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Abstract In this note, some points to paper (Xu L.G.,
Liu W.,” Hu ”H.X.:“Exponential ultimate boundedness
of fractional-order differential system via periodically
intermittent control” [Nonlinear Dyn 2019;92(2), 247-
265) are presented. Fractional calculus is of memory
property which is different from integral calculus. But
this important property is neglected in the proof pro-
cesses of the main theoretical achievements. We ana-
lyze these errors in Laplace domain and time domain.
Lastly, some counterexamples are presented against the
intermittent stability conditions in Xu et al. (Nonlin-
ear Dyn 92(2):247-265,2019. https://doi.org/10.1007/
s11071-019-04877-y).
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1 Introduction

In [1], exponential ultimate boundedness of fractional-
order differential system is investigated via periodically
intermittent control. But fractional calculus possesses
the property of non-locality, memory and history-
dependent, and initial value is an important parame-
ter of fractional calculus[2]. This important property
is neglected in the proof processes of the theoretical
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achievements. It is very necessary to point out these
problems to avoid misleading.

Firstly, let us review some Lemmas in [1].

Caputo fractional derivative is defined as:

C
D/y(t) = ——
PO =10
t (n)
y—(n)ldn, n—1<gqg<n
1) (1—77)‘”7"

)]

where symbol C denotes the Caputo fractional deriva-
tive, 7o denotes the beginning time of fractional deriva-
tive.

Remark 1 Formula (1) reflects fractional derivative
with ¢— order from time #y to ¢ about variable time
t. Obviously, the calculating results of the fractional
derivative is relevant with initial time 7.

Lemma 4 in Section 3 of [1] is depicted as:

Let 0 < g < 1, h(t) is a continuous function on
[to, +00), If there exist constants k1 € R and ko, > 0
such that

CDIh(t) < kih(t) + ka

2
h(to) = hy,
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Then

h(t) < hyEq(ki(t — 19)7)
+ko(t — 10)? Eq,q+1(k1(t — 10)7) (3)
r =1
Remark 2 Tt cannot be neglected that #y in (2) must
be equal to 7y in (3) according to the proof process of

Lemma 4 in [1]. But the authors neglect this condition
in the proof process of Theorem 1 in [1].

2 Theorem analysis

From function (20) and function (21) in [1], we can
get

DIV < —aV 45 T 4)
whent € [nT,nT + 1), and
plv<pv+e " (5)
whent € [nT +1t,(n+ 1)T).

Then, the authors claim that step (1), (2), (3), (4),
(5) and (6) of Theorem 1 can be drawn according to
Lemma 4 in [1]. Let us analyze the proof process and

the conclusion in Laplace domain and time domain,
respectively.

2.1 Laplace domain analysis
From function (24) in [1], we can see fo = 0. Then, let
us analyze the proof processes step by step according

to Laplace transform and inverse Laplace transform.
(1) When t € [0, 7),

SDIV < —av 41Ty (6)

There exists a nonnegative function & (¢) satisfying

SDIV +61(t) =~V +¢& T (7
Making the Laplace transform,
14T
JJ
51V (s) — 97V (0) + &1 (s) = —a1 V(s) + 2 I
s
(®)
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By the inverse Laplace transform, we can get

V(1) < VO Eg(—art!) + & ' TT T Eg g1 (—ar 1)
©)

(2) Whent € [z, T),
Splv <pv+etuty (10)

There also exists nonnegative functions &> (#) satis-
fying

SDIV +&0) =BV +¢ T (an

According to function (7) and (11), we have

{SD?vm =—aV)—&0+& T, 1el0,1)
DIV =BV — &)+ & T, 1eleT)
(12)
Define u(¢) as
0, <0

u(r)={1 =0 (13)
and function (12) can be expressed as
§DIV () = (—er V(1) — &1(1)

+6 T D @) —ut — 1) 04

+ BV (@) — &)
+ & It Du(t — 1)

Making the Laplace transform ,

s1V(s) — 17V (0) = £[(—a1 V(1) — & (1)
+ &, It D) — u(t — )] (15)
+E[BIV (1) — &2(0) + &5 IT Du(r — 1)]

Obviously, the conclusion V() < V(t)E,(B1(t —
D) + 45 IT Tt = 1) Eq 41181t — 7)7) (formula
(26) in [1]) cannot be drawn from formula (15) when
telr,T).

