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Abstract A new nonlinear integrable fifth-order

equation with temporal and spatial dispersion is

investigated, which can be used to describe shallow

water waves moving in both directions. By performing

the singularity manifold analysis, we demonstrate that

this generalized model is integrable in the sense of

Painlevé for one set of parametric choices. The

simplified Hirota method is employed to construct

the one-, two-, three-soliton solutions with non-typical

phase shifts. Subsequently, an extended projective

Riccati expansion method is presented and abundant

travelling wave solutions are constructed uniformly.

Furthermore, several new interaction solutions

between periodic waves and kinky waves are also

derived via a direct method. The rich interactions

including overtaking collision, head-on collision and

periodic-soliton collision are analyzed by some

graphs.
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1 Introduction

During the latest decades, integrable systems have

received intensive researches with many integrable

models, such as the Korteweg–de Vries (KdV) equa-

tion, the nonlocal modified Korteweg–de Vries

(mKdV) equation, nonlinear derivative Schördinger

equation, Kadomtsev–Petviashvili equation,

Camassa–Holm equation, nonlocal sine-Gordon equa-

tion, the fifth-order integrable equation with time

dispersion and other integrable systems as well [1].

These newly discovered integrable models have a

variety of applications in many phenomena such as

pulses propagation in optical communications, plasma

physics, wave propagations, fluid mechanics, con-

densed matter, electro-magnetics and many more.

Several theoretical approaches have been applied to

describe the physics of solitons for integrable models.

Exact solutions of nonlinear models and integrable

systems have become hot issues, and many promising

findings have potential applications in various

branches of physics and engineering [2–6].

In Refs. [7, 8], Wazwaz firstly proposed a new fifth-

order nonlinear integrable equation, which reads
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uttt � utxxxx � 4ðuxutÞxx � 4ðuxuxtÞx ¼ 0; ð1Þ

or equivalently,

uttt � utxxxx � 12uxtuxx � 8uxuxxt � 4utuxxx ¼ 0; ð2Þ

which is the first type of integrable equations that

involves the third-order time-dispersion term uttt. Note

that its three-soliton solution has been reported in Ref.

[7], where the dispersion relations ci and the phase

shifts aij are given as

ci ¼� k2i ; i ¼ 1; 2; 3;

aij ¼
ðki � kjÞ2

k2i þ k2j
; 1� i\j� 3:

ð3Þ

The fifth-order equation (1) with temporal dispersion

has potentials applications and attracted much atten-

tion of scholars, and its various exact solutions have

been constructed by using the Painlevé analysis, Lie

symmetry analysis and several direct algebraic meth-

ods [7–10].

Like the well-known KdV and mKdV equations,

most nonlinear integrable models have first-order

partial derivative term with respect to time variable t;

in other words, these equations always include one

term ut. However, other kind of nonlinear integrable

models with a second-order partial derivative term utt,

such as the Klein–Gordon equation, Boussinesq

equation and bidirectional Kaup–Kupershmidt equa-

tion, always admits bidirectional soliton solutions and

can be used to simulate shallow water waves moving

in both directions.

Generally speaking, a first-order partial derivative

term ut was included in nonlinear models for unidi-

rectional optical pulses and temporal propagation.

Unlike the competing spatially nonlinear models,

temporal propagation may be beneficial in various

physical contexts due to its preservations of causality

[11–13]. Delayed systems have been widely used to

describe optical systems, map lattices or communica-

tion networks, where dispersion effects may appear

naturally.

In Ref. [14], the third-order time dispersion for

delayed systems was investigated by studying the

model

ux ¼ u ln g� 2ut �
2

3
uttt; ð4Þ

which can be used to analyze the dispersive response

quantitatively and attributes to understand the signif-

icant importance of third-order dispersion effects,

where g represents the reflectivity. One of the most

striking findings, as pointed out by authors in [14], is

that their exact analytical results are highly consistent

with some experimental observations. The third-order

dispersion may lead to the creation of satellites on one

edge of the pulse which induces a new form of pulse

instability.

Based on the previous work in Ref. [15], we study a

generalized fifth-order equation with temporal and

spatial dispersion

uttt � k1 utxxxx � k2 uxxt � k3 ðuxutÞxx
� k4 ðuxuxtÞx ¼ 0:

ð5Þ

where ki ði ¼ 1; 2; 3; 4Þ are real nonzero parameters, u

is a real differentiable function of the scaled spatial

coordinates x, y and temporal coordinate t, and the

subscripts denote the partial derivatives. Higher-order

nonlinear and dispersive effects have been found to be

important in various physical applications [16], and

equation (5) can describe the evolution of steeper

waves of shorter wavelength better than the well-

known third-order KdV equation does. Note that Eq. 1

is a subcase of (5) with k1 ¼ 1, k2 ¼ 0, k3 ¼ k4 ¼ 4.

The rest of this paper is organized as follows: First

of all, the integrability test indicates that this gener-

alized fifth-order equation is Painlevé integrable for

particular choice of parameters. In Sect. 3, we apply

the simplified form of Hirota bilinear method to derive

the multiple soliton solutions with bidirectional prop-

agating properties. In Sect. 4, we present an improved

projective Riccati expansion method to derive new

travelling wave solutions. In Sect. 5, several novel

periodic soliton interaction solutions are constructed

via a direct method. Finally, Sect. 6 formulates the

conclusions.

2 Integrability test

The Painlevé analysis method provides an efficient

tool to investigate nonlinear models [17], which can

verify whether a given equation is integrable or not.

Furthermore, other integrable properties can also be

obtained as by-products, such as the bilinear equa-

tions, bilinear Bäcklund transformation, Darboux
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transformation, Lax pairs as well as various types of

exact solutions [18–21].

According to the standard WTC method, equation

(5) is Painlevé integrable if it has the solution

uðx; tÞ ¼
X1

k¼0

uk f
kþa ð6Þ

with four arbitrary functions among uk in addition to

the singular manifold f(x, t). Furthermore, the leading

exponent a should be a negative integer.

The first step of the integrability test is the leading

order analysis. It is easily seen that the values of u0 and

a only depend on the first term in (6). Thus, one may

consider the ansatz u� u0f
a. Substituting the ansatz

into (5) and balancing the most dominant terms lead to

a ¼ �1 and u0 ¼ 12k1fx=ð2k3 þ k4Þ.
Next, one can find the resonant points by substitut-

ing the truncated expansion u ¼ u0 f
�1 þ uk f

k�1 into

(5). The five resonances are found to lie in the

positions k ¼ �1, 1, 4, 5 and 6.

