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Abstract This paper is concerned with nonlinear

modeling and analysis of the COVID-19 pandemic

currently ravaging the planet. There are two objec-

tives: to arrive at an appropriate model that captures

the collected data faithfully and to use that as a basis to

explore the nonlinear behavior. We use a nonlinear

susceptible, exposed, infectious and removed trans-

mission model with added behavioral and government

policy dynamics. We develop a genetic algorithm

technique to identify keymodel parameters employing

COVID-19 data from South Korea. Stability, bifurca-

tions and dynamic behavior are analyzed. Parametric

analysis reveals conditions for sustained epidemic

equilibria to occur. This work points to the value of

nonlinear dynamic analysis in pandemic modeling and

demonstrates the dramatic influence of social and

government behavior on disease dynamics.

Keywords SEIR model � Epidemiology � COVID-
19 � Nonlinear dynamics

1 Introduction

Coronavirus disease 2019 (COVID-19) is an infec-

tious disease caused by Severe Acute Respiratory

Syndrome CoronaVirus 2 (SARS-CoV-2) that was

first identified in China in early December 2019. It has

since become a global pandemic devastating the

health, economy and lives of billions of people all

over the world and has brought into sharp focus the

need for accurate modeling of infectious diseases. The

global government policies are in fact largely being

driven by statistical analyses loosely based on nonlin-

ear mathematical models that underlie epidemiology.

As we write this paper, there is also a rising

controversy about the predictive power of these

models. The crux of the matter is that there is a

trade-off between economic disruptions and deaths. If

the model predictions are incorrect in terms of

overprediction, we may be creating mass unemploy-

ment and hurting billions of lives by causing economic

deprivation. On the other hand, if the model
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predictions are wrong through underprediction, then

too many unnecessary deaths would occur. This

quandary that most political leaders are finding

themselves in points to the need for high accuracy in

the models.

Mathematical modeling in epidemiology has a long

history dating back to early models by Bernoulli in the

eighteenth century [1, 2], although most current

research uses models built on those developed in the

1930s by Kermack and McKendrick [3–5]. These are

called compartment models and constitute a set of

nonlinear ordinary differential equations, where the

state variables represent the population numbers in

various stages of the infectious disease progression,

which are described below [6].

– Susceptible individuals (S). There is no

detectable level of pathogens, and the individual’s

immune system has not developed a specific

response to the disease-causing pathogen.

– Exposed individuals (E). The individual has come

into contact with an infected person and is infected,

but exhibits no obvious symptoms and has low

levels of the pathogen that is not high enough to

sustain a transmission to other hosts.

– Infected individuals (I). The number of pathogens

has increased to a point that it is now possible to

transmit to other susceptible individuals.

– Removed individuals (R). The individual’s

immune system has possibly won the battle and

reduced the number of parasites significantly, and

he/she is no longer infectious. Or, the individual

has been isolated from the population, or, alas, he/

she has succumbed to the disease and died. In all of

these cases, the individual is said to be removed.

Note that it is common practice to model the number

of individuals in each of the above categories as

fractions of the nominal population. We should also

observe that other potential variables could be

included to account for quarantines, vaccination, etc.

The key factors that govern the dynamics are the

growth rate of the pathogen and the level of interaction

between the pathogen and the host’s immune

response.

As in all modeling, we will have to make a

compromise between predictive accuracy and com-

plexity. In addition, since we are using real data, the

task of estimating accurate parameters becomes

intractable, if not impossible, with a very complex

model. Considering all these factors, we will consider

a SEIR model (describing susceptible, exposed,

infected and removed individuals) as described further

in the sequel. We will modify the SEIR model with

two important features: the effect of government

action and that of public reaction. These two behav-

ioral actions represent social dynamical variables and

are especially relevant to the accuracy of predictions

as we will show. Of all the nonlinear phenomena we

may expect to find, it is important to note that endemic

equilibrium points are probably most critical to

identify; that is to say, we are interested in knowing

under what conditions the disease will persist, and not

vanish.

Particularly with growing interest in the impact of

the COVID-19 virus, there has been an explosion of

research papers in modeling and prediction. It is hence

not possible to refer to all—or even a large percent-

age—of them. What follows is hence a snapshot

focusing somewhat on the subject of the current paper.

As mentioned earlier, the epidemiological models

have a rich history after Kermack’s original work.

There are several excellent and modern text books

[6–9] that describe the fundamental mathematics of

epidemiology and discuss the relevance to real

historical data of infectious diseases, and we refer

the reader to them for a clearer understanding of the

model assumptions, derivations and implications.