Similarly, the conclusions in step (3), (4), (5) and
(6) of Theorem 1 cannot also be directly drawn from
Lemma 4 in [1].

We can also further analyze the incorrectness of the
proof process of Theorem 1 in [1] in time domain.
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2.2 Time-domain analysis

According to (20) and (21) in [1], we can get

n

WDIV@D) <Y (e V()
J=0

+ &, T D@ - T)

—u(t—jT — 1)) (16)

+Y BV

j=0
+ & IT Dt — T — 1)
—u(t — (j+ D).

There must exist nonnegative functions &;1(z) and
£i2(1) (j =0,1,2,---, n) satisfying

GDIV @) = i(—alv — &)
=0
+ CZ_IJTJ])(M(I —jT) —u(t — jT — 1))
+Xn:(/31V(t) —&j2(0)
j=0
+ éz’lJTJ)(u(t —jT—1)—u(t— (j+1DT)).
(17)

(1) whent € [0, 1), it gets:

§DIV(D) = (~a V() — 1) + 55 I T0)  (18)
According to Lemma 4 in [1], it yields

V() < VO Eg(—ait?) + ¢ ' I T It Ey g1 (—an19)
(19)

Especially,

V(1) < VO Eg(—ent?) + ¢ T TT9Eq g1 (—an7?)
(20)

(2) whent € [t, T), we can get

§DIV (1) = (—a1 V(1) — o1 (1)
+ & IT D) — u(t — 1)) 1)
+ BV (@) — &) + C{lJTJ)u(t )

According to fractional integral, we get

_ ! a1 (Cya
V(l‘)—V(O)'i-ﬁq)X/o(l‘ m?™ (g DIV (m)dn

— V() + 117 % (§ DIV (1))

I"(q)

= V() + 117 % (—a V(1) — E01(1)

I'(q)
+ & T D) = ut — 1))

+ 197 s (BLV (1) — E0a (1)

I'(q)
+ & T Dut — 1)
(22)

where symbol * represents convolution operation.
Define V (7) as

1
V() =V() + Tq)
“ /O (t = )4 (a1 V() — o1 ()

+ ¢ T ydny

(23)

Although the length of the signal (—ajV(t) —
Eo1(1) + & "ITI)(u(t) — u(t — 1)) is 7, the length
of 197 s (e V =01 (1) + &5 1T D) (@) —u(t — 1))
is infinite according to the rule of convolution opera-
tion.

Obviously,

1 ! 1
o /O (t — 9™ (a1 V() — Eo1(n)

+ & IT D () — u(n — ©)dn
1 T
- _ gl
o X/o (t = i (a1 V()
— &1 () + & I Ndn = V(v) (24)

whent > t.
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Then, we can get

t
V() = X /O t — i (—a1V(n)

I'(q)
— &01(n)
+ C{lJTJ)(u(n) —u(n — t)dn
+ R

g—1
F() /(z DT BV () — Enn)
+¢o T J)u(n—r)dn
F() f(f—n)" Y~V
-~ sm m + ¢ IT D @) — uln — ©)dn
_ 9!
F() f(z DI BV = En(n)

+ & T Dun — v)dn

(25)

It shows that V (¢) is affected by the history process of
before time T when ¢ > 1.
That is to say

vm#wwm /(t—n)" LBV

—Eo1() + ¢ " IT D) — u(n — )dn
(26)

Obviously, we cannot directly get the following con-
clusion

V() = V(D Eg(Bi(t — 1))