For Eq. (5), one should further verify the compat-

ibility conditions at all nonnegative resonant points

k ¼ 1, 4, 5 and 6. The maximum value of resonant

points is 6; thus, the series (6) is truncated as

uðx; tÞ ¼
X6

k¼0

uk f
k�1: ð7Þ

To simplify the calculations, we adopt the Kruskal’s

ansatz for the singular manifold, f ¼ xþ wðtÞ, with w
being arbitrary function of t. Inserting (7) into (5) and

gathering the coefficients of fwith the same degree, we

have

u2 ¼
ðw0Þ3 þ k3 u01 � k2w

0

ð2k3 þ k4Þw0 ;

u3 ¼½ð8k3 þ k4Þw00ðw0Þ3 þ k3ðk4 � k3Þw00u01

þ k3ðk3 � k4Þw0u001�=½2ð2k3 þ k4Þ2�:

Together the values of u0, u2 and u3, the compatibility

condition at k ¼ 4 is calculated as

k1k3 ðk3 � k4Þ ½4w000ðw0Þ4 þ k4w
000w0u01

� k4ðw0Þ2u0001 þ 3k4w
0w00u001 � 3k4ðw00Þ2u01� ¼ 0:

ð8Þ

Since k1 6¼ 0, it follows from (8) that the compatibility

condition at k ¼ 4 holds for the following two cases:

Case A: k3 ¼ 0.

In this case, substituting the truncated expansion (7)

into (5), we have

u0 ¼ 12k1
k4

; u2 ¼ ðw0Þ2 � k2
k4

; u3 ¼ w00

2k4
;

and the coefficients u1, u4, u5 in (7) are arbitrary

functions of t. However, the compatibility condition at

k ¼ 6 is obtained as

24k1k4u
0
5 � 10w0ðw00Þ2 � 5ðw0Þ2w000

þ k4u
000
1 þ k2w

000 ¼ 0:
ð9Þ

Due to the arbitrariness of w, u1 and u5, the condition

(9) is not satisfied identically. Thus, (5) fails the

integrability test in this case.

Case B: k4 ¼ k3.
In a similar way, one can get the coefficients of (7)

as follows:

u0 ¼ 4k1
k3

; u2 ¼ ðw0Þ3 þ k3u01 � k2w
0

3k3w
0 ; u3 ¼ w00

2k3
;

and the coefficients u1, u4, u5, u6 are arbitrary

functions, which implies that all resonant conditions

are satisfied identically; thus, it is concluded that

equation (5) passes the integrability test and it has

integrable in sense of Painlevé.

From the above analysis, we derive an integrable

fifth-order equation with temporal and spatial

dispersion:

uttt � k1 utxxxx � k2 uxxt � k3 ðuxutÞxx
� k3 ðuxuxtÞx ¼ 0:

ð10Þ

Note that Eq. (1) is a subcase of (10) if taking k1 ¼ 1,

k2 ¼ 0 and k3 ¼ 4.

3 Bidirectional soliton solutions

The integrability of Eq. (10) predicts that it can be

solvable by several classical methods. The Hirota

bilinear method is one of the most efficient methods to

seek for various exact solutions of nonlinear models

[22–25], such as multiple soliton solutions, quasi-

periodic solutions, rogue wave solutions, decay mode

solutions and rational solutions of various types.

The simplified Hirota method proposed by Here-

man and Nuseir [26] has some advantages, which can

not only avoid the problem of ‘‘intermediate
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expression swell,’’ but also does not need to transform

nonlinear equations into bilinear representation

[27, 28]. Bidirectional solitons can simulate ocean

waves phenomenon well and have potential applica-

tions in various branches of physics [29–34].

Here, we apply the simplified Hirota method to

derive bidirectional soliton solutions of equation (10).

Without loss of generality, we set k1 ¼ k2 ¼ 1 and

k3 ¼ 4 in the following sections. The Painlevé–

Bäcklund transformation of Eq. (10) reads

uðx; tÞ ¼ ðln f ðx; tÞÞx þ w1; ð11Þ

with w1 being the seed solution of (10), and we may

take w1 ¼ 0. Substituting (11) into (10), then integrat-

ing it once with respect to x and taking the arbitrary

function of integration as zero, we have

f 2ðfttt � fxxt � fxxxxtÞ þ f ð4fxfxxxt � 3ftftt

þ 2fxtfx � 2fxxfxxt þ fxxft þ fxxxxftÞ
� 2 ð2f 2x fxxt � 2fxfxtfxx þ 2fxftfxxx

þ f 2x ft � f 2xxft � f 3t Þ ¼ 0:

ð12Þ

Following the ‘‘step-by-step’’ principle [24], equation

(12) can be rewritten as

f 2L � f þ fN1ðf ; f Þ þ N2ðf ; f ; f Þ ¼ 0; ð13Þ

where linear differential operator L, and nonlinear

differential operators N1 and N2 are defined by

L� ¼ o3�
ot3

� o3�
ox2ot

� o5�
ox4ot

;

N1ðv;wÞ ¼ 4vxwxxxt � 3vtwtt þ 2vxtwx � 2vxxwxxt

þ vxxwt þ vxxxxwt;

N2ðv;w; gÞ ¼ �4vxwxgxxt � 2vxwxgt þ 4vxwxtgxx

� 4vxwtgxxx þ 2vxxwxxgt þ 2vtwtgt;

with v, w, g being auxiliary functions.

The quasi-solution f of (13) may be supposed as

f ¼ 1þ df1 þ d2f2 þ � � � þ drfr þ � � � ; r 2 N;

ð14Þ

with fr being unknown functions, and d serves as a

book-keeping parameter. Inserting (14) into equation

(13) and comparing the coefficient of power of d, we
have the recursion formulae for fr as follows:

L � f1 ¼0;

L � f2 ¼� N1ðf1; f1Þ;
L � f3 ¼� ð2f1L � f2 þ f1N1ðf1; f1Þ

þ N1ðf2; f1Þ þ N1ðf1; f2Þ þ N2ðf1; f1; f1ÞÞ; � � �
ð15Þ

Solving these recursion equations, one can construct

the multiple soliton solutions of Eq. (10).

3.1 One-soliton solution

In the expression (14), we may suppose

f1 ¼ eh; h ¼ k1 x þ c1 t; ð16Þ

where k1; c1 are constants to be determined. Substi-

tuting (16) into the first equation of (15) leads to

c1 ¼ �k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k21

q
; or c1 ¼ 0: ð17Þ

Note that the case with c1 ¼ 0 can be associated with a

steady waves regime. In this work, we only focus on

the case with nonzero wave speed. For the case with

c1 ¼ �k1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k21

p
, the second equation of (15)

becomes

L � f2 ¼ 0: ð18Þ

Together with the boundary condition

lim
jxj!þ1

f2ðx; tÞ ¼ 0;

it follows from (18) that f2 ¼ 0.

