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Abstract An active robust adaptive fault-tolerant
control protocol is studied for reducing vibration of
crane bridge system and handling actuator faults and
output constraints simultaneously based on a partial
differential equation model. The closed-loop system
subject to environmental perturbations and actuator
failures can be stabilized with proposed control laws.
Furthermore, output constraints of trolley can always
be ensured via employing barrier Lyapunov function
(BLF), and uncertain actuator faults can also be com-
pensated availably using developed adaptive control
laws without any knowledge of actuator fault informa-
tion. Finally, numerical simulation is provided for illus-
trating performance of the proposed control method.
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1 Introduction

Overhead crane systems universally exist in many
industrial sites such as warehouses, workshop halls,
and harbors to lift and transport the cargo to the desired
position. Since it is expected to fast and precisely trans-
port the payload, assorted control methods are investi-
gated for overhead cranes [1–5].

It is noteworthy that [1–5] all focus on oscillation
elimination of the cable and position regulation of the
trolley, and the influence of undesirable vibration of
crane bridge is seriously neglected. However, as a mat-
ter of fact, the vibration of overhead crane bridge will
bring undesirable interference to both the cable and
trolley of overhead crane, which may negatively affect
control performance in [1–5] and result in inaccurate
positioning. Regarding the vibration of overhead crane
bridge as general phenomenon existing in control sys-
tems, structural analysis,modelingmethod, and control
strategy are thus investigated. In [6], a bivariate polyno-
mial model is developed for estimating offset of main
beam of gantry crane considering dynamics of pay-
load. In [7], the 3D parametric finite element model is
carried out for a crane girder, and its load-bearing abil-
ity is predicted applying finite element analysis and
numerical methods. In [8], utilizing moving finite ele-
ment approximation, dynamic characteristics of a main
beam of crane are investigatedwith consideringmotion
effect of a mass. A suspension weight-bridge crane is
abstracted as amodel of a mass with suspension weight
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moving on a supported main beam, and its vibration
responses are analyzed in [9]. Nevertheless, although a
small amount of researches on control design of crane
bridges are done, such as [6–9], they all center on ordi-
nary differential equation (ODE) methods.

It is generally known that the dynamic charac-
teristics of infinite-dimensional distributed parameter
systems are traditionally represented by finite critical
modes to simplify control design. As a result, control
and observer spillover problems may arise by using
ODE model-based control methods, which need to be
further resolved by developing related methods [10–
12]. However, the additional methods in [10–12] will
place additional difficulty on control application. To
avoid spillover problem induced by the ODE model,
partial differential equation (PDE) model-based con-
trol thus becomes one of research hot spots in recent
years. In [13], a PDE boundary iterative learning con-
trol is addressed for flexible structures subject to input
saturation and external disturbances. In [14], a robust
adaptive control algorithm is proposed for a moving
perturbed string. In [15], offset of flexible string with
input hysteresis is successfully eliminated adopting an
adaptive control. In [16], unit quaternion is employed
to establish a PDE model for a 3D robot link, and con-
trol laws are addressed for regulating its orientation
and restricting its elastic vibration with interferences.
However, up to now, the research on vibration control
of overhead bridge systems is still insufficient.

During operating safety-critical control systems,
actuator failuremay cause unacceptable control perfor-
mance degradation and even lead to devastating effect.
Consequently, the problem of actuator fault accom-
modation is of significant importance and required to
be resolved imperatively. Compared with conservative
passive fault-tolerant control [17–21], active adaptive
tolerant control has received tremendous attention for
decades due to its better capability of failure compen-
sation and performance maintenance. Since the con-
trol reconfiguration is used in active fault-tolerant con-
trol schemes to adjust controllers in real time, active
tolerant control can effectively enhance the adaptabil-
ity and robustness of the system. In [22], a robust
adaptive fault-tolerant control is investigated for cou-
pled ODE beams for vibration attenuation. For lin-
ear time-invariant plants subject to uncertain actua-
tor stuck faults, an active control strategy is addressed
for asymptotic-state tracking in [23]. In [24], an adap-
tive backstepping control algorithm is investigated for

ensuring system transient performance evenwhen actu-
ator faults occur. Note that controllers in [22–24] all
need to know control directions of the system. To
remove this restriction, [25] proposes a control scheme
to handle unknown actuator failures without any infor-
mation on control directions.

Output constraint is a significant and widespread
problem in engineering practice [26,27]. Once out-
put constraints of control objects are exceeded, seri-
ous harm, such as sharp friction, high-speed impact,
and strong extrusion, may occur and directly affects
the lifetime of the system. As a result, a considerable
amount of related control strategies are addressed for
limiting output signals. In [28], problem of output con-
straints is studied in vibration control design of an
Euler–Bernoulli beam considering parametric uncer-
tainties. In [29], time-varying output restrictions are
considered in control design of strict-feedback nonlin-
ear systemsbyutilizingBLFs. In [30], a switching strat-
egy with actuator redundancy is proposed for uncertain
nonlinear systems with constraints as well as actuator
faults.

Research done in this paper is motivated by the great
inadequacy of control design of crane bridges. Main
contributions of the paper are highlighted as: (1) To
make up deficiency of ODEmodels and avoid spillover
problems, a PDE model is adopted in this paper for
depicting dynamics of crane bridge consisted by a Tim-
oshenko beam and a middle rigid body with preserv-
ing all modal information; (2) a PDE model-based
active robust adaptive fault-tolerant control is devel-
oped against actuator failures in terms of both total
loss of effectiveness (TLOE) and partial loss of effec-
tiveness (PLOE), and failure information does not need
to be collected in the control process; (3) by applying
proposed control laws, vibration and rotation of the sys-
tem can be suppressed. Besides, output constraints of
the middle trolley are effectively ensured with actuator
faults and environmental disturbances.

It should be pointed out that problems of actuator
failures and output constraints of crane bridges are first
considered and resolved by this paper. Besides, the
high nonlinearity of the system and strong coupling
effect between main beam and trolley greatly compli-
cate control design. Consideration of shearing defor-
mation and rotational inertia effects of bridge beamalso
adds difficulties to the control design of this paper. The
guarantee of output constraints of the trolley and robust
adaptive actuator failure compensationmake this paper
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have certain practical application meaning, and pave
the way for later researches.

This paper is organized as follows. PDE model of
crane bridge is formulated in Sect. 2. In Sect. 3, an
active robust adaptive fault-tolerant control scheme is
addressed for stabilizing system and ensuring output
constraints of the trolley. Section 4 conducts a simu-
lation example for demonstrating validity of designed
control method. Conclusions are briefly summed up in
Sect. 5.

2 PDE model description and preliminaries

2.1 PDE model description

The whole system is illustrated in Fig. 1 for following
modeling and control design, and a simplified system
diagram is given in Fig. 2. As we have seen, the con-
figuration in Fig. 2 represents a crane bridge consisted
by a main beam which is considered as a Timoshenko
beam whose density is denoted by ρ, and a trolley con-
sidered as a rigid body with lumped mass M as well
as inertia J . Elastic deformation and rotation of beam’s
cross section on the left-hand side of trolley are defined
by vL (s, t) as well as θL (s, t), respectively, at position
s. Similarly, to definitions of left ones, right ones are,
respectively, represented by vR (s, t) and θR (s, t). Let
l1 and l2 be the beam’s length on left and right sides
of trolley, and total length of beam is denoted by l,

Fig. 1 An overhead crane bridge

which satisfies l = l1 + l2. Mass moment of inertia
of main beam’s cross section is given by Ip. Bend-
ing stiffness of main beam is expressed by EI. Friction
coefficients due to elastic deformation and rotation of
the main beam are denoted by σ1 and σ2, respectively.
We denote offset of central body as v (l1, t), and its
rotation angle is expressed by θ (l1, t). Force u (t) and
torque τ (t) are control signals flowing from actuators
into the control system for eliminating bending and
rotation deflections, respectively.