Hethcote’s paper [10] is an especially instructive

review and [11] is another that skews toward policy

decisions.

In terms of nonlinear dynamics, early work by

[12, 13] analyzed the effect of seasonal fluctuations as

well as contact rate periodicity in what essentially

becomes a forced response problem resulting in

harmonic and subharmonic resonances. Several

authors have analyzed the occurrence of periodic

solutions through Hopf bifurcations in an SEIR model

due to the presence of time delays and nonlinear

incidence rates [14–17]. Schwartz and Smith [18]

discovered infinite subharmonic bifurcations in a

similar seasonally forced model, while [19] analyzed

bifurcations in the context of limited hospital

resources. Buonomo et al. [20] is a contemporary

review summarizing the literature in seasonal dynam-

ics. Chaotic motion has also been documented in

[21, 22]. Finally, Martcheva [8] provides a clear
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exposition of nonlinear dynamic phenomena in her

monograph.

We should note that the key parameters that can be

quite powerful in estimating—and controlling—the

spread of epidemics are the so-called reproduction

number (R0) and incubation period. In particular, it can

be shown even with the simplest models that the

disease will persist if R0 [ 1 and will die out if this

number is less than 1. Many of the control techniques

that the governments use are focused on achieving this

goal by reducing the transmission rate that eventually

controls R0. From the point of view of mathematical

analysis, this creates an interesting situation of a time-

varying parameter that is usually discontinuous as

government polices are often implemented like step

functions. It should be noted that the incubation period

is characteristic of the virus and is less under our

control. It has been estimated to be 6–7 days [23, 24].

As mentioned earlier, COVID-19 has spawned a

rich collection of publications, and we do not deem it

necessary to document them here. Nevertheless, it is

interesting to note the rapid revelations that have come

out of these admittedly short-term studies, many of

them focusing on data from Wuhan, China, where the

virus apparently originated. WHO [25] reports that the

earliest infections were identified there around the first

of December and the infections declined by the end of

February with strong government action as well as

public reaction. The crude fatality rate was estimated

to be a shockingly high 3.8%, although the real

number is in all likelihood much lower since the

number of infected individuals is heavily under-

counted due to logistical limitations in testing, and

given that a significant segment of the population is

probably infected but asymptomatic.

In quick studies, several researchers [26–28] have

estimated the essential epidemiological parameters

using early data from Wuhan, China; in particular,

they found R0 to be in the range of 2–3. Liu et al. [29]

estimated the reproduction number to be 2.7, which is

larger than the earlier SARS epidemic, which would

make it more dangerous than SARS. Kucharski et al.

[30] estimated that the travel restrictions that the

Chinese government imposed brought down R0 from

2.35 to 1.05, effectively bringing the infections in

Wuhan under control. Even more impressive was the

effect of aggressive restrictions on the Diamond

Princess cruise ship, which was estimated to reduce

R0 from a devastating 14.8 to a more manageable 1.8

[31]. Several papers have been published attempting to

estimate the growth in other areas of China and the

world. Wu et al. [32] estimated R0 to be 2.7, and

predicted similar transmission rates for other cities in

China, and [33], published in mid-March assuming a

reproduction number of 2.4, suggested mitigation

strategies for various countries, principally US and

UK. This last report was quite influential and led to

these two governments to start implementing policies

with the objective of ‘‘flattening the curve’’ of

cumulative infections.

The focus of our study is twofold.

– We select a dataset for COVID-19 that is reason-

ably complete and accurate and develop a math-

ematical model that is best able to represent the

data.

– Given the above fitted model as a starting point, we

wish to explore the fundamental nonlinear dynam-

ics of the system and perform a parametric analysis

to explore the effect of social dynamics.

The reason we use the actual data (in this case, South

Korea’s) is to keep us grounded in reality and to

anchor our parametric studies around this particular

situation. In addition, we expect that a parametric

analysis will show the tremendous implication of

various actions on the progression of the disease. In

general, our analysis is intended to be relevant to the

current situation. Given that, as of the writing of this

paper, the COVID-19 situation is still evolving with

considerable uncertainty about the future, we wish to

use this paper to validate the importance of mathe-

matical modeling in general, and nonlinear dynamic

analysis in particular, to enhance our insights.

