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Abstract The transient response of a plate and a cav-
ity is investigated in a supersonic wind tunnel start
experiment where the freestream flow inside the test
section reaches turbulent flow at Mach 2. Experimen-
tally measured plate displacement time history shows
flutter onset, transition to limit cycle oscillation, and
stabilization at a static deformed state during the 30
s run. To analyze and interpret the measured plate
response, a fully coupled aero-thermal-acousto-elastic
analysis is carried out. A theoretical–computational
model is formulated with a nonlinear structural plate
model, acoustic pressure equation for the stationary
fluid in a cavity, and the first-order Piston Theory aero-
dynamics. A linear stability analysis is performed that
includes the nonlinear added stiffness due to an ini-
tial deformation to investigate the combined effects
of freestream coupling and temperature differential on
system stability. Also, direct time integration of the
nonlinear fluid structural equations of motion is per-
formed using experimentally measured flow param-
eters as inputs. All stability transitions are captured
using the theoretical model with good agreement with
experiment for transitions fromnoflutter to flutter/limit
cycle oscillations (LCO) although the theoretical LCO
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amplitude is approximately 50% larger than measured.
The system’s sensitivity to cavity coupling, temper-
ature differential, thickness calibration, static pres-
sure differential, and turbulent pressure fluctuations are
investigated. Lastly, snap-through buckling analyses in
response to periodic and quasi-static excitations are
conducted.
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List of symbols

�ps = p(x, y, t)
−pc,ref(t)

Static pressure differen-
tial (Pa)

�T = T (x, y, t)
−Tref

Temperature differential
between the plate and its
support (K)

ŵ, P̂ Eigenvectors
λ Eigenvalue
ω Frequency (rad/s) or (Hz)
ψc
i (x, y, z) i th basis function for

pc(x, y, z, t) expansion
ψw
i (x, y) i th basis function for

w(x, y, t) expansion
ρ∞, ρc Freestreamandcavityfluid

density (kg/m3)
ζ Damping ratio
a Plate length (appearswith-

out subscripts) (m)
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A, V Integration area (plate)
and volume (cavity)
domains

a∞, ac Freestream and cavity
speed of sound (appears
with subscripts) (m/s)

b Plate width (m)
dc Cavity depth (m)
h Plate thickness (m)
L.E. Leading edge
M∞ FreestreamMach number
Nc Number of basis func-

tions in pc(x, y, z, t)
expansion

Nw Number of basis func-
tions in w(x, y, t) expan-
sion

p Freestreamstatic pressure
(Pa)

p0 Stagnation pressure (Pa)
pc(x, y, z, t),
pc,ref(t)

Cavity static pressure (per-
turbation and reference)
(Pa)

Pi (t) i th Modal cavity pressure
perturbation coordinate
(Pa)

pref = 20 (µPa) Acoustic reference pres-
sure

R Gas constant (J/kg/K)
Re∞ Unit Reylonds number

(1/m)
T∞ Freestream temperature

(K)
Tc Cavity fluid temperature

(K)
U∞ Freestream velocity (m/s)
w, u, v(x, y, t) Physical displacement

components (m)
wi , ui , vi (t) i th modal displacement

coordinates (m)

1 Introduction

Nonlinear plate dynamics in supersonic flows has been
an active field of research in the past several decades
[3,4,26,27]. In practical applications, plates constitute
a basic building block in various types of aerial vehi-
cles, while in basic research, they are used to inves-

tigate the fundamental physics typical to the high-
speed vehicle environment. Structural nonlinearity in
flat plates becomes important for deflections of the
order of its thickness [10] which usually has to be small
to comply with weight requirements. This constraint is
a core challenge for most aerospace structures and is
the leading reason why numerous experimental, com-
putational, and theoretical studies were and are to this
day, conducted to develop and improve fluid–structure
models for this family of problems.

Prior literature on fluid–structure interaction (FSI)
of plates in supersonic flow shows that different param-
eters affect flutter onset condition and the nonlinear
dynamics after flutter onset. Yuen and Lau [35] con-
sidered the effect of in-plane load and computation-
ally showed that for a sufficiently large load sev-
eral modes of limit cycle oscillations are possible.
In a computational study by Nydick et al. [29], the
effects of aerodynamic heating, plate curvature, and a
shock upstream of the plate were shown to have strong
effect on the system’s dynamics. Several experimental
[21,32] and computational [18,19] studies have shown
that static pressure differential, which causes an initial
static deformation of the plate, substantially stiffens
the plate, postpones flutter, and affects the dynamics in
post-flutter conditions. Amabili and Pellicano investi-
gated the nonlinear flutter of circular cylindrical plates
(or in this case, shells) including the effects of geo-
metric imperfections and different in-plane boundary
constraints [1,2]. Overall, correlation between theory
and experiment shows that the existing models predict
flutter onset accurately for this wide range of effects
[11] but there is a clear lack of experimental data on
plate dynamics beyond flutter onset. Currao et al. [8]
are among those who plan to change this as demon-
strated by their recent computational design study of a
panel flutter experiment in a short duration supersonic
wind tunnel facility.

Other works considered the dynamics of stable
plates (i.e., in sub-flutter conditions) in response to
shockwave, boundary layer, external excitation, and
their combined interaction.Clemens andNarayanaswamy
[7] provide an excellent review on the low-frequency
unsteadiness in shockwave/turbulent boundary layer
interaction which may lead to frequency lock-in with
the structure’s natural frequencies.Casper et al. [5] con-
ducted an experimental study of the interaction of a
conical curved plate responding to the turbulent flow
oscillations in the boundary layer of a supersonic flow.
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Whalen et al. [33,34] carried out an experimental study
of a flat platemounted on a compression corner inMach
6 with transitional and turbulent boundary layers. The
compression ramp angle was varied and changes in the
natural frequencies of the plate were measured. Using
a theoretical–computational model [19], it was shown
that aerodynamic heating and static pressure differen-
tial were the dominant factors in the variation of natural
frequencies. It is important to note that in order to ana-
lyze the effect of static pressure differential on natural
frequencies, the analysis must include the contribution
of added nonlinear stiffness due to static deformation.