Making use of (15)–(17), it is found that the series

(14) can be truncated at r ¼ 2. Through the transfor-

mation (11), the one-soliton solution is obtained as

u1 ¼
dk1ek1xþ� k1

ffiffiffiffiffiffiffiffi
1þk2

1

p
t

1 þ d ek1xþ� k1
ffiffiffiffiffiffiffiffi
1þk2

1

p
t
; ð19Þ

where � ¼ �1, and k1 and d are arbitrary constants.

The solution (19) is just the same as the result reported

in Ref. [15].

3.2 Two-soliton solution

To construct the two-soliton solutions, we may

suppose

f1 ¼ eh1 þ eh2 ; hj ¼ kj x þ cj t; j ¼ 1; 2; ð20Þ
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where kj; cjðj ¼ 1; 2Þ are constants to be determined.

Inserting (20) into the first equation of (15) yields two

different solutions:

ðiÞ c1 ¼ �k1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

q
; c2 ¼ �k2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
; ð21Þ

ðiiÞ c1 ¼ �k1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

q
; c2 ¼ ��k2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
; ð22Þ

where � ¼ �1.

For the first dispersion relation (21), substituting

(20) with (21) into the second equation of (15) yields

L � f2 ¼� 2k1k2ðk1� k2Þ½
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

q
ð1þ k1k2

þ 2k21 þ k22Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
ð1þ k1k2þ k21 þ 2k22Þ�eh1þh2 ;

from which we get

f2 ¼ a12 e
h1þh2 ; ð23Þ

where

a12 ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k21

q
ð1þ 2k21 þ k1k2 þ k22Þðk1 � k2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
ð1þ k21 þ k1k2 þ 2k22Þðk1 � k2Þ

i

=½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

q
ð2k31 þ 3k21k2 þ 2k1k

2
2 � k32

þ k1 � k2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
ð�2k32 � 3k1k

2
2

� 2k21k2 þ k31 þ k1 � k2Þ �:
ð24Þ

Together with (20), (21) and (23), it is found that fr ¼
0 when r� 3. Therefore, the series (14) is truncated at

r ¼ 3. Through the transformation (11), we obtain

two-soliton solution with the form

u2 ¼ðln f Þx;

f ¼1þ d ek1xþ� k1
ffiffiffiffiffiffiffiffi
1þk2

1

p
t þ d ek2xþ� k2

ffiffiffiffiffiffiffiffi
1þk2

2

p
t

þ d2a12e
ðk1þk2Þxþ� ðk1

ffiffiffiffiffiffiffiffi
1þk2

1

p
þk2

ffiffiffiffiffiffiffiffi
1þk2

2

p
Þt;

ð25Þ

where � ¼ �1, a12 is given by (24), and k1; k2 and d are
arbitrary constants.

Next, we consider the second dispersion relation

(22). Utilizing the procedure as before, from (11) and

(20), we obtain another two-soliton solution:

u3 ¼ðln f Þx;

f ¼1þ dek1xþ� k1
ffiffiffiffiffiffiffiffi
1þk2

1

p
t þ dek2x��k2

ffiffiffiffiffiffiffiffi
1þk2

2

p
t

þ d2a12e
ðk1þk2Þxþ� ðk1

ffiffiffiffiffiffiffiffi
1þk2

1

p
�k2

ffiffiffiffiffiffiffiffi
1þk2

2

p
Þt;

ð26Þ

where k1; k2; d are arbitrary constants, � ¼ �1, and a12
is given by

a12 ¼½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

q
ð1þ 2k21 þ k1k2 þ k22Þðk1 � k2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
ð1þ k21 þ k1k2 þ 2k22Þðk1 � k2Þ�

=½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

q
ð2k31 þ 3k21k2 þ 2k1k

2
2 � k32

þ k1 � k2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
ð�2k32 � 3k1k

2
2

� 2k21k2 þ k31 þ k1 � k2Þ �:
ð27Þ

To illustrate the collisions between two solitons

more clearly, we analyze the potentials of u2 and u3,

namely u2;x and u3;x. In Fig. 1a, two left-running

solitons undergo an ‘‘elastic collision,’’ and the tall

one moves faster and overtakes the small one, and

each soliton still remains its shape, velocity and

amplitude after interactions. Figure 1b depicts another

overtaking collisions between two right-running soli-

tons. Figure 1c describes the head-on collision

between two solitons. The tall one is right going, and

the small one is left going. After interactions, they will

come back to their original profile and move in the

opposite x-direction.

3.3 Three-soliton solution

Non-integrable systems may possess one-soliton and

two-soliton solutions at most but not higher multi-

solitons. According to the conjecture on integrability,

as pointed out by Hietarinta [23], nonlinear evolution

equations that arise from various branches of physics

are integrable if they admit three-soliton solutions.

Repeating the similar calculations as in Sect. 3.2, we

obtain two types of three-soliton solutions. For the

sake of conciseness, the detailed computation is

omitted here.
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Case A

U ¼u4;x ¼ ðln f Þxx;
f ¼1þ dðeh1 þ eh2 þ eh3Þ þ d2ða12eh1þh2 þ a13e

h1þh3Þ
þ d2a23e

h2þh3 þ d3a12a13a23e
h1þh2þh3 ;

hi ¼ kixþ �ki

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2i

q
t; i ¼ 1; 2; 3;

ð28Þ

where k1; k2; k3 and d are arbitrary constants, � ¼ �1.

The phase shifts a12, a13 and a23 are given by

aij ¼½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2i

q
ð1þ 2k2i þ kikj þ k2j Þðki � kjÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2j

q
ð1þ k2i þ kikj þ 2k2j Þðki � kjÞ�

=½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2i

q
ð2k3i þ 3k2i kj þ 2kik

2
j � k3j

þ ki � kjÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2j

q
ðk3i þ ki � kj

� 2k3j � 3kik
2
j � 2k2i kjÞ �; 1� i\j� 3:

ð29Þ

Figure 2 describes the overtaking collisions between

three right-going solitons given by (28). The largest-

amplitude soliton moves fastest and overtakes another

two solitons (Fig. 2b–e). As can be seen in Fig. 2c, the

soliton with the smallest amplitude has been swal-

lowed and these three solitons evolve into two-hump

bright soliton. As shown in Fig. 2f, three solitons come

back to their original wave shapes and velocities after

interactions and move in same x-axis. There is no

energy exchange between three solitons after the

collision, which means that the collision is completely

elastic. Additionally, if choosing appropriate param-

eter values for k1, k2 and k3 and � ¼ 1, one can obtain

another type of overtaking collision between three

left-going solitons.