Building on the above objectives, the rest of the

paper is organized as follows. First, we describe the

modified SEIR mathematical model we employ in this

study. Next, we describe the data collection and

properties. Then, we describe a numerical algorithm

we employed and coaxed to get the best parametric

fits. The next section carries out the nonlinear dynamic

analysis and describes the interesting results we have

achieved. Finally, we discuss the implications of the

model and the results and end with a conclusion.
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2 Notes on mathematical models

We adopt the susceptible–exposed–infectious–re-

moved (SEIR) framework with a total population size

of N. In this model, S, E and I represent the suscep-

tible, exposed and infectious populations and R repre-

sents the removed population. For completeness, it is

best to start with a standard SEIR model as illustrated

in Fig. 1 [6, 8]:

S0 ¼ K� bSI � lS

E0 ¼ bSI � rE � lE

I0 ¼ rE � cI � lI

R0 ¼ cI � lR

ð1Þ

where 0 denotes derivative with respect to time.

In this model, b is the transmission rate, l is the

death (and emigration) rate, r, the incubation rate, is

the reciprocal of the latent period (assumed to be the

same as the incubation period in this model) and c is
the removal rate, and hence the reciprocal of the

recovery period (if removal is due to recovery). Note

that E represents those who are exposed but not yet

infectious. We make two modifications to the standard

model as described below.

The first modification concerns the specific nature

of COVID-19 and concerns the fact that infected

people can be contagious before they show symptoms

during the incubation period. Hence, it is possible that

susceptible individuals would have had contact with

individuals in both the exposed and infected cate-

gories. Here, we will model the two paths from S to E

using two values of b, say b1 and b2. Emulating

[34, 35], we will assume that b2 ¼ b1=2 or that the

probability of contacts with asymptotic infected

individuals is half of the probability of contacts with

exposed individuals. The modified model now

becomes:

S0 ¼ K� b1SI � b2SE � lS

E0 ¼ b1SI þ b2SE � rE � lE

I0 ¼ rE � cI � lI

R0 ¼ cI � lR

ð2Þ

The second modification, illustrated in Fig. 2, con-

cerns the influence of two important sociological (and

arguably, political) parameters: social behavior and

government policy. Here, we consider the transmis-

sion rates to be variable and change with these

parameters [36, 37]. Then, the modified model

becomes

S0 ¼ K� � � lS

E0 ¼ � � lþ rð ÞE
I0 ¼ rE � lþ cð ÞI

R0 ¼ cI � lR

D0 ¼ dcI � kD

ð3Þ

where we have defined an infection function � as

follows.

� ¼ ð1� aÞ b1SIð1� DÞj þ b2SE½ � ð4Þ

Here, a represents the strength of the government

action and j is the strength of public response. Note

that D is a new state variable representing social

behavioral dynamics. d represents the strength of

public perception of risk, 1=k is the mean period of

public response and the model reflects the fact that

public reaction would increase when more people get

infected and would naturally diminish over time.

3 Parameter identification

3.1 Data

We use the data from South Korea as our dataset for

model fitting for several reasons. Compared to USA,

where the testing kits are in significant shortage, and
Fig. 1 Traditional SEIR model

Fig. 2 SEIR model modified with government action; CI—

contact with infected, CE—contact with exposed
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China, in particular Wuhan, where the infected cases

went up abruptly in a short period and hence massive

testing might not have been available, the South

Korean government was prepared with appropriate

emergency measures since January 20, when it

changed its infectious disease alert (in the national

crisis management system) category from Level 1

(blue) to Level 2 (yellow) [38]. Such measures

provided massive testing capability in South Korea

to enable one of the most accurate datasets available.

We examined various databases of South Korea and

finally selected COVID-19 Data Repository by the

Center for Systems Science and Engineering (CSSE)

at Johns Hopkins University [39] due to its complete

record and accessible interface. In particular, the

database provides time-series data containing daily

updates on the new infected cases, death cases and

recovered cases, all in a comma-separated values

(CSV) file format that is ready to be read and

manipulated using standard software tools such as

MATLAB.

3.2 Genetic algorithm

Inspired by Charles Darwin’s theory of natural

evolution, Holland introduced and popularized gen-

eral-purpose search algorithms that use principles of

natural population genetics to evolve solutions to

problems, called genetic algorithms (GA) [40]. The

basic idea in GAs is that evolution will choose the

fittest species over time. Through emulation of the

natural evolution of biological organisms, GA pro-

duces a population of individuals (potential solutions

in each iteration) to search the solution space of the

problem and evolve them through generations to

approach the optimal solution. In each generation, the

fitness of individuals is evaluated using an objective

function and the fittest ones have higher probability to

participate in the offspring production process of the

next generation. Three main types of operators are

employed in GA to guide it toward a solution:

– Selection to choose between the solutions;

– Mutation to create and keep genetic diversity; and

– Crossover to combine the existing solutions into

new ones.