27)
+ & TI =0 Ey g1 (Bt — T)7)

even though £y (7) > 0.
(3)whent € [T, T + 1), we have

6 DIV (1) = (a1 V(1) — &1 (1)
+ & It D) — u(t — 1))
+ BV () = Enn(t)
+ 5 T W@ —©) —u@ —T))
+ (a1 V =)+ & I Du - 1) (28)
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Take fractional integral and get

1
Vi) =V(0) + ——
Q) ()+F()

t
x fo @ — I~ (§ DIV ())dn

= V() +

1
qg—1 C n4
T q)t * (g D; V(1))

117 % (—a V(1) — E01(1)

=V(@O
()+F(q)

+ & IT D) — ut — 1))

+ F; )rq P (BIV (1) — &2 (D)

+ & T Dt —©) —u(t — 1))

+ : — 1 (V@)
I'(q)

—En@ + & T Du@ —T)

(29)
Similar to step (2), we have
_ )41
F(q) f(t M (=1 V(n)
— &) + ¢ " IT D) —u(n — v)dny 0,

T
T —n)? N (—ayV
@ X/O ( M (= V(n)

—Eo1 () + &, IT D) — u(n — 1)dn

and
_ g1 Vv

F(q) /(t nT(B1V(n)

- Eoz(n) + & T D — 1) —u(n — T)dny

T —n)i~ Y BV
F() /( DI BV ()
—En() + & IT D — 1) —u(n — T))dny
31)

whent > T.
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Then, we can draw

1 ! gy
o /T (t =i (a1 V()
— &) + ¢ I Du(n — THdn

V() # V(T) +

(32)

The following conclusion cannot also be directly
drawn

V(t) < V(T)Ey (—ai(t — T)7)
+& T =Ty Ey 411 (33)
(—a1(t —T))

Similarly, the following conclusions cannot also
hold

D) V() < V(T + DEBit — T — 1)) +
G I =T = 1)1E g1 (Bit — T — 1))
whent € [T 4+ 7,2T],

(i) V(1) < V(nT)Ey(—ar(t—nT))+¢, I T T (1 -
nT) Ey 411(—ai(t—nT)?)whent € [nT,nT +
7],

(i) V(t) < V(T + 1)E;(Bi(t — nT — 1)) +
& Tt =nT = 1)1 Eq 411 (Bi(t —nT —1)7)
whent € [nT +t,(n+ DT].

The analysis results in Laplace domain and time
domain all show that the conclusions in [1] are incor-
rect.

3 Counterexamples

To illustrate these errors, we take some counterexam-
ples to verify our analysis.

Example 1 Suppose x1(t), x2(t) € R satisfying

3x@), O0<t<l
C 0.4 _ 1
0 D xl(’)_{o, > 1
(34)
ix ") = —3x2(1), 0<tr<l1
a2 7o, >

Set the initial values as x;(0) = 1, x2(0) = 1 and take
numerical simulation. The simulation result is shown
in Fig. 1. Numerical result shows that x1(t) # x1(1)
and x2(t) = x2(1) whent > 1. From Fig. 1, we can see
that the length of g D?'4x 1(¢) is 1 but the length of x ()
is infinite, which is different from integer calculus.

Fig. 1 x;(¢) and V,(¢) in example (1) with time ¢

Example 2 Suppose x(t), x2(t), x3(t) € R satisfying

C ~0.15 N —0.8x1(1), 0<r<l1
o D xl(t)_{0.4x1(t), t>1
0.8x2(1), 0<t<l1
C n0.15 _ 2
0 D Txalt) = {0.4x2(t), t>1
X3(1) =4E015(0.8 % (r — D™1), 1
(35)
Constructing positive functions as: Vi(t) = xlz(t)

, Vo(t) = x22(t) and V3(t) = x%(t), according to
§DOBVi(t) < 2x1 ()5 DY Pxi (1) and § DI Va (1) <
2x2(1)§ DXx, (1), we have