The system kinetic energy Ek (t) and potential
energy Ep (t) are given by

Ek (t) = 1

2
ρ

∫ l1

0
v̇2L (s, t) ds

+ 1

2
ρ

∫ l

l1
v̇2R (s, t) ds + 1

2
M v̇2 (l1, t)

+ 1

2
Ip

∫ l1

0
θ̇2L (s, t) ds

+ 1

2
Ip

∫ l

l1
θ̇2R (s, t) ds + 1

2
J θ̇2 (l1, t) (1)

and

Ep (t) = 1

2
K
∫ l1

0

(
vLs (s, t) − θL (s, t)

)2ds

+ 1

2
K
∫ l

l1

(
vRs (s, t) − θR (s, t)

)2ds

+ 1

2
EI
∫ l1

0
θ2Ls (s, t) ds

+ 1

2
EI
∫ l

l1
θ2Rs (s, t) ds (2)

where K = kGA, in which k is a positive constant
related to shape of main beam’s cross section; G is

Fig. 2 A simplified
diagram of an overhead
crane bridge
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shear modulus; and A is cross-section area of main
beam.

The virtual work is given by

W (t) = (u (t) + d1 (t)) v (l1, t)

+ (τ (t) + d2 (t)) θ (l1, t)

− σ1

∫ l1

0
v̇L (s, t) vL (s, t)ds

− σ1

∫ l

l1
v̇R (s, t) vR (s, t)ds

− σ2

∫ l1

0
θL (s, t) θ̇L (s, t)ds

− σ2

∫ l

l1
θR (s, t) θ̇R (s, t)ds (3)

where d1 (t) and d2 (t) are input disturbances.
Applying following Hamilton’s principle

∫ t2

t1

(
δEk (t) − δEp (t) + δW (t)

)
dt = 0 (4)

in which δ denotes variational operator; t1 and t2 are
time constants satisfying t1 < t < t2; then, governing
equations can be achieved as

ρv̈L (s, t) − KvLss (s, t) + K θLs (s, t)

+ σ1v̇L (s, t) = 0 (5)

Ip θ̈L (s, t) − EIθLss (s, t)

− KvLs (s, t) + K θL (s, t) + σ2θ̇L (s, t) = 0 (6)

for ∀ (s, t) ∈ (0, l1) × [0,∞),

ρv̈R (s, t) − KvRss (s, t) + K θRs (s, t)

+ σ1v̇R (s, t) = 0 (7)

Ip θ̈R (s, t) − EIθRss (s, t) − KvRs (s, t)

+ K θR (s, t) + σ2θ̇R (s, t) = 0 (8)

for ∀ (s, t) ∈ (l1, l)× [0,∞), and boundary conditions
are

M v̈ (l1, t) + KvLs (l1, t) − KvRs (l1, t)

− u (t) − d1 (t) = 0 (9)

J θ̈ (l1, t) + EIθLs (l1, t) − EIθRs (l1, t)

− τ (t) − d2 (t) = 0 (10)

vL (0, t) = vR (l, t) = θL (0, t) = θR (l, t) = 0 (11)

vL (l1, t) = vR (l1, t) = v (l1, t) ,

θL (l1, t) = θR (l1, t) = θ (l1, t) (12)

for ∀t ∈ [0,∞).

Remark 1 The crane bridge is treated as a Timoshenko
beam equipped with a rigid body representing dynam-
ics of the middle trolley. As shown in Eqs. (5)–(12),
the effects of the shearing deformation and rotational
inertia of the bridge beam are taken into account in
PDE model in Eqs. (5)–(12). For practical consider-
ation, if the bridge beam is characterized with large
slender ratio, an Euler–Bernoulli beam can be used to
approximately describe beam’s dynamics with ignor-
ing the rotational inertia and shear deformation effects.

Remark 2 Environmental disturbances may be caused
by the effect of the sway of the payload and wind effect
on the trolley, such as vortex shedding, flutter, and buf-
feting, which may aggravate the vibration of the crane
bridge.

2.2 Preliminaries

Some lemmas and assumptions are introduced as below
to lay the foundation for following stability analysis.

Assumption 1 Upper bounds of additional distur-
bances on crane bridge are also bounded and set as
|d1 (t)| ≤ D̄1, |d2 (t)| ≤ D̄2, in which D̄1 and D̄2 are
positive constants.

Lemma 1 [31] Let Φ1 (s, t), Φ2 (s, t) ∈ R with s ∈
[0, L] and t ∈ [0,∞), the inequality holds as:

Φ1 (s, t) Φ2 (s, t) ≤ 1

γ
Φ2

1 (s, t) + γΦ2
2 (s, t) (13)

in which γ > 0.

Lemma 2 [32] Let Φ (s, t) ∈ R be a function defined
on s ∈ [0, L] and t ∈ [0,∞) which has boundary con-
dition Φ (0, t) = 0, then following inequality holds:

Φ2 (s, t) ≤ L
∫ L

0
Φ2

s (s, t)ds,∀s ∈ [0, L] . (14)

Remark 3 From the deduction process of Lemma 2 in
[32], it can be easily derived that inequality (14) also
holds when the function Φ (s, t) defined in Lemma 2
satisfies Φ (L , t) = 0 for ∀t ∈ [0,∞).

123



Vibration control for nonlinear overhead crane bridge 423

Lemma 3 For any ϑ (s, t) continuously differentiable
on s ∈ [L1, L2], we have following inequalities

∫ L2

L1

ϑ2 (s, t) ds ≤ 2 (L2 − L1) ϑ2 (L2, t)

+ 4(L2 − L1)
2
∫ L2

L1

ϑ2
s (s, t) ds

(15)∫ L2

L1

ϑ2 (s, t) ds ≤ 2 (L2 − L1) ϑ2 (L1, t)

+ 4(L2 − L1)
2
∫ L2

L1

ϑ2
s (s, t) ds.

(16)

Remark 4 The proof of Lemma 3 is replenished in this
remark. Utilizing integration by part, we have

2
∫ L2

L1

(s − L1) ϑ (s, t) ϑs (s, t) ds

= (L2 − L1) ϑ2 (L2, t) −
∫ L2

L1

ϑ2 (s, t)ds. (17)

Then, we get

∫ L2

L1

ϑ2 (s, t) ds

= (L2 − L1) ϑ2 (L2, t)

− 2
∫ L2

L1

(s − L1) ϑ (s, t) ϑs (s, t) ds

≤ (L2 − L1) ϑ2 (L2, t) + 1

2

∫ L2

L1

ϑ2 (s, t) ds

+ 2(L2 − L1)
2
∫ L2

L1

ϑ2
s (s, t) ds. (18)

From inequality (18), one can attain

∫ L2

L1

ϑ2 (s, t) ds ≤ 2 (L2 − L1) ϑ2 (L2, t)

+ 4(L2 − L1)
2
∫ L2

L1

ϑ2
s (s, t) ds.

(19)

Inequality (16) can be achieved in a similar way.

Remark 5 From Lemma 3 and boundary conditions in
Eq. (11), we have

∫ l1

0
v2L (s, t) ds ≤ 4l21

∫ l1

0
v2Ls (s, t) ds,

∫ l

l1
v2R (s, t) ds ≤ 4l22

∫ l

l1
v2Rs (s, t) ds (20)

∫ l1

0
θ2L (s, t) ds ≤ 4l21

∫ l1

0
θ2Ls (s, t) ds,

∫ l

l1
θ2R (s, t) ds ≤ 4l22

∫ l

l1
θ2Rs (s, t) ds. (21)

Assumption 2 System initial conditions are bounded,
and initial conditions of trolley satisfy |v (l1, 0)| < k1
and |θ (l1, 0)| < k2, where k1 and k2 are positive limi-
tations of v (l1, t) and θ (l1, t), respectively.

