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Abstract This paper proposes a new theoretical

method to investigate the thermal behaviors of the

inter-shaft bearing considering the nonlinear dynamic

characteristics of a dual-rotor system by combining

heat transfer and nonlinear dynamics. The nonlinear-

ities of the inter-shaft bearing, including the Hertzian

contact and the radial clearance, are considered during

the dynamic modeling for the system. The dynamic

load of the inter-shaft bearing is defined according to

the nonlinear dynamic responses of the system.

Therefore, some fundamental nonlinear phenomena,

i.e., jump and bi-stable phenomena happen to the

dynamic load. It makes the dynamic load more

appropriate to describe the actual load of the inter-

shaft bearing than the static load. Furthermore, a

steady-state heat transfer model for the inter-shaft

bearing subjected to the dynamic load can be set up

with the help of Palmgren’s empirical formula. The

variation of temperatures with the rotation speed is

obtained by using the Gauss–Seidel iteration. Tem-

peratures of the inter-shaft bearing also show nonlin-

ear thermal behaviors, i.e., jump and bi-

stable phenomena. It implies the nonlinear dynamic

behaviors of the system have a great impact on the

thermal behaviors of the inter-shaft bearing. More-

over, an exhaustive parametric analysis for tempera-

tures and nonlinear thermal behaviors of the inter-

shaft bearing affected by dynamic parameters (includ-

ing the rotation speed ratio, unbalances of rotors, the

radial clearance, the stiffness and the roller number of

the inter-shaft bearing) and thermal parameters (in-

cluding the lubricant viscosity and the ambient

temperature) is carried out. The results show that the

rotation speed ratio has a significant influence on both

temperatures and nonlinear thermal behaviors, other

dynamic parameters mainly affect nonlinear thermal

behaviors, while thermal parameters only affect

temperatures. This unique discovery indicates the

thermal behaviors of the inter-shaft bearing could be

much more complex because of the nonlinear dynamic

characteristics of the dual-rotor system. The obtained

results will contribute to a better understanding of the

nonlinear thermal behaviors of bearings and pro-

foundly reveal the mechanism of the nonlinear thermal

behaviors of bearings.
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List of symbols

M Total friction torque

Ml Friction torque due to the load

Mm Friction torque due to the viscosity
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Q Total FH

Ql Load FH

Qm Viscosity FH

Qr FH distributed to rollers

Qi FH distributed to inner race

Qo FH distributed to outer race

fl A coefficient depends on the type of roller

bearing

fm A coefficient depends on the type of roller

bearing and the type of lubrication

rLP Inner radius of LP rotor

d Nominal bore

ri Radius of inner race

Dm Pitch diameter

ro Radius of outer race

D Nominal outside diameter

rHP Outside radius of HP outer

dr Roller diameter

ar Roller length

Kb Stiffness of the inter-shaft bearing

B Width of the inter-shaft bearing

A AreaP
qi Curvature sum of rollers-inner race contact

pair
P

qo Curvature sum of rollers-outer race contact

pair

e1 LP rotor’s unbalance

h Convective heat transfer coefficient

em Aspect ratio

V Line speed

ksteel Thermal conductivity of steel

m Kinematic viscosity of the lubricant

a Thermal diffusivity

asteel Thermal diffusivity of steel

Adown ‘‘Jump point’’

Bdown ‘‘Jump point’’

xAdown
‘‘Frequency of jump point’’

xBdown
‘‘Frequency of jump point’’

DTAdown
‘‘Jump amplitude’’

DTBdown
‘‘Jump amplitude’’

DxA ‘‘Bi-stable interval’’

T Common temperature

TL Temperature of lubricant

Tr Temperature of rollers

Ti Temperature of inner race

To Temperature of outer race

TLP Temperature of the portion of LP rotor

contact inner race

THP Temperature of the portion of HP rotor

contact outer race

T? Ambient temperature

Rri Thermal resistance of rollers-inner race

Rro Thermal resistance of rollers-outer race

RLr Thermal resistance of lubricant rollers

RLi Thermal resistance of lubricant-inner race

RLo Thermal resistance of lubricant-outer race

Ri Thermal resistance of inner race-LP rotor

Ro Thermal resistance of outer race-HP rotor

RLP Thermal resistance of LP rotor-ambient

RHP Thermal resistance of HP rotor-ambient

Fb Dynamic load of the inter-shaft bearing

Fn Normal force between roller and races

2d0 Radial clearance of the inter-shaft bearing

Nb Roller number of the inter-shaft bearing

nb Stressed roller number

x1 Rotation speed of LP rotor

x2 Rotation speed of HP rotor

k Rotation speed ratio

e2 HP rotor’s unbalance

Nu Nusselt number

Re Reynolds number

Pr Prandtl number

Ta Taylor number

Bi Biot number

Pe Peclet number

Pe* Modified Peclet number

Aup ‘‘Jump point’’

Bup ‘‘Jump point’’

xAup
‘‘Frequency of jump point’’

xBup
‘‘Frequency of jump point’’

DTAup
‘‘Jump amplitude’’

DTBup
‘‘Jump amplitude’’

DxB ‘‘Bi-stable interval’’

1 Introduction

With the development of the rotor system trending

toward high-speed and heavy-load, higher require-

ments are put forward for dynamic and thermal

performances of the supporting system. Dynamic

and thermal behaviors of inter-shaft bearings [1], as

essential support and transmission parts between the

lower pressure (LP) rotor and the higher pressure (HP)

rotor of dual-rotor systems especially in aero engines
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of fighters, are much more complex or maybe even

nonlinear [2] in many cases. Nevertheless, the

research about nonlinear thermal behaviors of the

inter-shaft bearing is almost blank at present. There-

fore, it is imperative to study nonlinear thermal

behaviors of the inter-shaft bearing and clarify the

effect of dynamic and thermal parameters.

The effect of bearings’ nonlinearities, including the

Hertzian contact and the radial clearance on dynamic

behaviors of the rotor system, have been discussed by

many researchers so far. Yamamoto [3] studied the

resonance of a rotor-bearing system affected by the

radial clearance of the bearing and discovered that the

frequency and amplitude of the resonance peak

decrease with the increase of radial clearance. Fukata

et al. [4] researched the radial vibration of a ball

bearing under a constant radial load and revealed

nonlinear vibrations, such as super-harmonic vibration

and sub-harmonic vibration, are caused by the

Hertzian contact and the radial clearance of bearings.

The nonlinear dynamic behaviors, such as jump

phenomenon, sub-harmonic and combination vibra-

tions, in an actual dual-rotor assembly for a medium-

size jet engine, were reproduced by Holmes [2] on a

test facility. Mevel and Guyader [5] described two

different routes, i.e., the sub-harmonic route and the

quasi-periodic route, to the chaos of a lightly loaded

ball bearing based on the same dynamic model of

Fukata. A modified harmonic balance method was

applied by Tiwari et al. [6, 7] to theoretically simulate

the effect of the Hertzian contact and the radial

clearance of bearings on nonlinear dynamic behaviors

of horizontal rotors and was experimentally verified.

