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Abstract This study proposes a novel bistable non-

linear electromagnetic actuator with elastic boundary

(BEMA-EB) to enhance the actuation performance

when controlled by a harmonic input signal. The

structure of the BEMA-EB has an inclined spring, one

end of which is supported by an elastic boundary. The

inclined spring produces bistable nonlinearity to

realize the large-amplitude inter-well actuation

responses, and the elastic boundary brings additional

dynamic coupling to enhance the inter-well actuation

performance. The governing equations of the BEMA-

EB controlled by a harmonic input signal are formu-

lated. To show the advantages of the BEMA-EB, the

study performs comparison between the BEMA-EB, a

bistable electromagnetic actuator which does not have

elastic boundary, and an equivalent linear electro-

magnetic actuator. The results show that the BEMA-

EB has a much broader inter-well actuation bandwidth

and smaller input-signal-amplitude threshold of acti-

vating the favorable inter-well actuation, which verify

the merits of both the bistable nonlinearity and elastic

boundary. To develop insights into the nonlinear

dynamic behaviors of the BEMA-EB, the bifurcation

features are investigated in terms of the inclined spring

stiffness, the input signal frequency and amplitude.

Phase portraits and Poincare maps are presented to

illustrate how the actuation responses of the BEMA-

EB evolve corresponding to the changes of the above

parameters. Finally, basin-of-attraction maps are

given to uncover the occurring probabilities of the

different types of the actuation responses with respect

to the different distributions of the initial conditions.

The results quantitatively corroborate that the likeli-

hood of the favorable inter-well actuation is signifi-

cantly increased by using the BEMA-EB.

Keywords Electromagnetic actuator � Elastic
boundary � Bistable nonlinearity � Bifurcation
analyses � Basin-of-attraction maps � Occurring
probabilities

1 Introduction

Electromagnetic actuators (EMAs) can transduce an

electrical input signal into a mechanical motion and

thus have served motion control applications in many
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industrial fields, e.g., robot control [1, 2], vibration

control and structural test [3–7], and motion control of

biomedical devices [8, 9]. The ubiquitous EMA

structure is modeled based on a linear oscillator model

that consists of a mover, a stator and a linear spring [3].

The function of the linear spring is to reset the mover’s

position, i.e., using the linear spring restoring force to

keep the mover at the equilibrium position when the

EMA is in standby mode. Since the linear spring

restoring force is always opposite to the moving

direction of the mover, a significant portion of the

input electrical energy will be consumed to conquer

the resistance of the linear spring restoring force when

exhibiting actuation, thereby reducing the transform

efficiency. For the applications that require large

actuation force (e.g., contactless power transmission

systems [10]), the significantly high voltage (or high-

current) electrical signal is needed to realize the

desired actuation energy, which may cause current

leakage and electrical breakdown [11]. Therefore, the

EMA with high-efficiency actuation capability is

highly demanded for the modern industry [11, 12].

To improve the actuation efficiency, using the

nonlinear-oscillator-based EMA is an effective solu-

tion. In this manner, the linear spring is replaced by a

nonlinear spring to enhance the efficiency of converting

the input electric energy into the actuation energy.

Researchers have performed various studies on the

dynamic behaviors and applications of nonlinear oscil-

lators. It was found that nonlinear oscillators are highly

efficient in transducing the external input energy into

kinetic energy compared to linear oscillators [13, 14]. A

nonlinear oscillator with double potential wells (i.e., a

bistable oscillator) draws much attention [15]. When

the bistable oscillator is subjected to external excitation

with a certain level, it will exhibit a special dynamic

behavior ‘‘inter-well response’’ (i.e., the snap-through

response). That is, the oscillator vibrates fromone of the

stable equilibria to the other, which leads to large-

amplitude response [15–20].

Based on the advantages of the bistable oscillator’s

large-amplitude inter-well response, a few researchers

were inspired to use the bistable oscillator to design

the actuators [21–25]. For example, Fang et al. [21]

proposed a bistable piezoelectric vibration-driven

locomotion system to magnify stroke output in the

field of crawling robot motion. The results showed that

the system is able to output high average locomotion

speed in a wider frequency band due to the inter-well

response of the bistable nonlinearity. Gude and

Hufenbach [22] fabricated a bistable morphing struc-

ture with piezoelectric actuator to realize the large out-

of-plane deformations of multilayered fiber-reinforced

composites. Gray et al. [23] modified a bistable can-

tilever magnetic actuation mechanism to realize large

actuation displacement and low switching energy. Li

et al. [11] proposed a new actuation method using DE

membranes with a properly designed beam-like

bistable oscillator, which overcomes the high voltage

consumption drawback. Gerson et al. [24] reported a

novel approach to tune the bistable nonlinearity for

enhancing the displacement response of micro actu-

ators. The bistable structure has also been applied to

the magneto active elastomer actuator [25].

Furthermore, it has been found that the

bistable oscillator coupling with elastic boundary

can dynamically change its bistable nonlinearity by

reducing the depth of the potential energy well, which

is more conducive to inter-well oscillation [26]. Such

improvement measure was used in the piezoelectric

bistable energy harvester, which has significantly

improved the conversion efficiency of external exci-

tation into kinetic energy of the oscillator mass,

thereby improving energy harvesting efficiency

[27–29]. However, the effect of such improvement

measure on the EMA design remains uninvestigated.

Different from the energy harvester, the EMA’s

excitation position is on the mover of the actuator,

not on the foundation of the structure. In nonlinear

dynamics, different excitation positions may introduce

significantly different dynamic behaviors.

Inspired by the demand of the high-efficiency

actuation and benefit of the modified bistable nonlin-

earity, this paper proposes a new type of nonlinear

EMA: bistable nonlinear electromagnetic actuator

with elastic boundary (BEMA-EB), so as to signifi-

cantly improve the actuation performance of the EMA.

The proposed BEMA-EB’s structure has an inclined

spring bistable structure and an elastic boundary,

which realizes the dynamically changed bistable non-

linearity. Owing to the dynamically varied

bistable nonlinearity, the BEMA-EB will exhibit

significantly different dynamic behaviors from the

previously reported bistable actuators in Refs.

[21–25]. This study will show the actuation perfor-

mance enhancement of the proposed BEMA-EB

through comparisons between the proposed actuator,

the bistable actuator without the elastic boundary and
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the equivalent linear actuator. To deeply understand

the dynamic behaviors of the BEMA-EB, comprehen-

sive numerical studies will be conducted in terms of

the time historic response, phase portraits, Poincare

maps, bifurcation and basin-of-attraction. The design

guidelines of the BEMA-EB will be developed

through this study, which can provide a new actuation

mean for application of vibration control and loco-

motion system control.

The rest of this paper is organized as follows:

Sect. 2 presents the schematic diagram of the BEMA-

EB and its governing equations controlled by a

harmonic input current signal. This section also

presents the schematics and governing equations of a

bistable electromagnetic actuator (BEMA) (which

does not have elastic boundary) and an equivalent

linear electromagnetic actuator (LEMA), both of

which are used as the comparative counterparts. In

Sect. 3, a series of numerical simulations are con-

ducted to reveal the benefits of both the bistable non-

linearity and elastic boundary of the BEMA-EB for

actuation performance enhancement. Section 4 per-

forms bifurcation analyses to uncover the nonlinear

dynamic behaviors of the BEMA-EB in terms of the

inclined spring stiffness, the input signal frequency

and amplitude. In Sect. 5, the influence of initial

conditions on the responses of the BEMA-EB is

discussed, which finally presents the occurring prob-

abilities of the certain types of the responses. Section 6

concludes the main findings of this study.

