
Nonlinear Dyn (2020) 101:1365–1381
https://doi.org/10.1007/s11071-020-05798-x

ORIGINAL PAPER

A predictor–corrector time integration algorithm for
dynamic analysis of nonlinear systems

Salvatore Lopez

Received: 16 January 2020 / Accepted: 30 June 2020 / Published online: 15 July 2020
© Springer Nature B.V. 2020

Abstract This paper presents a step-by-step time
integration algorithm for efficiently solving second-
order nonlinear dynamicproblems.Themethodemploys
the rewriting of motion as two sets of first-order dif-
ferential equations. The interpolation of the relevant
quantities is achieved by a particular quadratic poli-
nomial expression for the velocities and forces and is
defined by values at the boundaries of the time step.
Then the time definite integrals of both first-order ordi-
nary differential equations define the numerical rela-
tions in the step. An accurate extrapolation predictor
and an adaptive time stepping procedure are used as
the time predictor–corrector method.

Keywords Direct time integrations · Predictor–
corrector schemes · Adaptive time stepping · Stability
and accuracy

1 Introduction

The numerical simulation of the behaviour of nonlin-
ear systems by direct integration of the motion equa-
tion is a current problem in computational dynamics.
In the worst cases, N-body problems or finite element
models resulting from the spatial discretization often
lead to the time integration of stiff ordinary differential
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equations. This requirement is almost always carried
out by explicit or implicit step-by-step approaches [1–
6]. The computational approach by explicit schemes
is very simple but numerical instability is an issue.
As regards this a very small time step should be uti-
lized for analysing the considered stiff problems. In this
respect, fewer problems are encountered in the implicit
approaches. In these the extrapolation (predictor phase)
is followed by an iterative scheme (corrector phase)
such as the Newton–Raphson iteration for the solution
of the balance equation. Some of the first implicit time
integration procedures used were the Houbolt, New-
mark, and Wilson methods [4,7]. Of these, the New-
mark method was soon recognized to be most effec-
tive and is now widely used. In fact, in the trapezoidal
rule version this method is second-order accurate and
unconditionally stable in the linear analysis. However,
in nonlinear analyses the stability of such a method is
not assured. So research has focused on establishing
more effective time integration schemes for nonlinear
cases.

Schemes that obtain stable solutions can be carried
out by requiring the conservation or decrease in the
total energy of the Hamiltonian system within each
time step. Such energy conserving algorithms have
initially appeared in elastodynamics in the works [8]
and [9]. Subsequently, schemes that preserve energy
as well as linear and angular momentum in the time
interval have been introduced in [10] (the energy-
momentum method). In [11] a modification of the
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energy-momentum method which allows us to include
numerical dissipation is introduced. These conserva-
tion properties are enforced into the equation of motion
via Lagrange multipliers. Better computational charac-
teristics are achieved by the use of adaptive time step-
ping procedures [12] and controllable numerical dissi-
pation [13,14]. More recently, schemes based on time
finite element discretizations have been carried out (see
[15,16] and related bibliography). In these the New-
mark family formulas can be recovered by the choice
of representative constants and the algorithmic energy
conservation is implicitly preserved. Finally, it seems
that an appropriate representation and discretization of
the motion equation lead to an appreciable difference
in the time integration schemes with regard to stability
[17–20].

An essential feature for a time integration scheme,
as existing literature suggests (see for example [21]), is
(at least) second-order accuracy. It is also desirable that
the algorithm is based on a single-step scheme. Such an
attribute is achieved if the solution of the motion equa-
tion at the current time depends only on the solution at
the previous time step. One-step algorithms, however,
may be cast into a spectrally equivalent linear multistep
form. Finally, efficiency and robustness is obtained if
additional variables, like Lagrange multipliers, are not
involved in the algorithm and themethod has no param-
eters which need to be chosen or adjusted by the ana-
lyst depending on the specific case. In this respect in
[22–24] an effective implicit time integration method,
referred to as the Bathe method, was introduced for
linear and nonlinear analyses. The procedure uses a
single-step, but two sub-steps where the trapezoidal
rule is used in the first sub-steps and the three-points
backward differential formula is employed in the sec-
ond sub-steps.

An alternative approach to the time integration for-
mulation is based on the rewriting of motion as two
sets of first-order differential equations. One set spec-
ifies the motion in terms of the time derivative of the
momenta and another defines the momenta in terms
of the time derivative of the displacements. In this
way energy and momentum conservation laws can be
imposed in a simple manner while temporal compati-
bility between velocity and displacements can be prop-
erly relaxed [25–28].

In this paper the time definite integrals of both first-
order ordinary differential equations define the numeri-
cal relations in the step. A quadratic polinomial expres-

sion for the velocity and internal and external forces is
defined by values at the boundaries of the time step. In
particular, related values are taken at the beginning of
each step while values and time derivative are taken at
the end of the step. Such a choice, used together with
a accurate extrapolation predictor and an adaptive time
stepping procedures, gives an effective time step-by-
step procedure. The performed tests shown that stable
and accurate solutions are obtained even for stiff non-
linear problems with reduced period elongation and
high-frequency algorithmic damping in the analysis.
Finally, the increase in computational effort due to the
evaluation of the first derivative of the internal force
vector, and consequent evaluation of the second deriva-
tive in the iteration matrix definition, is balanced by the
increase in the range of stability of the time integration
process and by the reduction in the number of Newton–
Raphson iterations in the steps.

The paper is set out in the following way. In Sect.
2 we describe the temporal discretization that defines
the current widely used (Newmark, Bathe) and the pre-
sented direct, implicit, single-step itegration schemes.
The definition of related nonlinear problems is also
given. In Sect. 3 we discuss on the stability and accu-
racy of the presented scheme. Section 4 contains the
description of the adaptive time predictor–corrector
solution algorithm. N-body and finite element struc-
tural models are formulated and analysed to compare
the described solution methods in Sect. 5. Final con-
clusions are drawn in Sect. 6.