Another aspect of nonlinear plate dynamic that
has been investigated, although predominately with-
out fluid coupling, is snap-through buckling (or mode
jumping). Ehrhardt and Virgin recently did experimen-
tal work on buckled plates with uniform and localized
heating [14]. They showed that for a given plate temper-
ature several stable buckled states exist, and by apply-
ing a sufficiently large external force, the plate tran-
sitioned from one state to another. Other experimen-
tal [15,22] and theoretical [6,25] studies investigated
the postbuckling dynamics of laminate composite and
isotropic plates.

It is clear from the abovementioned studies thatmost
computational and experimental literature considered
phenomena associated with nonlinear plate dynam-
ics separately. Moreover, the experimental wind tun-
nel instability studies were predominantly interested
in flutter onset and not transition to limit cycle oscilla-
tion (LCO) or its characteristics, e.g. amplitude and fre-
quency content. In this work, results obtained in recent
experimental campaign [31] are utilized in a theoret-
ical computational investigation of the coupled aero-
thermal-acousto-elastic problem. In the current config-
uration an initially flat plate is the elastic wall of a
closed volume cavity on one side. On the other side the
plate is exposed to the freestream flow that starts sta-
tionary and accelerates to a turbulent Mach 2 flow in a
transient supersonic wind tunnel start. Thus the plate is
dynamically coupled to the freestream flow and the sta-
tionary fluid inside the cavity. Also, its temperature is
increasing due to heat flux from the boundary layer, and
it is excited by turbulent pressure fluctuations. The goal
of the current study is to asses the accuracy of the pro-
posed theoretical model in predicting the response of a
path dependent nonlinear system to the transient pro-
cess of supersonic wind tunnel start. Transition times to
and from instability are considered aswell as the behav-

ior during LCO and the model’s sensitivity to several
parameters is investigated.

This work is organized as follows. In Sect. 2, the
fluid–structure system is modeled and solution meth-
ods are described. In Sect. 3, the experimental configu-
ration, parameters, and measurements are described.
In Sect. 4, the results are presented and discussed.
The Results and Discussion section consists of (in this
order): experimentally measured plate displacement,
theoretical model calibration and assumptions (on tem-
perature differential and the natural frequencies), fluid–
structure system sensitivity to the presence of cav-
ity, sensitivity to choice of plate thickness (nominal
vs calibrated), sensitivity to static pressure differential
(between freestream and cavity), sensitivity to turbu-
lent pressure fluctuations. The results section ends with
snap-through calculations in response to periodic and
quasi-static external loads.

2 Theoretical model

2.1 Theoretical–computational model derivation

A theoretical–computational fluid–structure model is
derived to analyze the coupled plate, freestream, and
cavity dynamics as shown schematically in top and
side views in Figs. 1 and 2, respectively. The model
includesmechanical and thermal loadings that are char-
acteristic to plates in supersonic FSI problems which
are expected to affect the system’s stability and nonlin-
ear response [11]. Static pressure differential �ps and
temperature differential �T are shown in Fig. 1 and
may generally vary in space and time.�ps may be cal-
culated with theory or measured experimentally and is
independent of the plate dynamics. �T may be deter-
mined by solving the heat equation with an empirical
heat flux model or obtained from experiments. Dis-
tributed in-plane boundary stiffness along the edges of
the plate is modeled as shown in Fig. 2 and denoted
by K (y). Considering the in-plane edge constraint
is important when a nonlinear structural response is
expected, e.g., due to limit cycle oscillation (LCO) or
large static deformation, because it may strongly affect
the instability onset condition and the LCO amplitude
[16,17,32].

The nonlinear structural model derivation begins
with formulating the elastic and kinetic energies of a
flat von Kármán plate with general in-plane stiffness
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Fig. 1 Plate top view with freestream flow, static pressure dif-
ferential, and support and plate temperatures

Fig. 2 Side view of plate, freestream flow, cavity, and in-plane
edge stiffness K (y), cross section at −b/2 < y < +b/2

distribution at the edges in terms of three displacement
components. This approach is in contrast to previous
literature where the Airy’s stress function and a sin-
gle transverse displacement are employed. Then, the
Rayleigh–Ritz method is applied by modally expand-
ing the three displacement components and calculating
the spatial energy integral. This removes the depen-
dence on spatial coordinates and reduces the prob-
lem to time domain. Lagrange’s Equations are utilized
with the elastic and kinetic energies in modal form to
obtain the system of equations of motion. External,
aerodynamic, and acoustic pressure forces are added
as nonconservative forces. Finally, the in-plane iner-
tia is neglected and the system of equations is reduced
using algebra to a single transverse displacement com-
ponent as shown in Eq. (1). The modal expansion of
w(x, y, t) is shown in Eq. (2). Note that if large plate
imperfections are present, the in-plane inertia could be
retained to improve the accuracy of the model. In that
case, dynamical equations for the in-plane displace-
ment would be included and the plate would become a
shell.

Mnkẅk + Cnkẇk + G(1)
nk wk − �T KTh

nk wk

+ D(2)
nkrswkwrws + Qn = 0 (1)

w(x, y, t) =
Nw∑

i

wi (t)ψ
w
i (x, y) (2)

For detailed derivation and explicit forms of the struc-
tural matrices, the reader is referred to [16,17]. The
linear thermal load matrix KTh

nk is the sum of thermal
matrices of all displacement components as defined in
[16,17] with an additional assumption that �T (t) is
uniform in space. The in-plane boundary stiffness is
manifested through KTh

nk and the nonlinear stiffness

tensor D(2)
nkrs . External loads are added through the gen-

eralized force term Qn as defined in Eq. (3).