2 Dynamic modeling

2.1 Description of the BEMA-EB

Figure 1 presents the schematic diagram of the

BEMA-EB. The BEMA-EB has an inclined spring

whose stiffness and undeformed length are k1 and L1.

One end of the inclined spring is connected to the coil

mover m1, while the opposite end is supported by the

elastic boundary. The elastic boundary comprises a

linear spring with stiffness k2 and undeformed length

L2, a linear damper with damping constant c2, and a

joint mass m2. The adjustable bolt is used to adjust the

positions of the joint mass m2 in the elastic boundary.

One end of the linear spring is connected to the bottom

of the adjustable bolt to make sure the other end is

flush with the middle frame. The width of them2 is too

small, and thus is neglected. The vertical distance from

the middle frame to the coil mover is d and satisfies

d\ L1. Hence, the inclined spring is compressed in

the upright position to induce two stable equilibria of

m1 which are symmetric about the center line, i.e.,

bistable nonlinearity. The coil mover m1 slides on the

linear track embedded with the permanent magnets.

As a result, when the coil mover has an input current

harmonic signal i, the coil mover will be subjected to

an electromagnetic force F ¼ Hi, where H is a

constant that is related with the magnetic flux density

and the coil length [3]. This study assumes that c1 is

the equivalent linear damping coming from the linear

track.

2.2 Governing equations of the BEMA-EB

Define that the horizontal displacement from the coil

mover to the center line is x, and the vertical

displacement from m2 to the middle frame is y. The

total kinetic energy of the BEMA-EB is

T1 ¼
1

2
m1 _x

2 þ 1

2
m2 _y

2 ð1Þ

where the operator ð:Þ indicates the derivative with

respect to time t. The total potential energy and virtual

work done by non-conservative forces are

V1 ¼
1

2
k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ d � yð Þ2Þ
q

� L1

� �2

þ 1

2
k2y

2

� m2gy ð2Þ

dW ¼ F � c1 _xð Þdx� c2 _ydy ð3Þ

where g is the gravitational acceleration. F is the

electromagnetic force, which is

F ¼ Hi ð4Þ

where i ¼ I sin 2pXtð Þ (I and X are the input signal

amplitude (A) and frequency (Hz), respectively).

Therefore, by applying the Euler–Lagrange equation,

the governing equations of the BEMA-EB are

m1 €xþ c1 _xþ k1x 1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d � yð Þ2
� �

r

2

6

6

4

3

7

7

5

¼ Hi

ð5aÞ
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m2 €yþ c2 _yþ k2y

þ k1 y� dð Þ 1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d � yð Þ2
� �

r

0

B

B

@

1

C

C

A

� m2g

¼ 0:

ð5bÞ

2.3 Linear frequencies of the BEMA-EB

To conveniently interpret the insights of the following

results, the linear frequencies of the BEMA-EB

(which is a two-degree-of-freedom system) are pre-

sented. The linear frequencies are equal to the natural

frequencies of the linearization system of the BEMA-

EB controlled by a very small input signal. Introduc-

ing the relative displacements from the equilibrium

position xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 � d � m2g
k2

� �2
r

; ys ¼ m2g
k2

 !

X ¼ x� xs; Y ¼ y� ys ð6Þ

Substituting Eq. (6) into (5), the governing equa-

tions of the BEMA-EB become

m1
€X þ c1 _X

þ k1 X þ xsð Þ 1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X þ xsð Þ2þ D� Yð Þ2
� �

r

0

B

B

@

1

C

C

A

¼ hi

ð7aÞ

m2
€Y þ c2 _Y þ k2Y

� k1 D� Yð Þ 1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X þ xsð Þ2þ D� Yð Þ2
� �

r

2

6

6

4

3

7

7

5

¼ 0

ð7bÞ

where D ¼ d � ys. By multivariate Taylor series

expansion at ðX ¼ 0; Y ¼ 0Þ and omitting high order

terms, the reduced system of the BEMA-EB is

obtained

Fig. 1 Schematic diagram

of the BEMA-EB
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m1
€X þ c1 _X þ K1X � K2Y þ Q1X

2 þ Q2XY þ Q3Y
2

¼ hi

ð8aÞ

m2
€Y þ c2 _Y � K3X þ K4Y þ Q4X

2 þ Q5XY þ Q6Y
2

¼ 0

ð8bÞ

where

K1 ¼
k1x

2
s

L21
;K2 ¼

k1xsD

L21
;K3 ¼

k1xsD

L21
;K4 ¼ k2 þ

k1D
2

L21
;

Q1 ¼
3k1xsD

2

2L41
;Q2 ¼ �

k1D D2 � 2x2s
� �

L41
;

Q3 ¼ �
k1xs 2D2 � x2s

� �

2L41
;Q4 ¼ �

k1D D2 � 2x2s
� �

2L41
;

Q5 ¼ �
k1xs 2D2 � x2s

� �

L41
;Q6 ¼ � 3k1Dx

2
s

2L41
:

The two linear frequencies of the BEMA-EB are

obtained by assume X and Y are small quantities

xBMEA�EB1

¼ K1=m1 þ K4=m2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K1=m1 � K4=m2

2

� �2

þ K2K3

m1m2

s

0

@

1

A

1
2

ð9aÞ

xBMEA�EB2

¼ K1=m1 þ K4=m2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K1=m1 � K4=m2

2

� �2

þ K2K3

m1m2

s

0

@

1

A

1
2

ð9bÞ

It is known that the even the input signal with small

strength could still excite the large-amplitude actua-

tion when the input signal frequency is close to the

natural frequencies. As a result, it could be predicted

that the input signal frequency to activate the large-

amplitude actuation of the BEMA-EB is strongly

related to the linear natural frequencies. This will be

revealed in the following results.

2.4 Description of the comparative counterparts

Two comparative counterparts are presented to prove

the advantage of the BEMA-EB. They are a

bistable electromagnetic actuator without the elastic

boundary (BEMA) and a linear electromagnetic

actuator (LEMA), respectively, schematics of which

are shown in Fig. 2a, b. The governing equation of the

BEMA is

m1 €xþ c1 _xþ k1x 1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d2ð Þ
p

 !

¼ Hi ð10Þ

When the BEMA is subjected to a tiny-amplitude

input signal i, the BEMA will exhibit small oscilla-

tions. Consequently, the nonlinearity can be neglected

so that its response is nearly identical that of a

linearized actuator [30]. For meaningful comparison,

the LEMA is defined as the linearization of the BEMA

subjected to very small i. Assuming bistable actuator

exhibits small oscillations, the coil mover m1 vibrates

around either stable equilibrium positions: the intra-

well oscillation. That is, the response motion is

expressed by x ¼ dx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 � d2
p

, where

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 � d2
p

are the bistable equilibria and dx � L1.

As a result, the potential force of the inclined spring

becomes

Fp ¼ k1 dx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 � d2
q

� �

1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 � d2
p

� �2

þd2
� �

s

0

B

B

B

B

@

1

C

C

C

C

A

ð11Þ

After Taylor expansion with respect to the small

quantity dx=L1, and neglecting the higher order, a

linear expression of potential force is obtained to be

Fp � k1 1� d2

L21

� �

dx ¼ kldx ð12Þ

where kl is the equivalent stiffness and the LEMA is

realized with an equivalent damping constant cl and kl.