Case B

U ¼u5;x ¼ ðln f Þxx;
f ¼1þ dðeh1 þ eh2 þ eh3Þ þ d2ða12eh1þh2 þ a13e

h1þh3Þ
þ d2a23e

h2þh3 þ d3a12a13a23e
h1þh2þh3 ;

hi ¼ kixþ �ki

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2i

q
t; i ¼ 1; 2;

h3 ¼ k3x� �k3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k23

q
t;

ð30Þ

where k1; k2; k3; d are arbitrary constants, � ¼ �1, a12
is given by (24), and the phase shifts a13 and a23 are

given by

ai3 ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2i

q
ð1þ 2k2i þ kik3 þ k23Þðki � k3Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k23

q
ð1þ k2i þ kik3 þ 2k23Þðki � k3Þ�

=½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2i

q
ð2k3i þ 3k2i k3 þ 2kik

2
3 � k33

þ ki � k3Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

q
ðk3i þ ki � k3

� 2k33 � 3kik
2
3 � 2k2i k3Þ �; i ¼ 1; 2:

ð31Þ

Figure 3 depicts the head-on collision between three

solitons given by (30). As shown in Fig. 3, the largest

amplitude soliton is right going and the other two are

left going. Note that there also exists overtaking

collision between two left-going solitons, and the

soliton with larger amplitude moves faster than the

smaller one (Fig. 3a–e). These three solitons still

remain their original wave shapes and velocities after

head-on interactions.

Fig. 1 (Color online) The plots of two-soliton solution. a The

overtaking collision of two left-going solitons given by (25)

with k1 ¼ 1:0, k2 ¼ 1:5 and d ¼ � ¼ 1. b The overtaking

collision of two right-going solitons given by (25) with

k1 ¼ 1:0, k2 ¼ 1:5 d ¼ �� ¼ 1. c The head-on collision of

two solitons given by (26) with k1 ¼ 1:4, k2 ¼ 0:9 and

d ¼ �� ¼ 1
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Equation (10) seems to be slightly different from

Eq. (1), where we only added one more third-order

dispersion term. The soliton structure of Eq. 1 is very

simple, and its phase shift is given by Eq. (3), while the

soliton structure of equation (10) is more complicated,

and the phase shift is rather tedious. The bidirectional

two-soliton solutions and three-soliton solutions (25),

(26), (28) and (30) are firstly reported here. In Ref.

[15], the values of the phase shift were calculated with

proper selections of parameters, and its explicit

expression has not been presented.

In a similar manner, one can obtain four- and five-

soliton solutions of (10). The interactions between N

solitons (N� 4) are more abundant than those of three

solitons. Bidirectional solitons are physical meaning-

ful for water waves and the evolvement of waves

group caused by topographical changes. A variety of

nonlinear models in 2þ 1 and 3þ 1 dimensions admit

Fig. 2 Color online) Overtaking collision of three right-going solitons given by (28) with k1 ¼ 1:1, k2 ¼ 1:6, k3 ¼ 2:0, d ¼ �� ¼ 1. a
t ¼ �18, b t ¼ �13:5, c t ¼ �1, d t ¼ 4, e t ¼ 12, f the evolution plot of three solitons

Fig. 3 Color online) Head-on collision of three solitons given by (30) with k1 ¼ 0:9, k2 ¼ 1:2, k3 ¼ 1:4, d ¼ � ¼ 1.

a t ¼ �10, b t ¼ �3, c t ¼ 0, d t ¼ 2:5, e t ¼ 10, f the evolution plot of three solitons
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bidirectional soliton solutions, but they are rare in 1þ
1 dimensions.

4 Abundant travelling wave solutions

The travelling wave solutions for nonlinear models

play an important role to understand complex nonlin-

ear phenomena. For example, the wave phenomena

observed in fluid dynamics, plasma and elastic media

are often modelled by the bell-shaped sech solutions

and the kink-shaped tanh solutions. Up to now, a

number of methods have been established and devel-

oped by many scholars, such as the tanh-function

method [35], the sine–cosine method [36], the unified

algebraic method [37], the Jacobian elliptic function

expansion method [38, 39] and the G0

G-expansion

method [40].

In this section, we present an extended projective

Riccati expansion method for constructing novel

travelling wave solutions. The key idea of this method

is to make use of the close relations between the

special functions and the coupled Riccati system. Our

main contribution is to give two types of exact

solutions of a coupled Riccati system involving

several arbitrary parameters, which are more general

than the results given in Refs. [41–44]. Abundant

travelling wave solutions of (10) are derived in a

systematic way.

4.1 Analysis of the coupled Riccati equation

We consider the coupled Riccati system:

f 0 ¼p f ðnÞ gðnÞ;
g0 ¼q þ p g2ðnÞ � r f ðnÞ;

ð32Þ

where p and q are nonzero constants, and r is an

arbitrary constant.

Through the transformation

f ¼ 1

w
; g ¼ � w0

pw
;

the system (32) can be reduced to a second-order

ordinary differential equation (ODE), which reads

w00 þ p qw � pr ¼ 0: ð33Þ

With the aid of symbolic computation, we derive two

new types of explicit solutions to Eq. (32). If pq\0, it

admits the combined solitary wave solution

f ¼ q

a1 q sinhð ffiffiffiffiffiffiffiffiffi�pq
p

nÞ þ a2 q coshð ffiffiffiffiffiffiffiffiffi�pq
p

nÞ þ r
;

g ¼�
q

ffiffiffiffiffiffiffiffiffi�pq
p ½a2 sinhð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞ þ a1 coshð
ffiffiffiffiffiffiffiffiffi�pq

p
nÞ�

p ½a1q sinhð
ffiffiffiffiffiffiffiffiffi�pq

p
nÞ þ a2q coshð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞ þ r� ;

ð34Þ

where a1, a2 are two arbitrary constants, and the

relation between f and g is obtained as

g2 ¼ � q

p
þ 2r

p
f � a21q

2 � a22q
2 þ r2

pq
f 2: ð35Þ

If pq[ 0, Eq. (32) has the combined trigonometric

function solutions

f ¼ q

a1 q sinð ffiffiffiffiffi
pq

p
nÞ þ a2 q cosð ffiffiffiffiffi

pq
p

nÞ þ r
;

g ¼
q

ffiffiffiffiffi
pq

p ½a2 sinð
ffiffiffiffiffi
pq

p
nÞ � a1 cosð

ffiffiffiffiffi
pq

p
nÞ�

p ½a1 q sinð ffiffiffiffiffi
pq

p
nÞ þ a2 q cosð ffiffiffiffiffi

pq
p

nÞ þ r� ;

ð36Þ

where a1, a2 are two arbitrary constants, and the

relation between f and g is given by

g2 ¼ � q

p
þ 2r

p
f þ a21q

2 þ a22q
2 � r2

pq
f 2: ð37Þ

Remark 1 If p ¼ �1, q ¼ 1, equation (32) is

reduced to the coupled Riccati system studied in Refs.

