which will cause important information

missing of the analyzed signals [11].

Dispersion entropy (DE) proposed in Ref. [12] was

designed as a new nonlinear dynamic indicator to

overcome the drawbacks of SampEn and PE for

complexity and irregularity measurement. Compared

with SampEn and PE, the amplitude size of time series

is considered in DE and its computation is much faster.

Most of all, DE has much stronger anti-noise capabil-

ity than PE and SampEn, as a slight change of

amplitude does not change the corresponding class

label defined in DE. DE also was expanded to

multiscale dispersion entropy (MDE), as well as its

improvement, refined composite multiscale dispersion

entropy (RCMDE) [13]. However, there are still some

problems existed in MDE and RCMDE that need to be

solved. First, in the original DE, the fluctuation of

patterns was not distinguished. Second, the optimized

mapping approach that suitable for the vibration

signals of rolling bearing should be selected. Third,

for a large scale factor, the coarse graining used in

MDE and RCMDE always leads to the length of time

series be shorter and the deviation of MDE will be

larger accordingly [13].

Aiming at the first and second issues stated above,

the fluctuation-based DE (FDE) is used to replace the

original DE and is improved in the selection of

mapping approach. Also, the original coarse graining

is extended to the root-mean-square-based generalized

refined composite multiscale way to overcome its

intrinsic limitations. Last, the DE is extended to

fractional order to improve the anti-noise performance

of DE. Based on that, the generalized refined com-

posite multiscale fluctuation-based fractional order

dispersion entropy (GRCMFDE) is developed in this

paper to enhance the performance of MDE and

RCMDE for measuring irregularity and complexity

of time series. In GRCMFDE, first, the coarse graining

multiscale used in MDE is extended to the generalized

coarse graining where, i.e., the first moment (mean) is

extended to root-mean-square, which can preserve the

information of original data effectively without miss-

ing of important information. Second, the refining and

composite operation is used to avoid the undefined or

imprecise DE and its fluctuation on large scale factors

[14]. Third, consider that the fractional order entropy

is a useful tool for dynamic description of complex

systems and shows higher sensitivity to signal evolu-

tion [15, 16], the fractional DE is developed to

enhance DE and further fractional order is used for

anti-noise.

Because of the interference of background noises,

the rolling bearing vibration signals generally are

random signals obeying normal distribution without

prominent periodic content [17]. The randomness and

dynamic complexity will change once the rolling

bearing runs with local failures and the characteristic
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information of rolling bearing vibration signal related

with fault often is distributed over different scales

because of the complexity of mechanical system.

Therefore, GRCMFDE can be utilized to extract the

failure complexity features distributed in multiple

scales. The complexity information related with local

faults mainly can be extracted When the GRCMFDE-

based fault features are obtained and distributed at

different scale factors, which generally contains

redundant information unrelated with fault. A suit-

able feature selection approach is required to map the

high dimensional features to a subset that can preserve

the most important and intrinsic information of initial

features. The selected features of the recently devel-

oped dimensionality reduction approach, multi-class

feature selection (MCFS), can best preserve the cluster

structure of data. Therefore, in this paper MCFS is

employed to improve the efficiency of failure mode

identification [18].

After that, a multi-classifier should be designed to

achieve an intelligent recognition of failure modes of

rolling bearings. As a commonly used supervised

machine learning tool, support vector machine (SVM)

is very suitable for addressing cases of small samples,

nonlinear and high dimensional problems. Further-

more, SVM has avoided the local minimum point

problem in the structure selection of neural network

and the generalization performance can be improved

by kernel function and learning. However, the iden-

tification of SVM-based mulit-classifier heavily

depends on the penalty parameter c and the parameter

g used in the kernel function (radial basis function,

RBF), which is introduced to balance the empirical

risks and model complexity. To search the optimal

parameters of c and g used in SVM, gray wolf

optimization algorithm (GWO) is employed to obtain

the best parameters, i.e., GWOSVM is used to

construct an optimized multi-classifier for intelligent

fault diagnosis [19, 20]. Then, based on GRCMFDE,

MCFS and GWOSVM, an intelligent fault diagnosis

approach is proposed for rolling bearing. The pro-

posed fault diagnostic method was applied to exper-

imental data analysis of rolling bearing. Also, it was

compared with the MPE-, MDE- and RCMDE-based

fault diagnostic methods and the comparison results

show that it can distinguish the fault severity and

classes of rolling bearings effectively and gets better

performance of fault diagnostic than the comparative

methods.

The rest of this paper is organized as follows.

Dispersion entropy, the improved fluctuation-based

dispersion entropy, multiscale dispersion entropy and

the refined composite multiscale dispersion entropy

are reviewed in Sect. 2. Generalized refined compos-

ite multiscale normalized dispersion entropy

(GRCMFDE) is proposed in Sect. 3, as well as the

comparison analysis of GRCMFDE with MPE, MDE

and RCMDE. Section 4 introduces the GRCMFDE-,

MCFS- and GWOSVM-based fault diagnosis

approach for rolling bearing with the applications

and comparison with two experiment data cases. The

final section concludes the paper.

2 Improved FDE algorithm

DE is a nonlinear irregularity and complexity measure

tool of time series, and it takes count into the

amplitude value relationship of original data that is

ignored in PE; meanwhile, it does not need to rank

each embedded vector according to magnitude or

calculate the distance between two different delay

vectors implemented in SampEn. Besides, DE also has

stronger anti-noise ability than SampEn and PE as the

small changes of amplitude do not change the

corresponding class label of amplitude value. The

detailed computation steps of DE can be found in

[12, 13] or see ‘‘Appendix A’’ section.