Therefore, the governing equation of the LEMA is

m1 €xþ cl _xþ k1 1� d2

L21

� �

x ¼ Hi: ð13Þ

3 Numerical investigation and performance

comparison

Numerical investigations are performed based on the

governing equations of the BEMA-EB, BEMA and

LEMA. In the following simulations, the parameters

are set as follows: L1 ¼ 0:08m, d=L1 ¼ 0:9, m1 ¼
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m2 ¼ 0:1 kg, H ¼ 1N/A, and the stiffness of all

springs is set in the range of 500–2000 N/m. The loss

factor cn ¼ cn=
ffiffiffiffiffiffiffiffiffiffi

knmn

p
is set to 0.1, where n represents

different actuators and the initial coil mover position is

set at one of the equilibria. All the calculations in this

paper are based on the fourth-order Runge–Kutta

method.

3.1 Comparison with the LEMA

To reveal the merits of bistable nonlinearity in EMAs,

this section investigates the displacement amplitude

and acceleration responses of the BEMA, BEMA-EB

and LEMA versus the inclined spring stiffness (k1),

input signal frequency (X) and amplitude (I). The

responses of the BEMA are shown as the blue square,

whereas responses corresponding to the BEMA-EB

are red circle. Besides, responses of the LEMA are

shown as the claret star. In each circumstance, two

figures are presented to show the coil mover’s

displacement amplitude and the peak of acceleration

responses. Note that, when the bistable nonlinear

system exhibits intra-well oscillation, the displace-

ment x has a nonzero bias apart from the vibration.

Since this study is focus on the actuation’s dynamic

feature instead of the absolute position, the following

figures only present the vibration amplitudes. For

actuation application, larger displacement amplitude

and greater acceleration indicate better performance.

Figure 3 presents the displacement amplitude and

acceleration amplitude responses of the BEMA,

BEMA-EB and LEMA for different k1. The stiffness

of the linear spring of the elastic boundary is

k2 ¼ 2000N/m, the input signal frequency is

X ¼ 6Hz, and the input signal amplitude is I ¼ 2A,

respectively. It is seen in Fig. 3a that the LEMA

exhibits the considerably large displacement ampli-

tude response for a small range of the stiffness k1 near

k1 ¼ 750N/m. However, the BEMA could realize

large inter-well oscillation for a wider range

100\k1\1600N/m, which indicates that the BEMA

improves the robustness of the large-amplitude actu-

ation against the variation of k1 because of the

bistable nonlinearity. Compared to the BEMA, a

broader inclined spring stiffness range k1 for large

inter-well oscillation is obtained for the BEMA-EB. It

is shown that with the elastic boundary, the BEMA-EB

could realize inter-well motion within all parameters

of the inclined stiffness k1. To explore the exact range

of k1 for large inter-well oscillation, more simulations

are conducted. The results show that the BEMA-EB

could realize large inter-well oscillation in the range of

100\k1\7050N/m, which indicates that the BEMA-

EB could further improve the robustness of the large-

amplitude actuation against the variation of k1.

Figures 4 and 5 show the displacement amplitude

and the envelope of the acceleration responses of the

BEMA, BEMA-EB and LEMA when a forward swept

harmonic input signal iwith sweeping rate 0.025 Hz is

employed. According to Fig. 3, LEMA exhibits large

actuation when k1 ¼ 750N/m. As a result, k1 ¼
750N/m is set, so as to use the optimally designed

LEMA as the counterpart. Other parameters are: the

spring stiffness of the elastic boundary k2 ¼ 2000N/m

and input signal amplitude I ¼ 1A. It is seen in Fig. 4

that LEMA only exhibits high efficiency (i.e., large-

amplitude actuation displacement amplitude) in a

narrow input signal frequency band near 6 Hz, while

the BEMA and BEMA-EB have a wider inter-well

Fig. 2 Schematics of the two comparative counterparts. a BEMA; b LEMA
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actuation bandwidth. This indicates that both the

BEMA and BEMA-EB outperform the LEMA in

terms of the actuation bandwidth. It is seen that for the

low frequency band (X� 2 Hz), the BEMA exhibits

intra-well response, where the acceleration actuation

is small. Differently, with elastic boundary, the

BEMA-EB still realizes large-amplitude inter-well

response for X� 2 Hz. Thus, the BEMA-EB could

enhance the actuation performance for low-frequency

input signal.

Moreover, inclined spring stiffness k1 ¼ 1250N/m

is set to further explore the displacement amplitude

and acceleration responses. The stiffness of the elastic

boundary is k2 ¼ 2000N/m, the input signal ampli-

tude is I ¼ 1:5A, and the results are shown in Fig. 5.

With the increase in k1, the optimal input frequency of

the LEMA is increased to be 7.75 Hz. However, the

Fig. 3 Displacement and

acceleration amplitude

responses for the BEMA,

BEMA-EB and LEMA

under different inclined

spring stiffness (k1) when
X ¼ 6Hz, I ¼ 2A and

k2 ¼ 2000N=m.

a Displacement amplitude;

b acceleration responses

Fig. 4 Displacement

amplitude and the envelope

of the acceleration responses

for the BEMA, BEMA-EB

and LEMA with a slowly

increasing sweeping input

frequency (X) when
k1 ¼ 750N=m, I ¼ 1A and

k2 ¼ 2000N=m.

a Displacement amplitude;

b acceleration responses

Fig. 5 Displacement amplitude and the envelope of the

acceleration responses for the BEMA, BEMA-EB and LEMA

with a slowly increasing sweeping input frequency (X) when

k1 ¼ 1250N=m, I ¼ 1:5A and k2 ¼ 2000N=m. a Displacement

amplitude; b acceleration responses
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large-amplitude actuation bandwidth of the LEMA is

still narrow. The BEMA has a wider inter-well

actuation bandwidth than the LEMA, whereas the

BEMA-EB further broadens the bandwidth. It can be

concluded that the bistable nonlinearity can realize the

broadband large-amplitude inter-well oscillation,

leading to actuation performance enhancement; the

elastic boundary brings the additional dynamic cou-

pling to activate the inter-well actuation in low input

signal frequency band.

Figures 6 and 7 present the displacement amplitude

and acceleration amplitude responses of the BEMA,

BEMA-EB and LEMA with the increase in input

signal amplitude I. Two input signal frequencies

X ¼ 6 Hz and 4 Hz are employed in Figs. 6 and 7,

respectively. It is seen in Fig. 6 that the displacement

amplitude and acceleration responses of the BEMA,

BEMA-EB and LEMA increase with the increase in

input signal amplitude. The acceleration amplitude of

the BEMA, BEMA-EB is close to the LEMA when

only the intra-well responses are exhibited due to the

small input signal amplitude. Once inter-well oscilla-

tion occurs by increasing the input signal amplitude,

the actuation performances of both the BEMA and

BEMA-EB are significantly improved. Furthermore, it

can be clearly seen in Fig. 6a that the minimum input

signal amplitude to activate the inter-well response of

the BEMA-EB is smaller than that of the BEMA. In

other words, smaller input signal amplitude is needed

for the BEMA-EB to realize large-amplitude inter-

well actuation responses.

Figure 7 shows the influence of input signal

amplitude on the actuation performance for a rela-

tively low input signal frequency X ¼ 4Hz. Similar

tendency in Fig. 6 is obtained in Fig. 7. By comparing

both Figs. 6 and 7, it is seen that larger input signal

amplitude is required to activate the inter-well

response for the BEMA-EB. By substituting the

parameters into Eq. (9), the linear frequencies are

xBEMA�EB1 ¼ 7:33 Hz and xBEMA�EB2 ¼ 30:975 Hz.