[41, 42], where the obtained solution is the special case

of (34) with p ¼ �1, q ¼ 1 and a1 ¼ 0.

Remark 2 When p ¼ �1, q ¼ 1, r ¼ 0, equation

(32) is reduced to the coupled Riccati system studied

by Yao et al. [43], where the reported solution is

another particular case of (34).

Remark 3 Fu et al. also considered the coupled

system (32) to construct exact solutions of nonlinear

models. The solitary wave solutions and trigonometric

function solutions given in [44] are the subcases of

(34) and (36) with proper selections of a1 and a2.

4.2 The projective Riccati expansion method

For a given nonlinear evolution equation, say, in two

variables,

Gðu; ux; ut; uxx; uxt; utt; uxxx; � � �Þ ¼ 0; ð38Þ
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where the subscripts denote partial derivatives, and

G is a polynomial in unknown function u(x, t) and its

derivatives, and the method is consisted of four steps.

Step 1: Through the transformation

n ¼ k x þ m t ð39Þ

with k and m being the wave number and wave speed,

equation (38) is changed into an ordinary differential

equation

Hðu; u0; u00; u000; � � �Þ ¼ 0; ð40Þ

Step 2: The solutions of (40) can be expressed as

u ¼
Xm

i¼0

Ai f
i þ

Xm

j¼1

Bj f
j�1 g; ð41Þ

where f and g satisfy the coupled Riccati system (32).

In (41), the value of integer m can be determined by

balancing the nonlinear term and the linear derivative

term with the highest order, and the coefficients Ai and

Bj are undetermined constants.

Step 3: We first insert the ansatz (41) into (40).

Next, the derivatives of f and g in the obtained ordinary

differential equation can be expressed as the polyno-

mials of f ad g by employing (32). Subsequently, any

power of g higher than one can be eliminated via the

relation (35) or (37). And finally setting the coeffi-

cients of the terms with the same power of f and g to

zero, we obtain a nonlinear algebraic system (NAS)

with respect to the unknown parameters k, m, p, q, r, a1,
a2, Aiði ¼ 0; � � � ;mÞ, Bjðj ¼ 1; � � � ;mÞ.

Step 4: Putting each solution of the NAS into (41)

and making use of the solutions (34) and (36), some

new solutions of Eq. (38) can be constructed

systematically.

4.3 New travelling wave solutions of Eq. (10)

Applying the transformation (39) to (10), we get

ðm2 � k2Þu000 � k4u00000 � 12k3ðu00Þ2 � 12k3u0u000 ¼ 0:

ð42Þ

Under the following boundary conditions

lim
jnj!þ1

u0ðnÞ ¼ lim
jnj!þ1

u00ðnÞ ¼ lim
jnj!þ1

u000ðnÞ

¼ lim
jnj!þ1

u0000ðnÞ ¼ 0;

integrating (42) with respect to n twice and setting the
two integration constants as zero, we have

ðm2 � k2Þ u0 � k4 u000 � 6k3 ðu0Þ2 ¼ 0: ð43Þ

According to the above method, the solution of (43)

can be expressed as

u ¼ A0 þ A1f þ B1 g; ð44Þ

where A1B1 6¼ 0, and f and g satisfy (32). In order to

derive the solitary wave solutions and periodic wave

solutions in terms of trigonometric functions, two

different cases should be further investigated.

Case A

Substituting (44) into (43), together with (32) and

the relation (35), collecting all the terms with the same

power of f iði ¼ 1; 2; 3; 4Þ; f j gðj ¼ 1; 2; 3Þ and setting

the coefficients to zero, we have

f 4 : k3 ða21q2 � a22q
2 þ r2Þða21kpq2B1 � a22kpq

2B1

þ a21q
2B2

1 � a22q
2B2

1 þ kpr2B1 � pqA2
1 þ r2B2

1Þ ¼ 0;

f 3g : k3pqA1ða21q2 � a22q
2 þ r2Þðkpþ 2B1Þ ¼ 0;

f 3 : k3qr ða21kpq2B1 � a22kpq
2B1 þ a21q

2B2
1 � a22q

2B2
1

þ kpr2B1 � pqA2
1 þ r2B2

1Þ ¼ 0;

f 2g : k3pqrA1 ðkp þ 2B1Þ ¼ 0;

f 2 : q ð4 a21k4pq3B1 � 4 a22k
4pq3B1 þ m2r2B1 � k2r2B1

� 6 k3pq2A2
1 þ 6 k3qr2B2

1 � a21k
2q2B1 þ 7 k4pqr2B1

þ a21m
2q2B1 þ a22k

2q2B1 � a22m
2q2B1Þ ¼ 0;

fg : p q2 A1 ðk4pq � k2 þ m2Þ ¼ 0;

f : q2rB1 ðk4pq � k2 þ m2Þ ¼ 0:

Solving the above algebraic system with respect to all

parameters, we get three sets of solutions:

ðIÞ A1 ¼r ¼ 0;B1 ¼ �k p;

m ¼� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 k2 pq

p
:

ð45Þ

ðIIÞ A1 ¼0;B1 ¼ �k p; m ¼ �1 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 pq

p
;

a2 ¼�2 a1; �1 ¼ �1; �2 ¼ �1:
ð46Þ
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ðIIIÞ A1 ¼
k�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� pða21q2 � a22q
2 þ r2Þ

q

s

;

B1 ¼� k p

2
; m ¼ k�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 pq

p
;

�1 ¼� 1; �2 ¼ �1:

ð47Þ

Combining the above results, we can derive three

types of solitary wave solutions for (10).

Type 1 If pq\0, from (34), (44) and (45), we have

u6 ¼A0þ
k

ffiffiffiffiffiffiffiffiffi�pq
p ½a2 sinhð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞþ a1 coshð
ffiffiffiffiffiffiffiffiffi�pq

p
nÞ�

a1 sinhð
ffiffiffiffiffiffiffiffiffi�pq

p
nÞþ a2 coshð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞ ;

n¼k ðx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2 pq

p
tÞ;

ð48Þ

where A0; k; a1; a2 are arbitrary constants.

Type 2 If pq\0, from (34), (44) and (46), we have

u7 ¼A0 þ
ka1q

ffiffiffiffiffiffiffiffiffi�pq
p ½�2 sinhð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞ þ coshð ffiffiffiffiffiffiffiffiffi�pq
p

nÞ�
a1q sinhð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞ þ �2a1 q coshð ffiffiffiffiffiffiffiffiffi�pq
p

nÞ þ r
;

n ¼k ðxþ �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 pq

p
tÞ; �1 ¼ �1; �2 ¼ �1;

ð49Þ

where A0; k; a1; r are arbitrary constants.