In DE algorithm, when all probability of distribu-

tion patterns p pv0v1...vm�1
ð Þ are equal, DE gets the

largest entropy value ln cmð Þ and a typical example is

Gaussian white noise. In contrast, when the probability

of distribution pattern p pv0v1...vm�1
ð Þ is unitary, i.e., only

one value is not equal to zero, DE get the smallest

value, which indicates that the time series is a

completely predictable data and a typical example is

the periodic signal with low frequency. In some

application, the local or global trend of the analyzed

data needs to be removed. In DE algorithm, for {1,1,1}

and {2,2,2}, or {1,2,4} and {2,2,3}, these dispersion

patterns in fact have no differences, because their

fluctuation is equal. In FDE, we consider the differ-

ences between adjacent elements of dispersion pat-

terns and generally we term them as fluctuation-based

dispersion patterns (FDPs).

The vectors with length m - 1, whose element

changes from�cþ 1 to c�1 are obtained and thus we
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can obtain 2c�1ð Þm�1
potential FDPs. This is the only

difference between DE and FDE. Also, the FDE is

normalized by dividing ln ð2c� 1Þm�1
� �

. In addition,

compared with DE, the mapping approach NCDF

shown in Eq. (1) is replaced by log-sigmoid (logsig)

function defined as yj ¼ 1
.

1þ e�
xj�l

r

� �
to get a more

accurate complexity assessment, where r and l
represent the standard deviation and the mean of X,

respectively.

The following example is used to illustrate the

difference of DE and FDE. The random signal with 20

points is given as X = {0.2944, - 1.3362, 0.71432,

1.6236, - 0.69178, 0.8580, 1.2540, - 1.5934,

- 1.4410, 0.5711, - 0.39989, 0.690, 0.8156,

0.7119, 1.2902, 0.86, 1.1908, - 1.2024, - 0.01979,

- 0.1567}. X is mapped to Y with values belonging to

[0,1] by using ‘logsig’ function. Then, Y is mapped to

the class function Z belonging to {1, 2, 3} by using

Eq. (2), when we set m = 2 and c = 3 as an example

and the results are shown in Fig. 1a. In DE algorithm,

we get cm= 9 dispersion patterns, while in FDE we get

(2c - 1)m-1=5 FDPs. The probability of the disper-

sion patterns in DE and the FDP in FDE are shown in

Fig. 1b.

3 Generalized refined composite multiscale

fluctuation-based dispersion entropy

3.1 GRCMFDE algorithm

MDE has overcome the defects of DE that only

measure the complexity in single scale. However, the

coarse graining-based multiscale approach used in

MDE heavily depends on the length of data and if the

scale factor increases, the entropy deviation over

multiple scales will increase, correspondingly. In

addition, as the amplitudes of coarse-grained time

series is obtained by computing the mean of all values

in each non-overlapping segment, which inevitably

leads to loss of much potentially useful information.

In this subsection, to solve the problems existed in

MDE (see ‘‘Appendix A’’ section), GRCMFDE is

developed as follows.

(1) For a given data fxðiÞ; i ¼ 1; 2; . . .;Ng, the

generalized coarse-grained time series x
ðsÞ
k ¼

x
ðsÞ
k;j

n oNs

j¼1
is defined as

y
ðsÞ
k;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s

Xjsþk�1

i¼ðj�1Þsþk

x2i

vuut ; 1� j� N=sb c ð1Þ

where s ¼ 1; 2; 3; . . .. When s ¼ 1, c is defined

as the absolute value of original time series. In

Eq. (8) of ‘‘Appendix A’’ section, the coarse

graining time series is defined by averaging each

non-overlapping segment, which inevitably

(a) (b)

Fig. 1 Illustration of FDE versus DE algorithms. a X was mapped to Y belonging to [0,1], then mapped Z belonging to {1, 2, 3} and

b the probabilities of dispersion patterns {11, 12, 13, 21, 22, 23, 31, 32, 33} in DE and {11, 12, 13, 21, 31} in FDE
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leads to the loss of potentially useful informa-

tion. In the literature [21], the average operation

is extended to the second-order statistic by

y
ðsÞ
k;j ¼ 1

s

Pjsþk�1
i¼ðj�1Þsþk xi � �xið Þ2. This approach

may be suitable for permutation entropy, which

is sensitive to the adjacent amplitude relation-

ship, but this approach is not suitable for DE, as

lots of amplitude information will loss in this

way.