2 Approximation in the time domain

The semidiscrete formulation of the equation ofmotion
can be written, after spatial discretization with u ∈ R

N

unknown parameters vector and inclusion of boundary
conditions, in the form

Mu,t t (t) + Cu,t (t) + f(u(t)) − p(t) = 0,

u(0) = u∗, u,t (0) = u∗
,t , (1)

where u,t t denotes the acceleration, while u∗ and u∗
,t

represent the initial displacements and initial velocities,
respectively. In (1) t is the time coordinate, Mu,t t is the
inertia force, Cu,t the damping force, f(u) the internal
force and p the external force. We refer to dynamic
systems with V (u(x, t)) internal energy, T (u,t (x, t))
kinetic energy and L(u(x, t), t) external work where x

123



A predictor–corrector time integration algorithm 1367

is the spatial coordinate. Then forces are defined as

Mu,t t (t) = d

dt

∂T (u,t (t))

∂u,t
, f(u(t)) = ∂V (u(t))

∂u
,

p(t) = ∂L(u(t), t)

∂u
. (2)

For the time integration of the semidiscrete initial
value problem (1)we refer to the current time stepΔt =
t̃ − t̄ . In the following we refer with the accent mark
◦̄ and ◦̃ quantities defined in the initial and the final
time of the step, respectively. By assuming the state
variables ū, ū,t , ū,t t , as known and making the external
forces p(t) for all t , the time integration is restricted to
the successive solution of the state variables at the end
of each step ũ, ũ,t , ũ,t t .

2.1 Newmark average acceleration scheme

In order to realize the step-by-step integration, the set of
variables is reduced to the ũ displacement parameters
vector alone by the Newmark approximations

ũ,t = γ

βΔt
(ũ − ū) +

(
1 − γ

β

)
ū,t +

(
1 − γ

2β

)
Δt ū,t t , (3)

ũ,t t = 1

βΔt2
(ũ − ū) − 1

βΔt
ū,t +

(
1 − 1

2β

)
ū,t t . (4)

Here we use the average acceleration scheme by adopt-
ing γ = 1/2 andβ = 1/4. Such a choicemakes expres-
sions (3) and (4) second order accurate and the related
method unconditionally stable in linear problems. By
inserting relations (3) and (4) in Eq. (1) written at the t̃
time, we arrive at the nonlinear equation

2

Δt

( 2

Δt
M + C

)
ũ + f(ũ) − M

( 4

Δt2
ū + 4

Δt
ū,t + ū,t t

)

−C
( 2

Δt
ū + ū,t

)
− p̃ = 0 (5)

in the unknown ũ vector.

2.2 Bathe two equal spaced sub-steps scheme

In the Bathe integration scheme we calculate the
unknown displacements, velocities, and accelerations
at time t̃ = t̄ + Δt by considering the time step Δt
to consist of two sub-steps. Generally, the sub-step
sizes are γΔt and (1 − γ )Δt for the first and sec-
ond sub-steps, respectively. By using the trapezoidal

rule over the first time interval γΔt , we have the fol-
lowing assumptions on velocity and acceleration at the
intermediate t̂ = t̄ + γΔt time

û,t = 2

γΔt
(û − ū) − ū,t , û,t t = 4

γ 2Δt2
(û − ū)

− 4

γΔt
ū,t − ū,t t . (6)

With the (6) assuptions the motion Eq. (1) becomes
an algebraic nonlinear equation in the û unknown vec-
tor. Once the displacements û have been computed, the
velocities û,t and accelerations û,t t are obtained from
the relations given above in (6). Then, in the second
sub-step the following Euler 3-point backward rule is
utilized

ũ,t = c1ū + c2û + c3ũ, ũ,t t = c1ū,t + c2û,t + c3ũ,t , (7)

where

c1 = 1 − γ

γΔt
, c2 = −1

(1 − γ )γΔt
, c3 = 2 − γ

(1 − γ )Δt
. (8)

The equally spaced γ = 1/2 sub-step choice
seems to provide good computational characteristics
for a large class of nonlinear problems [29,30] and is
adopted here. Then, by inserting relations (6) in the
motion equation at the t̂ time, we have

4

Δt

( 4

Δt
M + C

)
û + f(û) − M

( 16

Δt2
ū + 8

Δt
ū,t + ū,t t

)

−C
( 4

Δt
ū + ū,t

)
− p̂ = 0. (9)

After that, the time step is completed by computing the
solution of the motion equation at the t̃ final step time:

3

Δt

( 3

Δt
M + C

)
ũ + f(ũ) + − 1

Δt
M

( 12

Δt
û + 4û,t − 3

Δt
ū − ū,t

)

− 1

Δt
C(4û − ū) − p̃ = 0. (10)

Equation (10) is as usual obtained by inserting (7) in
(1).

2.3 An integration of first order momenta and
equilibrium equations

An equivalent statement of motion Eq. (1) in terms of
2N first order equations may be written in the form

u,t (t) = v(t), (11)

Mv,t (t) + Cu,t (t) = g(t) = p(t) − f(u(t)). (12)
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The equations ofmotion in the first-order form (11) and
(12) are in agreement with Hamilton’s canonical equa-
tions where the system motion is described by means
of the 2N paired quantities (u, Mv) which constitute
the phase space. In the current time step from t̄ to
t̃ = t̄ + Δt we assume the quadratic approximation
v(t) = v0 + v1t + v2t2 of the velocity vector with

v(t̄) = v̄, v(t̃) = ṽ, v,t (t̃) = ã, (13)

where definition

ã = M−1(p̃ − f(ũ) − Cṽ) (14)

is used. Then integration of Eq. (11) in the step leads
to the following relation between the displacements ũ
and the velocities ṽ at the current t̃ time:

ũ − ū =
∫ t̄+Δt

t̄
u,t (t)dt =

∫ t̄+Δt

t̄
v(t)dt

= 1

3
Δt v̄ + 2

3
Δt ṽ − 1

6
Δt2ã. (15)

