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Abstract In this note, some points to paper (Xu L.G.,
LiuW.,” Hu ”H.X.:“Exponential ultimate boundedness
of fractional-order differential system via periodically
intermittent control” [Nonlinear Dyn 2019;92(2), 247–
265) are presented. Fractional calculus is of memory
property which is different from integral calculus. But
this important property is neglected in the proof pro-
cesses of the main theoretical achievements. We ana-
lyze these errors in Laplace domain and time domain.
Lastly, some counterexamples are presented against the
intermittent stability conditions in Xu et al. (Nonlin-
ear Dyn 92(2):247–265, 2019. https://doi.org/10.1007/
s11071-019-04877-y).
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1 Introduction

In [1], exponential ultimate boundedness of fractional-
order differential system is investigated via periodically
intermittent control. But fractional calculus possesses
the property of non-locality, memory and history-
dependent, and initial value is an important parame-
ter of fractional calculus[2]. This important property
is neglected in the proof processes of the theoretical
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achievements. It is very necessary to point out these
problems to avoid misleading.

Firstly, let us review some Lemmas in [1].
Caputo fractional derivative is defined as:

C
t0D

q
t y(t) = 1

Γ (n − q)∫ t

t0

y(n)(η)

(t − η)q+1−n
dη, n − 1 < q < n

(1)

where symbol C denotes the Caputo fractional deriva-
tive, t0 denotes the beginning time of fractional deriva-
tive.

Remark 1 Formula (1) reflects fractional derivative
with q− order from time t0 to t about variable time
t . Obviously, the calculating results of the fractional
derivative is relevant with initial time t0.

Lemma 4 in Section 3 of [1] is depicted as:
Let 0 < q < 1, h(t) is a continuous function on

[t0,+∞), If there exist constants k1 ∈ R and k2 > 0
such that

C
t0D

q
t h(t) ≤ k1h(t) + k2

h(t0) = ht0
(2)
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Then

h(t) ≤ ht0Eq(k1(t − t0)
q)

+ k2(t − t0)
q Eq,q+1(k1(t − t0)

q)

t ≥ t0

(3)

Remark 2 It cannot be neglected that t0 in (2) must
be equal to t0 in (3) according to the proof process of
Lemma 4 in [1]. But the authors neglect this condition
in the proof process of Theorem 1 in [1].

2 Theorem analysis

From function (20) and function (21) in [1], we can
get

C
t0D

q
t V ≤ −α1V + ζ−1

2 J T J (4)

when t ∈ [nT, nT + τ), and

C
t0D

q
t V ≤ β1V + ζ−1

2 J T J (5)

when t ∈ [nT + τ, (n + 1)T ).
Then, the authors claim that step (1), (2), (3), (4),

(5) and (6) of Theorem 1 can be drawn according to
Lemma 4 in [1]. Let us analyze the proof process and
the conclusion in Laplace domain and time domain,
respectively.

2.1 Laplace domain analysis

From function (24) in [1], we can see t0 = 0. Then, let
us analyze the proof processes step by step according
to Laplace transform and inverse Laplace transform.

(1) When t ∈ [0, τ ),

C
0 D

q
t V ≤ −α1V + ζ−1

2 J T J. (6)

There exists a nonnegative function ξ1(t) satisfying

C
0 D

q
t V + ξ1(t) = −α1V + ζ−1

2 J T J (7)

Making the Laplace transform,

sqV (s) − sq−1V (0) + ξ1(s) = −α1V (s) + ζ−1
2 J T J

s
(8)

By the inverse Laplace transform, we can get

V (τ ) ≤ V (0)Eq(−α1t
q ) + ζ−1

2 J T J tq Eq,q+1(−α1t
q)

(9)