(2) For a given sð� 2Þ, s generalized coarse-

grained data y
ðsÞ
k ¼ y

ðsÞ
k;j

n oN=s

j¼1
can be obtained

by Eq. (7). For each y
ðsÞ
k (k ¼ 1; . . .s), the FDP

pks pv0v1...vm�1
ð Þ can be estimated according to

steps (1) to (4) of DE (k ¼ 1; 2; . . .s) by

considering the modification of FDE. Next,

�p pv0v1...vm�1
ð Þ ¼

Ps
k¼1 p

k
s pv0v1...vm�1
ð Þ is com-

puted as the final average dispersion patterns

at scale factor s.
(3) Finally, the GRCMFDE of fxðiÞ; i ¼

1; 2; . . .;Ng at the scale s is defined by

GRCMFDEðX;m; c; d; sÞ ¼ � 1

ln ð2c� 1Þm�1
� �

Xð2c�1Þm�1

p¼1

�p pv0v1...vm�1
ð Þ � ln �p pv0v1...vm�1

ð Þ

ð2Þ

(4) Based on the fluctuation-based calculus and

generalized expression of Shannon entropy,

GRCMFDE is generalized to fractional order

domain, and for convenience the generalized

one is still noted as GRCMFDE. We define

GRCMFDEa ¼ �DaGRCMFDE and Dað�Þ
denotes the derivative of order a. Finally,

GRCMFDEa of original data fxðiÞ; i ¼
1; 2; � � � ;Ng is given by

GRCMFDEaðX;m; c; d; sÞ

¼
Xcm

p¼1

� �p�a pv0v1...vm�1
ð Þ
Cðaþ 1Þ ln �p pv0v1...vm�1

ð Þð Þ½
�

þwð1Þ � wð1� aÞ�
�
�p pv0v1...vm�1
ð Þ

ð3Þ

where �1\a\1, a denotes the fraction order

and Eq. (3) is the same as the expression of

GRCMFDE in Eq. (2) when a = 0. C and w
represent the gamma and digamma functions,

respectively. In fact, a less than 0 makes that

Dað�Þ a fractional integral. It should be pointed

out that the fractional entropy is a novel

expression for entropy inspired in the properties

of fractional calculus.

(5) Let s ¼ sþ 1 and repeat the steps (2) and (4)

until k ¼ k þ 1, where s is the preset largest

scale factor.

(6) All s GRCMFDE values are taken as a function

of scale factor.

The calculation process of GRCMFDE is described

and shown in Fig. 2.

In original coarse graining, the mean of each

segment is computed, while in [21] the second-order

statistic (variance or standard deviation) of each

segment is computed. In Eq. (1), the RMS of each

segment is computed to enhance original coarse

graining. In this part, the simulated vibration signal

of rolling bearing with amplitudemodulation of xðtÞ ¼
ð1þ 0:5 cosð2p8tÞÞ cosð2p100tÞ is utilized to illus-

trate the difference of four different coarse graining

methods. Figure 3a, f gives the time domain of xðtÞ
and xðtÞj j. Figure 3b–e gives the mean, standard

deviation (STD), variation and root-mean-square

(RMS) ways for constructing coarse graining with

s = 2, while Fig. 3g–j gives the results when s = 3.

From Fig. 3, it can be found that the mean computa-

tion is similar to down sampling or linear filter, while

the results of standard deviation and variation are very

similar and lots of amplitude modulated information

are lost at high scale factor. The proposed RMS-based

generalized coarse graining way can effectively pre-

serve the amplitude modulated information. There-

fore, in this paper, RMS-based generalized coarse

graining is used for multiscale computation of time

series. To sum up, to overcome the shortages of DE
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and the traditional coarse graining-based multiscale

method, the following improvements were made in

GRCMFDE. First, the conventional coarse graining

multiscale approach is extended to RMS-based gen-

eralized coarse graining multiscale way shown in

Eq. (1). Second, when we estimate DE at scale factor

s, the original signal was firstly divided into N=sb c
segments with a length of s and the starting points of

x1; x2; . . .; xs, and then s coarse graining sequences are
averaged. Third, when calculating GRCMFDE, the

probability of fluctuation-based dispersion pattern p of
each generalized coarse-grained time series is calcu-

lated and then the average of the probabilities of these

fluctuation-based dispersion pattern is computed. This

refining grained processing can effectively reduce the

loss of some statistical information during MDE

algorithm. Meanwhile, probability averaging of mul-

tiple time series with different initial points can

effectively alleviate the influence of large scale factor

on fluctuation of entropy curve and reduce the

calculation deviation. Finally, FDE is extended to

the fractional order according to Eq. (9) to suppress

the impact of noise.

3.2 Parameter selection and comparison analysis

The calculation of GRCMFDE is related to embedding

dimension m, class number c, time delay d and

fractional order a. The literature [13] recommended

that in generalm gets a value of 2 or 3, d = 1, c gets an

integer between 3 and 9.We will study the influence of

these parameters in the following part. First, the

selection of m is examined. We take the white, pink

and blue noises, which though are random signals,

have different distribution in the spectrum and thus

different intrinsic structure, as examples to see if the

proposed method can differ them from each other. The

GRCMFDE of 20 different white, pink and blue noises

with length 5000 points are computed when m = 2, 3,

4 and c = 6, d = 1 a = 0 to study the influence ofm on

Fig. 2 The flowchart of

GRCMFDE
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 3 a and f are the time

domain of xðtÞ and xðtÞj j. b
obtained by using Eq. (8), c
obtained by using standard

deviation in right of Eq. (1),

d obtained by using

variation in right of Eq. (1),

e obtained by using Eq. (1)

for s = 2 and g–j are the
corresponding results for

s = 3

Fig. 4 GRCMFDE of three

noise for different m values
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GRCMFDE. The mean and STD curves of

GRCMFDE of the three noises are computed and

depicted in Fig. 4. From Fig. 4, it can be found that

when m is large (for example 4), the FDE values are

also large, together with the STD. And thus, generally,

we set m as a small integer of 2 or 3.

Next, the GRCMFDE of 20 different white and pink

noises with a length of 5000 points are computed when

m = 2 and c = 3, 5, 6, 7, 9, d = 1, a = 0 to study the

influence of c on GRCMFDE, and the computed mean

and STD curves of GRCMFDE are shown in Fig. 5.

From Fig. 5, it can be seen that, like m, a large c will

result in large FDE values. If c is too small, the slight

change of amplitude will not be detected, and if c is too

large, FDE will be sensitive to noise. Therefore,

generally, we set c as 5 or 6.