Likewise the quadratic approximation g(t) = g0 +
g1t + g2t2 of the force vector with

g(t̄) = p̄ − f(ū) = ḡ, g(t̃) = p̃ − f(ũ) = g̃(ũ),

g,t (t̃) = p̃,t − f,u(ũ)ṽ = g̃,t (ũ, ṽ) (16)

is assumed. By integrating in the step and by using
expressions (16) it follows that
∫ t̄+Δt

t̄
g(t)dt = 1

3
Δt ḡ + 2

3
Δt g̃(ũ) − 1

6
Δt2g̃,t (ũ, ṽ), (17)

while∫ t̄+Δt

t̄
Mv,t (t)dt = M(ṽ − v̄),

∫ t̄+Δt

t̄
Cu,t (t)dt = C(ũ − ū). (18)

Therefore Eq. (12) becomes a nonlinear equation
in the ũ and ṽ unknown vectors. Besides, by (15) the
following relation of the ṽ vector in function of the ũ
vector resuts:

Dṽ = ũ − ū − 1

3
Δt v̄ + 1

6
Δt2M−1(p̃ − f(ũ)) = q̃(ũ), (19)

where

D = 1

3
Δt

(
2I + 1

2
ΔtM−1C

)
. (20)

Then, by defining ṽD(ũ) = D−1q̃(ũ), the nonlinear
motion equation is written as

MṽD(ũ) + Cũ − 2

3
Δt g̃(ũ) + 1

6
Δt2g̃,t (ũ, ṽD(ũ))

−Mv̄ − Cū − 1

3
Δt ḡ = 0. (21)

for ũ ∈ R
N alone.

3 Stability and accuracy of the presented scheme

To investigate and compare the properties of stability
and accuracy of the described time integration schemes
we refer mainly to [4,31]. We consider the homo-
geneous undamped single-degree-of-freedom model
equation

u,t t − ωu = 0, (22)

in which ω is the free vibration frequency and T =
2π/ω the relatedperiod.Equation (22) has an analytical
solution of the form

ua = c1sin(ωt) + c2cos(ωt), (23)

where the constants of integration c1 and c2 are deter-
mined by the given initial conditions. In the described
numerical integration techniques, displacement, veloc-
ity and acceleration at the t̃ time can be expressed in
terms of their values at the t̄ time as

r̃ = Ar̄ (24)

in which rT = {u Δtv Δt2a} and A is the amplifi-
cation matrix. The explicit definition of the A matrix
for the Newmark and the Bathe schemes can be found
in the cited literature while for the presented scheme it
can be computed by referring to the application of the
expressions in Sect. 2.3 to the linear Eq. (22):

ũ − ū − 1

3

τ

ω
v̄ − 2

3

τ

ω
ṽ + 1

6

τ 2

ω2 ã = 0, (25)

ṽ − v̄ + 1

3
τωū + 2

3
τωũ − 1

6
τ 2ṽ = 0, (26)

ω2ũ + ã = 0, (27)

where τ = ωΔt . Then (24) gives:

A = 1

ωτ(τ 4 + 4τ 2 + 36)⎡
⎣

−2τ(7ωτ 2 − 18ω) −2ω(τ 3 − 18τ) 0
2τ 2(ωτ 3 − 18ωτ) 2ωτ(−7τ 2 + 18) 0
2τ 3(7ωτ 2 − 18ω) 2ωτ 2(τ 3 − 18τ) 0

⎤
⎦ .(28)

The stability and accuracyof the integration schemes
are determined from the spectral properties of the A
matrix. In the following we refer to the invariants of A:
α1 = 1/2 trace A, α2 = sum of principal minors of A,
α3 = determinant A. By the definition (28) it follows
that α3 = 0 and α2

1 < α2. Therefore

λ1,2 = α1 ±
√

α2
1 − α2 = α

1
2
2 [cos(φ) ± i sin(φ)],

tan(φ) = ±γ2

γ1
, (29)
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A predictor–corrector time integration algorithm 1369

is the couple of complex conjugates (λ3 = 0) eigenval-

ues of the A matrix. In (29) we define γ2 =
√

α2 − α2
1

and γ1 = α1. We can show that the general solution of
the difference Eq. (24) is

un = ρn
p(ĉ1cos(ω̂tn) + ĉ2sin(ω̂tn)), (30)

where ρp =
√

γ 2
1 + γ 2

2 , tn = nΔt , ω̂ = φ/Δt and ĉ1,

ĉ2 are constants determined by the initial conditions.
Measures of the relative accuracy can then be obtained
by comparison between the (23) analytical solution and
the (30) numerical solution. In particular, we define the
period elongation (PE) and the amplitude decay (AD)
by

PE = T̂ − T

T
= ωΔt − φ

φ
,

AD = ρn
p − ρ

n+T̂ /Δt
p

ρn
p

= 1 − ρ
2π/φ
p , (31)

where T̂ = 2π/ω̂. Likewise we can observe that stabil-
ity of the numerical solution is achieved if the spectral
radius ρ(A) = max{|λ1|, |λ2|, |λ3|} of matrix A is less
than or equal to 1.

To represent the behaviour of the above defined sta-
bility and accuracy measures we choose a sufficiently
small dτ increment of τ . Then, for each τn = n dτ

point the An = A(τ = 2πτn) matrix and related
λn = λnRe ± i λnIm complex conjugates eigenvalues
are computed. By referring to the discrete values

φn = arctan
(λnIm

λnRe

)
, ρpn =

√
λ2nRe + λ2nIm, (32)

we can evaluate

PEn = 100
2πτn − φn

φn
, ADn = 100[1 − ρ

2π/φn
pn ].