Finally, when the stopping criterion is met, the best

individual is presented by GA as the solution to the

optimization problem.

In this part of the study, the objective is to identify

the parameters of the model in such a way that the

simulated data match the real data as much as possible

and then use the tuned model to analyze and forecast

the spread of COVID-19 in the future. The simulated

data are obtained by numerically solving the model in

Eq. (2) using an integration algorithm (we used sixth-

order Runge–Kutta algorithm). To accomplish the first

part, namely parameter identification, we use GA to

find the parameter values which minimize the cost

function between the model prediction and real data.

We devise the cost function based on a weighted sum

of the mean square error for both infected and removed

data. Furthermore, as the main purpose of the model is

to predict the future, and as the error at the end of the

training time span is reflected significantly on the

future time evolution, a penalty factor was included in

the cost function for the end points.

The cost function f is hence defined as follows:

f ¼ WI MeanðIr � ImÞ2 þ ap ðIt¼s
r � It¼s

m Þ2
hn

þ ðIt¼e
r � It¼e

m Þ2
io

þ ð1�WIÞ MeanðRr � RmÞ2
n

þ ap ðRt¼s
r � Rt¼s

m Þ2 þ ðRt¼e
r � Rt¼e

m Þ2
h io

ð5Þ

where R, I, r, m, s and e stand for removed cases,

infected cases, real data, model-predicted data, start

date and end date, respectively. Also, WI and 1�WI

are, respectively, the infected and removed patient

weights, and ap is the penalty factor for the end points.
For this part of the study, the model described in

Sect. 2 was used with the assumption that l and K are

zero. The target parameters are b1, b2 and c, while r
was assumed to be 0.14, equivalent to incubation

period of 7 days for COVID-19 [41]. We will consider

the population to be constant; in other words, we

assume that N does not change. This means that the

natural mortality (including emigration/immigration)

rate (l) and the birth rate (K) are zero. This assumption

is reasonable over the short time period of analysis.

As explained earlier in this study, factors like

government actions can significantly affect the trend

and pattern of disease spread and accordingly, the

SEIR model parameters. So, in this study, we solved
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the parameter identification problem for two separate

time spans, i.e., controlled and uncontrolled [42].

Totally, the recorded data of 108 days were

employed in this study (Jan 22, 2020 to May 8,

2020). The uncontrolled data were taken for first

40 days (Jan 22, 2020 to March 1, 2020) and

controlled data for the next 68 days (March 2, 2020

to May 8, 2020). Out of 68 days of controlled time

span, first 40 days were used for model tuning and the

next 28 days for evaluating the performance of the

model in forecasting the unseen data. The total

population of South Korea was taken to be

51,269,185 from standard sources.

3.3 Results

The process of optimum selection of the optimization

variables was accomplished with a population size of

200 with a crossover probability of 0.8 for 300

generations. For uncontrolled and controlled time

spans, the values of ap and WI were 10 and 0.5,

respectively. WI ¼ 0:5 means that the model-pre-

dicted removed and infection rates have the same

weights in the cost function and so the optimization

algorithm tries to make both of them close to the real

data, simultaneously and equally. Also, ap ¼ 10

means that the square error of model infection and

removed rates at each end point has ten times more

effect on the cost function than the mean square error

of all 40 days and this enforces the model to be close

to the real data at the end points. The initial number of

infected and removed cases for the SEIRmodel in both

periods was considered as the real data, i.e., I0 ¼ 1 and

R0 ¼ 0 for uncontrolled and I0 ¼ 3736 and R0 ¼ 47

for controlled time span. Also, due to lack of E0 (initial

number of exposed individuals) in the available

dataset, it was assumed to be two times I0. The trend

of optimal tuning of the model parameters for the

controlled time spans is shown in Fig. 3. The conver-

gence of the best fitness value range, including best,

mean and worst values, to an optimum condition over

300 generations is demonstrated in the logarithmic

form in this figure.

The GA parameter identification results are pre-

sented in Table 1. As can be seen in this table, the

values of model parameters changed significantly with

transition from uncontrolled to controlled time span

owing to strong actions which were imposed to control

the disease transmission in South Korea. The effect of

this change in the parameter values is clearly seen in

the comparison between the trend of individual

numbers in the uncontrolled (Fig. 4) and controlled

(Fig. 5) time spans. The sharp drop in the number of

active infected individuals and reduction in the

growing slope of accumulative removed cases show

that the actions that have been taken in this country to

control the COVID-19 spread have been quite

successful.

