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Abstract In this manuscript, we consider a coupled
AB system, which describes the baroclinic instability
processes in the geophysical flows. Darboux-dressing
transformation is used to derive the bright-dark soli-
ton, breather and semirational rogue wave solutions
for such a system. We observe that type of the solu-
tions is relate to the spectral parameter λ, amplitude
a1 and wave number q. Elastic collision between dark
or bright solitons, propagations of the bright or dark
breathers and rogue waves coexist with two dark or
bright solitons are respectively illustrated in figures.
The results about those localized wave phenomena are
expected to have potential applications.

Keywords Coupled AB system · Darboux-dressing
transformation · Bright-dark solitons · Bright-dark
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1 Introduction

It has attracted widespread attentions for the local-
ized waves [1], including solitons [2], breathers [3]
and rogue waves [4], in mathematical physics [1,5].
Through the optical fiber experiments, breathers and
solitons have been studied [6,7]. Bright-dark solitons
with the orthogonal polarization can be applied in a
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passively mode-locked fiber laser with a large-angle
tilted fiber grating [8]. Rogue waves, regarded as the
nonlinear waves localized in both space and time, have
caused many attentions recently, since they may cause
considerable number of maritime disasters [9]. It is
hard to predict such rare events, since they appear from
nowhere suddenly, that’s why their fundamental ori-
gins are still remain uncertainty [10]. Recent researches
show that many factors may lead to the appearance of
the rogue waves, including soliton collisions or mod-
ulation instabilities [11]. Apart from the oceans, these
waves are also reported in the optics, plasmas, Bose-
Einstein condensates and other fields [12–16].

Peregrine soliton,which is themathematical descrip-
tion of a roguewave, is a solution of the scalar nonlinear
Schrödinger equation (NLSE) [17]. In addition, there
exist other solutions for the NLSE, such as solitons,
Akhmediev breathers (AB) and Kuznetsov-Ma (KM)
solitons [18–20]. Comparedwith the scalarNLSE, cou-
pled equationsmaydescribe extremewaveswith higher
accuracy, since it should be consider several amplitudes
rather than a single one in a variety of physical contexts
[21].

In this manuscript, we pay our attention to a coupled
AB system [22–25],

(A1)xt = δA1 − A1B,

(A2)xt = δA2 − A2B,

Bx = σ(|A1|2 + |A2|2)t , (1)

whichmodels the baroclinic instability processes in the
geophysical flows, where A1 and A2 are the parame-
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ters denoting the packets of short waves and B repre-
sents the mean flow, while δ relates to the shear and
σ is the coefficient of the nonlinear term. System (1)
has been studied in many aspects: Modulation insta-
bility has been discussed and rogue waves have been
obtained by the Hirota bilinear method [22]; Properties
of the dark one and two soliton solutions for System (1)
have been discussed [23]; Via the Darboux transfor-
mation(DT), rogue-wave solutions have been studied
[24]; With the binary DT, multi-dark soliton solutions
in terms of simple determinants have been analyzed
[25].

However, there is still some work to be added for
System (1) besides the reports in Refs. [22–25]. Do
the dark-bright solitons exist in System (1)? Do the
rogue wave and bright(dark) solitons exist in Sys-
tem (1) simultaneously? Motivated by the above two
factors, we will study the collisions between the dark-
bright two solitons and semi-rational rogue waves
for System (1) with the Darboux-dressing transforma-
tion(DDT) [26,27] constructed. In Sect. 2, the first-
iterated DDTwill be given, and the dark-bright soliton,
breather and semirational rogue-wave solutions will be
constructed, while the properties of them will be ana-
lyzed and discussed in Sect. 3. Our summary will be
presented in Sect. 4.

2 DDT and solutions for System (1)

2.1 Lax pair and DDT for System (1)

System (1) is an integrable model and as such admits a
Lax pair [24]:

�x = U� =
(
iλJ − i√

2
P

)
�,

�t = 1

4iλ
V� = 1

4iλ
[(δ − B)J

−√
2i J Pt ]�, (2)

with

P =

⎛
⎜⎜⎝

0 0 A1 A2

0 0 −A∗
2 A∗

1
−A∗

1 A2 0 0
−A∗

2 −A1 0 0

⎞
⎟⎟⎠ , (3)

and J = diag(−1,−1, 1, 1) is constant and diago-
nal, where U and V are 4 × 4 square matrices, �,
which depends on the variables x and t , is a common

solution of the two linear ordinary differential matrix
equations (2), and λ is a complex spectral parame-
ter, while i and ∗ represent the imaginary unit and
complex conjugate, respectively. It can be verified that
System (1) is equivalent to the compatibility condition
Ut − Vx +UV − VU = 0.