Ghafari et al. [8] presented a lumped mass-damper-

spring model considering the nonlinear stiffness of

rolling elements to investigate the effect of the radial

clearance on the equilibrium point of the bearing. Bai

et al. [9] established a six degree-of-freedom (6DOF)

model to investigate the sub-harmonic resonance of a

symmetric ball bearing rotor system by numerical

analysis and experiments. Based on the analytic

method, also named as HB-AFT applied in Ref.

[6, 7], Zhang et al. [10, 11] focused on the resonant

hysteresis of a ball bearing rotor system with the

Hertzian contact and the radial clearance of bearings.

In all of the above works, they all concentrated on the

nonlinear dynamic behaviors of bearing rotor system;

none of them considered the thermal effect of the

bearings.

There indeed exist some excellent research about

the thermal behaviors of rolling bearings in the past

decades. Palmgren [12] pioneered an empirical for-

mula for calculating the friction torque through

numerous experiments on various types and sizes of

rolling bearings. Harris [13] utilized the basic concept

of heat transfer among the main components of

bearings to predict the steady-state temperatures by

the lumped parameter method. Winer et al. [14]

constructed an apparatus to simulate the thermal

behaviors of a tapered roller bearing and offered

formulas of thermal resistances between the shaft, the

bearing and the housing. A 5DOF model of the rolling

bearing was set up by DeMul et al. [15, 16] to describe

the relationship between load and deflection by a

matrix method. Jorgensen and Shin [17] presented a

quasi-three-dimensional heat transfer model to predict

the steady-state temperature distribution of the spindle

bearing system considering thermal growth. Based on

Palmgren’s empirical formula, Stein and Tu [18]

proposed a state-space model for monitoring the

preload of an angular contact ball bearing induced

by the thermal expansion and analyzed the effect of

the rotation speed and the initial preload. Sun et al.

[19] developed an approach for blade loss simulation

and established a thermal model to estimate thermal

growths of the main components of bearings during

the blade loss event. Takabi and Khonsari [20] put

forward an unsteady-state heat transfer model for an

oil bath lubrication deep-groove ball bearing to study

the transient temperatures of the bearing. Ai et al. [21]

concentrated on the thermal behaviors of double-row

tapered roller bearings lubricated with grease and

proposed a quasi-static model for the bearing to attain

the load distribution and kinematic parameters. Than

and Huang [22] offered a unified method, which is a

combination of a quasi-static model and finite element

method, to research nonlinear thermal behaviors of a

high-speed spindle bearing under preload. Neverthe-

less, none of the above literatures considers the effect

of dynamic characteristics on thermal behaviors of

rolling bearings during modeling.

The motivation of this paper is to propose a new

theoretical method to investigate the thermal behav-

iors of the inter-shaft bearing considering the nonlin-

ear dynamic characteristics of a dual-rotor system by

combining heat transfer and nonlinear dynamics. The

dynamic load of the inter-shaft bearing is defined

according to the nonlinear dynamic responses of the
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dual-rotor system, which can be substituted into the

steady-state heat transfer model of the inter-shaft

bearing with the help of Palmgren’s empirical for-

mula. Therefore, the model enables us to investigate

the thermal behaviors of the inter-shaft bearing

affected by the nonlinear dynamic characteristics of

the dual-rotor system through numerical simulations.

The obtained results show that the nonlinear dynamic

load from the dual-rotor system can make significant

effect on the thermal behaviors of the inter-shaft

bearing, e.g., the temperature frequency curve of the

inter-shaft bearing has nonlinear features. In conclu-

sion, the dynamic load defined in this paper is more

appropriate than the static load employed in most of

the references to describe the actual load of the inter-

shaft bearing.

2 Dynamic load of the inter-shaft bearing

CFM56 is one of most widely used dual-rotor aero

engines [23]. A two-disk dual-rotor system supported

by four points is obtained Based on the basic structure

of CFM56 and the simplified method of dynamic

model [24]. Figure 1 displays the schematic diagram

of a simple dual-rotor system with an inter-shaft

bearing [24, 25]. Each rotor is composed of one disk

and one shaft, both of which are bound together into

one complete rotor. The inter-shaft bearing is located

between the LP rotor and the HP rotor. Different from

the supporting bearing, both the inner race and the

outer race of the inter-shaft bearing rotate with the LP

rotor and the HP rotor. Wherein, li (i = 1–5) are

lengths of shafts, ki and ci (i = 1, 2, 3) are stiffness and

damping coefficients of springs, x1 and x2 (rad/s) are

rotation speeds of the LP rotor and the HP rotor.

Assume that the LP rotor and the HP rotor operate at a

constant ratio. Therefore, the rotation speed ratio is

defined as k ¼ x2

x1
. Since the HP rotor rotates faster

than the LP rotor, k[ 1 for the co-rotating system and

k\� 1 for the counter-rotating system.

The mathematical derivation of the dynamic equa-

tions for the dual-rotor system has been processed in

Ref. [26, 27]. Thus the deduction process is omitted

and the dynamic equations are given directly as

m1 €x1 þ c1 _x1 � _hyl1
� �

þ c2 _x1 þ _hyl2
� �

þ k1 x1 � hyl1
� �

þ k2 x1 þ hyl2
� �

¼ m1x
2
1e1 cos x1tð Þ � Fx � m1g;

ð1aÞ

m1 €y1 þ c1 _y1 þ _hxl1
� �

þ c2 _y1 � _hxl2
� �

þ k1 y1 þ hxl1ð Þ þ k2 y1 � hxl2ð Þ
¼ m1x

2
1e1 sin x1tð Þ � Fy;

ð1bÞ

Jd1
€hx þ x1Jp1

_hy þ c1l1 _y1 þ _hxl1
� �

� c2l2 _y1 � _hxl2
� �

þ k1l1 y1 þ hxl1ð Þ

� k2l2 y1 � hxl2ð Þ ¼ Fy l2 � l5ð Þ;

ð1cÞ

Jd1
€hy � x1Jp1

_hx � c1l1 _x1 � _hyl1
� �

þ c2l2 _x1 þ _hyl2
� �

� k1l1 x1 � hyl1
� �

þ k2l2 x1 þ hyl2
� �

¼ �Fx l2 � l5ð Þ;

ð1dÞ

m2 €x2 þ c3 _x2 � _uyl3
� �

þ k3 x2 � uyl3
� �

¼ m2x
2
2e2 cos x2tð Þ þ Fx � m2g;

ð1eÞ

m2 €y2 þ c3 _y2 þ _uxl3ð Þ þ k3 y2 þ uxl3ð Þ
¼ m2x

2
2e2 sin x2tð Þ þ Fy;

ð1fÞ

Jd2 €ux þ x2Jp2 _uy þ c3l3 _y2 þ _uxl3ð Þ
þ k3l3 y2 þ uxl3ð Þ ¼ �Fyl4;

ð1gÞ

Jd2 €uy � x2Jp2 _ux � c3l3 _x2 � _uyl3
� �

� k3l3 x2 � uyl3
� �

¼ Fxl4;
ð1hÞ

The physical significances and values of the

parameters in Eq. (1) have been already claimed in

Ref. [26, 27].