(2) When t ∈ [τ, T ),

C
0 D

q
t V ≤ β1V + ζ−1

2 J T J. (10)

There also exists nonnegative functions ξ2(t) satis-
fying

C
0 D

q
t V + ξ2(t) = β1V + ζ−1

2 J T J. (11)

According to function (7) and (11), we have

{ C
0 D

q
t V (t) = −α1V (t) − ξ1(t) + ζ−1

2 J T J, t ∈ [0, τ )
C
0 D

q
t V (t) = β1V (t) − ξ2(t) + ζ−1

2 J T J, t ∈ [τ, T )

(12)

Define u(t) as

u(t) =
{
0, t < 0
1, t ≥ 0

(13)

and function (12) can be expressed as

C
0 D

q
t V (t) = (−α1V (t) − ξ1(t)

+ ζ−1
2 J T J )(u(t) − u(t − τ))

+ (β1V (t) − ξ2(t)

+ ζ−1
2 J T J )u(t − τ)

(14)

Making the Laplace transform ,

sqV (s) − sq−1V (0) = £[(−α1V (t) − ξ1(t)

+ ζ−1
2 J T J )(u(t) − u(t − τ))]

+ £[(β1V (t) − ξ2(t) + ζ−1
2 J T J )u(t − τ)]

(15)

Obviously, the conclusion V (t) ≤ V (τ )Eq(β1(t −
τ)q) + ζ−1

2 J T J (t − τ)q Eq,q+1(β1(t − τ)q) (formula
(26) in [1]) cannot be drawn from formula (15) when
t ∈ [τ, T ).

Similarly, the conclusions in step (3), (4), (5) and
(6) of Theorem 1 cannot also be directly drawn from
Lemma 4 in [1].

We can also further analyze the incorrectness of the
proof process of Theorem 1 in [1] in time domain.
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2.2 Time-domain analysis

According to (20) and (21) in [1], we can get

C
t0D

q
t V (t) ≤

n∑
j=0

(−α1V (t)

+ ζ−1
2 J T J )(u(t − jT )

− u(t − jT − τ))

+
n∑
j=0

(β1V (t)

+ ζ−1
2 J T J )(u(t − jT − τ)

− u(t − ( j + 1)T )).

(16)

There must exist nonnegative functions ξ j1(t) and
ξ j2(t) ( j = 0, 1, 2, · · · , n) satisfying

C
t0D

q
t V (t) =

n∑
j=0

(−α1V − ξ j1(t)

+ ζ−1
2 J T J )(u(t − jT ) − u(t − jT − τ))

+
n∑
j=0

(β1V (t) − ξ j2(t)

+ ζ−1
2 J T J )(u(t − jT − τ) − u(t − ( j + 1)T )).

(17)

(1) when t ∈ [0, τ ), it gets:

C
0 D

q
t V (t) = (−α1V (t) − ξ01(t) + ζ−1

2 J T J ) (18)

According to Lemma 4 in [1], it yields

V (t) ≤ V (0)Eq(−α1t
q ) + ζ−1

2 J T J tq Eq,q+1(−α1t
q)

(19)

Especially,

V (τ ) ≤ V (0)Eq(−α1τ
q ) + ζ−1

2 J T Jτ q Eq,q+1(−α1τ
q )

(20)

(2) when t ∈ [τ, T ), we can get

C
0 D

q
t V (t) = (−α1V (t) − ξ01(t)

+ ζ−1
2 J T J )(u(t) − u(t − τ))

+ (β1V (t) − ξ02(t) + ζ−1
2 J T J )u(t − τ)

(21)

According to fractional integral, we get

V (t) = V (0) + 1

Γ (q)
×

∫ t

0
(t − η)q−1(C0 D

q
ηV (η))dη

= V (0) + 1

Γ (q)
tq−1 ∗ (C0 D

q
t V (t))

= V (0) + 1

Γ (q)
tq−1 ∗ (−α1V (t) − ξ01(t)

+ ζ−1
2 J T J )(u(t) − u(t − τ))

+ 1

Γ (q)
tq−1 ∗ (β1V (t) − ξ02(t)

+ ζ−1
2 J T J )u(t − τ)

(22)

where symbol ∗ represents convolution operation.
Define V (τ ) as

V (τ ) = V (0) + 1

Γ (q)

×
∫ τ

0
(τ − η)q−1(−α1V (η) − ξ01(η)

+ ζ−1
2 J T J )dη

(23)

Although the length of the signal (−α1V (t) −
ξ01(t) + ζ−1

2 J T J )(u(t) − u(t − τ)) is τ , the length
of tq−1 ∗ (−α1V − ξ01(t)+ ζ−1

2 J T J )(u(t)−u(t − τ))

is infinite according to the rule of convolution opera-
tion.