Supposing�0 is a corresponding fundamental solu-
tion of Lax Pair (2) with the seed solutions A[0]

1 , A[0]
2

and B[0], and considering the transformation

� =
[
I + χ − χ∗

λ − χ
S

]
�0, (4)

then the first-iterated Darboux-dressing transformation
formulas for System (1) are

A[1]
1 = A[0]

1 + 2
√
2i√
σ

(χ − χ∗)ζ z∗2
|ζ |2 + |z1|2 + |z2|2 + |z3|2 ,

A[1]
2 = A[0]

2 + 2
√
2i√
σ

(χ − χ∗)ζ z∗3
|ζ |2 + |z1|2 + |z2|2 + |z3|2 ,

B[1] = B[0] + 4i
(χ − χ∗)(|ζ |2)t

|ζ |2 + |z1|2 + |z2|2 + |z3|2 , (5)

with the 4 × 4 square matric

S = Z Z†

|ζ |2 + |z1|2 + |z2|2 + |z3|2 ,

and the vector

Z = (ζ, z1, z2, z3)
T = �0Z

T
0 ,

is a solution of Lax Pair (2) with λ = χ∗, where the
complex parameter χ is a given value of the spectral
parameter λ, † denotes the conjugate transpose, I is
the 4 × 4 identity matrix and Z0 = (�1, �2, �3, �4)

is an arbitrary complex vector, with � j ( j = 1, 2, 3, 4)
being complex constants.

2.2 Solutions for system (1)

To obtian the dark-bright soliton and semirational
rogue wave, we shoose the seed solutions as A[0]

1 =
a1e

i∗(qx+ b−δ
q t), A[0]

2 = 0 and B[0] = b, where a1 and
q are arbitrary real constants, which implies that A1 is
in the nonzero background and A2 is in the zero back-
ground.

Next, to derive the solutions for Lax Pair (2) with
the seed solutions above, we introduce a new vector
eigenfunction

G =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 e−i∗(qx+ b−δ
q t) 0

0 0 0 ei∗(qx+ b−δ
q t)

⎞
⎟⎟⎟⎠ , (6)
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then the Lax Pair (2) can be written as

�̃x = Ũ�̃, �̃t = 1

4iλ
Ṽ �̃, (7)

with

� = G�̃, Ũ =

⎛
⎜⎜⎝

−iλ 0 a1 0
0 −iλ 0 a1

−a1 0 i(λ + q) 0
0 −a1 0 i(λ − q)

⎞
⎟⎟⎠ ,

Ṽ =

⎛
⎜⎜⎜⎝

1 0 2ia1
q 0

0 1 0 − 2ia1
q

− 2ia1
q 0 1 0

0 2ia1
q 0 1

⎞
⎟⎟⎟⎠ .

Then we can obtain the solution of the Lax Pair (2)
as

�0 = GExp(Ũ x + Ṽ t). (8)

By analyzing the Expression (8), we find that solu-
tions for System (1) can be divided into two cases: (1)
if Ũ and Ṽ can be reduced to the diagonal forms, then
A1 and A2 are exponential forms; (2) if Ũ and Ṽ are
similar to the Jordan forms, the semirational solutions
will be derived.

By solving the characteristic polynomial

Det(m − Ũ ) = 0, (9)

wederive the rootsm1 = 1
2 [−q−

√
4a21 + (−2λ + q)2],

m2 = 1
2 [−q +

√
4a21 + (−2λ + q)2], m3 = 1

2 [q −√
4a21 + (2λ + q)2] and m4 = 1

2

[q +
√
4a21 + (2λ + q)2].

We will thus discuss the solutions for System (1) in
two cases:

Case(1): dark-bright soliton solutions
4a21 + (−2λ + q)2 �= 0 and 4a21 + (2λ + q)2 �= 0,

which means m1, m2, m3 and m4 are not equal to each
other, then Ũ can be reduced to a diagonal form

Ũd =

⎛
⎜⎜⎝

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

⎞
⎟⎟⎠ , (10)

with a transformation matrix

Td =

⎛
⎜⎜⎜⎝

0 0 i(λ+m4)
a1

i(λ+m3)
a1

i(λ+m1)
a1

i(λ+m2)
a1

0 0
0 0 1 1
1 1 0 0

⎞
⎟⎟⎟⎠ . (11)

With the transformation matrix above, Ṽ can also be
reduced to a diagonal form:

Ṽd =

⎛
⎜⎜⎜⎝

2λ+2m1+q
4qλ

0 0 0

0 2λ+2m2+q
4qλ

0 0

0 0 −2λ+2m4−q
4qλ

0

0 0 0 −2λ+2m3−q
4qλ

⎞
⎟⎟⎟⎠ .