Remark 6 Assumption 2 is raised according to the def-
inition of BLF and its features mentioned by [29,33]
such that the output constraints can be ensuredwhen the
initial states of the crane bridge system satisfyAssump-
tion 2.

Lemma 4 [34] Let � ∈ R+ be a nonnegative func-
tion of time. If �̇ ≤ −r where r is a nonnegative
time-related function, and ṙ ∈ L∞, then we have
limt→∞ r = 0.

3 Controller design

We first propose a robust control scheme utilizing BLF
[35] to resolve output constraint problems with healthy
actuators anddisturbances. Then, an active robust adap-
tive fault-tolerant control is developed for crane bridge
with output constraints of themiddle trolley to compen-
sate for actuator failures in terms of TLOE and PLOE.

3.1 Robust controller design for system with output
constraints and healthy actuators

In this part, with fault-free actuators, a BLF-based
robust control protocol is designed using backstep-
ping technology to handle disturbances and output con-
straints of middle trolley.

First, the following transform of coordinate is made

η1 (t) = v (l1, t) , η2 (t) = θ (l1, t) (22)
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η3 (t) = η̇1 (t) + �1 (t) , η4 (t) = η̇2 (t) + �2 (t)
(23)

in which �1 (t) and �2 (t) are virtual control laws
designed as

�1 (t) = α

β
η1 (t) (24)

�2 (t) = α

β
η2 (t) (25)

in which α > 0 as well as β > 0.
We define

μ1 (t) = k3η3 (t)+D̄1sgn (η3 (t))

− A (t) + M
α

β
v̇ (l1, t)

+ k5η3 (t) + k1v (l1, t) + A (t)

a (t)

+ Mη3 (t)

a (t)

v (l1, t) v̇ (l1, t)

k21 − v2 (l1, t)
(26)

μ2 (t) = k4η4 (t)+D̄2sgn (η4 (t)) − B (t)

+ J
α

β
θ̇ (l1, t)

+ k6η4 (t) + k2θ (l1, t) + B (t)

b (t)

+ Jη4 (t)

b (t)

θ (l1, t) θ̇ (l1, t)

k22 − θ2 (l1, t)
(27)

where k3, k4, k5, k6 > 0, A (t) = KvLs (l1, t) −
KvRs (l1, t), and B (t) = EIθLs (l1, t) − EIθRs (l1, t).

Then, controllers are designed as

u (t) = −μ1 (t) (28)

τ (t) = −μ2 (t) . (29)

Remark 7 BLF has wide utilization on handling con-
straints for systems, and it yields a value which
approaches infinity as its arguments approach some
limits, which can be regarded as the main feature of
BLF. Inspired by this idea, BLF has been applied for
the control of overhead crane bridge subject to output
constraints, which fully embodies the innovative use
of BLF in this paper. The definition and properties of
BLF can be found in [29,33], which is considered as
the significant theoretical support of this paper.

Remark 8 All control signals in Eqs. (26)–(29) are
measurable and implementable. For instance, v (l1, t)
and θ (l1, t) can be measured using laser displace-
ment sensor and inclinometer, respectively. Further-
more, other control signals can also be achieved via
backward difference algorithm of v (l1, t) as well as
θ (l1, t) with respect to time or space, respectively.
Besides, the input signal u (t) can be generated by using
a flap-based effector [36] or amicro-trailing edge effec-
tor [37], and input τ (t) can be realized by the perma-
nent magnet acting on the trolley applying an electro-
magnet [36].

We design v (s, t) =
⎧⎨
⎩

vL (s, t) , 0 ≤ s < l1
v (l1, t) , s = l1

vR (s, t) , l1 < s ≤ l
and

θ (s, t) =
⎧⎨
⎩

θL (l1, t) , 0 ≤ s < l1
θ (l1, t) , s = l1

θR (l1, t) , l1 < s ≤ l
, and the control

scheme in Eqs. (26)–(29) has the following desired
property.

Theorem 1 Under Assumptions 1 and 2, robust con-
trol laws in Eqs. (26)–(29) ensure the boundedness of
closed-loop signals of overhead crane bridge system in
Eqs. (5)–(12) subject to disturbances. The closed-loop
system is exponentially stable with output constraints
of middle trolley, which means that limt→∞ v (s, t) =
limt→∞ θ (s, t) = 0 holds for ∀s ∈ [0, l], and
|v (l1, t)| < k1, |θ (l1, t)| < k2 hold for ∀t ∈ [0,∞).

Proof First, define a Lyapunov function as

Va (t) = β

2
k1η

2
1 (t) + β

2
k2η

2
2 (t) (30)

where k1 > 0, k2 > 0 and its time derivative is calcu-
lated as

V̇a (t) = βk1v (l1, t) v̇ (l1, t) + βk2θ (l1, t) θ̇ (l1, t) .

(31)

To ensure output constraints, BLF is introduced to
Lyapunov function and let

V1 (t) = Va (t) + β

2
Mη23 (t) a (t) + β

2
Jη24 (t) b (t)

(32)

where a (t) = ln
2k21

k21−v2(l1,t)
and b (t) = ln

2k22
k22−θ2(l1,t)

.
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Taking time derivative of V1 (t), we achieve

V̇1 (t) = V̇a (t) + βMη3 (t) η̇3 (t) a (t)

+ β Jη4 (t) η̇4 (t) b (t)

+ β

2
Mη23 (t) ȧ (t) + β

2
Jη24 (t) ḃ (t)

= βη3 (t)

(−KvLs (l1, t) + KvRs (l1, t) + u (t)

+ d1 (t) + M
α

β
v̇ (l1, t)

)
a (t) + βη4 (t)

(−EIθLs (l1, t) + EIθRs (l1, t)

+ τ (t) + d2 (t) + J
α

β
θ̇ (l1, t)

)
b (t)

+ βMη23 (t)
v (l1, t) v̇ (l1, t)

k21 − v2 (l1, t)

+ β Jη24 (t)
θ (l1, t) θ̇ (l1, t)

k22 − θ2 (l1, t)

+ βk1v (l1, t) v̇ (l1, t)

+ βk2θ (l1, t) θ̇ (l1, t) . (33)

Then, substitute Eqs. (26)–(29) into Eq. (33)

V̇1 (t) ≤ βη3 (t)(
−k3η3 (t) − k5η3 (t) + k1v (l1, t) + A (t)

a (t)

− Mη3 (t)

a (t)

v (l1, t) v̇ (l1, t)

k21 − v2 (l1, t)

)
a (t) + βη4 (t)

(
−k4η4 (t) − k6η4 (t) + k2θ (l1, t) + B (t)

b (t)

− Jη4 (t)

b (t)

θ (l1, t) θ̇ (l1, t)

k22 − θ2 (l1, t)

)
b (t)

+ βMη23 (t)
v (l1, t) v̇ (l1, t)

k21 − v (l1, t)

+ β Jη24 (t)
θ (l1, t) θ̇ (l1, t)

k22 − θ2 (l1, t)

+ βk1v (l1, t) v̇ (l1, t)

+ βk2θ (l1, t) θ̇ (l1, t) . (34)

Thus, from inequality (34) and designed controllers
in Eqs. (26)–(29), it produces

V̇1 (t) ≤ −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D (35)

where

D = −βη3 (t) (k5η3 (t) + k1v (l1, t)) − βη3 (t) A (t)

− βη4 (t) (k6η4 (t) + k2θ (l1, t)) − βη4 (t) B (t)

+ βk1v (l1, t) v̇ (l1, t) + βk2θ (l1, t) θ̇ (l1, t)

= − k5βη23 (t) − αk1v
2 (l1, t) − βη3 (t) A (t)

− k6βη24 (t) − αk2θ
2 (l1, t) − βη4 (t) B (t) .