Qn =
∫

A

�p(x, y, t)ψw
n dA (3)

Aerodynamics are modeled using first order Pis-
ton Theory (PT) which dictates the following relation
between pressure perturbation and local motion of a
structure, one side of which is under a freestream flow
with properties ρ∞(t), U∞(t), M∞(t)

�pPT = ρ∞U∞
M∞

(∂w

∂t
+U∞

∂w

∂x

)
(4)

The application of this form of PT in freestream flow is
appropriate under certain conditions, i.e., sufficiently
high Mach number or very high (reduced) frequency
as discussed in [12,19], and the motions must be suf-
ficiently small that the product of Mach number times
deflection/chord ratio is small compared to one. The
smallest reduced frequency considered in this work is
of order one while deformations are in the order of two
plate thicknesses. Thus, first-order PT is expected to
provide a reasonable approximation. The expression
in Eq. (4) is transformed to modal coordinates either
through the nonconservative force term in Lagrange’s
equations or by expansion in and projection on the
modal coordinates ψw

n . The resulting aerodynamic
damping and stiffness matrices are defined implicitly
as follows

QPT
n = ρ∞U∞

M∞

(
Āẇnk ẇk +U∞ Āwnkwk

)

= ρ∞U∞
M∞

(
ẇk

∫

A

ψw
k ψw

n dA +U∞wk

∫

A

ψw
xkψ

w
n dA

)

(5)

Properties of the freestream flow were separated from
the aerodynamic matrices in contrast to authors’ pre-
vious works [16,17,19] mentioned above. This is to
emphasize the temporal variation of these parameters
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Nonlinear dynamics and flutter of plate and cavity 3023

in the formulation of the coupled model and the com-
putational scheme.

A uniform static pressure differential is added
which, in contrast to PT aerodynamics, is independent
of the plate’s motion. Continuing the same reasoning
as above with regard to definitions, the following gen-
eralized force is included in the model with �ps(t) as
a parameter

Qs
n = �ps Q̄

s
n = �ps

∫

A

ψw
n dA (6)

Lastly, the stationary air inside a closed cavity is
modeled as inviscid, potential fluid governed by the
acoustic equation

∇2 pc − 1

a2c

∂2 pc
∂2t

= 0 (7)

With boundary conditions in a rectangular volume

∂pc
∂n

= 0 (8a)

on rigid walls at x = 0, a y = ±b/2 z = −dc

∂pc
∂n

= −ρc
∂2w

∂2t
(8b)

on the elastic wall (plate) at z = 0.
The wave equation with boundary conditions are

transformed to modal coordinates using Green’s sec-
ond identity andmodal expansion of the cavity pressure
according to Eq. (9) where ψc

i (x, y, z) are the eigen-
functions of the spatial operator in Eq. (7).

pc(x, y, z, t) =
Nc∑

i

Pi (t)ψ
c
i (x, y, z) (9)

Substituting the boundary conditions in Eq. (8) into
Green’s identity and calculating the modal integrals,
the following matrices are defined

Mc
nk =

∫

V

ψc
n ψc

k dV (10a)

Kc
nk = −

∫

V

ψc
n ∇2ψc

k dV (10b)

Lc
nk =

∫

A

ψc
n |z=0 ψw

k dA (10c)

And the modal governing equation is obtained

1

a2c
Mc

nk P̈k + Kc
nk Pk = −ρcL

c
nkẅk (11)

The plate motion has been introduced as a forcing term
on the RHS of Eq. (11) which establishes a one way
coupling. To complete the two-way coupling, cavity
pressure perturbation is added to the structural system
of equation using the term in Eq. (12).

Qc
n = −Lc

kn Pk (12)

The ambient static pressure and temperature inside
the cavity may vary with respect to time. The fluid
density ρc is calculated with the state equation using
the freestream static pressure and pressure differential
across the plate as follows

ρc = p∞ − �ps
RTc

(13)

The speed of sound inside the cavity ac depends only
on temperature which in this work is assumed constant.

In certain cases [11,13], a simplified version for
the cavity model may replace the acoustic equation
in Eq. (7). When a steady-state equilibrium solution
for the plate deformation under the combined loads
of freestream flow, pressure, and temperature differen-
tials, and cavity resistance is of interest the following
stiffness term may be included in the LHS of Eq. (1)

Qc,ss
n = ρca2c

abdc
Ac
nkwk = ρca2c

abdc
wk

∫

A

ψw
n dA ·

∫

A

ψw
k dA

(14)

The added stiffness term in Eq. (14) accounts for the
fluid’s resistance to change in volume while neglecting
the added mass effect (which is a reasonable assump-
tion for a steady-state equilibrium). It can be shown by
using a single first mode for the cavity pressure expan-
sion in Eq. (9) (which is simply ψc

1 = 1) together with
Eq. (10), that under this assumption there is a static rela-
tion between cavity pressure and plate displacement,
i.e., Eq. (14).
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Further details on the different forms of the cavity
model can be found in [9].

2.2 Modal equations of motion

The coupled governing system of equations in modal
coordinates is shown inEq. (15)with thefluid–structure
terms identified and underlined.

Mnk ẅk + Cnk ẇk + G(1)
nk wk − �T KTh

nk wk︸ ︷︷ ︸
linear plate model

+ D(2)
nkrswkwrws

︸ ︷︷ ︸
NL structural stiffness

+ ρ∞U∞
M∞

(
Āẇnk ẇk +U∞ Āwnkwk

)

︸ ︷︷ ︸
PT aerodynamics

− Lckn Pk︸ ︷︷ ︸
cavity coupling

+ �ps Q̄
s
n︸ ︷︷ ︸

static pressure differential

= 0 (15a)

ρcL
c
nk ẅk︸ ︷︷ ︸

plate coupling

+ 1

a2c
Mc
nk P̈k + Kc

nk Pk
︸ ︷︷ ︸

acoustic wave eqn.

= 0 (15b)

The above is a system of second order ordinary differ-
ential equations in timeof size Nw+Nc. The unknowns
are the modal coordinates wn and Pn with their respec-
tive initial conditions for displacement and velocity
provided. The properties�T, ρ∞,U∞, M∞,�ps , and
Tc may generally vary in time. Future work will con-
sider the heat equation to calculate the nonuniform�T
which in general depends on the plate’s motion. This
extension will make the thermal matrix KTh a third
order tensor and include summation over the modal
coordinates of the temperature distribution across the
plate.

2.3 Solution methods

The dynamic response of the fluid–structure system
during wind tunnel start is analyzed by employing two
solution approaches. First, the equations of motion are
integrated with respect to time for a given set of ini-
tial conditions and time varying parameters. With this
approach, the transient response of the plate to wind
tunnel start is computed and correlated with exper-
iment and the system’s sensitivity to random fluid
boundary-layer pressure fluctuations is investigated.
Second, a linear stability analysis is carried out to pro-
vide more insight into the time response and the inter-
mittent instability transitionsmeasured in thewind tun-
nel. For all computations in this work, the modal coor-

dinates describing the spatial motion of the plate con-
sisted of combinations of 8 chordwise and four span-
wise modes totaling in 32 coordinates. For the cav-
ity, modes describing the acoustic pressure distribution
consisted of combinations of 6 chordwise, 3 spanwise,
and 3 transverse direction modes totaling in 54 coor-
dinates. Products of the one-dimensional clamped–
clamped beam-mode shapes [24] were used for the
plate deformation basis functions ψw

n (x, y) as detailed
in authors’ previous works [16,17,19]. For the cavity
mode shapes ψc

n (x, y, z), products of cosine functions
were used [11].