Actually, the research of fractional order entropy on

complexity of time series is still in exploratory stage

and there are still many issues to be solved before

applying it in real applications. Ref. [22] indicates that

tuning the fractional order allow an high sensitivity to

the signal evolution, which is useful in describing the

system dynamics. Also, we compute the FDE (i.e.,

GRCMFDE with scale factor = 1) for different values

of a (changing from - 0.1 to 0.8) and the results are

shown in Fig. 6, from which with increasing of a, the
FDE values of white noise and pink noise are also

increasing to a very large value and their difference is

much obvious for a large a, as well as the STD and it is

hard to select a suitable a for the following applica-

tions. Next, we compute the GRCMFDE in 20 scales

when a = 0.7, 0.5, 0.3, 0.1, 0,- 0.1 and the results are

shown in Fig. 7. From Fig. 7, when a = 0.7, the FDE

of the first scale gets a value nearly 40, while FDE of

blue noise gets a negative value when scale factor

larger than 6. And when a is larger than 0.3, the values
of noises are larger than 10. In fact, for different a, the
changing trend of GRCMFDEs is nearly the same for

different a for white, pink or blue noises. Therefore,

generally we set a as 0.1, 0 or - 0.1 to obtain a

suitable entropy value.

It should be noted that the newly proposed

GRCMFDE algorithm is different from the RCMDE

method developed in Ref. [13]. In GRCMFDE, the

generalized coarse graining (root-mean-square used in

this paper) is different from the coarse graining used in

the first moment. In addition, the improved FDE used

in GRCMFDE is different from the DE used in

RCMDE. Last, we also introduced the fractional order

to FDE, which also is different from DE. In the

following part, for comparison purpose, we also

compute the MDE, MPE, RCMDE, GRCMFDE0,

GRCMFDE-0.1 and GRCMFDE0.1 of the 20 different

white, blue and pink noises when m = 2, c = 6, d = 1

and a = 0.1 and the results are shown in Fig. 8. Three

noises can be differed by MDE, RCMDE,

Fig. 5 GRCMFDE of two

noise signals for different c
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Fig. 7 GRCMFDE when a = 0.7, 0.5, 0.3, 0.1, 0 and - 0.1
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GRCMFDE0, GRCMFDE-0.1 and GRCMFDE0.1

obviously while the MPEs of blue and pink noises

are very similar and it is difficult to distinguish them.

4 GRCMFDE-based fault diagnosis method

4.1 The proposed fault diagnostic method

Based on GRCMFDE, with combining MCFS and

GWOSVM, an intelligent rolling bearing fault diag-

nostic method is proposed as follows.

(1) Let rolling bearing contains K states composed

of different fault classes and severities. The

sample numbers of each state are M1, M2,…,

MK . All samples of each state are randomly

divided into Mk=2 for training and Mk=2 for

testing (k = 1, 2,…, K).

(2) The GRCMFDE of all training and test samples

are calculated with scale factor sm ¼ 20 and

other selected parameters (m = 3, c = 6 and

d = 1). Then, the most important p features of

MCFS feature selection are selected to form the

K sensitive fault feature sets.

(3) The sensitivity fault features sets of training

samples are employed to train the GWOSVM-

classifier.

(4) Testing sensitive fault feature sets are used for

testing. And they are used to verify the trained

GWOSVM-classifier for diagnostics. The final

output of classifier is used to differentiate the

bearing operating conditions.
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Fig. 8 MDE, MPE, RCMDE and GRCMFDE0.1 of 20 groups of white, blue and pink noises
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Figure 9 gives the flowchart of the proposed

approach.

4.2 Analysis of experiment data

In this subsection, the experimental data provided by

Bearing Data Center of Case Western Reserve

University (can be download from the website [23])

are used to verify the effectiveness of proposed fault

diagnosis method for rolling bearing. In the experi-

mental system of simulation fault (shown in Fig. 10),

the electro-discharge machining technology was

employed to seed the single point local faults in each

6205-2RS deep groove ball bearing for test. The

sampling frequency of data recorder in data collection

system was 12 kHz when the motor speed was set as

1730 r/min with load 3hp. Since the operating

frequency of Power system in USA is 60 Hz and the

synchronous speed of the 2-pole pair motor is

1800 rpm, the maximum speed of the 2-pole pair

asynchronous motor is no higher than 1800 rpm.

Therefore, the motor speed used in this test generally

is smaller than the critical shaft speed of motor and

much smaller than the system resonance frequency.

The signals were acquired under ten states including

the bearings with inner race faults (IR), outer race

faults (OR) and balling element faults (BE) with fault

diameter sizes 0.1778, 0.3556 and 0.5334 mm

[24, 25], together with the normal rolling bearing.

Therefore, the experimental data analysis turns into a

ten-class classification issue in consideration of cate-

gories and severities.

For each state of the rolling bearing, the data

collected fromDrive end accelerometer are used. Each

state contains 29 samples, and the length of each

sample is 4, 096 points. Table 1 shows the label

information of rolling bearing experimental data. The

waveforms of these signals in the time domain are

shown in Fig. 11.