(36)

��
The system stability can be analyzed by designing

following Lyapunov function

V (t) = V1 (t) + V2 (t) + V3 (t) + V4 (t) (37)

in which

V2 (t) = β

2
ρ

∫ l1

0
v̇2L (s, t) ds

+ β

2
K
∫ l1

0

(
θL (s, t) − vLs (s, t)

)2ds

+ β

2
Ip

∫ l1

0
θ̇2L (s, t) ds

+ β

2
EI
∫ l1

0
θ2Ls (s, t) ds

+ β

2
ρ

∫ l

l1
v̇2R (s, t) ds

+ β

2
K
∫ l

l1

(
θR (s, t) − vRs (s, t)

)2ds

+ β

2
Ip

∫ l

l1
θ̇2R (s, t) ds

+ β

2
EI
∫ l

l1
θ2Rs (s, t) ds (38)

V3 (t) = αρ

∫ l1

0
v̇L (s, t) vL (s, t) ds

+ α Ip

∫ l1

0
θ̇L (s, t) θL (s, t) ds

+ αρ

∫ l

l1
v̇R (s, t) vR (s, t) ds

+ α Ip

∫ l

l1
θ̇R (s, t) θR (s, t) ds (39)

V4 (t) = ασ1

2

∫ l1

0
v2L (s, t) ds
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+ ασ2

2

∫ l1

0
θ2L (s, t) ds

+ ασ1

2

∫ l

l1
v2R (s, t) ds

+ ασ2

2

∫ l

l1
θ2R (s, t) ds. (40)

To verify the positive definiteness ofV (t), we define

χ (t) =
∫ l1

0
v̇2L (s, t) ds +

∫ l1

0
θ̇2L (s, t) ds

+
∫ l1

0
θ2Ls (s, t) ds

+
∫ l1

0
v2Ls (s, t)ds +

∫ l1

0
θ2L (s, t) ds

+
∫ l1

0
v2L (s, t) ds

+
∫ l

l1
v̇2R (s, t) ds +

∫ l

l1
θ̇2R (s, t) ds

+
∫ l

l1
θ2Rs (s, t) ds

+
∫ l

l1
v2Rs (s, t)ds +

∫ l

l1
θ2R (s, t) ds

+
∫ l

l1
v2R (s, t) ds. (41)

From Eqs. (38) and (40) and inequalities (20) and
(21), we can obtain

V2 (t) + V4 (t) ≥ β

2
ρ

∫ l1

0
v̇2L (s, t) ds

+ ασ1

2

∫ l1

0
v2L (s, t) ds

+ β

2
Ip

∫ l1

0
θ̇2L (s, t) ds

+ β

4
EI
∫ l1

0
θ2Ls (s, t) ds

+
∫ l1

0
ΩT

1 (s, t)Ξ1Ω1 (s, t) ds

+ β

2
ρ

∫ l

l1
v̇2R (s, t) ds

+ ασ1

2

∫ l

l1
v2R (s, t) ds

+ β

2
Ip

∫ l

l1
θ̇2R (s, t) ds

+ β

4
EI
∫ l

l1
θ2Rs (s, t) ds

+
∫ l

l1
ΩT

2 (s, t)Ξ2Ω2 (s, t) ds (42)

inwhichΩ1 (s, t) = [θL (s, t) vLs (s, t)
]T
,Ω2 (s, t) =[

θR (s, t) vRs (s, t)
]T
, and

Ξ c =
[

βEI
16l2c

+ β
2 K + ασ2

2 −β
2 K

−β
2 K

β
2 K

]
is a positive definite

matrix for c = 1, 2.
Thus, we have

V2 (t) + V4 (t) ≥ λ1χ (t) (43)

where λ1 = min
{

β
2 ρ,

β
2 Ip,

β
4 EI, λmin (Ξ1) ,

λmin (Ξ2) , ασ1
2

}
> 0, and λmin (Ξ c) is defined as the

minimal eigenvalue of Ξ c, c = 1, 2.
According toEqs. (38) and (40) and inequalities (20)

and (21), we achieve

V2 (t) + V4 (t) ≤ β

2
ρ

∫ l1

0
v̇2L (s, t) ds

+ ασ1

2

∫ l1

0
v2L (s, t) ds

+ βK
∫ l1

0
v2Ls (s, t)ds

+ β

2
Ip

∫ l1

0
θ̇2L (s, t) ds

+ β

2
EI
∫ l1

0
θ2Ls (s, t) ds

+
(
βK + ασ2

2

) ∫ l1

0
θ2L (s, t)ds

+ β

2
ρ

∫ l

l1
v̇2R (s, t) ds

+ ασ1

2

∫ l

l1
v2R (s, t) ds

+ βK
∫ l

l1
v2Rs (s, t)ds

+ β

2
Ip

∫ l

l1
θ̇2R (s, t) ds
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+ β

2
EI
∫ l

l1
θ2Rs (s, t) ds

+
(
βK + ασ2

2

) ∫ l

l1
θ2R (s, t)ds

≤ λ2χ (t) (44)

whereλ2 = max
{
1
2βρ,

β
2 Ip,

β
2 EI, βK + ασ2

2 , ασ1
2

}
>

0.
Using Eq. (39), we can get the following inequality

|V3 (t)| ≤ αρ

2

∫ l1

0
v̇2L (s, t) ds

+ αρ

2

∫ l1

0
v2L (s, t)ds

+ α Ip
2

∫ l1

0
θ̇2L (s, t) ds

+ α Ip
2

∫ l1

0
θ2L (s, t)ds

+ αρ

2

∫ l

l1
v̇2R (s, t) ds

+ αρ

2

∫ l

l1
v2R (s, t)ds

+ α Ip
2

∫ l

l1
θ̇2R (s, t) ds

+ α Ip
2

∫ l

l1
θ2R (s, t)ds

≤ λ3χ (t) (45)

in which λ3 = max
{ 1
2α Ip,

1
2αρ

}
> 0.

If α and β are selected to meet λ1 > λ3, we have

0 < (λ1 − λ3) χ (t) ≤ V2 (t) + V3 (t) + V4 (t)

≤ (λ2 + λ3) χ (t) . (46)

Then, we can further attain

0 < λ4 (χ (t) + V1 (t)) ≤ V (t) ≤ λ5 (χ (t) + V1 (t))
(47)

where κ1 = λ1 − λ3 > 0, κ2 = λ2 + λ3 > 0, λ4 =
min {κ1, 1} > 0, and λ5 = max {κ2, 1} > 0.

Differentiating Eq. (38) and substituting Eqs. (5)–
(8) lead to

V̇2 (t) = βK v̇L (l1, t) (vLs (l1, t) − θL (l1, t))

+ βEIθ̇L (l1, t) θLs (l1, t)

− βK v̇R (l1, t) (vRs (l1, t) − θR (l1, t))

− βEIθ̇R (l1, t) θRs (l1, t)

− βσ1

∫ l1

0
v̇2L (s, t) ds

− βσ2

∫ l1

0
θ̇2L (s, t) ds

− βσ1

∫ l

l1
v̇2R (s, t) ds

− βσ2

∫ l

l1
θ̇2R (s, t) ds. (48)

Substituting Eqs. (5)–(8) into derivative of Eq. (39)
and using integration by parts, one gets

V̇3 (t) = αKvL (l1, t) vLs (l1, t)

− αK
∫ l1

0
v2Ls (s, t)ds

− αKvL (l1, t) θL (l1, t)

+ αρ

∫ l1

0
v̇2L (s, t) ds

− ασ1

∫ l1

0
vL (s, t) v̇L (s, t) ds

+ αEIθL (l1, t) θLs (l1, t)

− αEI
∫ l1

0
θ2Ls (s, t)ds

+ 2αK
∫ l1

0
θL (s, t) vLs (s, t)ds

− αK
∫ l1

0
θ2L (s, t) ds

+ α Ip

∫ l1

0
θ̇2L (s, t) ds

− ασ2

∫ l1

0
θL (s, t) θ̇L (s, t)ds

− αKvR (l1, t) vRs (l1, t)