Comparison of model and real data for the first

80 days indicates that parameter identification for

both uncontrolled and controlled conditions has been

performed, appropriately, and there is good agreement

between them. Also, it is observed that the model was

able to forecast the unseen data of days 81–108 quite

well. Nevertheless, there is still a difference between

real and model-predicted data. Some possible reasons

include perhaps overly simplistic modeling of socio-

logical behavior and government actions and inaccu-

racy in the assumed model parameters like r;E0;K
and l. It should also be noted that the number of

infected individuals is a measure of the amount of

testing that was done, which has not been

Fig. 3 GA optimization convergence over the controlled time

span of COVID-19 spread in South Korea

Table 1 GA parameter identification results for uncontrolled

and controlled time spans

Condition b1 b2 c

Uncontrolled 0.4071399 0.0626798 0.0026

Controlled 9.98E-07 7.66E-06 0.0329
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comprehensive, and hence the numbers can be inac-

curate. For all these reasons, the fluctuations seen in

the real data are not predicted precisely by the model,

but it is clear that the general trends of variation in both

infection and removed rates are quite similar.

4 Nonlinear analysis

This section focuses on the disease extinction or

persistence, which is determined by the stability of the

disease-free equilibrium and the existence of endemic

equilibrium. Prevention and control of COVID-19

epidemics require a better understanding of its mode

of dissemination as well as the impacts of control

strategies. The analysis considers a naı̈ve scenario

where there is no governmental action, which is

unlikely but will provide a baseline to appreciate the

effects of the action. In the second and third scenarios,

we consider the effects of individual reaction and the

governmental action.

4.1 System without controlling action

In this scenario, the infection function is given by

� ¼ b1SI þ b2SE½ � ð6Þ

which captures the possibilities of new infection by

both infected and exposed individuals. The corre-

sponding model is shown in Eq. (2).

(a)

(b)

Fig. 4 Real and simulated a infected and b removed individuals

for the uncontrolled time span of COVID-19 spread in South

Korea

(a)

(b)

Fig. 5 Real and simulated a infected and b removed individuals

for the controlled time span of COVID-19 spread in South

Korea

123

Nonlinear dynamic analysis of an epidemiological model 1551



Proposition 1 The disease-free equilibrium E0 ¼
ðK=l; 0; 0; 0Þ of model Eq. (2) is asymptotically

stable if R0\1. The endemic equilibrium E1 ¼
ðS0;E0; I0;R0Þ is asymptotically stable if R0 [ 1 and

is defined as:

E�
0 ¼

lðlþ cÞ
b1rþ b2ðcþ lÞ ðR0 � 1Þ

R�
0 ¼

cr
b1rþ b2ðcþ lÞ ðR0 � 1Þ;

S�0 ¼
ðrþ lÞðcþ lÞ
b1rþ b2ðcþ lÞ ;

I�0 ¼ rl
b1rþ b2ðcþ lÞ ðR0 � 1Þ

ð7Þ

and

R0 ¼
K b1rþ ðcþ lÞb2½ �
ðlþ rÞðlþ cÞl ð8Þ

Proof In order to compute the expression of the

equilibrium points, we set the time derivative to zero

(steady state) and solve the corresponding algebraic

equation.

0 ¼ K� b1ð1� aÞSI � b2ð1� aÞSE � lS

0 ¼ b1ð1� aÞSI þ b2ð1� aÞSE � lþ rð ÞE
0 ¼ rE � lþ cð ÞI
0 ¼ cI � lR

ð9Þ

It is obvious that E0ðK=l; 0; 0; 0Þ is a trivial solution of
Eq. (9). E0 is called the disease-free equilibrium since

it is obtained for I ¼ E ¼ 0 and the corresponding

infected function � is zero. For I 6¼ 0, the model in

Eq. (2) has a nonzero solution E1 given by Eq. (7).

The stability of the equilibrium points E0 and E1 is

obtained from the Routh–Hurwitz criterion for stabil-

ity, which states that the equilibrium state is stable if

the roots of the characteristic polynomial in f are all

negative. The Jacobian matrix of the system is

obtained as

J ¼

�a11 � l � a12 � a13 0

a11 a12 � ðlþ rÞ a13 0

0 r � a33 0

0 0 c � l

0
BBB@

1
CCCA

with

a11 ¼ b1S0 þ b2S0;

a12 ¼ b2S0;

a13 ¼ b1S0;

a33 ¼ cþ l:

ð10Þ

The characteristic polynomial for the DFE is the

following (E0 ¼ I0 ¼ 0 and S0 ¼ K=l)