(33)

In (33) PEn and ADn are the percentage period elon-
gation and percentage amplitude decay, respectively.
Finally, by the spectral radius ρpn computed in (32) the
stability of the scheme is checked. The curves obtained
for increasing values of the relative ωΔt time step
are given in Figs. 1 and 2. The (HFDI) fourth degree
integration of Hamilton’s canonical equations scheme
can be seen to perform well when compared to the
Newmark and Bathe schemes. In particular, the HFDI
scheme provides a very small period elongation with
an unconditional stable condition and a good annihi-
lation attribute of the high-frequency mode responses.

Fig. 1 Spectral radii of approximation operators

Fig. 2 Percentage period elongations and amplitude decays

On the other hand, compared with the other methods,
the presented method shows a larger amplitude decay
effect.

4 Adaptive time predictor–corrector solution
algorithm

Equation (5) for the Newmark scheme, Eq. (9) (or (10))
for the standard Bathe scheme and (21) for the pre-
sented scheme represent a nonlinear system of alge-
braic equations of the type

F(un+1) = 0, n = 0, 1, . . . (34)
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defined at the tn+1 = tn + Δtn+1 = t̃ time with the
un+1 = ũ (or û at t̂) unknown vector. The velocities
and accelerations at the end of the time step can then
be obtained, for the above mentioned schemes, by rela-
tions (3) and (4), (7), (19) and (14) respectively. The
Newton–Rapson iterative method can be used as cor-
rector to solve system (34) by linearization

F
(

u(k+1)
n+1

)
= F

(
u(k)
n+1

)
+

∂F
(

u(k)
n+1

)

∂un+1

(
u(k+1)
n+1 − u(k)

n+1

)

+O
(
Δt2n

)
= 0, (35)

k = 0, 1, . . ..
The same initialization formula is used as predic-

tor for all adopted integration schemes. When n =
0 the iterative process is initialized by the formula
u(0)
1 = u∗ + Δt0u∗

,t . When n > 0 the initializa-
tion is performed by the fourth order extrapolation
u(0)
n+1(t) = ∑4

i=0 cn+1,i t i with coefficient vectors ci
determined by impositions:

u(0)
n+1(−Δtn) = un−1, u(0)

n+1(0) = un,

d

dt
u(0)
n+1(−Δtn) = vn−1,

d

dt
u(0)
n+1(0) = vn,

d2

dt2
u(0)
n+1(0) = an . (36)

Note that the u(0)
n+1(t) extrapolation defined by (36) has

the same approximation of that defined in the proposed
2.3 scheme for displacements. Finally,

u(0)
n+1 = u(0)

n+1(Δtn+1) (37)

represents the predictor point for the n + 1 step of
the solution algorithm. Such an accurate extrapola-
tion is effective for the proposed algorithm because the
scheme described in Sect. 2.3 has been shown to pro-
vide very accurate velocities and accelerations at the
solution points. Furthermore, tests show that the pre-
sented method takes advantage in computational per-
formance of the choice of an accurate extrapolation for-
mula, whereas the Newmark and Bathe methods seem
to be insensitive to such a choice.

By choosing the fixed tolerance η = 10−8, the for-
mula

‖ u(k+1)
n+1 − u(k)

n+1 ‖
‖ u(k+1)

n+1 ‖
≤ η (38)

is adopted as convergence criterion for the k-thNewton–
Raphson iteration. The length Δtn+1 = μn+1Δtn of

the extrapolation parameter in the n + 1-th predictor–
corrector step is chosen as a function of the iterations
N (i t)
n performed in the previous corrector step and a

N̄ (i t) target iteration count. Estimate

μn+1 = μn

[
N̄ (i t)

N (i t)
n

]1/2
(39)

is adopted to save computational costs in the analy-
sis because high μ(n) values can be reached. Evalua-
tion (39) also takes into account the smoothness of the
solution and then leads to an adaptive time stepping
procedure that improves the accuracy of the approx-
imation. Finally, if divergence in corrector iterations
occurs a newpredictor–corrector step is performedwith
the length μ(k) halved.

In the Δtn+1 time step, stable behavior of the time
integration method, in the absence of numerical dissi-
pation, is verified by referring to the condition

ΔEn+1 = Vn+1 − Vn + Tn+1 − Tn − ΔLn+1 = 0,(40)

as a sufficient stability condition in the nonlinear
dynamical schemes (see, e.g., [8] and [10]). In the fol-
lowing we refer to Wn = Vn + Tn for the sum of
the internal and the kinetic energies and we assume
that physical dissipation is not present. Equation (40)
expresses the conservation of theΔE total energy in the
step where ΔL symbolizes the work done by external
forces within the time step. Here we use the trapezoidal
rule to calculate the work of the external forces:

ΔLn+1 =
∫ tn+1

tn
uT
t (t)p(t)dt

= 1

2
(un+1 − un)(pn + pn+1). (41)

As regards consistency, in the numerical tests, accuracy
in the z quantity of interest is calculated by the mean-
square norm of the error εz according to

εz =

(∫ T
0

[
z(t) − z∗(t)

]T [
z(t) − z∗(t)

])1/2

(∫ T
0 z∗(t)T z∗(t)

)1/2 , (42)

where To is the chosen time of observation. In (42)
z∗(t) denotes the reference solution which has been
calculated with the Newmark algorithm and by using a
Δt = 10−4To constant time step. Integrals of expres-
sion (42) are computed by a sum on the steps carried
out in the analysis and by using the trapezoidal rule as
in (41) formula in theΔtn+1 step. Values of z∗(t) at the
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A predictor–corrector time integration algorithm 1371

Table 1 HFDI scheme: summary of computations for the current tn → tn+1 = tn + Δtn+1 time step

Initialization Repeat k-th Newton iteration Given un−1, un , vn−1, vn , an , and Δtn+1 = μn+1Δtn by (39)

Compute predictor u(0)
n+1 (37) by extrapolation (36)

Compute v(k)
D,n+1 = D−1q(u(k)

n+1) by (19) and (20) where ũ = u(k)
n+1

Compute g(k)
D,n+1 = − 2

3Δtn+1g(u(k)
n+1) + 1

6Δt2n+1g,t (u
(k)
n+1, vD,n+1)

Compute gD,n = −Mvn − Cun − 1
3Δtn+1gn

Assemble residual F(k) =Mv(k)
D,n+1+Cu(k)

n+1+g(k)
D,n+1+gD,n by (21)

Assemble tangent matrix dF(k) = F,u(u(k)
n+1)

Solve dF(k)Δu(k)
n+1 = −F(k)

Correct u(k+1)
n+1 = u(k)

n+1 + Δu(k)
n+1

Until criterion (38) is false solution at tn+1 u∗
n+1 = u(k)

n+1, v∗
n+1 = v(k)

D,n+1,

a∗
n+1 by (14) where ũ = u∗

n+1 and ṽ = v∗
n+1

tn and tn+1 time are detected as a linear interpolation
of the neighbouring reference solution points.