Type 3 If pq\0, from (34), (44) and (47), we have

u8 ¼A0

þ k�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pqða21q2� a22q

2þ r2Þ
p

2½a1q sinhð
ffiffiffiffiffiffiffiffiffi�pq

p
nÞþ a2qcoshð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞþ r�

þ
kq

ffiffiffiffiffiffiffiffiffi�pq
p ½a2 sinhð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞþ a1 coshð
ffiffiffiffiffiffiffiffiffi�pq

p
nÞ�

2½a1q sinhð
ffiffiffiffiffiffiffiffiffi�pq

p
nÞþ a2qcoshð

ffiffiffiffiffiffiffiffiffi�pq
p

nÞþ r� ;

n¼k ðxþ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 pq

p
tÞ; �1 ¼�1; �2 ¼�1;

ð50Þ

where A0; k; a1; a2; r are arbitrary constants.

Case B

Substituting (44) into (43), together with (32) and

the relation (37), collecting all the terms with the same

power of f iði ¼ 1; 2; 3; 4Þ; f j gðj ¼ 1; 2; 3Þ and setting

the coefficients to zero, we get

f 4 : k3 ða21q2 þ a22q
2 � r2Þða21kpq2B1 þ a22kpq

2B1

þ a21q
2B2

1 þ a22q
2B2

1 � kpr2B1 þ pqA2
1 � r2B2

1Þ ¼ 0;

f 3g : k3pqA1ða21q2 þ a22q
2 � r2Þðkpþ 2B1Þ ¼ 0;

f 3 : k3qr ða21kpq2B1 þ a22kpq
2B1 þ a21q

2B2
1 þ a22q

2B2
1

� kpr2B1 þ pqA2
1 � r2B2

1Þ ¼ 0;

f 2g : k3pqrA1 ðkp þ 2B1Þ ¼ 0;

f 2 : q ð4 a21k4pq3B1 þ 4 a22k
4pq3B1 � m2r2B1 þ k2r2B1

þ 6 k3pq2A2
1 � 6 k3qr2B2

1 � a21k
2q2B1 � 7 k4pqr2B1

� a21m
2q2B1 � a22k

2q2B1 þ a22m
2q2B1Þ ¼ 0;

fg : p q2 A1 ðk4pq � k2 þ m2Þ ¼ 0;

f : q2rB1 ðk4pq � k2 þ m2Þ ¼ 0:

Solving the above system with respect to all param-

eters leads to the following two solutions:

ðIÞ A1 ¼
k�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pða21q2 þ a22q

2 � r2Þ
q

s

;

B1 ¼� k p

2
; m ¼ k�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 pq

p
;

�1 ¼� 1; �2 ¼ �1:

ð51Þ

ðIIÞ A1 ¼r ¼ 0;B1 ¼ �k p;

m ¼� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 k2 pq

p
:

ð52Þ

Combining the above results, we can derive two types

of trigonometric function periodic solutions for (10).

Type 1 If pq[ 0, from (44), (51) and (36), we get

u9 ¼A0

þ k�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqða21q2 þ a22q

2 � r2Þ
p

2½a1 q sinð ffiffiffiffiffi
pq

p
nÞ þ a2 q cosð ffiffiffiffiffi

pq
p

nÞ þ r�

�
k q

ffiffiffiffiffi
pq

p ½a2 sinð ffiffiffiffiffi
pq

p
nÞ � a1 cosð ffiffiffiffiffi

pq
p

nÞ�
2½a1 q sinð ffiffiffiffiffi

pq
p

nÞ þ a2 q cosð ffiffiffiffiffi
pq

p
nÞ þ r� ;

n ¼k ðxþ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 pq

p
tÞ; �1 ¼ �1; �2 ¼ �1;

ð53Þ

where A0; k; a1; a2; r are arbitrary constants.

Type 2 If pq[ 0, from (44), (52) and (36), we have

u10 ¼A0

�
k

ffiffiffiffiffi
pq

p ½a2 sinð ffiffiffiffiffi
pq

p
nÞ � a1 cosð ffiffiffiffiffi

pq
p

nÞ�
a1 sinð ffiffiffiffiffi

pq
p

nÞ þ a2 cosð ffiffiffiffiffi
pq

p
nÞ ;

n ¼k ðxþ �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2 pq

p
tÞ;

ð54Þ

where �1 ¼ �1, A0; k; a1; a2 are arbitrary constants.
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The solutions (48), (49), (50), (53), (54) are firstly

reported here. By selecting appropriate parameters,

their plots are shown in Figs. 4 and 5, respectively.

5 Periodic solitary wave solutions

In the past years, the study about interaction solutions

has become a hot research issue and has already got

good results [45–54]. In order to find the interaction

solutions which can show some interesting physical

phenomena, such as the fermionic quantum plasma

between soliton and periodic waves [54], we aim at

constructing some new interaction solutions between

periodic waves and solitary waves using the direct

method.Therefore, the solutions of (12) are supposed as

f ¼a1 e
h1 þ a2 e

�h1 þ a3 sinðh2Þ;
h1 ¼k1 x þ c1 t; h2 ¼ k2 x þ c2 t;

ð55Þ

where a1a2 6¼ 0, and a1, a2, a3, k1, k2, c1, c2 are real

parameters to be determined later.

Inserting (55) into (12) and equating the coeffi-

cients of eh1 sinðh2Þ cosðh2Þ, e�h1 sinðh2Þ cosðh2Þ,
eh1 sin2ðh2Þ, e�h1 sin2ðh2Þ, e2h1 sinðh2Þ, e�2h1 sinðh2Þ,
e2h1 cosðh2Þ, e�2h1 cosðh2Þ, eh1 , e�h1 and cosðh2Þ, we
have an algebraic system consisting of 11 equations

(see ‘‘Appendix A’’). With the aid of computer

algebraic software, we obtain two types of solutions:

ðIÞa1 ¼K1; a2 ¼ a2; a3 ¼ a3;

c2 ¼
�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð6k21k22 � k41 � k42 � k21 þ k22 þ �2DÞ

q
;

D ¼ðk81 þ 4k61k
2
2 þ 6k41k

4
2 þ 4k21k

6
2 þ k82 þ 2k61

þ 2k41k
2
2 � 2k21k

4
2 � 2k62 þ k41 þ 2k21k

2
2 þ k42Þ

1=2;