The inter-shaft bearing is a radial cylindrical roller

bearing, especially in the dual-rotor aero engine of the

fighter. The nonlinear factors, such as the radial

clearance and the fractional exponential relationshipFig. 1 Schematic diagram of a simple dual-rotor system with

an inter-shaft bearing
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of the Hertzian contact [13], are taken into consider-

ation for calculating restoring forces of the inter-shaft

bearing. The schematic diagram of the inter-shaft

bearing and the picture of the NU1020 roller bearing

are shown in Fig. 2.

The nonlinear vertical and horizontal restoring

forces of the inter-shaft bearing [28] are expressed as

Fx

Fy

� �

¼ Kb

XNb

k¼1

d10=9k H dkð Þ cos hk
sin hk

� �

; ð2Þ

where Kb, Nb are the Hertz contact stiffness and the

roller number of the inter-shaft bearing, H �ð Þ repre-

sents the step function.

Assume that deformations are small enough, then

the deformation between kth roller and races dk is

expressed as

dk ¼ x1 þ hy l2 � l5ð Þ
� 	

� x2 þ uyl4
� �
 �

cos hk

þ y1 � hx l2 � l5ð Þ½ � � y2 � uxl4ð Þf g sin hk
� d0 k ¼ 1; 2; . . .;Nbð Þ;

where 2d0 is the radial clearance of the inter-shaft

bearing.

The angular position of the kth roller is

hk ¼ 2p
Nb

k � 1ð Þ þ xct k ¼ 1; 2; . . .;Nbð Þ, where xc ¼
x1riþx2ro

riþro
denotes the rotation speed of the cage, ri, ro

are the radiuses of inner and outer races.

The NU1020 roller bearing of FAG� is adopted as

the inter-shaft bearing in this paper, and its important

structural parameters are shown in Table 1.

The dynamic load of the inter-shaft bearing is

introduced to estimate the actual load of the inter-shaft

bearing when the system is operating at a certain

rotation speed. The root-mean-square (RMS) [29] of

the vertical and horizontal restoring forces is utilized

to define the dynamic load; the formula is

Fb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R T

0
Fx tð Þ � �Fxð Þ2þ Fy tð Þ � �Fy

� �2
� �

dt

T

v
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Fx ið Þ � �Fxð Þ2þ Fy ið Þ � �Fy

� �2
� �

N

v
u
u
t

;

ð3Þ

where T is the period of the restoring forces, N is the

number of discrete points in one period, �Fx and �Fy are

Fig. 2 a Schematic diagram of the inter-shaft bearing. b The NU1020 roller bearing

Table 1 Structural parameters of the NU1020 roller bearing

Parameter Value

Nominal bore d (mm) 100

Radius of inner race ri (mm) 56.5

Pitch diameter Dm (mm) 125

Radius of outer race ro (mm) 68.5

Nominal outside diameter D (mm) 150

Width of bearing B (mm) 24

Diameter of roller dr (mm) 12

Length of roller ar (mm) 14

Roller number Nb 24

Radial clearance 2d0 (lm) 20

Hertzian contact stiffness Kb (N/m
10/9) 108
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average values of vertical and horizontal restoring

forces.

3 Heat transfer modeling under the dynamic load

3.1 Friction heat (FH) under the dynamic load

Friction hinders motion and causes energy loss in the

form of FH. During the operation of the inter-shaft

bearing, FH causes the temperature to rise, which can

be measured by the friction torque. The magnitude of

friction torque considerably depends on the type of

lubrication. For the oil lubrication roller bearing, the

lubricant occupies a portion of the free space inside the

bearing, and it will hinder the motion of rollers [13].

The friction torque is related to the lubricant perfor-

mance, the filling amount in the free space, and the

rolling speed of rollers.

Nevertheless, these factors are intensely coupled

together and extremely difficult to distinguish from

each other [18]. In 1959, Palmgren [12] attained an

empirical formula for calculating the friction torque

through numerous experiments on various types and

sizes of rolling bearings. The empirical formula has

been widely accepted as a precise method to predict

the friction torque.

The inter-shaft bearing is a radial cylindrical roller

bearing as shown in Fig. 2, the total friction torque M

contains three parts: the load friction torque Ml, and

the viscosity friction torque Mm and the roller end-

flange friction torque Mf. The inter-shaft bearing do

not deliver axial load; thus,Mf can be ignored andM is

simplified into

M ¼ Ml þMv; ð4aÞ

the unit of above friction torque is N mm.

Different from the static load in previous research

[17, 20, 22], the dynamic load of the inter-shaft

bearing Fb is introduced to estimate the load friction

torque Ml. The dynamic load shows nonlinear behav-

iors, which makes it much more complex than the

static load. The dynamic load is more appropriate to

describe the actual load of the inter-shaft bearing than

the static load. Therefore,Ml subjected to the dynamic

load can be expressed as

Ml ¼ flFbDm; ð4bÞ

where fl is a coefficient depends on the type of roller

bearing, its values are shown in Table 2.

The viscosity friction torque Mm is related to the

lubricant viscosity apparently. Herein, the kinematic

viscosity m in Centistoke (cSt, i.e., mm2/s) is applied to

denote the lubricant viscosity. Both inner and outer

races of the inter-shaft bearing rotate with LP and HP

rotors; thus, the rotation speed difference between HP

and LP rotors Dn ¼ 60
2p x2 � x1j j ¼ 60

2p k� 1j jx1 (r/

min, i.e., rpm) is introduced to estimateMm, as follows:

Mv ¼ 10�7fv m � Dnð Þ2=3D3
m m � Dn� 2000

160� 10�7fvD
3
m m � Dn\2000




; ð4cÞ

where fm is a coefficient depends on the type of roller

bearing and the type of lubrication, its values are

shown in Table 3.

The total FHQ, the load FHQl and the viscosity FH

Qm of the inter-shaft bearing are

Q ¼ Ql þ Qv; ð5aÞ

Ql ¼ 10�3 x2 � x1j jMl ¼ 10�3 k� 1j jx1Ml; ð5bÞ

Qm ¼ 10�3 x2 � x1j jMm ¼ 10�3 k� 1j jx1Mm; ð5cÞ

the units of FHs are W.