However, the input signal frequency X ¼ 4 Hz, which

is further away from the linear frequencies. This

indicates that it is more difficult for the input signal to

activate the large-amplitude oscillation of the BEMA-

EB to cross the potential barrier. As a result, stronger

input signal is required to activate the large-amplitude

inter-well actuation response. Nevertheless, the

BEMA-EB still requires smaller input signal ampli-

tude to activate the inter-well response compared to

the BEMA. Overall, the BEMA-EB has a much

broader inter-well actuation frequency band and

requires smaller input signal amplitude to achieve

the large-amplitude inter-well actuation.

3.2 Discussion of the elastic boundary benefits

To thoroughly explore the effects of the elastic

boundary on the BEMA-EB, multiple linear spring

stiffness k2 ¼ 500; 1000; 1500; 2000½ �N/m is set in the

following simulations. k1 ¼ 2000N/m and I ¼ 2A are

employed, and the input signal frequency X increases

from 1 to 10 Hz, slowly sweeping at a rate of

0.025 Hz/s. In this section, the shading areas indicate

the inter-well responses.

Figure 8 shows the acceleration responses of the

BEMA and BEMA-EB for different k2 in 1�X� 10

Hz. It is seen in Fig. 8a that the BEMA has a very

narrow inter-well actuation bandwidth under I ¼ 2A.

The optimal input signal frequency is near 9 Hz with a

350 m/s2 acceleration. The input signal amplitude is

magnified about 17.5 times due to the bistable nonlin-

earity. However, the BEMA only exhibits inefficient

Fig. 6 Displacement and

acceleration amplitude

responses for the BEMA,

BEMA-EB and LEMA

under different input

amplitude (I) when
k1 ¼ 2000N=m, X ¼ 6Hz

and k2 ¼ 2000N=m.

a Displacement amplitude;

b acceleration responses
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intra-well oscillation for the frequency band out of the

shading area. In contrast, the BEMA-EB with each

different linear stiffness k2 has a broader inter-well

actuation bandwidth, which outperforms the BEMA.

A new variable fe is defined to represent the inter-well

actuation bandwidth. fe ¼ 2:6Hz for the BEMA when

k1 ¼ 2000N/m and I ¼ 2A. For the BEMA-EB, when

k2 ¼ 500; 1000; 1500; 2000½ � N/m, fe ¼
7:5; 7:11; 7:1; 6:97½ � Hz, respectively. Correspond-

ingly, the inter-well actuation bandwidths of the

BEMA-EB are 188%, 173%, 173%, 168% broadened

compared to that of the BEMA under the same input

signal, respectively. It is also seen in Fig. 8 that with

the increase in k2, the acceleration obtained in the

BEMA-EB is larger and the actuation performance

characteristic of the BEMA-EB seems closer to the

BEMA. The BEMA can be regarded as a BEMA-EB

with infinite linear stiffness k2. As shown in Fig. 8f,

for a very large elastic boundary spring stiffness k2 ¼
10000 N/m, it is seen that the BEMA-EB is unable to

exhibit the inter-well response in the low frequency

band. However, the peak actuation acceleration for the

BEMA-EB is enhanced (the amplitude is greater than

300 m/s2 when X ¼ 8:8 Hz) compared to the cases in

Fig. 7 Displacement and

acceleration amplitude

responses for the BEMA,

BEMA-EB and LEMA

under different input

amplitude (I) when
k1 ¼ 2000N=m, X ¼ 4Hz

and k2 ¼ 2000N=m.

a Displacement amplitude;

b acceleration responses

Fig. 8 Acceleration responses of the BEMA and BEMA-EB

for different linear stiffness (k2) under forward swept harmonic

input signal when k1 ¼ 2000N=m, I ¼ 2A. a BEMA; b BEMA-

EB with k2 ¼ 500N=m; c BEMA-EB with k2 ¼ 1000N=m; d
BEMA-EB with k2 ¼ 1500N=m; e BEMA-EB with

k2 ¼ 2000N=m; f BEMA-EB with k2 ¼ 10000N=m
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Fig. 8b–e. In general, the BEMA-EB has a wider inter-

well frequency band than the BEMA. For the large

linear stiffness k2, the inter-well bandwidth of the

BEMA-EB becomes narrower, but the peak acceler-

ation performance is enhanced.

Figure 9 presents the acceleration responses of the

BEMA and BEMA-EB for different k2 under back-

ward swept harmonic input signal when

k1 ¼ 2000N/m, I ¼ 2A. fe ¼ 5:73Hz for the BEMA

when subjected to the backward swept input signal,

which is 120% wider than that under the forward

swept input signal shown in Fig. 8. The BEMA-EB

with different k2 ¼ 500; 1000; 1500; 2000½ �N/m under

backward swept harmonic input signal exhibits fe ¼
7:34; 6:69; 6:97; 6:84½ � Hz, respectively. Correspond-
ingly, the inter-well bandwidth of the BEMA-EB is

broadened by only 28.1%, 16.8%, 21.6%, 19.4%

compared to that of the BEMA, respectively. Simi-

larly, the results show that increasing the elastic

boundary spring stiffness may decrease the inter-well

bandwidth. Compared with the results in Fig. 9, it is

seen that the forward swept input signal is beneficial to

activating the favorable inter-well response.

Figure 10 shows the displacement amplitude

responses and corresponding acceleration amplitude

responses for different linear stiffness k2 with the

increase in the input signal amplitude (I). In accor-

dance with the above simulations, the parameters are

set to k1 ¼ 2000N/m,X ¼ 6Hz and the linear stiffness

k2 ¼ 500; 1000; 1500; 2000; 10000½ � N/m. It is seen in

Fig. 10 that both actuators exhibit intra-well responses

when the input signal amplitude is not large enough.

Afterward, with the increase in I, inter-well responses

emerge. As I keeps increasing, all actuators could

realize large-amplitude inter-well responses and

obtain a considerable acceleration. The input signal

amplitude threshold is defined to represent the min-

imum input signal amplitude to activate the inter-well

response. It is seen in Fig. 10 that the input signal

amplitude threshold for the BEMA-EB is smaller than

that for the BEMA. The BEMA-EB has a better

performance in displacement responses, while the

BEMA has a larger peak acceleration amplitude. The

acceleration amplitude obtained in the BEMA-EB

increases with the increase in k2, while the input

amplitude threshold decreases with the increase in k2.

In conclusion, the BEMA-EB has a much broader

Fig. 9 Acceleration responses of the BEMA and BEMA-EB

for different linear stiffness (k2) under backward swept

harmonic input signal when k1 ¼ 2000N=m, I ¼ 2A. a BEMA;

b BEMA-EB with k2 ¼ 500N=m; c BEMA-EB with

k2 ¼ 1000N=m; d BEMA-EB with k2 ¼ 1500N=m; e BEMA-

EB with k2 ¼ 2000N=m; f BEMA-EB with k2 ¼ 10000N=m
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inter-well actuation bandwidth and smaller input

signal amplitude threshold of activating the favorable

inter-well actuation.

3.3 Mathematical interpretation

The actuation characteristics of the BEMA-EB men-

tioned above can be mathematically interpreted.

According to Eq. (6), the expression of the

bistable restoring force in the x direction for the

BEMA is

F xð ÞBEMA¼ k1x 1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d2ð Þ
p

 !

ð14Þ

Thus, the corresponding potential energy of the

BEMA is

P xð ÞBEMA¼ k1 �L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d2ð Þ
p

þ x2

2

� �

ð15Þ

When the coil mover is at one of the equilibrium

positions (�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 � d2
p

), P xð ÞBEMA has the minimum

value, and its value is �k1
L2
1
þd2

2

� �

. When the coil

mover oscillates between the two equilibrium posi-

tions, the local maximum P xð ÞBEMA is �k1L1d. As a

result, the kinetic energy of the coil mover must be

able to complete the following energy conversion to

realize inter-well oscillation in the BEMA.