The system in Eq. (15) is reduced to first order and
integrated with MATLAB’s ode45 function (a routine
based on theRunge–Kuttamethodwith a variable time-
step). Initial conditions are set to zero in all coordinates
to describe a static plate at the beginning of the wind
tunnel start. Turbulent pressure fluctuations inside the
fluid boundary layer aremodeled by introducing a noise
signal to the pressure differential �ps(t). This sim-
ple model was shown by Miller et al. [28] to demon-
strate how acoustic noise may affect instability onset
and time to reaching LCO for a one-dimensional plate
in supersonic flow. The noise signal is characterized by
the sound pressure level (SPL) in decibel which relates
to the root-mean-square (rms) of the signal as follows

prms = pref × 10SPL/20 (16)

A Gaussian white noise is generated with rms of prms

and cutoff frequency of 3000 Hz and summed with
�ps . Frequency cutoff range was chosen to include
structural and cavity natural modes as well as all fluid–
structure instability branches in the range of considered
parameters (more on this in Sect. 4.3). This approach
assumes turbulent fluctuations that are uniform in space
and do not impact the local freestream parameters used
to calculate the aerodynamic pressure in Eq. (4). And
thus this analysis is mostly qualitative and serves as
first-order approximation. Future work will use exper-
imental measurements or results from Computational
Fluid Dynamics (CFD) for a more accurate analysis.

An eigenvalue problem is formulated to calculate
the fluid–structure system’s natural frequencies, mode
shapes and determine its stability. In this work the plate
experiences combined loads due to interaction with
cavity and freestream flow, in-plane temperature dif-
ferential, and static pressure differential. The first three
are easily included in a linear analysis using the lin-
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Nonlinear dynamics and flutter of plate and cavity 3025

ear part of the model in Eq. (15a) with the simplified
version of the cavity from Eq. (14). But the latter is an
external forcing and thus the equilibrium state about
a deformed plate steady-state must be considered to
include the contribution of the nonlinear stiffness term
underlined in Eq. (10). Thus a steady-state solution is
obtained by time marching the full fluid–structure sys-
temwith�ps and an additional added damping term (to
facilitate reaching the steady state efficiently). Then the
full system in Eq. (15) is dynamically linearized about
the nonlinear static equilibrium state due to all loads
and a harmonic form of solution in both displacement
and cavity pressure is assumed according to Eq. (17).

{
w̄

P̄

}
=

{
ŵ

P̂

}
eiλt , λ = ω + ζωi (17)

Substituting Eq. (17) in the dynamically linearized
form of Eq. (15) produces a quadratic eigenvalue prob-
lem. Its solution produces 2× (Nw +Nc) pairs of com-
plex eigenvalues λn and mode shapes ŵn, P̂n . By elim-
inating eigenvalues with repeating real parts (natural
frequencies) there are Nw + Nc pairs. Natural frequen-
cies and modal damping ratio are calculated from the
remaining eigenvalues according to Eq. (17). Further
details on this analysis with full derivation can be found
in [16,17,19].

3 Experiment configuration and parameters

3.1 The elastic plate

A plate was manufactured [31] by machining a 305 ×
152×12.7mm block of AISI 4140 alloy steel leaving a
thin rectangular all-clamped edges flat plate with geo-
metrical and material parameters as listen in Table 1.
The thicker external frameof the steel blockwas used to
install the plate flushwith thewind tunnelwall. Figure 3
shows a photograph of the plate and frame structure.
The plate surface is covered with white paint and a ran-
dom pattern is applied using a fine-tipped permanent
marker. A 3D Digital Image Correlation (DIC) system
is utilized to measure the displacement of 153 points
across the plate surface at a rate of 5 kHz.

Modal testing of the structure was conducted using
an impact hammer. The plate, with its much thicker
frame, was placed on bungee cords during the test to
effectively isolate the structure. The first six measured

Table 1 Material and geometrical properties of the plate and
cavity

Parameter Value

Plate material AISI 4140 Steel

Modulus of elasticity, E (GPa) 200

Poisson’s ratio, ν 0.284

Material density, ρm
(
kg
m3

)
7850

Coefficient of thermal expansion, α
(

m
mK

)
12 × 10−6

Plate length, a (m) 0.254

Plate width, b (m) 0.102

Plate thickness, hnom (mm) 0.635

Calibrated plate thickness, hcal (mm) 0.681

Cavity depth, dc (m) 0.051

Fig. 3 Plate with 3D DIC random pattern and locations of dis-
placement and temperature measurements [31]. Freestream flow
direction is down

natural frequencies and estimated damping ratios are
shown in Table 2 along with theoretical frequencies
for two plate thicknesses, nominal hnom and calibrated
hcal. The nominal thickness is the measured thickness
of the manufactured model, while the calibrated thick-
ness was calculated to match the first natural frequency
f1 = 375Hz and thus is 7% greater than hnom. This
form of calibration is common among structural engi-
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Table 2 Natural modal
frequencies and
damping—theory (th) and
experiment (exp)

Mode shape (x, y) fexp (Hz) fth (Hz) h = hnom fth (Hz) h = hcal ζexp (%)

(1, 1) 375 349 375 0.17

(2, 1) 418 411 441 0.08

(3, 1) 526 525 563 0.07

(4, 1) 700 693 744 0.05

(1, 2)exp, (5, 1)th 928 914 982 0.16

(5, 1)exp, (1, 2)th 935 932 1000 0.06

Fig. 4 RC-19 test section schematic showing the plate, cavity, and an optional shock generator [31]

neers as it effectively accounts for uncertainties in the
geometrical as well as the material properties listed in
Table 1. Note that for hnom, modes 2 through 6 are
remarkably close to the measured values but for hcal
the difference between theory and experiment increases
substantially with mode number. Fluid–structure sys-
tem’s sensitivity to thickness choice is further investi-
gated in Sect. 4.4, but for the rest of this work hnom is
utilized. Estimated modal damping ratios obtained in
the same test are also presented. A simple theoretical
model for aerodynamic damping at current structural
parameters is not available considering the relatively
small reduced natural frequency, i.e., f1b/a∞ ≈ 0.7
[11]. Aerodynamic modal damping of the first mode
based on Piston Theory is 20 times greater than mea-
sured and thus damping in Table 2 is attributed mostly
to the structure.