For comparison purpose, theMDE,MPE, RCMDE,

GRCMFDE with a = - 0.1, 0 and 0.1 of all rolling

bearing samples are computed. The mean and STD

entropy curves of ten classes of all rolling bearing for

different methods are depicted in Fig. 12a–f. From

Fig. 12d, e the RCMDE and MDE of OR2 and BE2

have large STD and they have nearly the same trends

and values. To fulfill an intelligent fault diagnostic of

Input vibration signals of K states

Calculate GRCMFDE of all samples

Training data

K sensitive fault feature 
sets for testing

Testing data

K sensitive fault feature 
sets for training

Initialize parameters 
of GWO and SVM

MCFS

Update wolf position 
and fitness to determine 

best c and best g

Outputs for fault diagnostics

GWOSVM based multi-classifier
Testing

Training

Fig. 9 Flow diagram of the proposed approach

Fig. 10 The experiment system of rolling bearing and its diagram
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rolling bearing, a multi-classifier is founded. The

GRCMFDE0 (a = 0) of all 290 samples with the

feature number of 20 are taken as initial fault sets.

First, 11 samples of initial fault sets are randomly

selected as training samples from 29 ones of each class

by using the ‘‘randperm’’ function in Matlab and the

remaining 18 ones are taken as testing samples. Thus,

totally, the fault feature training sets consisting of 110

samples with dimension (110 9 20) and the fault

feature testing sets consisting of 180 samples with

dimension (180 9 20) can be obtained. Second, the

MCFS method is used to reduce the dimension of fault

feature sets 20 to a value of p = 5 and the order of the

most important several feature values is selected

through using MCFS to train the fault feature training

data sets. The obtained order by MCFS is utilized to

construct new fault feature training and testing data

sets. Then, the obtained new fault feature training sets

with dimension (110 9 5), together with the new fault

feature testing sets with dimension (180 9 5) are

employed to train and test the GWOSVM multi-fault

classifier. Third, new fault feature sets of training data

are used to train the GWOSVMmulti-classifier, where

the GWO is used to optimize the parameter c and

g among the interval [0.01, 100]. In GWO algorithm,

the number of search agents is set as 10, the maximum

number of iterations is set as 100, the cross-validation

parameter of SVM is 5. The initial positions of wolves

are zeros and the initial objective function value is

infinite. The outputs of GWOSVM multi-classifier of

testing samples are presented in Fig. 13a.

For comparison purpose, theMPE, MDE, RCMDE,

GRCMFDE0.1 and GRCMFDE-0.1 are also seen as the

initial nonlinear fault features. The same number of

training and testing data of each class (11 and 18,

respectively) is used to form the initial fault feature

data sets. Similarly, new fault feature training data sets

of dimension 110 9 5 can be obtained by using

Table 1 Label description of the used data [10]

Fault class Fault size (mm) Class label Used data

Norm 0 1 100_normal_3

IR1 0.1778 2 108_IR007_3

IR2 0.3556 3 172_IR014_3

IR3 0.5334 4 212_IR021_3

OR1 0.1778 5 133_OR007@6_3

OR2 0.3556 6 200_OR014@6_3

OR3 0.5334 7 237_OR021@6_3

BE1 0.1778 8 121_B007_3

BE2 0.3556 9 188_B014_3

BE3 0.5334 10 225_B021_3

Fig. 11 Time domain

waveform of rolling bearing

of different classes
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(a) (b)

(f)(e)

(d)(c)

Fig. 12 MDE,MPE, RCMDE and GRCMFDE of rolling bearing data. aGRCMFDE0.1 bGRCMFDE0 cGRCMFDE - 0.1 dRCMDE

e MDE and f MPE
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(a) (b)

(c) (d)

(e)

Fig. 13 Identifying rates of different methods. The identifying rate of aMPE, bMDE c RCMDE d GRCMFDE0 and GRCMFDE-0.1,

and e GRCMFDE0.1
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MCFS, together with the new fault feature testing data

sets with dimension 180 9 5. Then, they, respec-

tively, are input to the GWOSVM multi-classifier for

training and testing, and the results are shown in

Fig. 13a–e. From Fig. 13 first, all testing samples are

correctly classified by the proposed GRCMFDE0 and

GRCMFDE-0.1-based fault diagnostics methods and

the identifying rate is 100%. The identifying rates of

MDE, RMCDE and GRCMFDE0.1-based fault feature

extraction method are 99.44%, that is, one sample of

class three (IR2) is misclassified to class ten (BE3)

when using MDE for fault extraction, and one sample

belonging class three (IR2) is misclassified to class

two (IR1) by RCMDE, while one sample of class eight

(BE1) is misclassified to class five (OR1) when

GRCMFDE-0.1 is used. The MPE-based fault diag-

nostic method gets the lowest identifying rate of

97.22% when five samples are misclassified. There-

fore, the above results indicate that the proposed

GRCMFDE0 and GRCMFDE-0.1-based fault feature

diagnostic methods show much better performance

than that of MPE, MDE and GRCMFDE0.1-based

methods when the number of new fault feature

element is set as 5.

A fundamental problem of the proposed method is

to determine the number of selected new fault feature

element (p) throughMCFS.Without loss of generality,

we set the new fault feature elements with a number of

p = 1 to 20 as the inputting of GWOSVM-based

multi-classifier. The corresponding identifying rates

of different methods mentioned above for different

numbers of new fault feature elements are given in

Tables 2 and 6, and the identifying rate comparisons

are presented in Fig. 14. By observing Fig. 14 and

Tables 2, 3, 4, 5, and 6, we can find that when the

number of fault feature elements is set as 6 and 9, the

highest identifying rate of MPE, MCFS and

GWOSVM-based fault diagnostics method is

97.78%. When the number of fault feature elements

is larger than 7, the highest identifying rate of the

MDE, MCFS and GWOSVM-based fault diagnostics

method is 99.44%. The identifying rate of RCMDE-

based method reaches 100% when the number of fault

feature elements larger than 5, while that of

GRCMFDE0 and GRCMFDE-0.1-based method

reaches 100% when the number of feature elements

larger than 4 and 3, i.e., for the GRCMFDE-0.1

method, four features are enough for an accurate

identifying rate of 100%. The identifying rate of

GRCMFDE0.1-based method reaches 100% when the

number of fault feature elements is 4 and larger than 6.