− αK
∫ l

l1
v2Rs (s, t)ds

+ αKvR (l1, t) θR (l1, t)

+ αρ

∫ l

l1
v̇2R (s, t) ds
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− ασ1

∫ l

l1
vR (s, t) v̇R (s, t) ds

− αEIθR (l1, t) θRs (l1, t)

− αEI
∫ l

l1
θ2Rs (s, t)ds

+ 2αK
∫ l

l1
θR (s, t) vRs (s, t)ds

− αK
∫ l

l1
θ2R (s, t) ds

+ α Ip

∫ l

l1
θ̇2R (s, t) ds

− ασ2

∫ l

l1
θR (s, t) θ̇R (s, t)ds. (49)

Time derivative of V4 (t) is supposed to be

V̇4 (t) = ασ1

∫ l1

0
vL (s, t) v̇L (s, t) ds

+ ασ2

∫ l1

0
θL (s, t) θ̇L (s, t) ds

+ ασ1

∫ l

l1
vR (s, t) v̇R (s, t) ds

+ ασ2

∫ l

l1
θR (s, t) θ̇R (s, t) ds. (50)

Combining inequality (35), Eqs. (48)–(50) and uti-
lizing Lemma 1 yield

V̇ (t) ≤ − (βσ1 − αρ)

∫ l1

0
v̇2L (s, t) ds

− (αK − 2αK δ1)

∫ l1

0
v2Ls (s, t)ds

− (βσ2 − α Ip
) ∫ l1

0
θ̇2L (s, t) ds

−
(

αK − 2αK

δ1

)∫ l1

0
θ2L (s, t) ds

− αEI
∫ l1

0
θ2Ls (s, t)ds

− (βσ1 − αρ)

∫ l

l1
v̇2R (s, t) ds

− (αK − 2αK δ2)

∫ l

l1
v2Rs (s, t)ds

− (βσ2 − α Ip
) ∫ l

l1
θ̇2R (s, t) ds

−
(

αK − 2αK

δ2

)∫ l

l1
θ2R (s, t) ds

− αEI
∫ l

l1
θ2Rs (s, t)ds − βk3η

2
3 (t) a (t)

− βk4η
2
4 (t) b (t) − αk1v

2 (l1, t)

− αk2θ
2 (l1, t) (51)

in which δ1 > 0 and δ2 > 0.
Utilizing inequalities (20) and (21), we have

V̇ (t) ≤ − (βσ1 − αρ)

∫ l1

0
v̇2L (s, t) ds

− ζ1

∫ l1

0
v2L (s, t) ds

−
(
αK − 2αK δ1 − 4l21ζ1

) ∫ l1

0
v2Ls (s, t)ds

− (βσ2 − α Ip
) ∫ l1

0
θ̇2L (s, t) ds

−
(

αK + α

8l21
EI − 2αK

δ1

)∫ l1

0
θ2L (s, t) ds

− α

2
EI
∫ l1

0
θ2Ls (s, t)ds

− (βσ1 − αρ)

∫ l

l1
v̇2R (s, t) ds

− ζ2

∫ l

l1
v2R (s, t) ds

−
(
αK − 2αK δ2 − 4l22ζ2

) ∫ l

l1
v2Rs (s, t)ds

− (βσ2 − α Ip
) ∫ l

l1
θ̇2R (s, t) ds

− α

2
EI
∫ l

l1
θ2Rs (s, t)ds

−
(

αK + α

8l22
EI − 2αK

δ2

)∫ l

l1
θ2R (s, t) ds

− βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t)

− αk1v
2 (l1, t) − αk2θ

2 (l1, t) (52)

where ζ1 > 0, ζ2 > 0, and δ1, δ2, ζ1, ζ2, α, β are
chosen for satisfying βσ1 − αρ > 0, βσ2 − α Ip > 0,
αK + α

8l21
EI − 2αK

δ1
> 0, αK + α

8l22
EI − 2αK

δ2
> 0,
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αK −2αK δ1−4l21ζ1 > 0, and αK −2αK δ2−4l22ζ2 >

0.
Then, V̇ (t) is rewritten as

V̇ (t) ≤ −λ6 (χ (t) + V1 (t)) (53)

whereλ6 = min
{
βσ1 − αρ, ζ1, αK − 2αK δ1 − 4l21ζ1,

βσ2−α Ip, αK+ α

8l21
EI− 2αK

δ1
, α
2 EI, ζ2, αK−2αK δ2−

4l22ζ2, αK + α

8l22
EI − 2αK

δ2
, 2α

β
, 2k3

M , 2k4
J }.

Remark 9 According to the definition of λ6 given
above, λ6 can be obtained by picking out the minimum
ofβσ1−αρ, ζ1, αK−2αK δ1−4l21ζ1, βσ2−α Ip, αK+
α

8l21
EI− 2αK

δ1
, α
2 EI, ζ2, αK − 2αK δ2 − 4l22ζ2,

2α
β

, 2k3
M ,

2k4
J , αK + α

8l22
EI − 2αK

δ2
, where ρ, σ1, σ2, K , Ip, EI,

l1, l2 are system parameters; β, α are parameters of
controllers; and ζ1, ζ2, δ1, δ2 are positive constants sat-
isfyingαK+ α

8l21
EI− 2αK

δ1
> 0,αK+ α

8l22
EI− 2αK

δ2
> 0,

αK − 2αK δ1 − 4l21ζ1 > 0, αK − 2αK δ2 − 4l22ζ2 > 0.

From inequalities (47) and (53), one has

V̇ (t) ≤ −λV (t) (54)

in which λ = λ6
λ5

> 0.

Multiplying inequality (54) by eλt yields

V (t) ≤ V (0) e−λt . (55)

Based on inequalities (55), (47), Lemma 2, and
Remark 3, we have

1

l1
θ2L (s, t) ≤ 1

λ4
V (0) e−λt ,

1

l2
θ2R (s, t) ≤ 1

λ4
V (0) e−λt (56)

1

l1
v2L (s, t) ≤ 1

λ4
V (0) e−λt ,

1

l2
v2R (s, t) ≤ 1

λ4
V (0) e−λt (57)

β

2
k1v

2 (l1, t) ≤ 1

λ4
V (0) e−λt ,

β

2
k2θ

2 (l1, t) ≤ 1

λ4
V (0) e−λt . (58)

Then, it is obvious that

∣∣vL (s, t)
∣∣ , ∣∣θL (s, t)

∣∣ ≤
√

l1
λ4

V (0) e−λt (59)

∣∣vR (s, t)
∣∣ , ∣∣θR (s, t)

∣∣ ≤
√

l2
λ4

V (0) e−λt (60)

|v (l1, t)| ≤
√

2

βk1λ4
V (0) e−λt ,

|θ (l1, t)| ≤
√

2

βk2λ4
V (0) e−λt . (61)

According to inequalities (59)–(61), it is stated
that if system initial conditions are bounded, V (0)
is bounded, which means v (s, t) and θ (s, t) are both
bounded for ∀ (s, t) ∈ [0, l] × [0,∞).

Besides, from inequalities (59)–(61), one has

lim
t→∞ |v (s, t)| , lim

t→∞ |θ (s, t)| = 0 f or ∀s ∈ [0, l] .

(62)

Moreover, according to [35], we know that if initial
conditions mentioned by Assumption 2 hold, output
constraints |v (l1, t)| ≤ k1, |θ (l1, t)| ≤ k2 can always
be guaranteed for ∀t ∈ [0,∞) with control.

Therefore, the closed-loop system is exponentially
stable under proposed control with output constraints,
and Theorem 1 has been completely proven.