3.2 The supersonic wind tunnel

Experiments were conducted at the AFRL Research
Cell 19 (RC-19) Mach 1.5–3 continuous supersonic

wind tunnel to refine new measurement techniques
and investigate FSI phenomena in supersonic flow.
Of all the wind tunnel tests conducted, discussed
and analyzed in [31], this work focuses on the tran-
sient wind tunnel start in which a complex fluid–
structure response was measured that included transi-
tions between different stability and instability states.
A schematic of the wind tunnel test section, plate, and
cavity is shown in Fig. 4.

Figure 5 shows the measured and calculated tran-
sient flow parameters used in all computations shown
in this work unless otherwise stated. The shaded region
shows the approximate time interval during which the
flow is subsonic inside the wind tunnel test section.
Wind tunnel stagnation pressure p0 was measured with
a static pressure transducer in the settling chamber. The
cavity pressure was measured with a low-frequency
(static) pressure transducer connected to a pressure tap.
Freestream static pressure at the plate’s surface p∞ in
the supersonic time interval was calculated using isen-
tropic flow relations with the freestream flow Mach
number in Table 3 and the measured value of p0. In
the subsonic interval p∞ was approximated using the
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Nonlinear dynamics and flutter of plate and cavity 3027

Fig. 5 Stagnation, cavity, freestream, and differential pressures
and measured �T time histories

Table 3 Supersonic freestream and cavity properties

Parameter Value

M∞ 1.92

p∞ (kPa) at t = 30 s 41.4

T∞ (K) 224

Re∞ (107 × 1/m) at t = 30 s 2.5

Boundary-layer thickness at plate L.E. δLE (mm) 8.6

Cavity temperature, Tc (K) 313

measured displacement response in Fig. 6. Because the
subsonic portion of the test is not the key focus of this
work, assumptions considered here are reasonable and
primarily serve as closure. Note that the wind tunnel is
pressurized to approximately 21 kPa at the beginning
of the test and thus all pressures agree at the first second
of themeasured data. The calculated static pressure dif-
ferential�ps is also plotted with a separate ordinate on
the right hand side. For a large part of the response the
static pressure differential is approximately constant at
3 kPa. Temperature differential�T wasmeasured with
a pair of thermocouples: one near the plate’s edge as
shown in Fig. 3 and another on its thicker frame.

Table 3 shows the supersonic freestream proper-
ties, the boundary layer thickness at the leading edge
(LE), and stationary fluid temperature inside the cavity.
While this configuration of the wind tunnel is designed

to produce a freestream flow of Mach 2 inside the
test section, measurements in [31] as well as the static
displacement of the plate at the end of the transient
response support the lower value in Table 3. The unit
Reynolds number was calculated based on freestream
properties at the end of the wind tunnel start transient
and the flow at the plate’s surface is turbulent accord-
ing to [31]. The boundary layer to plate length ratio is
δ/a ≈ 0.03, which is sufficiently small to justify an
inviscid flutter stability analysis [11]. Transient mea-
surements of temperature inside the cavity is not avail-
able, and thus it is assumed constant. This assumption
is reasonable considering the stagnation temperature of
the wind tunnel of T0 = 389K is relatively small.

Further details on the wind tunnel facility, configu-
ration, and measuring equipment are available in [31].

4 Results and discussion

4.1 Measured plate displacement

Figure 6 shows the time history of transverse displace-
ment measured with the DIC system at 25% chord
length during thewind tunnel start transient [31].At t ≈
5 s, the plate is forced by the wind tunnel start expan-
sion shock which marks the point of supersonic regime
start in all of the following computational results. The
magnitude of the peak displacement due to the mov-
ing shock has been used to approximate the peak value
of �ps(t ≈ 5 s) in Fig. 5. From t ≈ 8 s the oscilla-
tion amplitude varies over time with a maximum of
w/h ≈ 1.5 at t = 24 s.

As the wind tunnel stagnation pressure rises, the
aerodynamic forces increase, while the plate also heats
up due to the increasingly turbulent boundary layer.
In simple cases, the increase in freestream pressure
and plate temperature are both likely to increase the
amplitude and frequency of LCO and may even lead
to structural failure. But because the cavity and the
freestream flow static pressures are not exactly equal,
i.e., a static pressure differential �ps is present, the
plate deformation becomes large enough for the non-
linear stiffness contribution to become significant and
stabilize the plate at t ≈ 25 s. In the last 5 s of the
response the plate vibrates with small amplitude about
a deformed equilibrium in response to the turbulent
freestream flow.
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Fig. 6 Experiment—
measured displacement
versus time at x/a = 1/4
[31]

Fig. 7 Theory—
displacement versus time
with cavity, 1.0 × �T

Fig. 8 Theory—
displacement versus time
with cavity, 1.25 × �T

Fig. 9 Theory—
displacement versus time
with cavity, 1.5 × �T

In all following computations, the time history of
the plate displacement is considered at x/a = 1/4 and
the experimental results from Fig. 6 are overlaid on top
with a partially transparent red curve.

4.2 Theoretical model calibration and assumptions

Resultswere computedwith the theoretical-computational
model described in Sect. 2. The structural linear stiff-
ness G(1)

nk and damping Cnk matrices in Eq. (15a) were
calibrated by substituting the theoretical withmeasured
values fromTable 2. In-plate boundary stiffness was set
to Kbca

Eh = 1000 which very closely approximates zero
displacement in-plane boundary conditions [16,17].
The first-order Piston Theory aerodynamic term is acti-
vated when the flow inside the test section becomes
supersonic as classified by the unshaded area on Fig. 5,
while the static pressure differential is active through-
out the whole computation.