ð56Þ

where �1 ¼ �1, �2 ¼ �1, the expression for K1 is

cumbersome and thus given in ‘‘Appendix B,’’ and c1
is given by

3c2c
2
1 þ 4 ðk1k32 � 4k31k2 � 2k1k2Þ c1 þ ð6 k21k22

� k41 � k42 � k21 þ k22Þ c2 � c32 ¼ 0:
ð57Þ

ðIIÞ a1 ¼a1; a2 ¼ a2; a3 ¼ 0; k1 ¼ k1;

c1 ¼� k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k21

q
:

ð58Þ

From (56), together with (11) and (55), the periodic

solitary wave solution is obtained as

u11 ¼ ½K1 k1 e
ðk1xþc1tÞ � a2 k1 e

�ðk1xþc1tÞ

þ a3 k2 cosðk2xþ c2tÞ�=½K1e
ðk1xþc1tÞ

þ a2 e
�ðk1xþc1tÞ þ a3 sinðk2xþ c2tÞ�;

ð59Þ

where a2, a3, k1, k2 are arbitrary constants, c2 is given

in (56) and K1 is given in ‘‘Appendix B.’’

From (57), it is obvious thatK1, c1 and c2 depend on

the parameters k1 and k2. Additionally, a2 and a3 are

arbitrary constants. Different choices of arbitrary

parameters lead to different interactions between

periodic waves and solitary waves. The three-dimen-

sional plots and contour plots of (59) are shown in

Fig. 6. It can be clearly seen that the interaction

solution (59) is periodic in the space and time.

If a2 ¼ K1, the solution (59) can be expressed as

u111 ¼ 2K1 k1 sinhðk1xþ c1tÞ þ a3 k2 cosðk2xþ c2tÞ
2K1 coshðk1xþ c1tÞ þ a3 sinðk2xþ c2tÞ

:

Taking a2 ¼ �K1, the solution (59) becomes

u211 ¼ 2K1 k1 coshðk1xþ c1tÞ þ a3 k2 cosðk2xþ c2tÞ
2K1 sinhðk1xþ c1tÞ þ a3 sinðk2xþ c2tÞ

:

Fig. 4 The plots of solitary wave solutions. a The solution

(48) with q ¼ �p ¼ a1 ¼ �1 ¼ ��2 ¼ 1, k ¼ 0:8, r ¼ 3 and

t ¼ 0:2, A0=0. b The solution (49) with q ¼ �p ¼ a1 ¼ �1 ¼ 1,

k ¼ 0:4, a2 ¼ 4 and t ¼ 0:5, A0=0. c The solution (50) with

q ¼ �p ¼ k ¼ �1 ¼ �2 ¼ 1, a1 ¼ �0:5, a2 ¼ �5, r ¼ 10,

t ¼ 0:2, A0=0
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From (11), (55) and (58), we get

u12 ¼ a1 k1 e
ðk1x�k1

ffiffiffiffiffiffiffiffiffi
1þ4k2

1

p
tÞ � a2 k1 e

�ðk1x�k1
ffiffiffiffiffiffiffiffiffi
1þ4k2

1

p
tÞ

a1e
ðk1x�k1

ffiffiffiffiffiffiffiffiffi
1þ4k2

1

p
tÞ þ a2 e

�ðk1x�k1
ffiffiffiffiffiffiffiffiffi
1þ4k2

1

p
tÞ

;

where a1, a2, k1 are arbitrary constants.

Remark 4 The solutions of (12) may be supposed as

f ¼a1e
h1 þ a2e

�h1 þ a3cosðh2Þ;
f ¼a1e

h1 þ a2e
�h1 þ a3sinðh2Þ þ a4 coshðh3Þ;

f ¼a1e
h1 þ a2e

�h1 þ a3cosðh2Þ þ a4sinhðh3Þ;

where hi ¼ kixþ cit; ði ¼ 1; 2; 3Þ. Performing the

similar analysis, one can find other interestingmultiple

wave interaction solutions.

6 Conclusions

In this paper, we investigated a generalized fifth-order

nonlinear equation with temporal and spatial disper-

sion. Following the standard WTC method, this model

has been proven to be integrable in the sense of

Painlevé for particular choice of parameters.

Fig. 5 The plots of trigonometric function periodic solu-

tions. a The solution (53) with p ¼ q ¼ �1 ¼ ��2 ¼ 1,

a1 ¼ 0:5, a2 ¼ 2, k ¼ 0:8, r ¼ 1:9, t ¼ 0:5, A0 ¼ 0. b The

solution (53) with p ¼ q ¼ �1 ¼ �2 ¼ 1, a1 ¼ �0:5, a2 ¼ 1:2,
k ¼ 0:8, r ¼ 0:3, t ¼ 0:5, A0=0. c The solution (54) with

p ¼ q ¼ a1 ¼ �1 ¼ 1, a2 ¼ 2, k ¼ 0:4, t ¼ 0:5, A0=0

Fig. 6 (Color online) The plots of interaction solution given by

(59) with �1 ¼ �2 ¼ 1. a a2 ¼ 0:9, a3 ¼ 1:0, k1 ¼ �2,

k2 ¼ 2:5, b a2 ¼ 3, a3 ¼ �1:5, k1 ¼ 0:8, k2 ¼ 2, c a2 ¼ 1,

a3 ¼ 0:3, k1 ¼ 0:2, k2 ¼ 0:8, d the contour plot of a, e the

contour plot of b, f the contour plot of c
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Searching for explicit exact solutions of nonlinear

evolution equations is one of the significant problems

in nonlinear science. For the integrable fifth-order

nonlinear equation (10), several types of exact solu-

tions have been presented via three different methods.

We expect these new solutions helping us to under-

stand the wave propagation processes in fluid mechan-

ics for nonlinear equations with higher-order temporal

and spatial dispersion.

The existence of multiple soliton solutions can

further prove its integrability. In order to reduce the

calculation complexity, we adopted the simplified

Hirota method to derive the one-, two- and three-

soliton solutions. This method does not need to

transform the original nonlinear model into bilinear

equations. Unlike most nonlinear evolution equations

in 1?1 dimensions, this fifth-order nonlinear equation

can describe shallow water waves moving in both

directions. The evolution analysis for two-soliton and

three-soliton solutions illustrates that both overtaking-

and head-on collisions between multiple solitons are

completely elastic.

Furthermore, the fifth-order nonlinear equation also

possesses some interesting exact solutions, and we

presented an extended projective Riccati expansion

method and derived abundant travelling wave solu-

tions systematically. This method can be applied to

many other nonlinear evolution equations.

By virtue of the truncated Painlevé expansion, we

also obtained some new types of interactions solutions

between periodic waves and solitary waves. Using this

direct method to obtain multiple waves interaction

solutions, there always exists the problem of ‘‘inter-

mediate expression swell.’’ It is an interesting research

issue to propose a more efficient method for con-

structing multiple waves interaction solutions.