3.2 Steady-state heat transfer modeling

under the dynamic load

The lumped parameter method can be used to set up

the steady-state heat transfer model for rollers, inner

race and outer race of the inter-shaft bearing, because

the Biot number [30] of bearing steel is rather small

(Bi\ 0.1). The inside temperatures of rollers, inner

race and outer race are considered the same every-

where, thus the steady-state heat transfer model for the

inter-shaft bearing is greatly simplified.

Figure 3 illustrates the thermal network for the

inter-shaft bearing. The thermal nodes are labeled in

Fig. 3a. There exists six lumped thermal nodes,

including Tr, Ti and To are rollers, the inner race and

the outer race of the inter-shaft bearing; TLP and THP
are portions of LP rotor contact the inner race and HP

rotor contact the outer race; TL is the lubricant. While

T? is the temperature of the ambient. The structure

sizes of the inter-shaft bearing are also pictured; the

values are listed in Table 1. The heat transfer network

is depicted in Fig. 3b. Rri, Rro, Ri, Ro are thermal
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resistances of heat conduction while RLr, RLi, RLo, RLP,

RHP are thermal resistances of heat convection.

Assume that FH is generated at the contact zones

between rollers and races, then distributed to rollers

Qr, inner race Qi, and outer race Qo. The distribution

coefficients of the FH refer to Ref. [18]; therefore,

Q ¼ Qr þ Qi þ Qo; ð6aÞ

Qr ¼ 0:5Q; ð6bÞ

Qi ¼ 0:25Q; ð6cÞ

Qo ¼ 0:25Q: ð6dÞ

Considering the energy balance for every lumped

thermal node, the governing equations of the steady-

state heat transfer are expressed as

Ti � Tr
Rri

þ To � Tr
Rro

þ TL � Tr
RLr

þ Qr ¼ 0; ð7aÞ

Tr � Ti
Rri

þ TLP � Ti
Ri

þ TL � Ti
RLi

þ Qi ¼ 0; ð7bÞ

Tr � To
Rro

þ THP � To
Ro

þ TL � To
RLo

þ Qo ¼ 0; ð7cÞ

Table 2 The coefficient fl for the cylindrical roller bearing type [13]

Type of cylindrical roller bearing fl

Radial cylindrical roller bearing with cage 0.0002–0.0004a

Radial cylindrical roller bearing, full complement 0.00055

Thrust cylindrical roller bearing 0.0015

aLower values for light series bearings while higher values for heavy series bearings

Table 3 The coefficient fm versus cylindrical roller bearing type and lubrication type [13]

Type of cylindrical roller bearing Type of lubrication

Grease Oil mist Oil bath Oil bath (vertical shaft) or oil jet

Cylindrical roller bearing with cage 0.6–1a 1.5–2.8a 2.2–4a –

Cylindrical roller bearing, full complement 5–10a – 5–10a –

Thrust cylindrical roller bearing 9 – 3.5 8

aLower values for light series bearings while higher values for heavy series bearings

Fig. 3 Thermal network of the inter-shaft bearing. a Thermal nodes. b Heat transfer network
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Ti � TLP
Ri

þ T1 � TLP
RLP

¼ 0; ð7dÞ

To � THP
Ro

þ T1 � THP
RHP

¼ 0; ð7eÞ

Tr � TL
RLr

þ Ti � TL
RLi

þ To � TL
RLo

¼ 0: ð7fÞ

The governing equations of the steady-state heat

transfer Eq. (7) can be rewritten in a matrix form as

follows:

AT ¼ B; ð8Þ

where T ¼ Tr Ti To TLP THP TL½ �T,

B ¼ �Qr �Qi �Qo � T1
RLP

� T1
RHP

0

� �T
, the

coefficient matrix A is seen in ‘‘Appendix’’.

3.3 Thermal resistance

(1) Thermal resistance of heat conduction

(a) The thermal resistances of roller-inner

race Rri and roller-outer race Rro.

The assumption of ideal line contact is applicable

for contact pairs of roller-inner race and roller-outer

race, the contact zones are treated as rectangles. The

semiwidth of the contact zones [13] can be easily

attained as

bi ¼ 3:35� 10�3 Fn

ar
P

qi

� �1
2

;

bo ¼ 3:35� 10�3 Fn

ar
P

qo

� �1
2

;

where Fn is the normal force of roller-race;
P

qi is the
curvature sum of roller-inner race contact pair;

P
qo is

the curvature sum of roller-outer race contact pair.

The areas of the contact zones of roller-inner race

and roller-outer race are

Ai ¼ 2arbi; Ao ¼ 2arbo:

Considering that the contact zones of roller-inner

race and roller-outer race are rectangles, it is not

appropriate to use Peclet number [30] directly. The

modified Peclet number Pe* [31], which accounts the

effect of the shape and orientation of the contact zone,

is introduced as follows:

Pe� ¼ emð Þ
1
2 Pe ¼ emð Þ

1
2
VL

a
;

where em ¼ b
a is the aspect ratio, which describes the

shape and orientation effect of the rectangular or

elliptic heat source; V is the line speed; a is the thermal

diffusivity; L is the characteristic length depends on

the shape of the contact zone, its values are shown in

Table 4.

Then the modified Peclet numbers for the contact

zones of roller-inner race and roller-outer race are

Pe�i ¼ emð Þ
1
2�x1ri

ffiffiffiffiffi
Ai

p

asteel
;

Pe�o ¼ emð Þ
1
2� kx1j jro �

ffiffiffiffiffi
Ao

p

asteel
;

where asteel is the thermal diffusivity of steel.

The thermal resistance of one roller-inner race and

one roller-outer race [31] are

Rone
i ¼ 1:13

ksteel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai � Pe�i

p ;

Rone
o ¼ 1:13

ksteel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ao � Pe�o

p ;

ð9Þ

where ksteel is the thermal conductivity of steel.

The stressed roller number of the inter-shaft bearing

is represented as nb, i.e., there are nb (a number) Rone
ri ,

Rone
ro in parallel [20]; thus, the total thermal resistances

are

Rri ¼
Rone
i

nb
;

Rro ¼
Rone
o

nb
:

ð10Þ

(b) The thermal resistances of inner race-LP rotor Ri

and outer race-HP rotor Ro.