DP xð ÞBEMA¼ �k1L1d þ k1
L21 þ d2

2

� �

¼ k1
L1 � d

2

� �2

ð16Þ

For the BEMA-EB, the bistable restoring force in

the x direction is

F xð ÞBEMA�EB¼ k1x 1� L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d � yð Þ2
� �

r

0

B

B

@

1

C

C

A

ð17Þ

the corresponding potential energy of the BEMA-EB

is

P xð ÞE¼ k1 �L1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d � yð Þ2
� �

r

þ x2

2

� �

ð18Þ

The local maximum P xð ÞBEMA�EB is �k1L1 d � yð Þ
when x ¼ 0, and the minimum P xð ÞBEMA�EB is

�k1
L2
1
þ d�m2g

k2

� �2

2

0

@

1

A when the coil mover is at one of

the equilibrium positions �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 � d � m2g
k2

� �2
r

 !

.

Thus, the kinetic energy of the coil mover must be

greater than DP xð ÞBEMA�EB in the BEMA-EB to

realize inter-well oscillation.

DP xð ÞBEMA�EB¼ �k1L1 d � yð Þ

þ k1
L21 þ d � m2g

k2

� �2

2

0

B

@

1

C

A

ð19Þ

The difference between DP xð ÞBEMA and

DP xð ÞBEMA�EB is

DP ¼ DP xð ÞBEMA�DP xð ÞBEMA�EB

¼
k2 m2g dk2 � 0:5m2gð Þ � L2k

2
1y

� �

k21
ð20Þ

It is seen that DP is always greater than 0 when

k2 	 0:5m2g=d and y� 0. In this paper,

Fig. 10 Actuation

performance of the BEMA

and BEMA-EB under

different input signal

amplitude (I) when
k1 ¼ 2000N=m, X ¼ 6Hz.

Filled (unfilled) geometry

represents the inter (intra)-

well responses.

a Displacement responses;

b acceleration responses
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0:5m2g
d ¼ 6:81N/m, and thus it is easy to satisfy

k2 	 0:5m2g=d. Besides, y� 0 means m2 is pushed

up by the inclined spring, and thus

k1 	m2g= L1 � dð Þ ¼ 122:5N/m is required. In con-

clusion, it is easier for the BEMA-EB to induce inter-

well oscillation than the BEMA because the additional

coupling elastic boundary in the BEMA-EB reduces

the depth of the potential energy well. In other words,

the BEMA-EB has a smaller input signal amplitude

threshold of activating the favorable inter-well actu-

ation than the BEMA. Figure 11 shows the potential

energy of the BEMA and BEMA-EB when

k1 ¼ k2 ¼ 2000N/m. It is seen that

DP xð ÞBEMA�EB\DP xð ÞBEMA, and consequently the

BEMA-EB has a smaller input signal amplitude

threshold. Since the variation of potential energy is

greater in the BEMA, the corresponding variation of

kinetic energy is greater as well. vi and vo are defined

as the velocity of the coil mover at the initial

equilibrium position and x ¼ 0, respectively. Thus,

DP xð ÞBEMA¼
m1v

2
i

2
� m1v

2
0

2
: BEMA ð21aÞ

DP xð ÞBEMA�EB¼
m1v

2
i

2
� m1v

2
0

2
: BEMA - EB ð21bÞ

Because DP xð ÞBEMA�EB\DP xð ÞBEMA,

vi � voj jBEMA is greater than vi � voj jBEMA�EB. In

other words, the coil mover’s acceleration of the

BEMA is larger than that obtained in the BEMA-EB,

which can also be seen in Figs. 3, 4, 5, 6, 7, 8, 9 and 10.

It should be noted that this section qualitatively

explains why the input signal amplitude threshold of

the BEMA-EB is smaller from the governing equation

through mathematical interpretation, and why the

acceleration obtained in the BEMA is relatively larger.

4 Bifurcation analyses

To develop the insights into the nonlinear dynamic

behaviors of the BEMA-EB, this section investigates

the bifurcation features of the BEMA-EB in terms of

the inclined spring stiffness (k1), the input signal

frequency (X) and amplitude (I). The bifurcation

features of the counterpart BEMA are also presented

in this section for comparative study. The linear

stiffness k2 ¼ 2000N=m is employed. Phase portraits

and Poincare maps are presented to illustrate how the

actuation responses of the BEMA and the BEMA-EB

evolve corresponding to the change of the above

parameters. The red points in this section represent the

Poincare maps under the corresponding situation.

Additionally, the stroboscopic time T ¼ 1=X is

adopted in both the bifurcation diagrams and Poincare

maps.

4.1 Bifurcation diagram for k1; xð Þ

Figures 12a and 13a depict bifurcation diagrams of the

BEMA and BEMA-EB with respect to the inclined

spring stiffness k1 and coil mover’s displacement x

when I ¼ 1:5A, X ¼ 6Hz. k1 is ranged from 100 to

2000 N/m with a step of 0.1 N/m. It can be observed

that k1 has a significant impact on the displacement

responses in both actuators. For the BEMA, when k1 is

less than 222 N/m, the displacement response is in a

state of period-3 inter-well oscillation. It can be

proved from Fig. 12b that there are three independent

points in the Poincare map. Once k1 grows up to

222 N/m, the steady-state response of the BEMA

bifurcates to chaos as plenty of irregular dispersed

points in Fig. 12c. Afterward, the steady-state

response of the BEMA switches between period-3

inter-well oscillation and chaos in

633\k1\1000N=m. As k1 exceeds 1000 N/m, a

large-amplitude period-1 inter-well motion is

obtained, as shown in Fig. 12f. Finally, when k1 is

greater than 1600 N/m, the steady-state response ofFig. 11 Potential energy of the coil movers for the BEMA and

BEMA-EB when k1 ¼ k2 ¼ 2000N=m
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the BEMAwill jump into another period-1 motion, the

low-amplitude intra-well oscillation.

Furthermore, more nonlinear phenomena of the

BEMA-EB can be seen in Fig. 13a. A stable period-3

inter-well oscillation response of the BEMA-EB

occurs in 100� k1 � 230N=m, where Fig. 13b pre-

sents the phase portrait of one example k1 ¼ 100 N/m.

When k1 is increased further to be 231 N/m, the

period-3 response bifurcates to chaos, where the phase

portrait exhibits an irregular motion. When

848\k1\920N=m, period-3, period-6 and period-9

inter-well responses appear successively, which are

shown in Fig. 13c–e, respectively. At k1 ¼ 921N=m,

the period-9 response of the BEMA-EB suddenly

becomes chaos, and this behavior persists until

k1 ¼ 1870N=m. When k1 is greater than 1870 N/m,

period-3 inter-well oscillation response arises, where

the phase portrait of the period-3 inter-well oscillation

is shown in Fig. 13g. It is seen that the BEMA-EB can

realize the favorable inter-well actuation for the entire

range of the inclined spring stiffness k1 when I ¼ 1:5A

and X ¼ 6Hz, whereas the BEMA only exhibits inter-

well response for k1\1600 N/m. This indicates that

the BEMA-EB improves the robustness of the large-

amplitude actuation against the variation of k1.