Remark 10 The selection method of control parame-
ters is introduced in this remark. First, the designed
control parameters should be chosen to satisfy con-
ditions given below inequality (52). Then, by observ-
ing inequality (55), it is known that the convergence
speed of the closed-loop system is directly propor-
tional to λ. Therefore, control parameters k3 and k4 can
be increased for improving convergent performance
when k1, k2, α and β are selected properly. However,
large k3 and k4 may lead to the high gain of controller,
which may have adverse effect on the actuator. In prac-
tical applications, we should choose control parameters
properly according to the actual situation such that the
satisfactory control performance can be satisfied.
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3.2 Robust adaptive controller design for system with
output constraints and actuator failures

This part aims at developing a robust adaptive com-
pensation control algorithm to deal with actuator fail-
ures considering output constraints and disturbances.
In view of stability and safety of whole system with
actuator failures, actuator redundancy is applied in this
section, and more than one actuator is used for each
controlled variable in case complete failures occur to
actuators.

Assume that there are m1 actuators for deformation
control whose output signals are denoted by ui (t),
i = 1, 2 . . .m1, and there are m2 actuators for rota-
tion control whose outputs are denoted by τ j (t), j =
1, 2 . . .m2.

Therefore, the total input signals from all actuators
to the system can be represented by

u (t) =
m1∑
i=1

biui (t) (63)

τ (t) =
m2∑
j=1

c jτ j (t) (64)

where bi and c j are uncertain constants with known
signs.

For each actuator, actuator fault is modeled by

ui (t) = fi uci (t) + ūi ,∀t ≥ ti F (65)

fi ūi = 0, i = 1, 2, . . . ,m1 (66)

or

τ j (t) = h jτcj (t) + τ̄ j ,∀t ≥ t j H (67)

h j τ̄ j = 0, j = 1, 2, . . . ,m2 (68)

where uci (t) is input signal of the i th actuator of u (t)
needing to be designed; τcj (t) is input signal of the j th
actuator of τ (t); ūi and τ̄ j are both unknown constants;
and fi , h j ∈ [0, 1).

Equation (65) shows that actuator failures suddenly
occur to the i th actuator of u (t) from time ti F and
Eq. (67) represents that the j th actuator of τ (t) actuator
fails at time t j H .

An actuator is regarded as failure-free when its
input equals its output, that is, ui (t) = uci (t), or
τ j (t) = τcj (t), i = 1, 2, . . .m1, j = 1, 2, . . .m2.

In other words, actuators working in failure-free con-
dition can be written as fi = 1, ūi = 0 in Eq. (65), or
h j = 1, τ̄ j = 0 in Eq. (67).

Remark 11 As we note, Eqs. (66) and (68) indicate
three cases including types of TLOE and PLOE as fol-
lows:

(1) fi 
= 0 and ūi = 0, or h j 
= 0 and τ̄ j = 0 (PLOE).
In this case, ui (t) = fi uci (t) (τ j (t) = h jτcj (t)),
in which 0 < fi < 1 (0 < h j < 1) for i =
1, 2, . . .m1 ( j = 1, 2, . . .m2) denotes degree of
loss of effectiveness of actuators. For instance, fi =
0.6 implies that the i th actuator of u (t) loses 40
% of its effectiveness, and h j = 0.3 means that
the j th actuator of τ (t) remains only 30 % of its
effectiveness.

(2) fi = 0 and ūi 
= 0, or h j = 0 and τ̄ j 
= 0 (TLOE).
In this case, ui (t) (τ j (t)) is stuck at an uncertain
value ūi (τ̄ j ) and cannot be affected by the actuator
input any more.

(3) fi = 0 and ūi = 0, or h j = 0 and τ̄ j = 0. This
condition refers to the float type of TLOE which is
introduced by [38].

Before we design control laws, several assumptions
are given for ensuring stability of the system.

Assumption 3 Assume that up to m1 − 1 actuators of
u (t) and up to m2 − 1 actuators of τ (t) are at state of
TLOE at any time instant.

Assumption 4 bi 
= 0 and c j 
= 0, and signs of bi
and c j , i.e., sgn (bi ) and sgn

(
c j
)
, are known for i =

1, 2, . . . ,m1 and j = 1, 2, . . . ,m2.

Remark 12 Since the fault times ti F and t j H inEqs. (65)
and (67) are unique, failure occurs only once on the i th
actuator of u (t) and j th actuator of τ (t). Therefore,
the time instant of the last failure is finite.

If both failure type and failure value are known, con-
trol laws are designed as

uci (t) = −k1iμ1 (t) − k2i (69)

τcj (t) = −k̄1 jμ2 (t) − k̄2 j (70)

where k1i , k2i , k̄1 j , and k̄2 j are nonzero constants for
i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2.
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Theorem 2 With Assumptions 1–4 and control laws
in Eqs. (69) and (70), the boundedness of closed-
loop signals of overhead crane bridge can be guar-
anteed subject to environmental disturbances if fail-
ure type and failure value are known. States of closed-
loop system exponentially converge to zero with output
constraints of the trolley, that is, limt→∞ v (s, t) =
limt→∞ θ (s, t) = 0 holds for ∀s ∈ [0, l] with
|v (l1, t)| < k1, |θ (l1, t)| < k2 for ∀t ∈ [0,∞).

Proof The Lyapunov function of the system is defined
asEq. (37)withV1 (t),V2 (t),V3 (t),V4 (t) inEqs. (32),
(38)–(40), respectively, and V̇2 (t), V̇3 (t), V̇4 (t) are the
same as ones in Eqs. (48)–(50).

Combining Eqs. (63)–(68), we have

u (t) =
m1∑
i=1

bi ( fi uci (t) + ūi )

=
m1∑
i=1

(bi fi uci (t) + bi ūi ) (71)

τ (t) =
m2∑
j=1

c j
(
h jτcj (t) + τ̄ j

)

=
m2∑
j=1

(
c j h jτcj (t) + c j τ̄ j

)
. (72)

Substituting Eqs. (71), (72) and designed control
laws in Eqs. (69) and (70) into V̇1 (t) in inequality (33),
one has

V̇1 (t) ≤ −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D

+ βη3 (t)[
μ1 (t) +

m1∑
i=1

(bi fi uci (t) + bi ūi )

]
a (t)

+ βη4 (t)⎡
⎣μ2 (t) +

m2∑
j=1

(
c j h jτcj (t) + c j τ̄ j

)
⎤
⎦ b (t) .

(73)

Assume there exist k1i , k2i , k̄1 j , and k̄2 j , i =
1, 2, . . . ,m1, j = 1, 2, . . . ,m2, satisfying

m1∑
i=1

bi fi k1i = 1,
m1∑
i=1

bi ūi =
m1∑
i=1

bi fi k2i (74)

m2∑
j=1

c j h j k̄1 j = 1,
m2∑
j=1

c j τ̄ j =
m2∑
j=1

c j h j k̄2 j . (75)

Then, one has

V̇1 (t)

≤ −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D

+ βη3 (t)[
μ1 (t) +

m1∑
i=1

(−bi fi k1iμ1 (t) − bi fi k2i + bi ūi )

]

a (t) + βη4 (t)⎡
⎣μ2 (t) +

m2∑
j=1

(−c j h j k̄1 jμ2 (t) − c j h j k̄2 j + c j τ̄ j
)
⎤
⎦

b (t)

= −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D. (76)

Subsequent proving process of Theorem 2 is similar
to Theorem 1, and finally, it can be obtained that with
control laws in Eqs. (69) and (70), closed-loop system
with certain failures is exponentially stable and output
constraints of trolley can be ensured if system initial
conditions are bounded. Consequently, Theorem 2 has
been completely proven. ��

However, in practical engineering, actuator faults
are sometimes uncertain, which greatly increases the
difficulty of the control design. Thus, for dealing with
aforementioned situation, a robust adaptive control
scheme with failure compensation is developed as fol-
lows.