Table 4 The characteristic length L for the shape of the

contact zone [31]

Shape Characteristic length

Circular L= r (r is radius)

Square L= a (a is length of half side)

Rectangle L=
ffiffiffi
A

p
(A is area)

Elliptic L=
ffiffiffi
A

p
(A is area)
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The inner race-LP rotor and the outer race-HP rotor

are interference fit; therefore, the inner race and the

portion of LP rotor contact the inner race is treated as

singular-layer hollow cylinder; it is the same with the

outer race and the portion of HP rotor contact the outer

race. Thermal resistances are expressed as

Ri ¼
ln di=dLð Þ
2pksteelB

;

Ro ¼
ln dH=doð Þ
2pksteelB

:

ð11Þ

(2) Thermal resistance of heat convection

In order to acquire the thermal resistance of heat

convection under different conditions of heat convec-

tion [21], it is indispensable to predict the convective

heat transfer coefficient h. Nevertheless, h can be

expressed in terms of the fluid thermal conductivity k,

the characteristic length L and the dimensionless

Nusselt number Nu as follows:

Rm ¼
1

Ah
¼ 1

A
� L

k � Nu : ð12Þ

Once the Nusselt number is determined, the thermal

resistance of heat convection can be acquired based on

Eq. (12). The Nusselt number is measured by the

experiment in most cases. The Nusselt numbers under

different conditions of heat convection are listed as

follows:

(a) The Nusselt number of lubricant roller NuLr.

In 1965, Fand [32] presented a correlation by

experimental investigation of forced convection from

a cylinder to water in crossflow in the range

10�1\Re\105. The heat exchange between the

lubricant and the cylinder roller meets the require-

ments of the correlation, which is

Nu ¼ 0:35þ 0:34Re0:5 þ 0:15Re0:58
� �

Pr
0:3
; ð13Þ

the correlation is valid for 10�1\Re\105. Where

Re ¼ VL
m , Pr ¼ m

a are the dimensionless Reynolds

number and the dimensionless Prandtl number.

(b) The Nusselt numbers of lubricant-inner race

NuLi and lubricant-outer race NuLo.

In 1958, Gazley [33] investigated on forced

convection between two rotating concentric cylinders,

the gap of which is filling with a fluid and air. The

inner and outer races are just like two rotating

concentric cylinders, which were separated by the

lubricant. The Nusselt number is given in Ref. [21] as

Nu ¼
2 Ta\41

0:167 Ta0:69 Pr0:4 41�Ta\100

0:401 Ta0:5 Pr0:4 100\Ta

8
<

:
; ð14Þ

the Taylor number is Ta ¼ Re
ffiffiffiffi
dio
r

q
, where dio ¼ do�di

2

is the gap between inner and outer races, r is the inside

radius of race.

(c) The Nusselt numbers of LP rotor-ambient NuLP
and HP rotor-ambient NuHP.

Because LP and HP rotors are rotating, the heat

exchange between two rotors and the ambient (air) are

forced convection. The Nusselt number is given in

Ref. [34] as

Nu ¼
0:00308Reþ 4:432 Re\7300

Re0:37 7300�Re\9600

30:5Re�0:0042 9600\Re

8
<

:
:

ð15Þ

4 Results and discussion

4.1 Nonlinear behaviors of the dynamic load

The dynamic equations of the dual-rotor system

Eq. (1) are nonlinear due to the nonlinearities of the

restoring forces of the inter-shaft bearing. The fourth-

order Runge–Kutta method is applied to solve

dynamic equations Eq. (1), the dynamic responses

are available with the help of the ode45 function in

MATLAB�. The RMS is used to express the ampli-

tude in the amplitude frequency curve. Figure 4

displays the amplitude frequency curve of the LP

rotor in the dual-rotor system. The dynamic parame-

ters are taken as: the rotation speed ratio k ¼ 1:2, the

LP rotor’s unbalance e1 = 3 lm, the HP rotor’s

unbalance e1 = 2 lm. The run-up curve represents

the rotation speed increases from a lower rotation

speed to a higher rotation speed. On the contrary, the

run-down curve represents the rotation speed

decreases from a higher rotation speed to a lower

rotation speed. The amplitude frequency curve of the
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HP rotor in the dual-rotor system is omitted because its

shape is same with that of the LP rotor.

In Fig. 4, it can be seen that there are two resonance

regions, which are caused by double unbalance

excitations of HP and LP rotors in both run-up and

run-down curves. In the run-up curve, the vibration

amplitude increases sharply until the rotation speed

reaches xAup
and xBup

, the jump phenomenon occurs,

i.e., the vibration amplitude decrease abruptly; in the

run-down curve, the jump phenomenon happens when

the rotation speed reduces toxAdown
andxBdown

, i.e., the

vibration amplitude increases abruptly. When the

rotation speed x1 2 xAdown
;xAup

� 	
and

x1 2 xBdown
;xBup

� 	
, the vibration amplitude in run-

up curve do not overlap with that in run-down curve,

which means the bi-stable phenomenon occurs. In

mathematics, it means Eq. (1) have two stable solu-

tions among two ‘‘bi-stable interval’’ xAdown
;xAup

� 	

and xBdown
;xBup

� 	
. Which stable solution the dynamic

equations converge to depends on the initial state of

motion. The initial states for the run-up curve and the

run-down curve at ‘‘jump point’’ Adown, Aup, Bdown

and Bup are different; thus, the run-up curve and the

run-down curve do not overlap among ‘‘bi-

stable interval.’’

In order to analyze the nonlinear behaviors of

dynamic responses in detail, the vibration response

analysis for x1 = 675 rad/s in the run-up curve and in

the run-down curve are shown in Figs. 5 and 6. The

analysis methods include the time histories for vertical

and horizontal responses, orbit diagrams, Poincaré

diagrams, and spectrum diagrams (wherein fL is the

frequency of the LP rotor; fH is the frequency of the HP

rotor; 2fH - fL, 3fH - 2fL and fH ? fL are the com-

bination frequencies of the HP rotor with the LP rotor;

2fH is the double frequency of the HP rotor).

Comparing Figs. 5 and 6, the rotation speed are

both x1 = 675 rad/s; the only difference between

them is that Fig. 5 is located in the run-up curve while

Fig. 6 is located in the run-down curve. However, the

dynamic responses are very different from each other.

In Fig. 5, the vertical and horizontal responses are

almost harmonic signals, the orbit diagram is circular,

the Poincaré diagram only has one point, and fH is the

dominant frequency, fL is so small that it could be

ignored. In Fig. 6, the vertical and horizontal

responses are quasi-periodic signals, and look like

beat vibrations. The orbit diagram is unclosed circle

ring. The Poincaré diagram have six points. fL and fH
are the dominant frequency, but the combination

frequencies (2fH - fL, 3fH - 2fL and fH ? fL) and the

double frequency (2fH) also occurs.