Temperature differential between the plate and its
massive support is assumed uniform which in reality is
not likely the case. Note that the plate temperature is
measured near its edge as shown in Fig. 3. To account
for uncertainties in spatial distribution of the plate tem-
perature, the measured �T time history in Fig. 5 was
scaled by several constants and the computed responses
were correlated with experimental data. Figures 7, 8
and 9 show results for scalings of 1.0×�T , 1.25×�T ,
and 1.5 × �T , respectively. The discussion on �T
scaling calibration will focus on the second half of the
response, i.e., t = 15 s and on. Figure 7 shows that
computational results based on the nominal (measured)
�T do not agree with experiment in the last 7 s of the
response, where the plate is expected to oscillate and
then stabilize. Figure 9 shows results for the largest
scaling considered of 1.5 × �T . It is clear that now
the scaling is too large because the plate reaches equi-
librium early at t = 19 s. Also, the theoretical static
displacement at the end of the response is greater than
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Fig. 10 Theory—
displacement versus time,
no cavity, 1.25 × �T

measured which suggests that the value of �T at the
end of the transient should be reduced.

Figure 8 shows the computed time response of dis-
placement with the calibrated scaling of 1.25×�T . In
this final case, the plate transitions from large ampli-
tude oscillation to small vibrations within 1 s of the
experimentally measured transition time of t ≈ 24 s.
Additionally, good agreement in the final static dis-
placement is now obtained. Perhaps themost important
conclusion is thatwhile the temperature canbe scaled to
give even better correlation between theory and experi-
ment, the theoretical results are not especially sensitive
to a reasonable range of possible scaling values. For all
following computations, a scaling value of 1.25 will
be used and the effect of �T scaling will be further
discussed in the next subsection using linear stability
analysis.

4.3 Fluid–structure stability with and without cavity

Figures 8 and 10 show the theoretical (calibrated)
displacement time history computed with and with-
out cavity, respectively. Both cases show a reasonable
qualitative agreement with the experiment although
both overestimate the magnitude of the large ampli-
tude oscillation region by at least 50% of the experi-
ment (shaded region). There is very little experimental
data on LCO amplitudes of plates in post-flutter condi-
tions [11]. Nevertheless, theoretical and computational
studies have shown [11,16,17,32] that the amplitude
of LCO of an all-clamped plate in post flutter condi-
tions is sensitive to the assumptions made about the in-
plane boundary conditions, structural and aerodynamic
damping, and boundary layer thickness (which ulti-
mately affects the aerodynamic forces). In this work,
fully clamped in-plane edges are assumed which is the
most conservative assumption possible, i.e., the LCO
amplitude is expected to be at minimum for that param-
eter. Thus the more likely causes for theory’s overesti-
mation of the amplitude are the aerodynamic forces and

internal structural damping. The use of Piston Theory
for flutter analysis is justified by prior literature [11]
as was mentioned in Sect. 2, but for the more com-
plicated behavior at post-flutter condition LCO a more
accurate model is likely needed which considers the
boundary layer. Also, structural damping may increase
during complicated modes of motion and varying fre-
quencies [23]. And the assumption made about �T
distribution may also have impact on LCO amplitude.
For more accurate correlation future studies will utilize
more temperature and displacement measuring points,
and an aerodynamic model that includes the effect of
boundary layer.

Both theoretical models fail to predict the moderate
amplitude oscillation that start at t ≈ 9 s. A possible
explanation for the dynamics in this region may be the
wind tunnel stagnation pressure reaching 80% of its
maximum value which at some point causes the BL
at the plate’s surface transition from laminar to transi-
tional, and finally to turbulent, which may lead to large
pressure oscillations. In the last 5 s of the response, for
both with and without cavity, the theoretical models
stabilize and vibrate about the same equilibrium state
which suggests that the cavity provides very little resis-
tance to a static deformation at current fluid properties.

Additional insight into the fluid–structure dynam-
ics can be obtained by investigating stability maps in
the p∞ versus �T plane generated using the eigen-
value problem approach described in Sect. 2.3. Inmany
cases, the flutter and buckling problems are considered
independently such that p∞ is increased until flutter
onset condition is found and similarly with �T for
buckling. For structures in supersonic flow, the two
problems are coupled and must be treated simultane-
ously for accurate results. Figures 11 and 12 show
fluid–structure stability maps computed without and
with coupled cavity dynamics. Important to note that
the computation of these maps assumes small pertur-
bations about a steady-state equilibrium of a deformed
plate due to combined static loads of freestream, cavity
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Fig. 11 Stability map for �ps = −3 kPa, no cavity

Fig. 12 Stability map for �ps = −3 kPa, with cavity

resistance (when present), static pressure differential
�ps , and temperature differential �T .

Figure 11 shows regions of stability and flutter of
a plate coupled with the freestream flow and ignoring
the cavity effect. The experimentally measured (and
scaled) trajectory is plotted with crosses marking 5 s
ticks. For example, it is possible to conclude that first
onset of flutter is expected at t ≈ 11 s which is con-
sistent with the time series in Fig. 10. In the final 5
s of the response the trajectory curve leaves the flut-
ter region. This is consistent with the final stabilization
of the plate. A colormap is overlaid over the regions
of instability to show the magnitude of the dominant
unstable mode’s imaginary part of the eigenvalue. The
value of Re(λ) = ζω is associated with the rate of
growth towards instability according to Eq. (17).

Figure 12 shows stability map for the coupled
structure–cavity–freestream system. The main flutter

Fig. 13 Fluid–structure natural frequencies’ versus �T for
�ps = −3 kPa, p∞ = 41 kPa, with cavity

region (in the shape of two connected spikes) remained
similar to shown in Fig. 11 but with a slight offset to
the left. The clear difference is the appearance of addi-
tional instability regions labeledAandB.These regions
appear when the natural frequencies of the structure
(altered by the freestream interaction) and the cavity
frequencies coalesce. A and B regions are character-
ized by a comparatively light instability suggested by
the lower ζω values. Note that regions of combined
flutter and cavity resonance are also observed.

Figure 12 also shows the three scaled �T trajecto-
ries discussed in Sect. 4.2. The dynamics of each case at
the last 10 s of the response in Figs. 7, 8, and 9 are con-
sistent with their corresponding trajectory on the map.
The 1.0× �T trajectory ends inside the flutter region,
as previously noted. The 1.5 × �T curve crosses all
instability regions swiftly and spends more time in the
stable region than other cases. The 1.25 × �T case
agrees best with experiment.