To obtain the highest identifying rate of 100%, for

GRCMFDE0 and GRCMFDE-0.1-based fault repre-

sentation methods, we only need 4 or 5 features to

reflect the whole fault information, while for other

methods, we may need more features.. Therefore, the

result indicates that GRCMFDE0 and GRCMFDE-0.1

show much more robustness and better performance

than MPE, MDE and RCMDE.

Lastly, also, the necessity of MCFS for feature

selection was investigated. With loss of generality, all

the 20 features of RCMDE, GRCFMDE0,

GRCFMDE0.1, GRCFMDE-0.1 methods are randomly

reordered through using Matlab function ‘‘rand-

perm.m,’’ then the first one to ten features are,

respectively, selected as fault features and input to

the GWOSVM multi-classifier. The identifying rates

of different methods for different number of used

features are provided in Fig. 15, in which the identi-

fying rates of the proposed method for different

number features are given. For a clear comparison,

identifying rates of the proposed methods usingMCFS

mentioned above are also given in Fig. 15. From

Table 8 and Fig. 15, it can be observed that for the

same number of used features (from 4 to 10), the

proposed methods by combining MCFS show better

Table 2 Identifying rate of MPE and MCFS for different number of features

Number of features 1 2 3 4 5 6 7 8 9 10

MPE ? MCFS ? GWOSVM Identifying rate

(%)

80.56 92.22 82.22 85.56 97.22 97.78 97.22 96.11 97.78 96.67

Number of features 11 12 13 14 15 16 17 18 19 20

Identifying rate

(%)

95.56 96.11 96.11 97.22 95.56 96.67 95.56 93.89 94.44 92.78
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performance and higher identifying rates than the

methods using random features. This states that it is

necessary and superior to use MCFS for feature

selection.

4.2.1 Case 2

The experiment data used in this part provided by

Anhui University of Technology are employed to

illustrate the versatility of the proposed method. As

Fig. 14 The identifying

rate comparisons for

different number of fault

features

Table 3 Identifying rate of MDE and MCFS for different number of features

Number of

features

1 2 3 4 5 6 7 8 9 10

MDE ? MCFS ? GWOSVM Identifying rate

(%)

91.67 57.22 73.33 92.22 99.44 99.44 98.89 99.44 99.44 99.44

Number of

features

11 12 13 14 15 16 17 18 19 20

Identifying rate

(%)

99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44

Table 4 Identifying rate of RCMDE and MCFS for different number of features

Number of features 1 2 3 4 5 6 7 8 9 10

RCMDE ? MCFS ? GWOSVM Identifying rate (%) 91.67 94.44 90 96.67 99.44 100 100 100 100 100

Number of features 11 12 13 14 15 16 17 18 19 20

Identifying rate (%) 100 100 100 100 100 100 100 100 100 100
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shown in Fig. 16a, b, the test rolling bearings are

6206-2RS deep groove ball bearing and they are

seeded local failures with different locations (shown in

Fig. 16c–e). In the test, the load is set as 0 and 5 kN,

respectively, with the sampling frequency of 10,

240 Hz. The motor used is AC and asynchronous

Table 5 Identifying rate of GRCFMDE0 and MCFS for different number of features

Number of features 1 2 3 4 5 6 7 8 9 10

GRCMFDE0 ? MCFS ? GWOSVM Identifying rate (%) 87.78 90 92.78 99.44 100 100 100 100 100 100

Number of features 11 12 13 14 15 16 17 18 19 20

Identifying rate (%) 100 100 100 100 100 100 100 100 100 100

Table 6 Identifying rate of GRCFMDE0.1 and MCFS for different number of features

Number of features 1 2 3 4 5 6 7 8 9 10

GRCMFDE0.1 ? MCFS ? GWOSVM Identifying rate

(%)

91.11 76.11 89.44 100 99.44 99.44 100 100 100 100

Number of features 11 12 13 14 15 16 17 18 19 20

Identifying rate

(%)

100 100 100 100 100 100 100 100 100 100

Fig. 15 The accuracy comparison of the methods using MCFS for feature selection and random features
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( )d

1

2

3

4

5

678 9
10

(a) (b)

(c) (d) (e)

Fig. 16 a The bearing test rig, b its schematics of case 2, where

1—motor, 2—coupling, 3—base plate, 4—support bearing, 5—

spindle, 6—test bearing, 7—buffer device, 8—dynamometer, 9

and 10—loading adjust device, c inner fault, d outer fault and

e rolling element fault

Table 7 Identifying rate of GRCFMDE-0.1 and MCFS for different number of features

Number of features 1 2 3 4 5 6 7 8 9 10

GRCMFDE-0.1 ? MCFS ? GWOSVM Identifying rate (%) 93.33 91.11 96.68 100 100 100 100 100 100 100

Number of features 11 12 13 14 15 16 17 18 19 20

Identifying rate (%) 100 100 100 100 100 100 100 100 100 100

Table 8 Class label and description of AHUT rolling bearing data

Fault

class

Fault size

(mm)

Load

(kN)

Speed (r/

min)

Class

label

Fault

class

Fault size

(mm)