ðfþ lÞ f2 þ a1fþ a0
� �

ð11Þ

with

a1 ¼ � c� r� 2lþ b2S0

a0 ¼ b1rþ b2ðcþ lÞ½ �K
l
1� R0

R0

ð12Þ

The system is stable if the roots of the characteristic

equation Eq. (11) are all negative; this is satisfied if

R0\1, which is equivalent to

b1rþ b2ðcþ lÞ\ l
K
ðcþ lÞðrþ lÞ ð13Þ

For the endemic equilibrium, the steady-state system

in Eq. (9) can be solved to obtain Eq. (7). The

coefficients of the characteristic polynomial are given

as

a2 ¼ b2S0 � lðR0 � 1Þ � ðcþ rþ 3lÞ

a1 ¼ a33ða2 þ a33Þ þ ra13 þ
a0 � a13rl

a33

a0 ¼ lðcþ lÞðrþ lÞðR0 � 1Þ

ð14Þ

The system is stable if the roots of the characteristic

polynomial are all negative, that is, if R0 [ 1, which is

equivalent to

b1rþ b2ðcþ lÞ[ l
K
ðcþ lÞðrþ lÞ ð15Þ

Figure 6a shows an illustration of a DFE situation

where R0 ¼ 0:7 and b2 ¼ 0:0517;b1 ¼ 0:0024; r ¼
0:14 and c ¼ 0:0026. Using the transmission rate

coefficients obtained from Sect. 3

(b2 ¼ 0:0628;b1 ¼ 0:407), we get the endemic equi-

librium of Fig. 6b. The effects of the transmission

rates b1 and b2 are illustrated in Fig. 7. The figure con-
siders the situation of fewer contacts with infected

individuals (b1\b2, most/some infected individual

are in quarantine assuming the same probability of

contamination once in close contact) and compares it

to the situation where we have higher probability of
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contamination with infected individuals, or b1 [ b2).
Beyond R0 ¼ 1, the proportion of infected individuals

naturally increases and is higher when b2 [ b1. This
can be interpreted to mean that exposed people will

have a greater impact on the persistence of the disease.

The results of Fig. 7 confirm the observations of the

number of newly confirmed cases due to close contact

with exposed and infected individuals in Wuhan,

China [35].

4.2 Effects of governmental action

In the context of COVID-19, governmental actions are

mainly focused on regulating social life to reduce the

likelihood of contact between individuals. This natu-

rally impacts the transmission rates. The effects of

governmental actions are summarized in the infection

function, which would need to be substituted into

Eq. (3); however, note that we do not consider the

effect of public reaction here; hence, we drop D from

the equation.

� ¼ ð1� aÞ b1SI þ b2SE½ � ð16Þ

Proposition 2 In this case, an endemic equilibrium

(R0 [ 1) is persistent if

0\a\ac ¼ 1� 1

R0

ð17Þ

Proof Under the effect of governmental action,

repeating the analysis in the previous paragraph will

not change the DFE, endemic equilibrium and the

stability conditions if bi is replaced by ð1� aÞbi,
(i ¼ 1; 2). However, the reproduction number

becomes

R00 ¼ ð1� aÞR0 ¼
Kð1� aÞ b1rþ ðcþ lÞb2½ �

ðlþ rÞðlþ cÞl
ð18Þ

The endemic equilibrium is stable if R00 [ 1, which

leads to the critical value of the governmental control

0\a\ac ¼ 1� 1

R0

ð19Þ

Figure 8 gives two different views of how the

government action could contribute to controlling the

spread of the disease. As might be expected, stronger

governmental action (higher values of a) has more

impact on the disease (Fig. 8a). But, what is more

interesting is that the results predict the existence of a

(a)

(b)

Fig. 6 Response of the system for R0 ¼ 0:7. a DFE b2 ¼
0:0517;b1 ¼ 0:0024 and b endemic equilibrium

b2 ¼ 0:0628;b1 ¼ 0:407

Fig. 7 Stable endemic equilibrium as a function of the

transmission rates b1 and b2
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threshold value ac expressed as a function of the

transmission rate that would lead to complete control

of the disease. This threshold value is higher for lager

values of b2. In practice of course, there would be a

natural limit to the governmental action. For this

reason, additional controls would be needed. The

literature that documents past infectious diseases

similar to the COVID-19 has shown how an increase

in the number of deaths and the severity of critical

cases can be leveraged to impact the perception and

seriousness of the population.

4.3 System with additional control

We now take into consideration the combined effects

of the government action and the public perception of

risk regarding the number of severe and critical cases.