Lastly, the eigenprobem approach is also used to
analyze the variation of natural frequencies of the fluid–
structure system for a constant value of p∞. Figure 13
showsnatural frequencies versus�T for p∞ = 41 kPa,
a value which from the stability map on Fig. 12 shows
to cross all instability regions. The figure shows that the
two separateflutter regions represent a two-modeflutter
instability for the samemodes pair characterized by fre-
quencies in the range of fflutter = 310 : 375Hz. On the
other hand, region A instability occurs when the first
cavity mode (first chordwise mode), which is almost
independent of�T , coalesceswith a higher order struc-
tural mode at f A = 700Hz and becomes unstable. A
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Fig. 14 Theory—
displacement versus time
with cavity 1.25 × �T , and
calibrated thickness
h = hcal

similar instability occurs in Region B at a higher fre-
quency of f A = 1875Hz which is not included in the
range of frequencies plotted. The zeroth mode of the
cavity, also called the Helmholtz mode, is shown with
an approximately constant frequency of zero.

4.4 Results sensitivity to thickness calibration

In Sect. 3.1, the theoretical natural frequencies of the
plate were presented for two plate thicknesses, the
nominal measured hnom and calibrated hcal. The thick-
ness value h affects all structural matrices, that is
mass, damping, linear stiffness, and nonlinear stiffness.
And while calibrating the linear stiffness and damp-
ing matrices leads to exact agreement in some modal
parameters between theory and experiment, the non-
linear stiffness tensor in Eq. (15a) depends on h and
remains uncalibrated. Thus the choice of h is expected
to impact the nonlinear dynamics of the structure more
than the linear.

Figure 14 shows the time response computed with
hcal and scaled temperature differential of 1.25× �T .
In terms of stability, flutter onset takes place at the
same time as in previously discussed results in Fig. 8
for hnom, but in this case the plate stabilizes approxi-
mately 2 s earlier. A major difference in the qualitative
behavior is observed in post-flutter dynamics in Fig. 14
where oscillations are highly non-periodic and possi-
bly chaotic. Also a short stabilization is observed at
t = 16 s which is attributed to the crossing of a stable
region on the stability map. Figure 15 shows the stabil-
ity map for hcal where substantial shifts in instability
regions of type B are observed. Recall that regions B
correspond to instability due to coalescence of struc-
tural and cavity modes at approximately 1875 Hz. It
appears that for hcal the cavity and plate frequencies
cross at substantially different �T values. Overall, the
nonlinear dynamics observed in the time responses of
both cases suggest that hnom produces results closer to

Fig. 15 Stability map for �ps = −3 kPa, with cavity and cali-
brated thickness h = hcal

those measured in the experiment and thus justify the
choice made in Sect. 3.1.

4.5 Stability sensitivity to static pressure differential

In the above discussion, the system’s linear dynamic
stability was investigated with a static pressure differ-
ential of �ps = −3 kPa, which is the approximate
value measured inside the wind tunnel throughout a
substantial period of the transient start process. To
investigate the effect of �ps on fluid–structure linear
stability, Fig. 16 is plotted showing the stability map
with zero static pressure differential. In contrast to pre-
vious maps, a buckling instability region has appeared
with zero frequency at the unstable mode although the
experiment trajectory stays far from it. The important
conclusion from this figure is that in the absence of�ps
there are no additional stability zones on the experiment
trajectory path and because the plate’s temperaturemay
rise to even greater values, the system is expected to
enter deeper into the flutter region. This result is con-
sistent with the fact that a flat plate is more likely to
become unstable than a deformed plate because the
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Fig. 16 Stability map for �ps = 0 kPa, with cavity

latter benefits from the increased stiffness due to the
structural nonlinear terms underlined in Eq. (15a).

Figure 17 shows the time response of a plate com-
puted with the same temperature, freestream and cav-
ity properties but with static pressure differential set to
zero at all times. In contrast to previous cases the plate
remains ideally flat until flutter onset at t ≈ 11 s when
the temperature differential reaches a critical value of
�T = 4K (determined fromFig. 16). Past flutter onset,
a non-periodic oscillation starts with amplitude that
varies with �T .

4.6 Sensitivity to turbulent pressure fluctuations

Figures 18 and 19 show the plate’s response during the
wind tunnel start transient with added acoustic noise
in the �ps input with rms of 135dB and 140dB (as
described in Sect. 2.3), respectively. Acoustic noise
may, in some cases, lead to snap-through buckling
and shorten time to reaching LCO as demonstrated
by Miller et al. [28]. The current computation’s aim is
to investigate the plate’s sensitivity during its unstable
phase (in the time interval of t = 10:26 s) to acoustic
noise.

In both considered rms cases, the response ampli-
tude up to t = 5.5 s is relatively large due to the absence
of aerodynamic damping which was activated only
when the freestream flow became supersonic. Com-
paredwith experiment it is clear that such levels of noise
were not present in the experiment in this time interval.
At t ≈ 11 s both cases begin to flutter at approximately
the same time and large amplitude oscillation begins.
Surprisingly, both cases stabilize 2 s earlier than the

case without noise shown in Fig. 12 which suggests
that noise may facilitate transition between the differ-
ent stability regions in some cases. Once stabilized at
t ≈ 23 s, both cases vibrate with small amplitude about
the deformed state. The considered noise levels are too
small to induce snap-through buckle in this configura-
tion.

4.7 Snap-through buckling and flutter

In the final 5 s of the measured plate displacement
time history on Fig. 6, the plate reaches a static equi-
librium. Vibrations about the deformed state may be
caused by acoustic noise that originates in the turbu-
lent boundary layer, periodic loads due to other sys-
tems on a high-speed vehicle, or even simple slow
(quasi-static) changes in the static pressure differential
due to climb, descent, or internal pressurization. The
effects of periodic and quasi-static excitation modes
on a deformed (although stable) plate are investigated
to further demonstrate the nonlinear nature of plates in
supersonic flow.

The steady state equilibrium at the end of the wind
tunnel start is the focus of two snap-through instability
computations. In both cases the static deformed shape
is first computed for�ps0 = ±3 kPa, p∞ = 41 kPa and
�T = 14.2K.Then, a periodic or slowly increasing (or
decreasing) term is added to the uniform static pressure
differential term as described in Eqs. (18a) and (18b),
respectively.