4.2 Bifurcation diagram for X; xð Þ

The bifurcation diagram of coil mover’s displacement

response (x) of the BEMA versus the input signal

frequency (X) is shown in Fig. 14a. k1 ¼ 2000N=m,

I ¼ 1:5A, and X ¼ 0:1�10 Hz with an interval

0.01 Hz. It is observed from Fig. 14a that as X
increases, the BEMA displacement response x under-

goes period-1, chaotic zone, periodic, chaotic zone and

finally enters into period-1 response. When the BEMA

Fig. 12 a Bifurcation diagram of displacement response versus the inclined spring stiffness k1 when I ¼ 1:5A, X ¼ 6Hz for the

BEMA. b–g Phase portraits and Poincare maps of the BEMA under different k1

Fig. 13 a Bifurcation diagram of displacement response versus the inclined spring stiffness k1 when I ¼ 1:5A, X ¼ 6Hz and k2 ¼
2000N=m for the BEMA-EB. b–g Phase portraits and Poincare maps of the BEMA-EB under different k1
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is subjected to the low frequency input signal, only

intra-well oscillation is obtained. Figure 14b depicts

the phase portrait and Poincare map of the BEMA

when X ¼ 6Hz. Afterward, a chaotic zone is obtained

in 7:3\X\8:58Hz. There is a strange attractor

representing chaos in the Poincare map shown in

Fig. 14c, and the phase portrait shows disordered and

irregular coil mover movements. In the middle of the

chaotic zone, a period-5 inter-well motion is also

discovered when 7:97\X\8:07Hz. Once X exceeds

8.58 Hz, the response of the BEMA will be trans-

formed into period-1 intra-well oscillation, which

shows low-efficient actuation performance.

The nonlinear dynamic responses of the BEMA-EB

are quite different from the BEMA, which are shown

in Fig. 15a. When X� 1:5Hz, the BEMA-EB exhibits

a period-1 disorder intra-well movement. Afterward, a

period-1 inter-well oscillation is obtained in

1:51\X\1:93Hz, one example of which is shown

in Fig. 15b. After that, chaotic and periodic responses

occur repeatedly. Figure 15c shows a strange attractor

of the BEMA-EB when X ¼ 1:94Hz, a period-3 inter-

well oscillation is also observed in Fig. 15d when

X ¼ 2:82Hz. OnceX exceeds 3.04 Hz, the BEMA-EB

will realize a large-amplitude period-1 inter-well

oscillation until 6.31 Hz, except in the range of

3.47–4.24 Hz, which are shown in Fig. 15d, e,

respectively. Figure 15f shows the phase portrait and

Poincare map of the BEMA-EB when X ¼ 5Hz.

Large-amplitude inter-well response is obtained,

where only one isolated point in the Poincare map is

discovered in Fig. 15f. Figure 15g shows a period-5

inter-well oscillation when X ¼ 7:15Hz. Besides,

extremely complex periodic nonlinear responses are

obtained shown in the Periodic-zone in Fig. 15a. To

show them more clearly, a locally enlarged graph of

the Periodic-zone is presented in Fig. 16, which shows

a series of periodic responses of the BEMA-EB. A

multi-periodic inter-well response is illustrated in

Fig. 16b when X ¼ 7:22Hz. Afterward, period-10

inter-well oscillation is also obtained. Once X is up

to 7.37 Hz, the BEMA-EB will suddenly become the

low-amplitude intra-well oscillation. Figure 16d–g

shows four types of the periodic intra-well oscilla-

tions, and they are period-8, period-4, period-2, and

period-1 intra-well oscillation, respectively. Overall,

the BEMA-EB has more abundant nonlinear charac-

teristics, and a much broader inter-well actuation

bandwidth, compared to the BEMA.

4.3 Bifurcation diagram for I; xð Þ

Figures 17a and 18a show the bifurcation diagrams of

the coil mover’s displacement response (x) of the

BEMA and BEMA-EB versus the input signal ampli-

tude (I), respectively. I = 0–3 A are used to explore

the bifurcation features of the BEMA and BEMA-EB

when k1 ¼ k2 ¼ 2000N=m and X ¼ 6Hz. It is seen in

Figs. 17a and 18a that both the actuators undergo

significantly different nonlinear dynamic responses

with the increase in the input signal amplitude. The

BEMA exhibits three types of the responses, which

present the period-1 intra-well response, period-1

inter-well response and periodic inter-well response,

respectively. Figure 17b–d shows the phase portraits

and Poincare maps of the BEMA when I ¼ 2:24, 2.25

Fig. 14 a Bifurcation diagram of displacement response versus the input signal frequency X when k1 ¼ 2000N=m, I ¼ 1:5A for the

BEMA. b–g Phase portraits and Poincare maps of the BEMA under different X

123

3588 J. Zhang et al.



and 2.91 A, which are the examples of the three

responses, respectively. However, the BEMA-EB

shows more types of the responses compared to the

BEMA. After the period-1 intra-well response in

0\I\0:703A and period-2 intra-well response in

0:704\I\0:77A, the steady-state response of the

BEMA-EB bifurcates into chaos when I is up to 0.78

A. In a wide range of 0:78\I\1:815A, the BEMA-

EB exhibits a large-amplitude chaotic inter-well

response, except a period-7 response near I ¼ 0:82A,

a period-5 response in 0:986\I\1:025A and a

period-3 response in 1:49\I\1:58A. Figure 18c–f

shows the corresponding nonlinear characteristics

following the sequence: period-7 inter-well, chaos,

Fig. 15 a Bifurcation diagram of displacement response versus the input signal frequency X when k1 ¼ k2 ¼ 2000N=m, I ¼ 1:5A for

the BEMA-EB. b–g Phase portraits and Poincare maps of the BEMA-EB under different X

Fig. 16 a Bifurcation diagram of displacement response versus the input signal frequency X when k1 ¼ k2 ¼ 2000N=m, I ¼ 1:5A for

the BEMA-EB in the Periodic-zone. b–g Phase portraits and Poincare maps of the BEMA-EB under different X

Fig. 17 a Bifurcation diagram of displacement response versus the input signal amplitude I when k2 ¼ 2000N=m, X ¼ 6Hz for the

BEMA. b–d Phase portraits and Poincare maps of the BEMA under different I
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period-5 inter-well, and period-3 inter-well response.

Finally, the BEMA-EB exhibits large-amplitude

period-1 inter-well oscillation, the example of which

is shown in Fig. 18g when I ¼ 2:24A. In conclusion, it

is seen that the BEMA-EB exhibits more types of the

nonlinear dynamic responses. The results also show

that the BEMA-EB has a smaller input signal ampli-

tude threshold than the BEMA, which verifies the

advantages of the elastic boundary.

5 Influence of initial conditions

According to the above investigations, various distinct

nonlinear responses could exist for both the BEMA

and BEMA-EB, e.g., periodic inter-well response,

periodic intra-well response and chaotic inter-well

response. It is seen that the periodic inter-well

response and chaotic inter-well response have large-

amplitude displacement, which could realize actuation

amplification. However, the initial conditions play a

crucial role on deciding the response types of each

actuator when the physical parameters are identical.

To present the guideline of the initial condition

selection, the basin-of-attraction maps are thoroughly

investigated for the BEMA and BEMA-EB in this

section. The physical parameters are set as follows:

k1 ¼ k2 ¼ 2000N=m, I ¼ 1:5A,

X ¼ 4; 5; 6; 7; 8; 9½ �Hz, and 401 9 401 initial condi-

tions are taken from [- 0.05,0.05] m 9 [- 1,1] m/s.

In each of the following basin-of-attraction maps, the

red, blue and yellow scatter points represent different

initial conditions, leading to the periodic inter-well

oscillations, periodic intra-well oscillations and chao-

tic inter-well responses, respectively. When there are

very few scatter points in a basin-of-attraction map

under certain situation, the star patterns are used to

replace the scatter points to make it more distinct.

5.1 Basin-of-attraction

Figure 19a–f shows the basin-of-attraction maps of

the BEMA for X ¼ 4; 5; 6; 7; 8; 9½ �Hz, respectively.