The variable D is added to the model to represent the

public perception of risk. It increases when people die

and will decay naturally, meaning that perception of

risk diminishes over time in the absence of the

COVID-19. The intensity of this perception is carried

through the intensity of the population response j and

proportion of severe cases d. The infection function is

now

� ¼ ð1� aÞ b1SIð1� DÞj þ b2SE½ � ð20Þ

which would be substituted into the model given by

Eq. (3).

Proposition 3 The system in Eq. (3) under control

has a higher threshold for the onset of endemic

equilibrium. This onset value is R0 ¼ 1 for j ¼ 0 and

R0 [ 1þ jeffect for large values of j, where

jeffect ¼
b1r

b2ðcþ lÞ ð21Þ

Proposition 4 There is an endemic state for which

the intensity of the public perception has no effect.

That endemic state is defined by:

I�c0 ¼
k
dc

\1; ! E�
c0 ¼

cþ l
r

k
dc

;

R�
c0 ¼

c
l
k
dc

;

Sc0 ¼
K
R0l

1þ b1r
b2ðcþ lÞ

� �
ð22Þ

Proof The steady-state conditions lead to

E�
c0 ¼

lþ c
r

I�c0; R�
c0 ¼

c
r
I�c0; D�

c0 ¼
dc
k
I�c0;

S�c0 ¼
K
R0l

b1rþ b2ðcþ lÞ
b1r 1� dc

k Ic0
� �jþb2ðcþ lÞ

;

I�c0 ¼
I�0

R0 � 1
R0½

� K
R0l

b1rþ b2ðcþ lÞ
b1r 1� dc

k Ic0
� �jþb2ðcþ lÞ

#

ð23Þ

where the subscript c stands for control.

(a)

(b)

Fig. 8 Effects of the governmental control on the endemic

equilibrium for the values of Fig. 6. a Effects of a on the

reproduction number for b1 ¼ 4b2. b Effects of a on the

proportion of infected individuals for R0 [ 1 computed from the

equation
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The transcendental equation would not lead to an

explicit expression of Ic0. Thus, guided by the

literature, we limit the analysis to some specific cases:

Forj ¼ 0;! I�c0 ¼ I0;E
�
c0 ¼ E0;

R�
c0 ¼ R0; S

�
c0 ¼ S0

ð24Þ

For j ! 1

S�c0 ¼
K
R0l

1þ b1r
b2ðcþ lÞ

� �
ð25Þ

if R0 � 1[ b1r
b2ðcþlÞ

I�c0 ¼
I0

R0 � 1
R0 � 1� b1r

b2ðcþ lÞ

� �
;

E�
c0 ¼

I0
R0 � 1

cþ l
r

R0 � 1� b1r
b2ðcþ lÞ

� �
;

R�
c0 ¼

I0
R0 � 1

c
l

R0 � 1� b1r
b2ðcþ lÞ

� �
;

D�
c0 ¼

I0
R0 � 1

dc
k

R0 � 1� b1r
b2ðcþ lÞ

� �

ð26Þ

For other values of j, it can be shown that a single

0\I�c0 exists if

R0 � 1[
b1r

b2ðcþ lÞ ð27Þ

This can be proven graphically as shown in

‘‘Appendix.’’

Figure 9 shows how the intensity of the population

response could impact the spread of the disease. In

fact, under this control, the number of infections is

considerably reduced as shown in the figures. In

Fig. 9a, there is a jump in the number of infected for

small R0. This jump is significant for smaller value of

j and is likely a manifestation of the nonlinearity in j
in the expression of the infection function. Recalling

that the endemic equilibrium used here was obtained

for j ! 1, the results of Fig. 9a are only valid for

larger values of j. This nonlinearity is not visible in

the presence of a as shown in Fig. 9b.

Figure 10 shows an illustration of the system

response for a naı̈ve scenario where there is no

governmental action (Fig. 10a), the effects of govern-

mental action alone (Fig. 10b), individual reaction

alone (Fig. 10c) and combined action (Fig. 10d).

Simulation and analytical derivation show that care-

fully setting the parameters (in the specified range of

vales) could effectively stop the spread of the disease

under combined actions.

5 Summary of findings

We summarize below the key findings of our analysis.

– The reproduction number, traditionally computed

for SEIR model in terms of r;K; l and c, has been
expanded to include b1; b2, and the social and

policy parameters, a and j. This expanded defini-

tion embeds social dynamics neatly into the

epidemiological model and significantly expands

insight into their interactions.