—1.6Vi(1), 0<tr=<1

C n0.15 1

0o DV = {o.svl(z), t>1 56
1.6Va(t), O0<t<1

C n0.15
o Dr V2(t)§{0.8V2(t), r>1

Set the initial values as x;(0) = m,

x2(0) = m and we can get V(1) = 4,
Vo(1) = 4, and V3(1) = 4. According to the proof
process of Theorem 1 in [1], we can get V1 (¢) < V3(¢)
and V,(t) < V3(t) when ¢t > 1. But the numerical
simulation (shown in Fig. 2) shows that Vi (z) > V3(¢)
and Vo(t) < V3(¢) when ¢ > 1. Obviously, the proof
process of Theorem 1 in [1] is incorrect.

Example 3 According to function (4) in [1], we sup-
pose x(t) € R, g = 03,0 =0, A =2, f(x(¥)) =

@ Springer
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Fig.2 Vi(t), Va(t) and

V3(¢) in example (2) with
time ¢
1t 1.2 14 1.6 1.8 2
Fig. 3 V(t) in example (3) 20 T T T T T T T T
with time ¢ :

2.1x(t)u(t —2), J = 0 and get

SD%3x(r) = —2x(1) + 2. 1x(Du(t — 2) + p(x(1))
(37)

where w(x(¢)) is an intermittent controller.

Generally, the beginning time of control input is uncer-
tain. We suppose that system (37) is controlled via inter-
mittent control when ¢ > 2 and define the intermittent
control as

0, 0<t<?2

pux (1)) = —2x(1),

1.2 1.6 2 24 2.8 3.2 3.6

According to Theorem 1 in [1], we can get A =
—2,K = —2.Suppose P = 1,¢; = 2.1, 50 = 0,
o; = 3.8, 81 = 0.2 and get

(D) 1f (@) = fO2@N]l < 2.1]x1 (1) — x200)]l, we
cansetl/y =2.1.

(2) When2 +04n <t <2+ 04n+02, ATP +
KTP+PA+PK+0 P2 +¢ ' Bt PP i P <
0,

(3) When2 +04n+02 <t <2+04n + 04,
ATP + PA+§1P2+;;11}+;~2P2 —BIP <0,

(4) Ep3(—3.8%0.293)E(3(0.2%0.2°3) = 0.9929 <
1.

2404n <t <2404n+0.2
0, 2404n4+02<t<24+04n+04

n=0,1,2,3,... (38)

then, we can get the controlled system as

n=0,1,273,-- (39)

—2x(1), O0<t<?2
SD%3x(r)y =1 -1.9x(t), 2+04n<t<2+404n+0.2
0.1x(t), 2+04n+02<7<2404n+02

@ Springer



Comment on “Exponential ultimate boundedness...

1021

Obviously, example 3 satisfies the conditions of The-
orem in [1]. Construct a positive function as: V(t) =
x2(¢) and set the initial value as x(0) = 6. We can get
V(2 +0.4) < V(2)Eg3((—=3.8) % 0.293)En3((0.2) *
0.29-3) < V(2) according to the proof process of Theo-
rem 1 in[1]. Similarly, wecanget V(2) > V(240.4) >
V2408 >---.

We take numerical simulation at the same condition
and the simulation result is shown in Fig. 3. Figure 3
shows that V(2) < V(2+04) <V(2+08) <---,
which contradicts with the theoretical analysis accord-
ing to Theorem 1 [1].

Figures 1, 2 and 3 show that fractional order system
is related to historical process as the memory prop-
erty of fractional calculus. The numerical results show
that the conclusion of Theorem 1 in [1] is incorrect.
Obviously, the conclusion in Theorem 2 in [1] is also
incorrect.

4 Conclusion

As mentioned above, we have analyzed the prove pro-
cess and the conclusion of Theorem 1 in [1] are incor-
rect. It is necessary to point out these errors to avoid
misleading.
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