If k1i , k2i , k̄1 j , k̄2 j , ūi , τ̄ j , fi , h j , i = 1, 2, . . . ,m1,
j = 1, 2, . . . ,m2, are unknown, thenwe design control
laws as

uci (t) = −k̂1iμ1 (t) − k̂2i (77)

τcj (t) = −ˆ̄k1 jμ2 (t) − ˆ̄k2 j (78)

where

˙̂k1i = γiμ1 (t) η3 (t) a (t) sgn(bi ) (79)

˙̂k2i = γiη3 (t) a (t) sgn(bi ) (80)

˙̄̂
k1 j = γ̄ jμ2 (t) η4 (t) b (t) sgn(c j ) (81)

˙̄̂
k2 j = γ̄ jη4 (t) b (t) sgn(c j ) (82)
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in which γi and γ̄ j are positive constants for i =
1, 2, . . . ,m1 and j = 1, 2, . . . ,m2.

Theorem 3 Under Assumptions 1–4, control laws
in Eqs. (77)–(78) and adaptive laws (79)–(82) can
guarantee stability of closed-loop system with per-
turbations. Besides, system output constraints are
always satisfied in the sense of limt→∞ v (s, t) =
limt→∞ θ (s, t) = 0 for ∀s ∈ [0, l], and |v (l1, t)| <

k1, |θ (l1, t)| < k2 for ∀t ∈ [0,∞).

Proof As stated in Remark 12, the finite number of
time instants tw exists for w = 1, 2, . . . , n (n ≤
m1+m2) at which one or more of actuators of u (t) and
τ (t) fail. tw denotes the last time of actuator failure.
Assume there are pw (pw ≥ 1) failed actuators dur-
ing time interval

[
tw−1, tw), wherew = 1, 2, . . . , n+1,

t0 = 0, and tn+1=∞. Define ψ1, ψ2, . . . ψpw as pw

failed actuators whose failure pattern does not change
until time tw. Among these pw failed actuators, q1w

actuators ψ1,1, ψ1,2, . . . , ψ1,q1w suffer from TLOE
and q2w actuators ψ2,1, ψ2,2, . . . , ψ2,q2w are subject
to PLOE. A set Pw and two subsets of Pw, namely
Q1w and Q2w , are defined as Pw= {ψ1, ψ2, . . . ψpw

}
,

Q1w= {ψ1,1, ψ1,2, . . . , ψ1,q1w

}
, and

Q2w= {ψ2,1, ψ2,2, . . . , ψ2,q2w

}
, which satisfy Q2w =

Pw − Q1w .
Apositive definite function V̄w−1 (t)during

[
tw−1, tw)

is proposed as

V̄w−1 (t) = V (t) + V5,w (t) (83)

where V (t) = V1 (t) + V2 (t) + V3 (t) + V4 (t), t ∈[
tw−1, tw), whose definition is the same as Eqs. (32),
(38)–(40), and V5 (t) is given as

V5,w (t) =
m1∑

i=1,i /∈Q1w

β
|bi | fi
2γi

(
k̃21i + k̃22i

)

+
m2∑

j=1, j /∈Q1w

β

∣∣c j ∣∣ h j

2γ̄ j

( ˜̄k21 j + ˜̄k22 j
)

(84)

where k̃1i=k̂1i − k1i , k̃2i = k̂2i − k2i ,
˜̄k1 j=ˆ̄k1 j − k̄1 j ,

˜̄k2 j=ˆ̄k2 j − k̄2 j .
Substituting designed control laws in Eqs. (77) and

(78) into V̇1 (t) in Eq. (33), one has

V̇1 (t) ≤ −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D

+ βη3 (t)

⎛
⎝μ1 (t) −

m1∑
i=1,i /∈Q1w

bi fi k̂1iμ1 (t)

−
m1∑

i=1,i /∈Q1w

bi fi k̂2i +
m1∑

i=1,i /∈Q1w

bi ūi

⎞
⎠ a (t)

+ βη4 (t)

⎛
⎝μ2 (t) −

m2∑
j=1, j /∈Q1w

c j h j
ˆ̄k1 jμ2 (t)

−
m2∑

j=1, j /∈Q1w

c j h j
ˆ̄k2 j +

m2∑
j=1, j /∈Q1w

c j τ̄ j

⎞
⎠ b (t) .

(85)

Differentiating Eq. (84) and substituting adaptive
laws (79)–(82) yield

V̇5,w (t) =
m1∑

i=1,i /∈Q1w

β
|bi | fi

γi

(
k̃1i

˙̂k1i + k̃2i
˙̂k2i
)

+
m2∑

j=1, j /∈Q1w

β

∣∣c j ∣∣ h j

γ̄ j

(
˜̄k1 j

˙̄̂
k1 j + ˜̄k2 j

˙̄̂
k2 j

)

=
m1∑

i=1,i /∈Q1w

β
|bi | fi

γi

(
k̃1iγiμ1 (t) η3 (t) a (t) sgn(bi )

+k̃2iγiη3 (t) a (t) sgn(bi )
)

+
m2∑

j=1, j /∈Q1w

β

∣∣c j ∣∣ h j

γ̄ j

( ˜̄k1 j γ̄ jμ2 (t) η4 (t) b (t) sgn(c j )

+˜̄k2 j γ̄ jη4 (t) b (t) sgn(c j )
)

. (86)

Combining inequalities (85) and Eq. (86), and using
Eqs. (74) and (75), one obtains

V̇1 (t) + V̇5,w (t)

≤ −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D

+ βη3 (t)

⎛
⎝μ1 (t) −

m1∑
i=1,i /∈Q1w

bi fi k̂1iμ1 (t)

−
m1∑

i=1,i /∈Q1w

bi fi k̂2i +
m1∑

i=1,i /∈Q1w

bi ūi

⎞
⎠ a (t)
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+ βη4 (t)

⎛
⎝μ2 (t) −

m2∑
j=1, j /∈Q1w

c j h j
ˆ̄k1 jμ2 (t)

−
m2∑

j=1, j /∈Q1w

c j h j
ˆ̄k2 j +

m2∑
j=1, j /∈Q1w

c j τ̄ j

⎞
⎠ b (t)

+ β

m1∑
i=1,i /∈Q1w(

fiμ1 (t) η3 (t) a (t) bi k̃1i + fi k̃2iη3 (t) a (t) bi
)

+ β

m2∑
j=1, j /∈Q1w(

h j
˜̄k1 jμ2 (t) η4 (t) b (t) c j + h j

˜̄k2 jη4 (t) b (t) c j
)

= −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D

+ βη3 (t)

⎛
⎝μ1 (t) +

m1∑
i=1,i /∈Q1w

bi ūi

⎞
⎠ a (t)

+ βη4 (t)

⎛
⎝μ2 (t) +

m2∑
j=1, j /∈Q1w

c j τ̄ j

⎞
⎠ b (t)

+ β

m1∑
i=1,i /∈Q1w(−k1i fiμ1 (t) η3 (t) a (t) bi − k2i fiη3 (t) a (t) bi

)

+ β

m2∑
j=1, j /∈Q1w(

−k̄1 j h jμ2 (t) η4 (t) b (t) c j − k̄2 j h jη4 (t) b (t) c j
)

= −βk3η
2
3 (t) a (t) − βk4η

2
4 (t) b (t) + D. (87)

From inequality (87) and Eqs. (48)–(50), time
derivative of V̄w−1 (t) is reexpressed as

˙̄Vw−1 (t) ≤ −λV (t) . (88)

We define V̄w−1
(
t−w
) = lim�t→0− V̄w−1

(
tw + Δt

)
and V̄w−1

(
t+w−1

) = lim�t→0+ V̄w−1
(
tw−1 + Δt

) =
V̄w−1

(
tw−1

)
. If a function V̄ (t) = V̄w−1 (t) is selected

for t ∈ [tw−1, tw), w = 1, 2, . . . , n+1, then V̄ (t) is
piecewise continuous. According to inequality (88),
it is obvious that V̄w−1 (t) is nonincreasing during
time interval

[
tw−1, tw). Due to the boundedness of

V̄0 (0) and the infinite change causing by varying coef-

ficients in front of k̃21i + k̃22i and
˜̄k21 j + ˜̄k22 j , V̄w

(
t+w
)
and

V̄w

(
t−w+1

)
are both bounded for

[
tw, tw+1). As stated

above, the boundedness of v (s, t), θ (s, t), k̃1i , k̃2i ,
˜̄k1 j ,

and ˜̄k2 j can be guaranteed for (s, t) ∈ [0, l] × [0,∞),
i = 1, 2, . . . ,m1, and j = 1, 2, . . . ,m2. According to
Eqs. (77) and (78), control signals uci (t) and τcj (t) are
also bounded.