(12)

Then with the Expression (5) and (8), the dark-bright
soliton solutions for System (1) are derived.

Case(2): semirational solutions
4a21 + (−2λ + q)2 = 0, i.e., λ = a1i + q

2 , m1 =
m2 = − q

2 , m3 = q
2 − √

(2ia1 + q)q and m4 = q
2 +√

(2ia1 + q)q , then Ũ is similar to a Jordan matrix

ŨJ =

⎛
⎜⎜⎝

m1 1 0 0
0 m1 0 0
0 0 m3 0
0 0 0 m4

⎞
⎟⎟⎠ , (13)

while Ṽ is similar to a Jordan matrix

ṼJ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2q − i

2a1q−iq2
0 0

0 1
2q 0 0

0 0
−1+ 2q√

q(2ia1+q)

2q 0

0 0 0 −
1+ 2q√

q(2ia1+q)

2q

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(14)

with the transformation matrix

TJ =

⎛
⎜⎜⎜⎝

0 0 −1 + i(q+√
q(2ia1+q))
a1

−1 + i(q−√
q(2ia1+q))
a1

−1 − i
a1

0 0

0 0 1 1
1 0 0 0

⎞
⎟⎟⎟⎠ .

(15)

Then with the Expression (5) and (8), the semirational
solutions for System (1) are derived.

3 Discussions on the solutions

Based on solutions derived in Case(1), we will illus-
trate the dark-bright solitons and dark-bright breathers
in Figs. 1 and 2. With the results in Case(2), the semi-
rational rogue waves will be shown in Fig. 3.

We observe two dark solitons in Fig. 1a and the
collision between them is elastic in Fig. 2a, while in
Figs. 1b and 2b, two bright solitons collide with fixed
amplitudes and velocities before and after collision.

When we alter the value of λ, and choose it as a
pure imaginary value, the dark and bright breathers are
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Fig. 1 a Elastic collision
between the two dark
solitons; b Elastic collision
between the two bright
solitons. Parameters are
σ = 2, b = 2, δ = 1, q = 1,
a1 = 2, λ = 0.6 + 1.5i ,
�1 = 0.1, �2 = 0.2,
�3 = 0.6 and �4 = 1

Fig. 2 Panels a and b show
corresponding trajectories
of Fig. 1a and b at t = −5
(dashed line) and t = 5
(solid line), respectively

(a) (b)

Fig. 3 a Propagation of the
bright breather; b
Propagation of the dark
breather. Parameters are the
same as Fig. 1 except
λ = 1.5i

respectively find in Fig. 3a and b.Comparedwith Fig. 1,
structures of the solutions are related to spectral param-
eter λ.

Figure 4a shows the rogue wave coexists with the
two dark solitons, and elastic collision between the two
solitons is shown in Fig. 5a. Also, near the collision
area, we observe the breather-like structure. In Fig. 4b,
rogue wave coexists with the two bright solitons are
illustrated. Apart from that dark breather-like structure
appears near the collision area, we find that the two
solitons have different amplitudes in Fig. 5.

4 Conclusions

In summary, we have studied the a coupled AB sys-
tem, i.e., System (1), which describes the baroclinic
instability processes in the geophysical flows, with
the Darboux-dressing transformation. The Bright-dark
soliton, breather and semirational roguewave solutions

are derived by aid of the first-iteratedDarboux-dressing
transformation formula.

(1) When the parameter λ is independent on amplitude
a1 andwave numberq, andλ is chosen as a complex
parameter whose real part is a nonzero constant,
elastic collisions between the dark or bright solitons
have been shown in Fig. 1. In addition, when λ is
chosen as a pure imaginary parameter, propagations
of the bright or dark breathers have been observed
in Fig. 2.

(2) When the parameter λ depends on the parameters
a1 and q, semirational rogue wave solutions are
derived and roguewave coexists with dark or bright
solitons have been respectively illustrated in Fig. 3.
Furthermore, the breather-like structures near the
collision area have been both observed in Fig. 3a
and b.

It has been confirmed that localized wave phenom-
ena exist experimentally [28–30], then we expect our
results in this manuscript may be useful for the further
study of solitons, breathers and rogue waves.
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Fig. 4 Vector semirational
rogue waves with the
parameters: σ = 2, b = 2,
δ = 1, q = 1, a1 = 2,
�1 = 1, �2 = 0, �3 = 1
and �4 = 1

Fig. 5 Panels a and b show
corresponding trajectories
of Fig. 4a and b at t = −15
(dashed line) and t = 15
(solid line), respectively

(a) (b)
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