We note that in the (21) nonlinear equilibrium equa-
tion the time derivative p̃,t of the external force must
be computed. Of course, simple numerical approxi-
mations of such a derivative can be defined also for
discontinuity behaviour of p(t) in the t̃ time. Here, to
keep the integration scheme defined in the single step,
the p̃,t = (p(tn+1) − p(tn))/Δtn+1 approximation was
used. Finally, the computations carried out by the algo-
tithm to accomplish the n + 1 step by means of the
HFDI scheme are summarized in Table 1.

5 Numerical tests

Some numerical tests have been carried out with
the suggested algorithms. The described integration
algorithms resulting from Newmark, Bathe and pre-
sented HFDI equations have been compared. As stated,
predictor–corrector steps are characterized by the use
ofNewton–Raphsonmethod as correctorwith assigned
N̄ (i t) target iteration counts. Tables report the number
steps of predictor–corrector steps and the N (i t)

mv mean
value of the number of Newton–Raphson iterations in
the steps

N (it)
mv =

steps∑
i=1

N (it)
tot /steps. (43)

N (i t)
tot is the total number of iterations and tT the CPU

time (s) spent in the whole analysis. For the Bathe like

algorithm the N (i t)
tot value in (43) is the sum of the iter-

ations needed for convergence for the first and sec-
ond sub-step. In the case of divergence of the correc-
tor phase we mark one step in the steps count while
the number of Newton–Raphson iterations performed
are sum in the N (i t)

tot value. The Δtmv mean value of
the Δtn time integration steps used in the analysis is
also reported as a computational characteristic of the
adopted scheme.

Traversing the assigned To observation time is
adopted as the stopping criteria of the step-by-step anal-
ysis.Also, in the analysis there is amaximumnumber of
iterations N (i t)

max permitted in the corrector step. This is
done because the convergence of the iterations may not
occur or becomes very slow.We make N (i t)

max = 2N̄ (i t).
If the number of corrector iterations exceeds N (i t)

max we
treat this circumstance as divergence and initialize a
new corrector step as described in Sect. 4. Finally, the
initial Δt0 value in the extrapolation is chosen in such
a way that convergence of the first step is attained at
N̄ (i t) corrector iteration.

5.1 Motion of a dumbbell

The motion of a dumbbell in the two-dimensional
ambient space (x, y) is examined here. The dumbbell
is modelled as a two-body problem where additional
background material on the motion of a several parti-
cles system in a potential field can be found in stan-
dard books on classical mechanics, see e.g. [32]. By
referring to Fig. 3, we assume m1 = m2 = 1 with
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Fig. 3 Dumbell: initial configuration and problem definition

uT = {u1 v1 u2 v2}. The initial conditions are givenby
u∗T = {0 0 1 0} and u∗T

,t = {0 10 0 5}. The following
Leonard-Jones-type potential, which is often employed
inmolecular dynamic simulations, is assumed to define
the interaction of the two bodies:

V (r) = A

[(
σ

r

)5

−
(

σ

r

)3]
,

r = [(u2 − u1)
2 + (v2 − v1)

2] 12 . (44)

In (44) r is the distance between the position of the
centers of the two bodies. We make σ = (3/5)1/2,
such that r = r0 = 1 characterizes the internal force
free configuration. Accordingly, if r < 1, the resulting
force is repulsive, whereas r > 1 implies attraction of
the two bodies. We can refer to [15] and [20] for the
numerical instabilities which are introduced in the time
integration of such dynamic systems.

We investigate the quasi-rigid case related to A =
106. The integration process analyzes the behaviour
of the system for To = 2. Computational performances
are reported in Table 2 for each of described integration
schemes, unless it becomes unstable (div), and increas-
ing values of the N̄ (i t) target iteration counts. We note
that, due to a fast convergence of the Newton iterations,
in theHFDI procedure large increments ofΔtmv values
are achieved when small increments of N̄ i t are fixed.

To illustrate themotion, Fig. 4 contains a sequence of
configurations calculated by the considered algorithms.
An unstable behaviour of the Newmark scheme is
observed for the required N̄ (i t)=4.5 where Δtmv=0.26
results. This value is computed by referring to t from
0 to the beginning of the unphysical motion. Accurate
representations are obtained by the Bathe N̄ (i t)=2·4.5
(Δtmv=0.40) and the presented N̄ (i t)=3.3 (Δtmv=0.45)
algorithms, although a period elongation increase is
observed in the Bathe experimentations. Likewise, the
longitudinal stretch λ = (r − r0)/r0 is plotted versus
time in the Fig. 5. Of course high frequency are not

Fig. 4 Dumbell: sequence of configurations t =0..2; reference
solution by solid line

represented while the mean value is provided by the
algorithms. Finally, the increment of the total energy
(40) is shown in Fig. 6 where stable behaviour is repre-
sented by oscillations contained in the neighbourhood
of zero. A pronounced overshooting in the response is
also encountered in theBathe integration. The observed
increase of the increment of total energy in the pre-
sentedmethod, however, is limited also for long periods
of analysis. To showing this Fig. 7 reports the evolution
of the normalized increment of the total energyΔE/W
with To = 10 for several N̄ (i t) values.