Furthermore, since V (t) is nonnegative and V̇ (t)
is bounded which can be deduced from aforemen-
tioned statement, it is attained that limt→∞ v (s, t) =
limt→∞ θ (s, t) = 0 holds for ∀s ∈ [0, l] inferring
from Lemma 4, and |v (l1, t)| < k1, |θ (l1, t)| < k2
can be always ensured for ∀t ∈ [0,∞). As a result,
Theorem 3 has been proven. ��

4 Numerical simulations

To verify the performance of proposed control strat-
egy, numerical simulations are done using the finite
difference method [39]. Values of system parameters
are chosen as: σ1 = 2.5 kg/(ms), Ip = 2 kg m2,
EI = 50 N m2, σ2 = 2.5 kg/(ms), M = 60 kg,
K = 0.5 N, J = 2 kg m2, ρ = 2 kg m−1,
l1 = 2 m, l2 = 2 m, and l = 4 m. Initial condi-
tions of v (s, t) and θ (s, t) are, respectively, selected

as v (s, 0) =
⎧⎨
⎩
0.03s, if 0 ≤ s < l1
0.03l1, if s = l1
−0.03 l1

l2
(s − l) , if l1 < s ≤ l

,

θ (s, 0)
= 0, v̇ (s, 0) = 0, and θ̇ (s, 0) = 0. Assume that
there, respectively, exist two actuators for control vari-
ables v (s, t) and θ (s, t), which means m1 = m2 = 2
in Eqs. (63) and (64). External disturbances are pre-
sented as d1 (t) = 0.05 sin (0.1t) and d2 (t) = 5 ×
10−4 sin (0.5t). Let b1 = 0.7, b2 = 0.3, c1 = 0.7, and
c2 = 0.3.

Actuator faults are then described by f1 = 1,
ū1 = 0, f2 = 1, ū2 = 0 for t < 0.3 s, and f1 = 0.5,
ū1 = 0, f2 = 0, ū2 = 0.5 for t ≥ 0.3 s, and h1 = 1,
τ̄1 = 0, h2 = 1, τ̄2 = 0 for t < 0.6 s, and h1 = 0.4,
τ̄1 = 0, h2 = 0, τ̄2 = 0.2 for t ≥ 0.6 s.

Control laws in Eqs. (77)–(82) are selected as γ1 =
200, γ2 = 200, γ̄1 = 300, γ̄2 = 300, k1 = 0.06,
k2 = 6 × 10−4, k3 = 0.1, k4 = 0.1, k5 = 100,
k6 = 100, α = 1, β = 10, D̄1 = 0.05, D̄2 = 5×10−4,
where k1 and k2 are also limited values of v (l1, t) and
θ (l1, t), respectively.

For comparative analysis, the traditional PID control
laws are proposed as follows
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Fig. 3 Displacements
v (s, t) of the crane bridge

u (t) = −kav (l1, t) − kbv̇ (l1, t) − kc

∫ t

0
v (l1, q) dq

(89)

τ (t) = −kdθ (l1, t) − keθ̇ (l1, t) − k f

∫ t

0
θ (l1, q) dq

(90)

where ka , kb, kc, kd , ke, k f are control parameters
designed as ka = 1, kb = 0.5, kc = 0.1, kd = 1,
ke = 1, and k f = 0.2.

Then, the following simulation analysis of the crane
bridge includes three cases: without control, with PID
control, and with the proposed control, to verify the
control performance.

Figures 3 and 4 show the displacement v (s, t) and
rotation θ (s, t) of the crane bridge system in these
three cases. Furthermore, dynamic responses of the sys-

tem at several representative points, such as vL

(
l1
2 , t
)
,

v (l1, t), vR
(
l1 + l2

2 , t
)
, θL

(
l1
2 , t
)
, θ (l1, t),

θR

(
l1 + l2

2 , t
)
, are clearly reflected in Figs. 5, 6, 7, and

8.
From Figs. 3, 4, 5, 6, 7, and 8, it is obvious that

the system without control has serious vibration and
rotation which need to be eliminated urgently. Besides,
note from Figs. 3, 4, 5, 6, 7, and 8 that the tradition PID

control also cannot stabilize the system because of lack
of self-adaptive ability to compensate for undesirable
effect caused by actuator failures, and thus it also can-
not guarantee the required limitation of outputs of the
system.

Comparedwith thePIDcontrol inEqs. (89) and (90),
the proposed control scheme inEqs. (77)–(82) has a sig-
nificant effect on vibration elimination, and states of the
closed-loop system can gradually tend to zero even in
the presence of actuator faults and environmental dis-
turbances. Moreover, according to Figs. 3, 4, 5, 6, 7,
and 8, it is obvious that the control laws in Eqs. (77)–
(82) can always limit the displacement and rotation of
the trolley into the given bounds, whichmeans that out-
put constraints |v (l1, t)| < k1 and |θ (l1, t)| < k2 can
always be satisfied without any violation.

Figures 9 and 10 depict the control signals u (t) and
τ (t) designed in Eqs. (77)–(82) in the third case flow-
ing into the system. Figures 9 and 10 indicate that actu-
ators of u2 (t) and τ2 (t) stuck at u2 (t) = 0.5 N and
τ2 (t) = 0.2 N m at t = 0.3 s and t = 0.6 s, respec-
tively, and partial faults separately occur to actuators of
u1 (t) and τ1 (t) at t = 0.3 s and t = 0.6 s. Even under
such two kinds of actuator faults, the stabilization can
still be realized using the proposed control scheme in
Eqs. (77)–(82).
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Fig. 4 Rotation θ (s, t) of
the crane bridge

Fig. 5 Displacements

vL

(
l1
2 , t
)
and

vR

(
l1 + l2

2 , t
)
of the crane

bridge
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Fig. 6 Displacement v (l1, t) of the middle trolley

Through the contrastive analysis of simulation results
of three cases shown above, it is noteworthy that the
actuator failure can be effectively compensated by the
proposed control scheme with no knowledge of fault
types and fault information, and states of the closed-
loop system can be greatly restricted with the required
output constraints of the trolley. Consequently, the sim-
ulation results in Figs. 3, 4, 5, 6, 7, 8, 9, and 10 show the

Fig. 8 Rotation θ (l1, t) of the middle trolley

validity of the developed control strategy in Eqs. (77)–
(82).

5 Conclusions

This paper uses PDEs to accurately describe dynamic
properties of crane bridge system without any dis-

Fig. 7 Rotations θL

(
l1
2 , t
)

and θR

(
l1 + l2

2 , t
)
of the

crane bridge
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Fig. 9 Proposed control u (t) in Eq. (77)

Fig. 10 Proposed control τ (t) in Eq. (78)

cretization, and thus spillover problem is avoided in
controller design. Then, a robust adaptive fault-tolerant
control algorithm is developed for realizing system sta-
bilization even considering actuator faults, additional
perturbations, and output constraints. With proposed
control strategy, system displacement and rotation are
eliminated even though there are uncertain actuator
failures. In addition, output constraints of the central
trolley can always be ensured in the course of control.
Simulations are conducted for verifying effectiveness
of proposed control protocol. In the future research, we
plan to design neural control to deal with uncertainties
of the crane bridge system [40].
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