�ps(t) = �ps0 + Aextsin(2π fextt) (18a)

�ps(t) = �ps0 + � ṗs t (18b)

Periodic excitation was applied with a frequency of
fext = 350Hz which is slightly below the first natural
frequency of the plate at the considered conditions (see
Fig. 13). Excitation amplitudes Aext were increased
until snap-through onset. Figures 20 and 21 show
results for excitation amplitudes of Aext = 1150 Pa
and Aext = 1200 Pa which fall slightly below and after
snap-through onset, respectively. Both figures show the
displacement time response (top) and a phase-space tra-
jectory (bottom) in the first modal coordinate’s velocity
versus displacement plane.

Excitation amplitudebelowsnap-throughonset results
in a relatively small and periodic oscillation about the
deformed state as shown in Fig. 20. The phase-plane
plot shows that the energy input is not sufficient for
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Fig. 17 Theory—
displacement versus time,
with cavity and no static
pressure differential
�ps = 0 kPa, 1.25 × �T

Fig. 18 Theory—
displacement versus time,
with cavity and 135 dB
noise, 1.25 × �T

Fig. 19 Theory—
displacement versus time,
with cavity and 140 dB
noise, 1.25 × �T

Fig. 20 Small vibration response to periodic excitation at fext =
350Hz and amplitude Aext = 1150 Pa—(top) displacement time
series, (bottom) phase-plane

Fig. 21 Snap-through response to periodic excitation at fext =
350Hz and amplitude Aext = 1200 Pa—(top) displacement time
series, (bottom) phase-plane (trajectory ends at time marked by
the red dashed line). (Color figure online)
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the trajectory to leave the attractor’s proximity. On the
other hand, a larger excitation amplitude considered in
Fig. 21 leads to large amplitude and non-periodic oscil-
lation. The phase-space trajectory of the snap-through
buckled plate escapes the original equilibrium area
and goes back and forth-between two attractors. Snap-
through onset amplitude of excitation Aext is expected
to vary with frequency fext and thus chaos boundaries
can be plotted on a Aext versus fext plane [30]. Quali-
tatively, this behavior is similar to the dynamics of the
Duffing’s equation which was investigated experimen-
tally and computationally by Gottwald et al. [20].

For the excitation of the secondmode to induce snap-
through, the static pressure differential was increased
at a rate of � ṗs = 1000 Pa/s as shown on the bottom
plot of Fig. 22 with the corresponding displacement
time history above it. Note that the �ps increase was
halted when a value of 3000 Pawas reached and shortly
the oscillation stopped. When �ps reaches a values of
zero, the displacement is not equal to zerowhichmeans
the plate is in buckled and stable equilibrium. This is
also an indicator that there is hysteresis in the transition
between two or more states. A similar computation is
conducted for a different sign of initial static pressure
differential �ps0 = +3000 Pa with a decrease rate of
� ṗs = −1000 Pa/s. Figure 23 shows a �ps versus
displacement plot for increasing and decreasing static
pressure differentials. Both cases start at a static equi-
librium with displacement of one plate thickness and
flutter onset occurs at approximately�psF ≈ ±600 Pa.
The demonstrated hysteresis loop presents an addi-
tional challenge for designers who plan to utilize plates
in their nonlinear regime in supersonic flight.

5 Conclusion

A theoretical computational model of a plate in super-
sonic flow with cavity was presented and correlated
with measurements taken in a transient wind tunnel
start experiment. The model’s sensitivity to key param-
eters was investigated in terms of transition to and
from stability by direct time integration of the equa-
tions of motion and a linear stability analysis that
included the contribution of nonlinear stiffness due to
initial static deformation. Responses to random, peri-
odic, and quasi-static excitations were computed and
snap-through onset conditions obtained. The following
key conclusions are drawn from the results:

Fig. 22 Displacement and �ps versus time for increasing static
pressure differential applied at a rate of � ṗs = 1000 Pa/s until
t = 6 s

Fig. 23 �ps versus displacement for increasing (black) and
decreasing (red) static pressure differential applied at a rate of
� ṗs = ±1000 Pa/s. (Color figure online)

1. Considering the simplifying assumptions made
about the aerodynamic forces andpressure and tem-
perature differentials distribution, a good correla-
tion between theory and experiment was demon-
strated. LCO amplitudes predicted with theory
were greater than measured. Future studies will
consider a more accurate aerodynamic model with
the effect of boundary layer in an attempt to
improve agreement in LCO amplitude.

2. Temperature differential calibration is necessary
when a local measurement from experiment is used
together with a uniform distribution assumption. It
is likely that better agreement in LCO amplitude
between theory and experiment could be obtained
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for a more accurate modeling of �T distribution.
Future studies will include spatial measurements of
temperature.

3. Dynamic coupling between the plate and cav-
ity had a relatively small effect on the plate’s
response. While some small shifts in the fluter
boundaries were observed on stability maps, the
overall dynamic time response was very similar
for with and without cavity. Important to note that
instability due to plate cavity resonance was the
main difference between the two cases, but in the
considered time scales this form of instability did
not manifest in the plate’s response.

4. Thickness calibration was shown to have an effect
on the post-flutter dynamics. In many engineering
applications the thickness (or a different geometri-
cal or material parameter) are adjusted to match the
first experimental and theoretical natural frequency.
This approach may have impact on the nonlinear
termswhich are likely governedby the real/nominal
geometrical thickness.

5. Static pressure differential was shown to be a key
parameter in the experimentally measured plate
dynamics. Without static pressure differential it is
not likely the plate will reach a stable state after
flutter onset. Thus measuring �ps(t) = p∞ − pcav
is crucial for accurate time response prediction.

6. Acoustic pressure fluctuations were shown to have
minor effect on transition to and from LCO. For
sufficiently large oscillation rms values, a stable
deformed plate is expected to transition between
states (snap-through). This is similar to computa-
tions done in the snap-through buckling section.

7. Periodic and quasi-static modes of excitation were
applied to compute snap-through buckling of an
initially static deformed plate. Both cases demon-
strate the challenging nonlinearities engineers may
encounter when designing future supersonic vehi-
cles. These include hysteresis, rapid transition
between stable states and large amplitude non-
periodic oscillations.
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