5.2 Motion of a tetrahedra

In this example we consider the motion of a tetrahedra-
type structure in three-dimensional space analyzed in
[15]. The structure (see Fig. 8) is treated as 4-body
mi = 1, i = 1, . . . , 4 problem where the particles are
connected by means of nonlinear elastic springs. By
denoting with r i j the distance between the i th and the
j th particle, for defining the potential energy of the
elastic springs we make use of the Neo-Hooke-type
potential given by [33]:

V i j (r i j )= ki j

6

[
r i j

2+
(
2
r i j0
r i j

− 3

)
r i j

2

0

]
,

r i j =[(ui − u j )
2 + (vi − v j )

2 + (wi − w j )
2] 12 , (45)

i, j = 1, . . . , 4. The spring constants are assumed to
be given by ki j = 1 for (i, j) �= (1, 2) while ki j = 103
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Table 2 Dumbell: computational characteristics of time integration algorithms for To =2

Newmark

N̄ i t 3.0 3.5 4.0 4.5 5.0

Δtmv 0.0058 0.0097 0.014

steps 340 205 145 div div

N (i t)
mv 3.068 3.561 4.124

tT 0.947 0.627 0.489

Bathe

N̄ i t 2·3.0 2·3.5 2·4.0 2·4.5 2·5.0
Δtmv 0.0081 0.018 0.028 0.040 0.069

steps 246 113 73 51 29

N (i t)
mv 6.008 6.982 7.918 8.882 9.586

tT 1.22 0.622 0.439 0.334 0.201

HFDI

N̄ i t 3.0 3.1 3.2 3.3 3.5

Δtmv 0.020 0.027 0.039 0.045 0.053

steps 101 76 52 45 39

N (i t)
mv 2.960 2.987 2.981 3.044 3.282

tT 0.317 0.240 0.164 0.144 0.131

Fig. 5 Dumbell: plot of stretch; reference solution by solid line

Fig. 6 Dumbell: increment of the total energy t =0..2

for (i, j) = (1, 2). In (45) r i j0 is the distance between
particles in the force-free configuration where the rela-
tion V i j (r i j0 ) = 0 holds. In view of (45), the forces of

Fig. 7 Dumbell: normalized increments of the total energy
t =0..10 in HFDI

interaction are given by

f i j (r i j ) = f i j (r i j )ei j = dV i j (r i j )

dri j
ei j

= ki j

3

[
r i j −

(
r i j0
r i j

)2

r i j0

]
ei j . (46)

In (46) ei j is the director individualized by the related
i and j particles and f i j (r i j0 ) = 0. The displacement
vector of the i body of tetrahedra is represented by
uT
i = {ui vi wi }. Then the initial position is described

by the definitions uT
1 = {0 0 0}, uT

2 = {1 0 0}, uT
3 =

{0 1 0}, uT
4 = {0 0 1}.
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Fig. 8 Tetrahedra: initial configuration and problem definition

Starting at rest (u∗
i,t = 0 for all i), the tetrahedra is

subjected to a spatially fixed external load P(t) acting
in the x direction on the first particle with time history
as described in Fig. 8. For the considered integration
methods Table 3 reports the related computational per-
formances for increasing values of the N̄ (i t) required
iterations and for a To = 50 observation time. In the
Newmark scheme the reported steps values denotes
that several divergences in corrector iterations occurs
for high values of N̄ (i t).A stable and efficient behaviour
of Bathe and HFDI algorithms is also observed.

Accurancy in the analysis is evaluated by computing
the error εu and εf in (42) for theuT = {uT

1 uT
2 uT

3 uT
4 }

and fT = {f12T f13
T

f14
T

f23
T

f24
T

f34
T } vectors,

respectively. Figures 9 and 10, by varying the Δtmv
time step mean value, show that a better approxima-
tion of the quantities of interest is obtained by theHFDI
algorithm in respect to the Newmark and Bathe algo-
rithm. In effect the time step reported in the Bathe pat-
tern takes in account both the sub-steps. We note how a
non constant coefficient in the order of the approxima-
tions is obtained due to the adaptive time step size (see
Fig. 11). In Fig. 12 and 13 we also report the sequence
of configurations in the x−y plane of the body 1 and the
evolution of f 12 interaction force for Δtmv about the
value 0.30, respectively. As we can see, this test shows
the overall effective behaviour of the HFDI integation
procedure.

5.3 Articulated system

Here, we study the behaviour of an articulated system.
The dynamics of three masses m1 = m2 = m3 =1 is
stimulated by a force P(t) acting on mass m1 and in
the y-coordinate direction (see Fig. 14). Internal forces
are due to the potential

V (r, α) = 1

2
ke

[(
r12 − h

)2 + (
r23 − h

)2]

+1

2
k f

(
α12 − α23)2. (47)

The first term of the potential (47) expresses internal
forces proportional to the distance r i j between mi and
m j masses and with spring stiffness ke in the r i j = h
force-free configuration. The second term of the poten-
tial (47) expresses an internal force proportional to the
angle α12 − α23 between (m1,m2) body and (m2,m3)

body with spring stiffness k f in the α12 = α23 force-
free configuration. We assume h =0.5 and ke = 107,
k f = 103. Time-stepping schemes applied to such
three body problems can be found in [18].

The system is characterized by Cartesian state vari-
ables uT = {u1 v1 u2 v2 u3 v3}. The definition of
dynamical motion equations is here similar to that of
the previous example. For completeness, we give the
explicit formulae used for the definitions of the geo-
metrical parameters r i j and αi j :

r i j =
[(
u j − ui

)2 + (
v j − vi

)2] 1
2
, (48)

αi j = arctan

(
v j − vi

u j − ui

)
. (49)

Applications of described integration schemes for
increasing values of the target iteration count are inves-
tigated. Table 4 reports the computational characteris-
tics performed in the time integration processes for the
observing time To =0.5.