Obviously,

1

Γ (q)
×

∫ t

0
(t − η)q−1(−α1V (η) − ξ01(η)

+ ζ−1
2 J T J )(u(η) − u(η − τ))dη

�= 1

Γ (q)
×

∫ τ

0
(τ − η)q−1(−α1V (η)

− ξ01(η) + ζ−1
2 J T J )dη = V (τ ) (24)

when t > τ .
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Then, we can get

V (t) = V (0) + 1

Γ (q)
×

∫ t

0
(t − η)q−1(−α1V (η)

− ξ01(η)

+ ζ−1
2 J T J )(u(η) − u(η − τ)dη

+ 1

Γ (q)
×

∫ t

0
(t − η)q−1(β1V (η) − ξ02(η)

+ ζ−1
2 J T J )u(η − τ)dη

�= V (0) + 1

Γ (q)
×

∫ τ

0
(τ − η)q−1(−α1V (η)

− ξ01(η) + ζ−1
2 J T J )(u(η) − u(η − τ))dη

+ 1

Γ (q)
×

∫ t

0
(t − η)q−1(β1V − ξ02(η)

+ ζ−1
2 J T J )u(η − τ)dη

(25)

It shows that V (t) is affected by the history process of
before time τ when t > τ .

That is to say

V (t) �= V (τ ) + 1

Γ (q)
×

∫ t

0
(t − η)q−1(β1V (η)

− ξ01(η) + ζ−1
2 J T J )(u(η) − u(η − τ))dη

(26)

Obviously, we cannot directly get the following con-
clusion

V (t) ≤ V (τ )Eq(β1(t − τ)q)

+ ζ−1
2 J T J (t − τ)q Eq,q+1(β1(t − τ)q)

(27)

even though ξ02(t) ≥ 0.
(3) when t ∈ [T, T + τ), we have

C
0 D

q
t V (t) = (−α1V (t) − ξ01(t)

+ ζ−1
2 J T J )(u(t) − u(t − τ))

+ (β1V (t) − ξ02(t)

+ ζ−1
2 J T J )(u(t − τ) − u(t − T ))

+ (−α1V − ξ11(t) + ζ−1
2 J T J )u(t − T ) (28)

Take fractional integral and get

V (t) = V (0) + 1

Γ (q)

×
∫ t

0
(t − η)q−1(C0 D

q
ηV (η))dη

= V (0) + 1

Γ (q)
tq−1 ∗ (C0 D

q
t V (t))

= V (0) + 1

Γ (q)
tq−1 ∗ (−α1V (t) − ξ01(t)

+ ζ−1
2 J T J )(u(t) − u(t − τ))

+ 1

Γ (q)
tq−1 ∗ (β1V (t) − ξ02(t)

+ ζ−1
2 J T J )(u(t − τ) − u(t − T ))

+ 1

Γ (q)
tq−1 ∗ (−α1V (t)

− ξ11(t) + ζ−1
2 J T J )u(t − T )

(29)

Similar to step (2), we have

1

Γ (q)
×

∫ t

0
(t − η)q−1(−α1V (η)

− ξ01(η) + ζ−1
2 J T J )(u(η) − u(η − τ))dη

�= 1

Γ (q)
×

∫ T

0
(T − η)q−1(−α1V (η)

− ξ01(η) + ζ−1
2 J T J )(u(η) − u(η − τ))dη

(30)

and

1

Γ (q)
×

∫ t

0
(t − η)q−1(β1V (η)