All the figures in Fig. 19 exhibit a fractal structure

except Fig. 19e.With the increase inX from 4 to 6 Hz,

the number of the periodic inter-well response’s initial

conditions increases gradually, which indicates that

the likelihood of the favorable periodic inter-well

responses is enhanced. The largest occurring proba-

bility of the periodic inter-well responses of the

BEMA is 43.77% when X ¼ 6Hz. When X is greater

than 6 Hz, chaotic response occurs in the BEMA.

Figure 19d is a basin-of-attraction map with fractal

structure which contains three distinct nonlinear

dynamic responses. When X ¼ 8Hz, chaotic response

becomes dominating among the BEMA’s steady-state

responses, and the intra-well response disappears.

Keeping increasing the X to 9 Hz, the intra-well

response emerges again and the inter-well oscillation

is almost extinct. In general, the input signal frequency

of the BEMA should be near 7 Hz if the aim is to

obtain a desirable actuation output performance.

Figure 20 shows the basin-of-attraction maps of the

BEMA-EB for X ¼ 4; 5; 6; 7; 8; 9½ �Hz, respectively.

There are some fractal structures and some banded

regions in Fig. 20. The banded regions of initial

Fig. 18 a Bifurcation diagram of displacement response versus the input signal amplitude I when k1 ¼ k2 ¼ 2000N=m, X ¼ 6Hz for

the BEMA-EB. b–g Phase portraits and Poincare maps of the BEMA-EB under different I
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conditions which lead to one of the distinct steady-

state oscillation responses make it possible for this

parameter set [15]. It seems that chaotic response is

more pervasive in the BEMA-EB, and correspond-

ingly, intra-well motion is seldom encountered. In

Fig. 20a, only chaotic response and intra-well oscil-

lation occur, and the occurring probability of chaos for

the BEMA-EB is 68.31% when X ¼ 4Hz. Afterward,

the periodic inter-well response becomes dominating,

which shows a 100% occurring probability when

X ¼ 5Hz. This means the BEMA-EB would obtain a

desirable actuation output if the input signal frequency

is 5 Hz. With the persistent growth ofX, chaotic inter-
well response appears again. Once X exceeds 8 Hz,

the intra-well oscillation gradually becomes the main

response. It can be concluded that the BEMA-EB has a

wider inter-well actuation bandwidth and the BEMA-

EB could enhance the actuation performance for low-

frequency input signal.

5.2 Occurring probabilities of the different

responses

Though basin-of-attraction maps could provide a

reliable basis for selecting the ideal initial conditions,

they might vary with respect to different excitation

frequencies. Hence, the occurring probability of each

type of the steady-state response is worth studying to

quantitatively understand how the initial conditions

influence the responses of the BEMA and BEMA-EB

for a wide frequency band. A broader input signal

frequency band X ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10½ � Hz is

employed to show the occurring probabilities in this

section. Figure 21 shows the occurring probabilities of

each nonlinear dynamic responses in the BEMA and

BEMA-EB, respectively. It is seen in Fig. 21 that the

BEMA has a much greater occurring probabilities to

exhibit periodic intra-well oscillation than the BEMA-

EB. Furthermore, the periodic intra-well response

occurring probability for the BEMA is equal to 1 when

X\4Hz (away from the natural frequency 7.5 Hz),

which infers that the BEMA should not be employed

in the low input signal frequency band. The intra-well

Fig. 19 Basin-of-attraction maps of the BEMA at different

input signal frequency X when k1 ¼ 2000N=m, I ¼ 1:5A. Red,
blue and yellow scatter points represent periodic inter-well

oscillations, periodic intra-well oscillations and chaotic inter-

well responses, respectively. a X ¼ 4Hz; b X ¼ 5Hz; c
X = 6 Hz; d X ¼ 7Hz; e X ¼ 8Hz; f X ¼ 9Hz
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responses become dominating for the BEMA again

when X[ 9Hz. Differently, the low-amplitude intra-

well responses seldom appear in the BEMA-EB when

X\8Hz, which indicates that the BEMA-EB could

obtain a considerable actuation performance (i.e.,

large-amplitude inter-well response) in a wide input

signal frequency band. However, when X[ 8Hz, the

intra-well responses quickly dominate the BEMA-

EB’s steady-state response while this does not happen

until X[ 9Hz in the BEMA. Even so, the BEMA-EB

could still be employed in high input signal frequency

band by fixing the joint mass or using a huge linear

stiffness k2 to be transformed to the BEMA. Overall, it

is worth pointing out that not only the BEMA-EB has a

broad inter-well actuation bandwidth, but also has an

optimal input signal frequency (i.e., 5 Hz) which leads

to 100% occurring probability of exhibiting the

favorable periodic inter-well response.

Fig. 20 Basin-of-attraction maps of the BEMA-EB at different

input signal frequency X when k1 ¼ k2 ¼ 2000N=m, I ¼ 1:5A.
Red, blue and yellow scatter points represent periodic inter-well

oscillations, periodic intra-well oscillations and chaotic inter-

well responses, respectively. a X ¼ 4Hz; b X ¼ 5Hz; c
X = 6 Hz; d X ¼ 7Hz; e X ¼ 8Hz; f X ¼ 9Hz

Fig. 21 Occurring

probabilities of each

nonlinear dynamic

responses in the BEMA and

BEMA-EB at different X
when k1 ¼ k2 ¼ 2000N=m,

I ¼ 1:5A. a BEMA;

b BEMA-EB
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6 Conclusion

This paper investigates the merits of a bistable elec-

tromagnetic actuator with elastic boundary (BEMA-

EB) and its nonlinear dynamic responses. The BEMA-

EB utilizes both the bistable nonlinearity introduced

by the inclined spring and the elastic boundary to

enhance the actuation performance when controlled

by a harmonic input signal. Two counterparts are also

modeled to present the benefits of both the

bistable nonlinearity and elastic boundary. The first

one is a bistable electromagnetic actuator without the

elastic boundary (BEMA), and the second one is a

linear electromagnetic actuator (LEMA). The results

show that the bistable nonlinearity does have a

tremendous effect on the actuation improvement of

both the BEMA and BEMA-EB. However, the

BEMA-EB employs the elastic boundary to bring the

additional dynamic coupling to reduce the depth of the

potential energy well. As a result, the BEMA-EB has a

much broader inter-well actuation bandwidth and

smaller input-signal-amplitude threshold of activating

the favorable inter-well actuation. Furthermore, the

bifurcation analyses indicate that both the BEMA and

BEMA-EB have abundant nonlinear dynamic charac-

teristics, including periodic inter-well, periodic intra-

well and chaotic inter-well dynamic responses. The

bifurcation analyses also testify that the BEMA-EB

outperforms the BEMA by broadening the inter-well

actuation bandwidth and reducing the input signal

amplitude threshold of the inter-well actuation. In

addition, the basin-of-attraction maps are investigated

for both the BEMA and BEMA-EB, which leads to the

occurring probabilities of each type of the response.

The occurring probability results quantitatively illus-

trate that it is more likely for the BEMA-EB to achieve

favorable large-amplitude inter-well actuation perfor-

mance. Thus, the results validate that both the

appropriately designed bistable nonlinearity and elas-

tic boundary are beneficial to actuation performance

enhancement of the electromagnetic actuators.

Acknowledgements This work is supported by National

Natural Science Foundation of China (Grant No. 11802097).

Compliance with ethical standards

Conflict of interest This work is not used for any commercial

business, and it has no conflicts of interest.

Research involving human participants and/or animals
This work is about the mechanical engineering. This research

does not involve any human participants or animals.