The motion of the articulated system, computed by
Newmark, Bathe and HFDI methods with N̄ i t =5.0 is
shown in Fig. 15. The evolution of theΔα = α12−α23

relative angle at the central body versus the time is
also shown in Fig. 16 for the Δtmv quantity about
the value 0.0065. For the same Δtmv value the incre-
ment of the total energy ΔEn in the step is shown in
Fig. 17. The unstable behaviour in the Newmark for-
mulation is observed. As can be seen, an unphysical
chaotic motion of the system occurs at about t =0.2.
Accurate representations are obtained by the presented
HFDI algorithms, while a pronounced period elonga-
tion is observed in the Bathe experimentations. High
frequency are not reproduced exactly although the
mean value is provided by the algorithms. Finally, for
several assigned values of N̄ i t and for the long obser-
vation time To =3, the behaviour of the normalized
increment of the total energy in the HFDI approach
is showed in Fig. 18. We note that appreciable values
of the energy increment are encountered only for high
time steps and after many evolutions of the articulated
system.
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Table 3 Tetrahedra: computational characteristics of time integration algorithms for To =50

Newmark

N̄ i t 3.0 3.5 4.0 4.5

Δtmv 0.14 0.18 0.22 0.16

steps 355 284 224 309

N (i t)
mv 3.014 3.560 4.058 4.518

tT 3.882 3.608 3.196 4.892

Bathe

N̄ i t 2·3.0 2·3.5 2·4.0 2·4.5
Δtmv 0.079 0.20 0.31 0.46

steps 635 253 164 108

N (i t)
mv 6.024 7.036 8.067 9.120

tT 13.51 6.213 4.576 3.382

HFDI

N̄ i t 3.0 3.5 4.0 4.5

Δtmv 0.20 0.25 0.29 0.34

steps 252 200 170 148

N (i t)
mv 3.008 3.535 4.100 4.635

tT 3.450 3.180 3.102 3.030

Fig. 9 Tetrahedra: truncation error of displacements

5.4 Finite element Timoshenko beam

The plane movement of a toss rule is now investigated
(examples of solutions of such a dynamical problem
can be found in [19,20,34]). The characteristics of
the examined time integration schemes will be shown
here in connection with one-dimensional finite element
discretizations. Standard linear two node shape func-

Fig. 10 Tetrahedra: truncation error of interaction forces

tions for horizontal u and vertical v displacements and
the rotation α of the cross section are used. Since the
Timoshenko beam model is considered in the exam-
ined beam, only C0 continuity for the displacements
and rotations is needed at the element boundaries. A
total Lagrangian co-rotational formulation is used to
describe the motion of the element from the initial to
the final deformed configuration. For a detailed account
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Fig. 11 Tetrahedra: adaptive time step size for several N̄ (i t) val-
ues in HFDI based algorithm

Fig. 12 Tetrahedra: sequence of configurations of body 1 in the
x − y plane, Bathe N̄ i t =2·4.0 and HFDI N̄ i t =4.0, t =0..50

Fig. 13 Tetrahedra: evolution of f 12 interaction force, Bathe
N̄ i t =2·4.0 and HFDI N̄ i t =4.0

of the main co-rotational framework we can refer to the
textbook [35] and to the articles [36–38].

In summary, the kinematic is split into two stages.
First, a rigid translation and rotationof the local element
frame is considered. This rigid motion is accompanied
by deformation displacements with respect to the local

element frame. We refer to the referential coordinate ξ

along the beam element centerline−h/2 ≤ ξ ≤ +h/2.
Then, by referring to the deformational displacements
expressed in the local system, the total deformation
energy V is obtained from:

V = 1

2

∫ +h/2

−h/2

(
EAε2 + GAγ 2 + EJχ2)dξ (50)

where E A, GA and E J represent the axial, shear
and flexural rigidities, respectively. In the uT (ξ) =
{u(ξ) v(ξ) α(ξ)} state variable representation, mea-
surements of the axial ε and transversal γ strain,
together with the usual definition of the curvature χ ,
are formulated by the following expressions:

ε = cos(αo)−1+
(
Ce cos(αo)−Se sin(αo)

)
u,ξ

+(
Ce sin(αo)+Se cos(αo)

)
v,ξ , (51)

γ = −sin(αo)−
(
Ee cos(αo)+Ce sin(αo)

)
u,ξ

+(
Ce cos(αo)−Se sin(αo)

)
v,ξ , (52)

χ = α,ξ , (53)

where Se = sin(α̂) and Ce = cos(α̂) specify the ori-
entation (α̂) of the element in the initial configuration.
We refer to an element with nodes i and j at the bound-
aries. Definitions like αo = (αi +α j )/2 are used at the
centre of the element.

The elemental internal force vector is then derived
from the differentation of potential (50) with respect to
the nodal parameters of the vector uT = {ui u j vi v j

αi α j } in the u(ξ) interpolation. The elemental inertia
force vector is derived from the differentation of kinetic
energy here defined by

T = 1

2

[
ρhA

1

2

(
u2i,t + u2j,t + v2i,t + v2j,t

)

+ 1

12
ρh3A

1

2

(
α2
i,t + α2

j,t

)]
(54)

with respect to the first derivative of nodal parameters.
By the definition (54) of the elemental kinetic energy,
matrix M can be represented as a diagonal matrix. This
simplifies the computation of the nonlinear motion Eq.
(21) wherever an accurate representation of the inertia
forces is achieved.