− ξ02(η) + ζ−1
2 J T J )(u(η − τ) − u(η − T ))dη

�= 1

Γ (q)
×

∫ T

0
(T − η)q−1(β1V (η)

− ξ02(η) + ζ−1
2 J T J )(u(η − τ) − u(η − T ))dη

(31)

when t > T .
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Then, we can draw

V (t) �= V (T ) + 1

Γ (q)
×

∫ t

T
(t − η)q−1(−α1V (η)

− ξ11(η) + ζ−1
2 J T J )u(η − T )dη

(32)

The following conclusion cannot also be directly
drawn

V (t) ≤ V (T )Eq(−α1(t − T )q)

+ ζ−1
2 J T J (t − T )q Eq,q+1

(−α1(t − T )q)

(33)

Similarly, the following conclusions cannot also
hold

(i) V (t) ≤ V (T + τ)Eq(β1(t − T − τ)q) +
ζ−1
2 J T J (t − T − τ)q Eq,q+1(β1(t − T − τ))q)

when t ∈ [T + τ, 2T ],
(ii) V (t) ≤ V (nT )Eq(−α1(t−nT )q)+ζ−1

2 J T J (t−
nT )q Eq,q+1(−α1(t−nT )q)when t ∈ [nT, nT+
τ ],

(iii) V (t) ≤ V (nT + τ)Eq(β1(t − nT − τ)q) +
ζ−1
2 J T J (t −nT −τ)q Eq,q+1(β1(t −nT −τ))q)

when t ∈ [nT + τ, (n + 1)T ].
The analysis results in Laplace domain and time

domain all show that the conclusions in [1] are incor-
rect.

3 Counterexamples

To illustrate these errors, we take some counterexam-
ples to verify our analysis.

Example 1 Suppose x1(t), x2(t) ∈ R satisfying

C
0 D

0.4
t x1(t) =

{−3x1(t), 0 < t ≤ 1
0, t > 1

d

dt
x2(t) =

{−3x2(t), 0 < t ≤ 1
0, t > 1

(34)

Set the initial values as x1(0) = 1, x2(0) = 1 and take
numerical simulation. The simulation result is shown
in Fig. 1. Numerical result shows that x1(t) �= x1(1)
and x2(t) = x2(1)when t > 1. From Fig. 1, we can see
that the length of C0 D

0.4
t x1(t) is 1 but the length of x1(t)

is infinite, which is different from integer calculus.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

x
1
(t)

x
2
(t)

Fig. 1 x1(t) and V2(t) in example (1) with time t

Example 2 Suppose x1(t), x2(t), x3(t) ∈ R satisfying

C
0 D

0.15
t x1(t) =

{−0.8x1(t), 0 < t ≤ 1
0.4x1(t), t > 1

C
0 D

0.15
t x2(t) =

{
0.8x2(t), 0 < t ≤ 1
0.4x2(t), t > 1

x23 (t) = 4E0.15(0.8 ∗ (t − 1)0.15), t > 1

(35)

Constructing positive functions as: V1(t) = x21 (t)
, V2(t) = x22 (t) and V3(t) = x23 (t), according to
C
0 D

0.15
t V1(t) ≤ 2x1(t)C0 D

0.15
t x1(t) and C

0 D
0.15
t V2(t) ≤

2x2(t)C0 D
0.15
t x2(t), we have

C
0 D

0.15
t V1(t) ≤

{−1.6V1(t), 0 < t ≤ 1
0.8V1(t), t > 1

C
0 D

0.15
t V2(t) ≤

{
1.6V2(t), 0 < t ≤ 1
0.8V2(t), t > 1

(36)

Set the initial values as x1(0) = 2
E0.15((−0.8)∗10.15) ,

x2(0) = 2
E0.15((0.8)∗10.15) and we can get V1(1) = 4,

V2(1) = 4, and V3(1) = 4. According to the proof
process of Theorem 1 in [1], we can get V1(t) < V3(t)
and V2(t) < V3(t) when t > 1. But the numerical
simulation (shown in Fig. 2) shows that V1(t) > V3(t)
and V2(t) < V3(t) when t > 1. Obviously, the proof
process of Theorem 1 in [1] is incorrect.