The restoring forces of the inter-shaft bearing can

be attained by substituting the dynamic responses into

Eq. (2). The restoring forces of the inter-shaft bearing

for x1 = 675 rad/s in the run-up curve and in the run-

down curve are displayed in Figs. 7 and 8. It can be

found the force state of the inter-shaft bearing are very

different from each other. The force of Fig. 7 is

significantly greater than Fig. 8. Moreover, the restor-

ing forces all vary periodically. The vertical and

horizontal restoring forces are variable forces at a

certain rotation speed. It is very difficult and incon-

venient to describe the actual load of the inter-shaft

bearing by using the vertical and horizontal restoring

forces.

The dynamic load of the inter-shaft bearing can be

obtained by substituting the restoring forces into the

definition of the dynamic load Eq. (3). Figure 9

illustrates the variation of the dynamic load versus

the rotation speed. It can be found that jump

phenomenon also occurs at four ‘‘jump point’’ Adown,

Aup, Bdown and Bup, and bi-stable phenomenon occurs

among two ‘‘bi-stable interval’’ xAdown
;xAup

� 	
and

xBdown
;xBup

� 	
. The dynamic load shows the same

behaviors as the vibration amplitude. Comparing with

restoring forces, the dynamic load is a constant force at

a certain rotation speed. Thus, it is easier and more

Fig. 4 Amplitude frequency curve of the LP rotor in the dual-

rotor system. (Solid lines represent run-up curves, dotted lines

represent run-down curves)
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Fig. 5 Vibration response

analysis for x1 = 675 rad/s

in the run-up curve.

a Vertical response.

b Horizontal response.

c Orbit diagram. d Poincaré

diagram. e Spectrum
diagram

Fig. 6 Vibration response

analysis for x1 = 675 rad/s

in the run-down curve.

a Vertical response.

b Horizontal response.

c Orbit diagram. d Poincaré

diagram. e Spectrum
diagram

Fig. 7 The restoring forces of the inter-shaft bearing for x1 = 675 rad/s in the run-up curve. a Vertical restoring force. b Horizontal

restoring force
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convenient to describe the actual load of the inter-shaft

bearing.

In a word, the nonlinearities of the inter-shaft

bearing, including the radial clearance and the frac-

tional exponential relationship of the Hertzian contact,

are considered during the dynamic modeling for the

dual-rotor system. The dynamic load of the inter-shaft

bearing is defined according to the nonlinear dynamic

responses of the system. The dynamic load shows

nonlinear behaviors, i.e., jump and bi-stable phenom-

ena. It means the dynamic load can reflect the

nonlinear dynamic characteristics of the system,

which makes it much more complex than the static

load. In conclusion, the dynamic load defined in this

paper is more appropriate than the static load

employed in most of the references to describe the

actual load of the inter-shaft bearing.

4.2 Nonlinear thermal behaviors

The governing equations of steady-state heat transfer

for the inter-shaft bearing Eq. (8) are linear matrix

equations. The Gauss–Seidel iteration, an indirect

method, is applied to solve the linear matrix equations,

because the coefficient matrix A may be an ill

condition [35] in many cases. The error of the

Gauss–Seidel iteration for every rotation speed is set

as T nð Þ � T n�1ð Þ�
�

�
�� 10�12 (n denotes iteration time).

The variation for temperatures of rollers, inner race

and outer race with rotation speed, is plotted in

Fig. 10. Thermal parameters are taken as: the lubricant

viscosity m ¼ 5 mm2=s, the ambient temperature

T1 ¼ 20 oC.

In Fig. 10, it can be observed that the temperature

of rollers Tr higher than the temperature of inner race

Ti higher than the temperature of outer race To in both

run-up and run-down curves, i.e., Tr[ Ti[ To. Nev-

ertheless, the variation of Tr, Ti and To in both run-up

Fig. 8 The restoring forces of the inter-shaft bearing forx1 = 675 rad/s in the run-down curve. aVertical restoring force. bHorizontal
restoring force

Fig. 9 Variation of dynamic load with rotation speed. (Solid

lines represent run-up curves, dotted lines represent run-down

curves)

Fig. 10 Variation for temperatures of rollers, inner race and

outer race with rotation speed. (Solid lines represent run-up

curves, dotted lines represent run-down curves)
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and run-down curves with rotation speed are the same

with each other. Therefore, we take Tr as an example to

analyze nonlinear thermal behaviors of the inter-shaft

bearing in the following sections. In the resonance

regions A and B, Tr in run-up curve rises sharply until

the rotation speed reaches xAup
and xBup

, the jump

phenomenon happens, i.e., Tr declines abruptly; Tr in

run-down curve declines gradually until the rotation

speed reduces to xAdown
and xBdown

, the jump phe-

nomenon happens, i.e., Tr rises abruptly. When the

rotation speed x1 2 xAdown
;xAup

� 	
and

x1 2 xBdown
;xBup

� 	
, Tr in run-up curve do not overlap

with Tr in run-down curve, which implies the bi-

stable phenomenon happens.

In order to further analyze nonlinear thermal

behaviors in the following sections, we introduce

some symbols and parameters as: Adown, Aup, Bdown

and Bup are named as ‘‘jump point’’; xAdown
, xAup

,

xBdown
and xBup

are named as ‘‘frequency of jump

point’’;DTAdown
,DTAup

,DTBdown
and DTBup

are named as

‘‘jump amplitude’’; DxA ¼ xAdown
;xAup

� 	
and DxB ¼

xBdown
;xBup

� 	
are named as ‘‘bi-stable interval.’’

It is vital to carry out the FH analysis, including the

total FH, the load FH and the viscosity FH, for

exploring the inherent mechanism of nonlinear ther-

mal behaviors of the inter-shaft bearing. Figure 11

displays the variation of the total FH, the load FH and

the viscosity FH with rotation speed. The solid lines

denote run-up curves and the dotted lines denote run-

down curves.

In Fig. 11, the blue line represents the viscosity FH

Qm, Qm increases gradually with the increase of

rotation speed, no nonlinear thermal behavior hap-

pens. The green line represents the load FH Ql, Ql

shows jump phenomenon at ‘‘jump point’’ Aup and Bup

in run-up curve while at ‘‘jump point’’ Adown and

Bdown in run-down curve; bi-stable phenomenon hap-

pens among two ‘‘bi-stable interval’’ DxA and DxB.

The red line represents the total FH Q, Q increases

gradually with the increase of the rotation speed

beyond DxA and DxB; Q shows jump phenomenon at

Aup and Bup in run-up curve while at Adown and Bdown

in run-down curve; bi-stable phenomenon happens

among DxA and DxB.

In a word, the direct reason why temperatures of the

inter-shaft bearing show nonlinear thermal behaviors,

i.e., jump and bi-stable phenomena, is the load FH

shows nonlinear behaviors, while the root reason is the

nonlinear dynamic characteristics of the dual-rotor

system. The dynamic load of the inter-shaft bearing is

introduced to calculate the load FH. The dynamic load

can reflect the nonlinear dynamic characteristics of the

dual-rotor system. This unique discovery cannot be

found if the static load is applied to calculate the load

FH.