The geometry, material, position of loads and load
function of the rule are described in Fig. 19. For dis-
cretization Nel =6 beam elements as described above
are used. Table 5 shows the behaviour of the three dif-
ferent integration processes for To =0.1. The diver-
gent behaviour of the corrector phase in the Newmark
approach for high N̄ i t values can be seen while a stable
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Fig. 14 Articulated system:
initial configuration and
problem definition

Table 4 Articulated system: computational characteristics of time integration algorithms for To =0.5

Newmark

N̄ i t 3.0 3.5 4.0 4.5 5.0

Δtmv 0.0012 0.0017 0.0025 0.0028

steps 410 296 200 181 div

N (i t)
mv 3.083 3.520 4.050 4.580

tT 1.54 1.23 0.925 0.923

Bathe

N̄ i t 2·3.0 2·3.5 2·4.0 2·4.5 2·5.0
Δtmv 0.00099 0.0027 0.0039 0.0064 0.011

steps 508 188 126 78 45

N (i t)
mv 5.988 6.968 8.067 8.961 9.977

tT 3.48 1.45 1.09 0.742 0.469

HFDI

N̄ i t 3.0 3.5 4.0 4.5 5.0

Δtmv 0.0024 0.0053 0.0068 0.0079 0.010

steps 205 96 75 63 51

N (i t)
mv 2.961 3.406 3.920 4.460 5.020

tT 0.922 0.482 0.422 0.395 0.353

and efficient behaviour of Bathe and HFDI algorithms
is verified. Accuracy in the analysis is now evaluated
by compute the error εαmv and εmc related to the defi-
nitions:

αmv = 1

Nel

Nel∑
e=1

α(e)
o , mc = EJχ

∣∣
x=xc

, (55)

where α
(e)
o refers to the elemental e value and xc is the

x coordinate at the centre of the bar.
Figures 20 and 21, for increasing Δtmv time step

mean values, show that the best approximation of the
quantities of interest is obtained by the HFDI algorithm
compared to the Newmark and Bathe algorithm.More-
over, we note that the time step reported in the Bathe

patterns takes into account both the sub-steps. As usual,
a non constant coefficient in the order of the approxima-
tions is obtained due to the adaptive time step size (as
reported in Fig. 22). In Fig. 23 we report the evolution
of mean value α,tmv of the angular velocity α,t defined
as in expression (55). Likewise, Fig. 24 shows the evo-
lution of central value N c of the axial stress E Aε. A
highly effective behaviour of the HFDI integation pro-
cedure is verified. Furthermore, no significant differ-
ences were detected in computational performances for
refined meshes of the beam.
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Fig. 15 Articulated system: sequence of configurations t =
0..0.5; reference solution by solid line

Fig. 16 Articulated system: evolution ofΔα = α12−α23 angle,
Bathe N̄ i t = 2 · 4.5 and HFDI N̄ i t = 4.0

Fig. 17 Articulated system: evolution ofΔEn total energy incre-
ment, Bathe N̄ i t = 2 · 4.5 and HFDI N̄ i t = 4.0

Fig. 18 Articulated system: normalized increments of the total
energy t =0..3 in HFDI

6 Conclusions

The presented work is concerned with the development
of an effective time integration algorithm in nonlin-
ear dynamic problems. The algorithm is based on a
predictor–corrector procedure and employs the rewrit-
ing ofmotion as two sets of first-order differential equa-
tions. The features of the presented procedure are: a
particular quadratic polinomial expression for the rel-
evant quantities such as velocities and forces in the
interpolation, a suitable extrapolation in the predictor
phase and an optimization of the number of iterations in
the corrector phase which generates an efficient adap-
tive time stepping selection. Furthermore, the follow-
ing attributes characterize the type of integrators taken
into account: (i) the approximation scheme is at least
second-order accuracy; (ii) it is applicable to general
nonlinear analyses; (iii) it does not involve additional
variables or artificial parameters chosenby theuser; (iv)
it is a single-step scheme with self-starting attribute.
For comparison, the widely used integration methods
with the above characteristics such as Newmark and
Bathe schemes are implemented with the same algo-
rithm approach.

In the tests performed, N-body and finite element
structural models are formulated and analized to com-
pare the considered solutionmethods. For the presented
algorithm, the tests show that stable and accurate solu-
tions are obtained even for stiff nonlinear problems
while there is reduced period elongation and high-
frequency algorithmic damping in the analysis. The
increase in computational effort due to the evaluation
of the first derivative of the internal force vector, and
consequent evaluation of the second derivative in the
iteration matrix definition, is balanced by the increase
in the range of stability of the time integration process
andby the reduction in the number ofNewton–Raphson
iterations in the steps.
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Fig. 19 Toss rule:
geometry, material, loads
and deformation

Table 5 Toss rule: computational characteristics of time integration algorithms for To = 0.1

N̄ i t 3.0 3.5 4.0 4.5 5.0

Δtmv 0.000069 0.000092 0.00013 0.00014 0.00013

steps 1453 1090 765 722 763

N (i t)
mv 3.003 3.537 4.031 4.528 5.012

tT 32.1 28.4 22.7 24.0 28.1

Bathe

N̄ i t 2·3.0 2·3.5 2·4.0 2·4.5 2·5.0
Δtmv 0.000052 0.00012 0.00022 0.00032 0.00045

steps 1930 803 461 316 223

N (i t)
mv 6.007 6.995 8.004 9.016 9.982

tT 85.3 41.3 27.1 20.9 16.3

HFDI

N̄ i t 3.0 3.5 4.0 4.5 5.0

Δtmv 0.00011 0.00018 0.00021 0.00025 0.00029

steps 933 568 473 400 339

N (i t)
mv 2.996 3.532 4.017 4.480 5.044

tT 25.7 18.4 17.4 16.4 15.7

Fig. 20 Toss rule: truncation error of angular mean value αmv

Fig. 21 Toss rule: truncation error of bending moment central
value mc
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Fig. 22 Toss rule: adaptive time step size for several N̄ (i t) values
in HFDI based algorithm

Fig. 23 Toss rule: evolution of mean value α,tmv of the angular
velocity α,t

Therefore, if compared with widely used integra-
tion schemes with the above characteristics, such as
theNewmark andBathe schemes, the proposedmethod
requires less computational effort combined with valu-
able accuracy and stability in the time analysis.

Fig. 24 Toss rule: evolution of central value Nc of the axial
stress E Aε
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