Informed consent Only the authors listed in the manuscript

are involved into this work. The submission of this research is

agreed by all the authors listed in the manuscript and is per-

mitted by both the authors’ affiliations.

Appendix: Model validation using the MSC Adams

software

The MSC Adams software is used to validate the

mathematical model of the BEMA-EB. In the soft-

ware, the 3D virtual prototype of the BEMA-EB is

established, as shown in Fig. 22. The simulation

parameters are listed in Table 1 (as same as Fig. 9e).

The comparative results between the numerical

results of the governing equations and Adams software

are presented in Fig. 23. Figure 23 shows the
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acceleration responses obtained by the Adams for the

BEMA-EB under forward swept harmonic input

signal from 1 Hz to 10 Hz with the amplitude

I ¼ 2A. The sweeping rate is 0.025 Hz/s. It is seen

that the two results (Figs. 9e and 23) are in good

agreement.

In addition, another forward swept response results

of both Adams software and the governing equations

are presented. I ¼ 1:5A, k1 ¼ 2000N=m, k2 ¼
2000N=m are employed in this calculation. Figure 24

shows the displacement, velocity and the acceleration

Fig. 22 The 3D virtual prototype of the BEMA-EB in Adams software. a Isometric graph; b planar graph

Table 1 The simulation

parameters
Parameters Values

m1 (kg) 0.1

m2 (kg) 0.1

L1 (m) 0.08

L2 (m) 0.07151

d (m) 0.072

k1 (N/m) 2000

k2 (N/m) 2000

c1 (N/(m/s)) 0.4714

c2 (N/(m/s)) 1.4142

Fig. 23 a Acceleration

responses obtained by the

Adams for the BEMA-EB

under forward swept

harmonic input signal when

k1 ¼ 2000N=m,

k2 ¼ 2000N=m, I ¼ 2A.

b Result of Fig. 9e
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responses of both the methods. It is seen that the

numerical results are in good agreement with the

Adams software results.
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Tamer, Ö.: Electromagnet design for untethered actuation

system mounted on robotic manipulator. Sens. Actuators A

Phys. 285, 550–565 (2019)

11. Li, T., Zou, Z., Mao, G., Qu, S.: Electromechanical

bistable behavior of a novel dielectric elastomer actuator.

J. Appl. Mech-Trans. ASME 81, 041019 (2014)

12. Fitan, E., Messine, F., Nogarede, B.: The electromagnetic

actuator design problem: a general and rational approach.

IEEE. Trans. Magn. 40, 1579–1590 (2004)

13. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.:

Integration of a nonlinear energy sink and a giant magne-

tostrictive energy harvester. J. Sound Vib. 391, 35–49

(2017)

Fig. 24 Comparison between the numerical method and the Adams. The blue curves indicate the responses obtained by numerical

method, while the red curves represent the Adams. a, b Displacement response; c, d velocity response; e, f acceleration response

123

A bistable nonlinear electromagnetic actuator with elastic boundary 3595



14. Badzey, R.L., Mohanty, P.: Coherent signal amplification in

bistable nanomechanical oscillators by stochastic reso-

nance. Nature 437, 995–998 (2005)

15. Harne, R.L., Wang, K.W.: Harnessing Bistable Structural

Dynamics (For Vibration Control, Energy Harvesting and

Sensing). Wiley, West Sussex (2017)

16. Wang, J., Geng, L., Ding, L., Zhu, H., Yurchenko, D.: The

state-of-the-art review on energy harvesting of flow-in-

duced vibrations. Appl. Energy 267, 114902 (2020)

17. Harne, R.L., Wang, K.W.: On the fundamental and super-

harmonic effects in bistable energy harvesting. J. Intell.

Mater. Syst. Struct. 25, 937–950 (2013)

18. Wang, J., Geng, L., Yang, K., Zhao, L., Wang, F., Yurch-

enko, D.: Dynamics of the double-beam piezo-magneto-

elastic nonlinear wind energy harvester exhibiting gallop-

ing-based vibration. Nonlinear Dyn 100, 1963–1983 (2020)
19. Yan, B., Ma, H., Jian, B., Wang, K., Wu, C.: Nonlinear

dynamics analysis of a bi-state nonlinear vibration isolator

with symmetric permanent magnets. Nonlinear Dyn. 97(4),
2499–2519 (2019)

20. Yang, K., Wang, J., Yurchenko, D.: A double-beam piezo-

magneto-elastic wind energy harvester for improving the

galloping-based energy harvesting. Appl. Phys. Lett. 115,
193901 (2019)

21. Fang, H., Wang, K.W.: Piezoelectric vibration-driven

locomotion systems—exploiting resonance and

bistable dynamics. J. Sound Vib. 391, 153–169 (2017)

22. Gude, M., Hufenbach, W.: Design of novel morphing

structures based on bistable composites with piezoceramic

actuators. Mech. Compos. Mater. 42, 339–346 (2006)

23. Gray, G.D., Kohl, P.A.: Magnetically bistable actuator.

Sens. Actuators A. Phys. 119, 489–501 (2005)

24. Gerson, Y., Krylov, S., Ilic, B.: Electrothermal bistability

tuning in a large displacement micro actuator. J. Mi-

cromech. Microeng. 20, 112001 (2010)

25. Crivaro, A., Sheridan, R., Frecker, M., Simpson, T.W., Von

Lockette, P.: Bistable compliant mechanism using magneto

active elastomer actuation. J. Intell. Mater. Syst. Struct. 27,
2049–2061 (2016)

26. Harne, R.L., Wang, K.W.: Dipteran wing motor-inspired

flapping flight versatility and effectiveness enhancement.

J. R. Soc. Interface 12, 20141367 (2015)

27. Zou, H.X., Zhang, W.M., Li, W.B., Wei, K.X., Hu, K.M.,

Peng, Z.K., Meng, G.: Magnetically coupled flextensional

transducer for wideband vibration energy harvesting:

design, modeling and experiments. J. Sound Vib. 416,
55–79 (2018)

28. Zou, H.X., Zhang, W.M., Wei, K.X., Li, W.-B., Peng, Z.K.,

Meng, G.: A compressive-mode wideband vibration energy

harvester using a combination of bistable and flextensional

mechanisms. J. Appl. Mech. 83, 121005 (2016)

29. Nguyen, M.S., Yoon, Y.J., Kwon, O., Kim, P.: Lowering the

potential barrier of a bistable energy harvester with

mechanically rectified motion of an auxiliary magnet

oscillator. Appl. Phys. Lett. 111, 253905 (2017)

30. Yang, K., Harne, R.L., Wang, K.W., Huang, H.: Dynamic

stabilization of a bistable suspension system attached to a

flexible host structure for operational safety enhancement.

J. Sound Vib. 333, 6651–6661 (2014)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

3596 J. Zhang et al.


	A bistable nonlinear electromagnetic actuator with elastic boundary for actuation performance improvement
	Abstract
	Introduction
	Dynamic modeling
	Description of the BEMA-EB
	Governing equations of the BEMA-EB
	Linear frequencies of the BEMA-EB
	Description of the comparative counterparts

	Numerical investigation and performance comparison
	Comparison with the LEMA
	Discussion of the elastic boundary benefits
	Mathematical interpretation

	Bifurcation analyses
	Bifurcation diagram for \left( {k_{1} ,x} \right) 
	Bifurcation diagram for \left( {\varOmega ,x} \right) 
	Bifurcation diagram for \left( {I,x} \right) 

	Influence of initial conditions
	Basin-of-attraction
	Occurring probabilities of the different responses

	Conclusion
	Acknowledgements
	Appendix: Model validation using the MSC Adams software
	References