Example 3 According to function (4) in [1], we sup-
pose x(t) ∈ R, q = 0.3,t0 = 0, A = 2, f (x(t)) =

123
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Fig. 2 V1(t), V2(t) and
V3(t) in example (2) with
time t
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Fig. 3 V (t) in example (3)
with time t
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2.1x(t)u(t − 2), J = 0 and get

C
0 D

0.3
t x(t) = −2x(t) + 2.1x(t)u(t − 2) + μ(x(t))

(37)

where μ(x(t)) is an intermittent controller.

Generally, the beginning time of control input is uncer-
tain.We suppose that system (37) is controlled via inter-
mittent control when t > 2 and define the intermittent
control as

μ(x(t)) =
⎧⎨
⎩
0, 0 < t < 2
−2x(t), 2 + 0.4n ≤ t < 2 + 0.4n + 0.2
0, 2 + 0.4n + 0.2 ≤ t < 2 + 0.4n + 0.4

n = 0, 1, 2, 3, . . . (38)

then, we can get the controlled system as

C
0 D

0.3
t x(t) =

⎧⎨
⎩

−2x(t), 0 < t < 2
−1.9x(t), 2 + 0.4n ≤ t < 2 + 0.4n + 0.2
0.1x(t), 2 + 0.4n + 0.2 ≤ t < 2 + 0.4n + 0.2

n = 0, 1, 2, 3, · · · (39)

According to Theorem 1 in [1], we can get A =
−2, K = −2. Suppose P = 1, ζ1 = 2.1, ζ2 = 0,
α1 = 3.8, β1 = 0.2 and get

(1) ‖ f (x1(t)) − f (x2(t))‖ ≤ 2.1‖x1(t) − x2(t)‖, we
can set l f = 2.1.

(2) When 2 + 0.4n ≤ t < 2 + 0.4n + 0.2, AT P +
KT P+PA+PK+ζ1P2+ζ−1

1 l2f +ζ2P2+α1P ≤
0,

(3) When 2 + 0.4n + 0.2 ≤ t < 2 + 0.4n + 0.4 ,
AT P + PA + ζ1P2 + ζ−1

1 l2f + ζ2P2 − β1P ≤ 0,

(4) E0.3(−3.8 ∗ 0.20.3)E0.3(0.2 ∗ 0.20.3) = 0.9929 ≤
1.
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Obviously, example 3 satisfies the conditions ofThe-
orem in [1]. Construct a positive function as: V (t) =
x2(t) and set the initial value as x(0) = 6. We can get
V (2 + 0.4) ≤ V (2)E0.3((−3.8) ∗ 0.20.3)E0.3((0.2) ∗
0.20.3) ≤ V (2) according to the proof process of Theo-
rem1 in [1]. Similarly,we can getV (2) ≥ V (2+0.4) ≥
V (2 + 0.8) ≥ · · · .

We take numerical simulation at the same condition
and the simulation result is shown in Fig. 3. Figure 3
shows that V (2) ≤ V (2 + 0.4) ≤ V (2 + 0.8) ≤ · · · ,
which contradicts with the theoretical analysis accord-
ing to Theorem 1 [1].

Figures 1, 2 and 3 show that fractional order system
is related to historical process as the memory prop-
erty of fractional calculus. The numerical results show
that the conclusion of Theorem 1 in [1] is incorrect.
Obviously, the conclusion in Theorem 2 in [1] is also
incorrect.

4 Conclusion

As mentioned above, we have analyzed the prove pro-
cess and the conclusion of Theorem 1 in [1] are incor-
rect. It is necessary to point out these errors to avoid
misleading.
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