4.3 Effect of rotation speed ratio

The effect of the rotation speed ratio on temperatures

and nonlinear thermal behaviors of the inter-shaft

bearing is discussed in this section, the rotation speed

Fig. 11 Variation of the total FH, the load FH and the viscosity

FH with rotation speed. (Solid lines represent run-up curves,

dotted lines represent run-down curves)

Fig. 12 Variation for temperature of rollers with rotation speed

under different rotation speed ratio. (Solid lines represent run-up

curves, dotted lines represent run-down curves)
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ratio are k ¼ 1:1, k ¼ 1:15, k ¼ 1:2 and k ¼ 1:25. The

variation for temperature of rollers with rotation speed

under different rotation speed ratio are depicted in

Fig. 12.

In Fig. 12, with the increase of rotation speed ratio

k, the temperature of rollers Tr rises obviously;

‘‘frequency of jump point’’ xBdown
and xBup

are still,

but xAdown
and xAup

decrease obviously; ‘‘jump

amplitude’’ DTAdown
, DTAup

, DTBdown
and DTBup

all

increase apparently; ‘‘bi-stable interval’’ DxA and

DxB remain the original length, while DxB is wider

than DxA.

Comparing the values of xAdown
, xAup

, xBdown
, xBup

with k, the approximate relation is as follows:

xBdown

xAdown

	 k 	
xBup

xAup

: ð16Þ

From Eq. (16), it can be seen that the rotation speed

ratio has a crucial influence on xAdown
and xAup

. In

other words, the rotation speed ratio determines the

relative position of four ‘‘jump point’’ and two ‘‘bi-

stable interval’’ where nonlinear thermal behaviors

happen.

4.4 Effect of rotors’ unbalances

The effect of the LP and HP rotors’ unbalances on

temperatures and nonlinear thermal behaviors of the

inter-shaft bearing is discussed in this section. Firstly,

the LP rotor’s unbalance are e1 ¼ 2lm, e1 ¼ 3lm,

e1 ¼ 4lm and e1 ¼ 5lm. The variation for

temperature of rollers with rotation speed under

different unbalances of LP rotor is depicted in Fig. 13.

In Fig. 13, the temperature of rollers Tr under

different LP rotor’s unbalances e1 almost overlap

except the resonance region B, which indicates e1
mostly affects the region B. With the increase of e1,

‘‘frequency of jump point’’ xAdown
and xAup

are still,

but xBdown
and xBup

increase sharply; ‘‘jump ampli-

tude’’ DTAdown
and DTAup

barely change, while DTBdown

and DTBup
increase apparently; ‘‘bi-stable interval’’

DxA remains the original length, but DxB becomes

narrower.

Finally, the HP rotor’s unbalance are e2 ¼ 2lm,

e2 ¼ 3lm, e2 ¼ 4lm and e2 ¼ 5lm. The variation for

temperature of rollers with rotation speed under

different unbalances of HP rotor is depicted in Fig. 14.

In Fig. 14, the temperature of rollers Tr under

different HP rotor’s unbalances e2 almost overlap

except the resonance region A, which indicates e2
mostly affects the region A. With the increase of e2,

‘‘frequency of jump point’’ xBdown
and xBup

are still,

but xAdown
and xAup

increase sharply; ‘‘jump ampli-

tude’’ DTBdown
and DTBup

barely change, while DTAdown

and DTAup
increase apparently; ‘‘bi-stable interval’’

DxB remains the original length, but DxA becomes

narrower.

In summary, the unbalance of LP rotor only affects

the resonance region B, while the unbalance of HP

rotor only affects the resonance region A. With the

increase of corresponding unbalance, the correspond-

ing ‘‘frequency of jump point’’ and ‘‘jump amplitude’’

Fig. 13 Variation for temperature of rollers with rotation speed

under different unbalances of LP rotor. (Solid lines represent

run-up curves, dotted lines represent run-down curves)

Fig. 14 Variation for temperature of rollers with rotation speed

under different unbalances of HP rotor. (Solid lines represent

run-up curves, dotted lines represent run-down curves)

123

204 P. Gao et al.



increase while the corresponding ‘‘bi-stable interval’’

becomes narrower.

4.5 Effect of inter-shaft bearings’ radial clearance

The effect of the inter-shaft bearings’ radial clearance

on temperatures and nonlinear thermal behaviors of

the inter-shaft bearing is discussed in this section, the

radial clearance are d0 ¼ 3lm, d0 ¼ 5lm, d0 ¼ 8lm
and d0 ¼ 10lm. The variation for temperature of

rollers with rotation speed under different radial

clearance are depicted in Fig. 15.

In Fig. 15, it can be seen that the radial clearance d0
has a significant influence on nonlinear thermal

behaviors of the inter-shaft bearing. With the increase

of d0, the highest temperature of Tr barely changes;

‘‘frequency of jump point’’ xAup
and xBup

decrease

slightly, while xAdown
and xBdown

decrease obviously;

‘‘jump amplitude’’ DTAup
and DTBup

increase slightly,

but DTAdown
and DTBdown

increase apparently; ‘‘bi-

stable interval’’ DxA and DxB become wider rapidly.

It is worth noting that jump and bi-stable phenomena

disappear when d0 ¼ 3lm.

In other words, the radial clearance of the inter-

shaft bearing delays the contact between rollers and

races, which is equivalent to reducing the stiffness of

the inter-shaft bearing in another way [36]; thus,

‘‘frequency of jump point’’ decrease. Moreover, the

radial clearance is an essential nonlinearity, thus

reducing the radial clearance appropriately will

significantly suppress nonlinear thermal behaviors,

i.e., reduce ‘‘jump amplitude’’ and narrow ‘‘bi-

stable interval.’’

4.6 Effect of inter-shaft bearing’s stiffness

The effect of the inter-shaft bearings’ stiffness on

temperatures and nonlinear thermal behaviors of the

inter-shaft bearing is discussed in this section; the

stiffness are Kb ¼ 8Kb0, Kb ¼ 10Kb0, Kb ¼ 15Kb0 and

Kb ¼ 20Kb0 (Kb0 ¼ 107N=m10=9). The variation for

temperature of rollers with rotation speed under

different stiffness are depicted in Fig. 16.

In Fig. 16, it can be seen that the stiffnessKb mostly

affects nonlinear thermal behaviors of the inter-shaft

bearing. With the increase of Kb, the highest temper-

ature of Tr barely changes; ‘‘frequency of jump point’’

xAdown
, xAup

, xBdown
and xBup

all increase obviously;

‘‘jump amplitude’’ DTAdown
, DTAup

, DTBdown
and DTBup

decrease slightly; ‘‘bi-stable interval’’ DxA and DxB

become narrower slowly.