As future work, we can explore the higher dimen-

sional extension of this fifth-order equation with third-

order temporal and spatial dispersion. Meanwhile,

other interesting properties, such as its infinite sym-

metries, bilinear Bäcklund transformation, Lax pair as

well as more explicit solutions with physical interest,

are also important issues to study in the future.
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Appendix A
a1a

2
3 ð4 c1k1k32 � 4 c1k

3
1k2 � c2k

4
1 þ 6 c2k

2
1k

2
2 � c2k

4
2

þ 3c21c2 � 2c1k1k2 � c32 � c2k
2
1 þ c2k

2
2Þ ¼ 0;

a2a
2
3 ð4 c1k1k32 � 4 c1k

3
1k2 � c2k

4
1 þ 6 c2k

2
1k

2
2 � c2k

4
2

þ 3c21c2 � 2c1k1k2 � c32 � c2k
2
1 þ c2k

2
2Þ ¼ 0;

a1a
2
3 ð6 c1k21k22 � c1k

4
1 � c1k

4
2 þ 4 c2k

3
1k2 � 4 c2k1k

3
2

þ c31 � 3 c1c
2
2 � c1k

2
1 þ c1k

2
2 þ 2 c2k1k2Þ ¼ 0;

a2a
2
3 ð6 c1k21k22 � c1k

4
1 � c1k

4
2 þ 4 c2k

3
1k2 � 4 c2k1k

3
2

þ c31 � 3 c1c
2
2 � c1k

2
1 þ c1k

2
2 þ 2 c2k1k2Þ ¼ 0;

a21a3 ð6 c1k21k22 � c1k
4
1 � c1k

4
2 þ 4 c2k

3
1k2 � 4 c2k1k

3
2

þ c31 � 3c1c
2
2 � c1k

2
1 þ c1k

2
2 þ 2c2k1k2Þ ¼ 0;

a22a3 ð6 c1k21k22 � c1k
4
1 � c1k

4
2 þ 4 c2k

3
1k2 � 4 c2k1k

3
2

þ c31 � 3c1c
2
2 � c1k

2
1 þ c1k

2
2 þ 2c2k1k2Þ ¼ 0;

a21a3ð4 c1k1k32 � 4 c1k
3
1k2 � c2k

4
1 þ 6 c2k

2
1k

2
2 � c2k

4
2

þ 3c21c2 � 2c1k1k2 � c32 � c2k
2
1 þ c2k

2
2Þ ¼ 0;

a22a3ð4 c1k1k32 � 4 c1k
3
1k2 � c2k

4
1 þ 6 c2k

2
1k

2
2 � c2k

4
2

þ 3 c21c2 � 2c1k1k2 � c32 � c2k
2
1 þ c2k

2
2Þ ¼ 0;

a3 ð4 a1a2c1k1k32 � 20 a1a2c1k
3
1k2 � 7 a1a2c2k

4
1

þ 2 a1a2c2k
2
1k

2
2 þ a1a2c2k

4
2 � 4 a23c2k

4
2 � a23c

3
2

þ 9 a1a2c
2
1c2 � 6 a1a2c1k1k2 þ a1a2c

3
2

� 3a1a2c2k
2
1 � a1a2c2k

2
2 þ a23c2k

2
2Þ ¼ 0;

a1 ð2a23c1k21k22 � 16a1a2c1k
4
1 � 2a23c1k

4
2

þ 2a23c2k
3
1k2 � 6a23c2k1k

3
2 þ 4a1a2c

3
1

� 4a1a2c1k
2
1 � 3a23c1c

2
2 þ a23c1k

2
2

þ 2a23c2k1k2Þ ¼ 0;

a2 ð2a23c1k21k22 � 16a1a2c1k
4
1 � 2a23c1k

4
2

þ 2a23c2k
3
1k2 � 6a23c2k1k

3
2 þ 4a1a2c

3
1

� 4a1a2c1k
2
1 � 3a23c1c

2
2 þ a23c1k

2
2

þ 2a23c2k1k2Þ ¼ 0:
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Appendix B

In (56), the expression of K1 is listed as follows:

K1 ¼½4c22a23ð81k161 � 900k22k
14
1 þ 4480k42k

12
1

� 13492k62k
10
1 þ 32730k82k

8
1 þ 24884k102 k61

� 8k62k
4
1 þ 2052k142 k21 � 243k162 þ 324k141

� 2943k22k
12
1 þ 10922 k42k

10
1 � 18969k62k

8
1

þ 81k81 þ 10399k102 k41 � 4590k122 k21 þ 729k142

þ 486k121 � 3168k22k
10
1 þ 6315k42k

8
1 þ 54k82k

2
1

þ 528k82k
4
1 þ 2484k102 k21 � 729k122 þ 324k101

� 1107k22k
8
1 � 226k42k

6
1 þ 1140k62k

6
1 þ 243k102

� 8120k122 k41 � 1056k82k
6
1 þ 18k61k

2
2 þ k41k

4
2Þ

� 4a23k
2
1k

2
2ð81k121 � 738k22k

10
1 þ 2907k42k

8
1

� 8044k62k
6
1 � 5881 k82k

4
1 þ 1550 k102 k21

� 243k122 þ 243k101 � 1638k22k
8
1 þ 3730k42k

6
1

þ 264 k62k
4
1 � 1789 k82k

2
1 þ 486 k102 þ 243 k81

� 882 k61k
2
2 � 176 k41k

4
2 � 62 k21k

6
2 � 243 k82

þ 81k61 þ 18k41k
2
2 þ k21k

4
2Þð2k21 � 2k22 þ 1Þ2�

=½16 c22 a2k21ð2 k21 � 2 k22 þ 1Þð81 k121 þ 243k81

þ 2907k42k
8
1 � 8044k62k

6
1 � 5881k82k

4
1 � 243k122

þ 1550 k102 k21 þ 243 k101 � 1638 k22k
8
1 þ 18k41k

2
2

þ 264k62k
4
1 � 1789k82k

2
1 þ 486k102 � 738 k22k

10
1

� 882k61k
2
2 � 176k41k

4
2 � 62k21k

6
2 þ 3730k42k

6
1

þ 81k61 � 243k82 þ k21k
4
2Þ � 16a2k

4
1k

2
2ð81k81

� 572k61k
2
2 þ 1958k41k

4
2 þ 1348k21k

6
2 � 239k82

þ 162k61 � 654k41k
2
2 � 66k21k

4
2 þ 238k62

þ 81k41 þ 18k21k
2
2 þ k42Þð2k21 � 2k22 þ 1Þ3�:
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