Load

(kN)

Speed (r/

min)

Class

label

Norm1 0 0 900 1 OR1 3 0 900 5

Norm3 0 0 1500 OR3 3 0 1500

Norm2 0 5 900 2 OR2 3 5 900 6

Norm4 0 5 1500 OR4 3 5 1500

IR1 3 0 900 3 BE1 2 0 900 7

IR3 3 0 1500 BE2 2 0 1500

IR2 3 5 900 4 BE4 2 5 900 8

IR4 3 5 1500 BE3 2 5 1500
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motor with adjustable speed produced by China. The

rated power is 1500 W, the rated speed is 2800 r/min

and supply voltage 220 V. In the test, the motor rotates

with two speeds of 900 r/min and 1500 r/min,

respectively (both of them smaller than the critical

shaft speed of motor). The signals of normal rolling

bearing, together with the faulty bearings with a fault

depth of 2 and 3 mm are collected [26] using

accelerometer from three directions and the data from

axial direction are finally used in this paper. For each

fault class, four kinds of working conditions are

studied (Table 7). The experiment data used in this

paper are described in Table 8. The waveforms in time

domain of the used rolling bearing data are shown in

Fig. 17.

For the 16 states of rolling bearings of AHUT

experimental data described in Table 8, 40 samples

with a length of 5120 points of each state are used, and

thus totally 640 samples are achieved in this test. For

comparison purpose, the MPE, MDE, RCMDE,

GRCMFDE0, GRCMFDE0.1, GRCMFDE-0.1 and

GRCMFDE0 methods of all samples are computed

and the corresponding mean and STD curves are

depicted in Fig. 18, since the results of GRCMFDE0.1,

GRCMFDE-0.1 and GRCMFDE0 are similar, only the

result of GRCMFDE0 is given for saving space. From

Fig. 18, the RCMDE, MDE and MPE curves have

larger STDs than the GRCMFDE0 method at some

scales. Second, the working conditions with speeds

900 and 1500 r/min nearly have the same multiscale

entropy curves and trends (MPE, MDE, RCMDE,

GRCMFDE0), which indicates that the entropy-based

fault feature extraction methods are sensitive to load

but is insensitive to rotating speed. Therefore, in the

following, the conditions of rolling bearing with the

same load but different speed will be taken as the same

class to fulfill an intelligent fault diagnosis (class label

information is given in Table 8).

Next, 80 samples of each class (40 samples for the

speed of 900 and 1500 r/min, respectively) are

randomly arranged by the Matlab function ‘‘rand-

perm.’’ Among them, 50 are used for training and the

remaining 30 are used for testing. Then, the MPE,

MDE, RCMDE, GRCMFDE0.1, GRCMFDE0 and

GRCMFDE-0.1 are taken as initial nonlinear fault

features. Next, MCFS is utilized to learn the training

Fig. 17 The time domain

waveforms of used bearing

data
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data constructed by different methods. New fault

feature training data sets with dimension

400 9 p (p = 1, 2…, 10, is the number of selected

features) can be obtained by using MCFS, together

with the new fault feature testing data sets with

dimension 240 9 p. Like the process mentioned

above, the new fault features of 400 training samples,

together with that of 240 testing samples, are, respec-

tively, input to the GWOSVM-based multi-classifier.

The output results of classifier of all testing samples

for different methods when different number of

features used are shown in Fig. 20, and only the

outputs of different methods with 5 features used are

illustrated in Fig. 19a–d. From Figs. 19 and 20, all

testing samples are correctly classified by the

proposed GRCMFDE-0.1, GRCMFDE0 and

GRCMFDE0.1-based fault diagnostic methods and

the corresponding identifying rates of these three

methods are 100%when 5 features are used. However,

for the RCMDE method, one sample belonging to

class 4 is misclassified to class 8, while for MDE and

MPE, 2 and 6 samples, respectively, are misclassified

to the wrong classes. This indicated the superiority of

the proposed GRCMFDE approach in nonlinear fault

representation. In addition, by observing Fig. 20 it can

be found that the identifying rate of GRCMFDE0-

based fault diagnostic method reaches 100% when the

number of used features larger than 3, while the

identifying rate of the GRCMFDE0.1-based method

reaches 100%when the number of used features larger

(a) (b)

(c) (d)

Fig. 18 The multiscale complexity features of rolling bearings for different classes a GRCMFDE0 b RCMDE c MDE and d MPE
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than 5. The above result indicates that the proposed

GRCMFDE (especially, GRCMFDE0)-based fault

feature extraction and diagnostic methods show much

better performance than that of MPE, MDE and

GRCMFDE0.1-based methods.

5 Conclusions

The symptom of periodic or regular transients will

exist in corresponding vibration signals when the

rolling bearing work with local faults. This intrinsic

structural change of vibration signals makes it possible

for us to detect and diagnosis the existence of local

faults through measuring the complexity and irregu-

larity of vibration time series. For this purpose, a root-

mean-square-based generalized composite coarse

graining way is proposed and then the generalized

refined composite multiscale fluctuation-based frac-

tional dispersion entropy (GRCMFDE) is proposed to

overcome the shortages of multiscale distribution

entropy in complexity measure of time series. Also, by

analyzing different complex noise signals,

GRCMFDE is compared with MDE, RCMDE and

MPE, and the results show that GRCMFDE is much

more stable than MPE, MDE and RCMDE. Also,

based on GRCMFDE for fault feature extraction,

MCFS for feature selection and GWOSVM for feature

recognition, an intelligent fault diagnostic method was

proposed and then employed to analyze two cases of

rolling bearing experiment data. The proposed fault

diagnosis method was also compared with RCMDE-,

MDE- and MPE-based fault diagnosis approaches,

together with different fractional orders (0, 0.1,

(b)(a)