(a)

(b)

Fig. 9 Effects of the intensity of the population response.

a Versus reproduction number. b Versus government control
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– The parameter values for transmissibility (b1; b2)
and hence the reproduction number (R0) went

through significant reduction with the South

Korean government response roughly 40 days

after the first incidence.

– Exposed people (as opposed to infected individu-

als) have a greater impact on the persistence of the

disease.

– The stronger the government action, the more the

impact on disease transmission.

– There is a minimum threshold value for govern-

ment action (ac) for complete control of the

disease. Our model predicts that numerous small,

tentative steps would not be as effective as bolder

and significant steps.

– The intensity of the public response (j) has

significant impact on the reduction in number of

infections.

– The model predicts that for some values of the

disease dynamics, the public perception j will

have no effects. In this case, only the governmental

action could stop the spread of the disease.

– The analysis predicts that a suitable combination of

government response (a) and public reaction (j)
would effectively stop pandemics such as COVID-

19.

6 Conclusion

In this paper, we adapted and developed an SEIR

model for the COVID-19 pandemic including differ-

ent transmission rates for contacts with infected and

exposed and integrated parameters and variables to

model government action and social reaction. First, we

used data from South Korea to perform a parametric

analysis using the genetic algorithm and achieved a

very good fit. This provides sound validation for our

model. The resulting numerical analysis shows that the

South Korean government action 40 days after the

infection was first diagnosed had a significant influ-

ence on the spreading of the disease.

(a)

(b)

(c)

(d)

bFig. 10 Response of the system under various scenarios. a
Unlikely scenario of no control. b System with government

control a. c Effects of the population response j. d Effects of

combined control
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Next, we used more nuanced models for nonlinear

dynamic analysis. Equilibrium and stability analysis

was performed revealing several areas of the param-

eter space where a stable endemic equilibrium can

exist leading to persistent infections. We considered

three situations: (a) without control, (b) with govern-

ment action and (c) with combined effect of govern-

ment action and public reaction. Results show that it is

possible to stop the spread of the disease (or to

extinguish the endemic equilibrium) by proper choice

of parameters that govern social and government

behavior.

In this paper, by seamlessly integrating two impor-

tant sociological (and arguably, political) parameters,

i.e., public perception and government policy, we are

able to show the fact that these factors can significantly

affect the transmission rate and spread pattern of

disease evolution. The conclusions would support an

argument that stronger government actions and poli-

cies such as quarantine, wearing masks, social

distancing and improving public perception might be

essential in combating the COVID-19 spread. Indeed,

this is demonstrated in South Korea, which has

arguably achieved tremendous success in combating

COVID-19 unlike many other countries. Similar

perspectives should be considered for further govern-

ment policy regarding progressively reopening the

economy and campuses. A potential future direction is

to integrate more aspects including seasonal effects,

which would likely lead to periodic responses.

Finally, as we write this paper, we note that the

pandemic situation is still evolving with considerable

uncertainty about the future.We believe that this paper

demonstrates the importance of nonlinear dynamic

analysis to enhance our understanding of the natural

world in which we the humans live and has profound

implications for the way we handle it in the future.

Acknowledgements CN and FN gratefully acknowledge the

financial support from US Office of Naval Research (Grant No.

N00014-19-1-2070) for basic research on adaptive modeling of

nonlinear dynamic systems. In particular, we appreciate the

continuous encouragement from Capt. Lynn Petersen and are

humbled by his recognition of the value of our research.

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest.

Appendix

The existence of a unique endemic value of I�c0 for

I�c0 ¼
I�0

R0 � 1
R0 �

K
R0l

b1rþ b2ðcþ lÞ
b1r 1� dc

k Ic0
� �jþb2ðcþ lÞ

" #

ð28Þ

can be shown graphically for all values of j by plotting
the following graphs

ZðXÞ ¼ X; YðXÞ ¼ I0
R0 � 1

1� 1þ N

ð1� mXÞj
� �

ð29Þ

with X � I�c0;m ¼ dc
k and N ¼ b1r

b2ðcþlÞ The intersection

point of Z(X) and Y(X) in the interval [0, 1] will exist if

R0 � 1[
b1r

b2ðcþ lÞ ð30Þ

Figure 11 shows the plot of Z(X) (in black line) and

Y(X) for several values of j from j ¼ 0 (no percep-

tion) to realistic values of jx [36]. In all cases, the

intersection of Z(X) and Y(X) is singular; thus, there

exists a unique I�c0 solution of Eq. (28).

Fig. 11 Graphical illustration of the existence of a unique

endemic equilibrium, with b1b2 ¼ 0:416 and a ¼ 0
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