4.7 Effect of inter-shaft bearing’s roller number

The effect of the inter-shaft bearings’ roller number on

temperatures and nonlinear thermal behaviors of the

inter-shaft bearing is discussed in this section; the

roller number are Nb ¼ 12, Nb ¼ 16, Nb ¼ 20 and

Nb ¼ 24. The variation for temperature of rollers with

Fig. 15 Variation for temperature of rollers with rotation speed

under different radial clearance. (Solid lines represent run-up

curves, dotted lines represent run-down curves)

Fig. 16 Variation for temperature of rollers with rotation speed

under different stiffness. (Solid lines represent run-up curves,

dotted lines represent run-down curves)
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rotation speed under different roller numbers are

depicted in Fig. 17.

In Fig. 17, it can be seen that the roller number Nb

mostly affects nonlinear thermal behaviors of the

inter-shaft bearing. With the increase of Nb, the

highest temperature of Tr barely changes; ‘‘frequency

of jump point’’ xAdown
, xAup

, xBdown
and xBup

all

increase obviously; ‘‘jump amplitude’’ DTAdown
, DTAup

,

DTBdown
and DTBup

decrease slightly; ‘‘bi-stable inter-

val’’ DxA and DxB become narrower slowly.

It is worth noting that the effect of the roller number

on nonlinear thermal behaviors is very similar with the

stiffness of the inter-shaft bearing. More roller num-

ber, more stressed roller number, greater dynamic

load, and greater stiffness. Therefore, raising the

stiffness and the roller number of the inter-shaft

bearing moderately is helpful to suppress nonlinear

thermal behaviors, i.e., reduce ‘‘jump amplitude’’ and

narrow ‘‘bi-stable interval.’’

4.8 Effect of the lubricant viscosity

The effect of the lubricant viscosity on temperatures

and nonlinear thermal behaviors of the inter-shaft

bearing is discussed in this section; the lubricant

viscosity are m ¼ 2 mm2=s, m ¼ 5 mm2=s, m ¼
8 mm2=s and m ¼ 10 mm2=s. The variation for tem-

perature of rollers with rotation speed under different

lubricant viscosity are depicted in Fig. 18.

In Fig. 18, it can be seen that the lubricant viscosity

m has a significant influence on temperatures of the

inter-shaft bearing. With the increase of m, the

temperature of rollers Tr rises sharply; ‘‘frequency of

jump point’’ xAdown
, xAup

, xBdown
and xBup

are still;

‘‘jump amplitude’’ DTAdown
, DTAup

, DTBdown
and DTBup

barely change; ‘‘bi-stable interval’’ DxA and DxB

remains the original length.

4.9 Effect of the ambient temperature

The effect of the ambient temperature on temperatures

and nonlinear thermal behaviors of the inter-shaft

bearing is discussed in this section; the ambient

temperature are T1 ¼ 20 
C, T1 ¼ 30 
C, T1 ¼
40 
C and T1 ¼ 50 
C. The variation for temperature

Fig. 17 Variation for temperature of rollers with rotation speed

under different roller numbers. (Solid lines represent run-up

curves, dotted lines represent run-down curves)

Fig. 18 Variation for temperature of rollers with rotation speed

under different lubricant viscosity. (Solid lines represent run-up

curves, dotted lines represent run-down curves)

Fig. 19 Variation for temperature of rollers with rotation speed

under different ambient temperatures. (Solid lines represent run-

up curves, dotted lines represent run-down curves)

123

206 P. Gao et al.



of rollers with rotation speed under different ambient

temperatures is depicted in Fig. 19.

In Fig. 19, it can be seen that the ambient temper-

ature T1 has a significant influence on temperatures of

the inter-shaft bearing. With the increase of T1, the

temperature of rollers Tr rises sharply; ‘‘frequency of

jump point’’ xAdown
, xAup

, xBdown
and xBup

are almost

still; ‘‘jump amplitude’’ DTAdown
, DTAup

, DTBdown
and

DTBup
barely change; ‘‘bi-stable interval’’ DxA and

DxB remains the original length.

It is worthwhile to note that the effect of the

lubricant viscosity and the ambient temperature is the

same with each other. They both have a significant

influence on temperatures of the inter-shaft bearing,

while no effect on nonlinear thermal behaviors.

Therefore, reducing the lubricant viscosity and the

ambient temperature appropriately is contributive to

control temperatures of the inter-shaft bearing.

5 Conclusions

In this paper, the dynamic load of the inter-shaft

bearing has been defined according to the nonlinear

dynamic responses of a dual-rotor system, based on

which, a steady-state heat transfer model for the inter-

shaft bearing subjected to the dynamic load has been

set up with the help of Palmgren’s empirical formula.

Thermal behaviors of the inter-shaft bearing affected

by the nonlinear dynamic characteristics of the system

have been studied in detail. Furthermore, an exhaus-

tive parametric analysis for temperatures and nonlin-

ear thermal behaviors of the inter-shaft bearing

affected by dynamic and thermal parameters has been

carried out. Some meaningful conclusions are drawn

as follows:

(1) The dynamic load can reflect the nonlinear

dynamic characteristics of the dual-rotor sys-

tem. It is more appropriate than the static load

employed in most of the references to describe

the actual load of the inter-shaft bearing.

(2) Nonlinear thermal behaviors, i.e., jump and bi-

stable phenomena, happen to temperatures of

the inter-shaft bearing. There exists two ‘‘jump

point’’ in both the run-up curve and the run-

down curve, and two ‘‘bi-stable interval’’ are

formed between the corresponding ‘‘jump

point.’’

(3) The rotation speed ratio has a significant

influence on both temperatures and nonlinear

thermal behaviors of the inter-shaft bearing.

Reducing the rotation speed ratio reasonably is

not only helpful to curb temperatures, but also

helpful to suppress nonlinear thermal behaviors.

(4) Dynamic parameters mainly affect nonlinear

thermal behaviors of the inter-shaft bearing.

Reducing unbalances of rotors and the radial

clearance or raising the stiffness and the roller

number moderately are conducive to reduce

‘‘jump amplitude’’ and narrow ‘‘bi-

stable interval.’’

(5) Thermal parameters only affect temperatures of

the inter-shaft bearing. Reducing the lubricant

viscosity and the ambient temperature appro-

priately are contributive to control temperatures

at a lower level.

The unique discovery in this paper indicates the

thermal behaviors of the inter-shaft bearing could be

much more complex due to the nonlinear dynamic

characteristics of the dual-rotor system. The future

work will concentrate on the experimental verification

of nonlinear thermal behaviors.
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Appendix

The coefficient matrix A is a symmetric matrix, which

is shown as follows:
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