(d)(c)

Fig. 19 a RCMDE b MPE c GRCMFDE-0.1, GRCMFDE0, GRCMFDE0.1 and d MDE
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- 0.1). The research indicates that the GRCMFDE0

method generally gets a robust and reliable feature

representation and fault diagnosis effect than other

fractional orders, as well as other approaches. Besides,

the number of features for inputting to the multi-fault

classifier is investigated. The comparison results show

that the proposed GRCMFDE by synthesizing differ-

ent fractional order dispersion entropy can effectively

distinguish the fault locations and degrees of bearing

and the fault identifying rate reaches 100% when the

selected number of GRCMFDE features equaling or

larger than five. Last, we all investigate the influence

of rotating speed and load on the proposed method and

the analysis result indicates that the multiscale entropy

curve trends of rolling bearing are generally sensitive

to load change but are insensitive to speed. There are

still several issues that need to be solved, such as the

parameter selection and the determination of the

number of used features. In the future, we will

concentrate to address these problems and perform

its related theories to more widely application areas.

We have used two kinds of data sets to verify the

effectiveness of the proposed method. For another or a

real application, it is really difficult to diagnose the

fault states and damage degree without the given

known knowledge. We want to say that the two

diagnosis cases are used to verify that whether the

proposed method is effective in representing the fault

feature information and if it is sensitive to the fault

degree or fault locations. In the future work, we will

use the proposed method to diagnose the fault of gear

and gearbox and also investigate the relationships

among the fault degree and the work operation with

the feature representation method.
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Appendix A: Reviews of DE and MDE

For a given univariate time series X ¼ x1; x2; . . .; xNf g
with a length of N, the computation steps of DE are

given as follows [12, 13].

(1) The original time series X is mapped to Y ¼
y1; y2; . . .; yNf g by using normal cumulative

distribution function (NCDF) shown as

yj ¼
1

r
ffiffiffiffiffiffi
2p

p
Zxj

�1

e
� t�lð Þ2

2r2 dt: ð4Þ

It is obvious that yi 2 ð0; 1Þ. r is standard

deviation and l is mean of X.

(2) By using the linear transform shown in Eq. (2),

all elements of Y(yi, j ¼ 1; 2; . . .;N) are mapped

to c classes (which is an integer), i.e.,

zcj ¼ R c � yj þ 0:5
� �

ð5Þ

where R represents the rounding operation and

zcj represents the jth member of the classified

time series. Although the step (2) is linear, the

whole mapping way is nonlinear for the use of

NCDF in step (1).

(3) For the given time delay d and embedding

dimension m, zm;ci can be obtained according to

zm;ci ¼ zci ; z
c
iþd; . . .; z

c
iþðm�1Þd

n o
,

i ¼ 1; 2; . . .;N � ðm� 1Þd. Each time series

z
m;c
i can be mapped to a dispersion pattern

pv0v1...vm�1
, where zci ¼ v0, zciþd ¼ v1,…,

zciþðm�1Þd ¼ vm�1. The signal has m members,

and they all belong to the integer interval from 1

to c. The number of possible dispersion patterns

is equal to cm.

(4) The relative frequency for each dispersion

patterns pv0v1...vm�1
can be estimated by

p pv0v1...vm�1
ð Þ ¼
Number i i�N � ðm� 1Þd; zm;ci has type pv0v1...vm�1

jf g
N � ðm� 1Þd

ð6Þ

where p pv0v1...vm�1
ð Þ stands for the number of

dispersion patterns of pv0v1...vm�1
assigned to z

m;c
i

divided by the total number of embedded signals

for embedding dimension m.

(5) The DE of X is computed by

DisEnðX;m; c; dÞ ¼ �
Xcm

p¼1

p pv0v1...vm�1
ð Þ

ln p pv0v1...vm�1
ð Þð Þ

ð7Þ

It can be found from the algorithm of DE that when

all probability of distribution patterns p pv0v1...vm�1
ð Þ are

equal, DE gets the largest entropy value lnðcmÞ and a

typical example is Gaussian white noise. In contrast,

when the probability of distribution pattern

p pv0v1...vm�1
ð Þ is unitary, i.e., only one value is not

equal to zero, DE get the smallest value, which

indicates that the time series is a completely pre-

dictable data and a typical example is the periodic

signal with low frequency.

Based on DE, the computation steps of MDE are

given as follows.

(1) For a given univariate data W ¼
w1;w2; . . .;wLf g with a length of L, firstly, it

is divided into s non-overlapping segments with

length L=sb c. Then, the average of each segment

is computed to derive the coarse-grained time

series. This process is named coarse graining

and is given as follows:

y
ðsÞ
j ¼ 1

s

Xjs

a¼ðj�1Þsþ1

wa; 1� j� L=sb c ð8Þ

s is called scale factor. yð1Þ is the original dataW
and when s[ 1, W is divided into s coarse-

grained time series yðsÞ with a length of N=sb c
(which stands for the largest integral smaller

than fxðiÞ; i ¼ 1; 2; � � � ;Ng).
(2) The DE of yðsÞ is estimated by

MDEðW ; s;m; c; dÞ ¼ DE yðsÞ;m; c; d
� �

ð9Þ

The DEs over different time scales are depicted as a

function of scale factor, and this process is called

MDE analysis.
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