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Abstract How do group dynamics affect individuals

within the group? How do individuals, in turn, affect

group dynamics? As society comes together, individ-

uals affect the group dynamics and vice versa. Social

dynamics look at group dynamics, its effect on

individuals, conformity, leadership, networks, and

more. In the past two decades, the game theoretic

Parrondo’s paradox has been used to model and

explain the different aspects of social dynamics. Two

losing games can be combined in a certain manner to

give a winning outcome—this is known as Parrondo’s

paradox. In this review, the connections between

Parrondo’s paradox and social dynamics are discussed

with emphasis on (i) cooperation and competition, (ii)

resource redistribution and social welfare, and (iii)

information flow and decision-making.

Keywords Social dynamics � Parrondo’s paradox �
Sociodynamics � Information flow � Game theory �
Nonlinear analysis

1 Introduction

One of the ways to study social dynamics is to

investigate social changes in agent-based models that

involve multiple interacting individuals. These indi-

viduals, with differing characteristics, rules of beha-

viour, and sources of information, collectively form a

group. The interaction may lead to changes in

behaviour of the group as a whole, which inadvertently

shapes the behaviour of individuals in the group. The

dynamics of such systems can be extremely complex

due to their high dimensionality and inter-connectivity

between individuals [1, 2]. Social dynamics is more

than just summing up the individual characteristics of

each group member. Instead, social dynamics involves

a cyclical and reciprocal feedback loop which simul-

taneously impacts individuals and the connectivity

between individuals. The study of social or group

dynamics helps to improve group performance, com-

munication, and consensus [3–5]. At the forefront of

this research is the applicability of mathematical

modelling to sociodynamical phenomena [6].

Since the time of von Neumann, game theory has

been applied to a wide range of behavioural rela-

tions [7–9]. Game theory rigorously analyses the

long-run behaviour of agent-based systems using

concepts in Markov chains and equilibrium analy-

sis [10–12]. Analysis of interactions in a group often

reveals counter-intuitive results. For example,

Braess’s paradox states that adding one or more roads
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to an existing road network may end up slowing down

overall traffic flow. This is because individuals wish to

optimise their own utility rather than considering the

group utility [13]. This is likened to finding a Nash

equilibrium in a multi-player game, where the Nash

equilibrium does not necessarily give the best possible

result for any player. Another counter-intuitive and

nontrivial result of game theory is Parrondo’s paradox.

Two losing games can be combined in a certain

manner to give a winning outcome—this is known as

Parrondo’s paradox [14, 15]. It has been used to

explain various phenomena in computer science [16],

with its theoretical framework [17–22] expanding into

quantum game theory [23–26], physical chem-

istry [27], dynamical systems [28–30], and engineer-

ing [31, 32]. Furthermore, of importance, where

Parrondo’s paradox has made a breakthrough, is the

observed phenomenon in biology where there are

interacting agents in an ecosystem with the environ-

ment and living space, giving rise to primitive

modelling of aspects of population dynamics [33–43].

These models go beyond social interactions to take

into account the effect of environments on popula-

tions. The modelling of interaction between multi-

agents, in social dynamics, is of greater complexity as

there is greater connectivity between the agents, which

makes the fusion of Parrondo’s paradox and social

dynamics an important and emerging field of nonlin-

ear dynamics.

It has been more than two decades since the

formalism of Parrondo’s paradox. This review article

hopes to consolidate the works in this field pertaining

to social dynamics—the coming together of two

important topics from the game theory and social

sciences to explain how two ‘‘losing’’ utilities can lead

to a ‘‘winning’’ utility in society. To achieve the aims

of this work, our article is organised as follows: the

next section will present a discussion on the three main

types of Parrondo’s games (Sect. 2). This will be

followed by a review of the social dynamics context in

which the study is focused (Sect. 3). According to

Comte [44], there are three types of social progress:

(i) moral progress, (ii) physical progress, and (iii)

intellectual progress. Motivated by these broad

themes, our review here discusses the existing liter-

ature, paying special attention to (i) cooperation and

competition, (ii) resource redistribution and social

welfare, and (iii) information flow and decision-

making, with the view to evaluate the implications

and future direction of this amalgamated subject. This

review is important as it provides a different perspec-

tive through which one can understand societal ideas

of redistribution, cooperation, voting, performance,

and resource growth to bring about ‘‘winning’’

outcomes in a social group.

2 Parrondo’s paradox

There are three broad classes of Parrondo’s games—

capital-dependent, history-dependent, and cooperative

Parrondo’s games.

2.1 Capital-dependent Parrondo’s games

In capital-dependent Parrondo’s games, a player starts

with an initial capital C(t) and plays one of the two

losing games [14, 45]. At each time step t, the player

chooses to play either game A or B according to some

rule. The player’s capital increases by 1 for each win,

that is Cðt þ 1Þ ¼ CðtÞ þ 1; otherwise, the player’s

capital decreases by 1, that is Cðt þ 1Þ ¼ CðtÞ � 1.

Game A involves the toss of a single-biased coin with

winning probability p0 ¼ 1
2
� e. In Game B, we first

determine whether current capital is a multiple of

some integer. That is, coin c1 with a winning

probability of p1 is tossed if the capital is divisible

by integer M; otherwise, coin c2 is used with winning

probability p2. By choosing p1 and p2, one is able to

show that playing games A and B individually over

time gives a net loss in capital, but playing a

combination of games A and B randomly, denoted

by ½A þ B�, results in a gain in capital. The choice of

probabilities for game B that satisfies this condition is

p1 ¼ 1
10
� e, p2 ¼ 3

4
� e and e ¼ 0:005. This is sum-

marised in Fig. 1, and results are plotted in Fig. 2.

It is instructive to introduce the representation of

Parrondo’s games in the form of a Markov chain as it is

often used to analyse and classify equilibrium or

detailed balance solutions. In the capital-dependent

Parrondo’s games, we have M states, each state

corresponding to i � C mod M, where

i 2 f0; 1; . . .;M � 1g. We can illustrate the transition

from one state to another via Fig. 3

In both Markov chains, the clockwise direction is

‘‘winning’’, while the counter-clockwise direction is
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‘‘losing’’. It is easy to check that game A is a losing

game if

1 � p0 [ p0 ) 1 � p0

p0

[ 1: ð1Þ

For game B, it is losing if

ð1 � p1Þð1 � p2ÞM�1 [ p1p
M�1
2

) ð1 � p1Þð1 � p2ÞM�1

p1p
M�1
2

[ 1:
ð2Þ

For the Parrondo’s games, we can mix game A and B

such that the combined game C can be written as

C ¼ cAþ ð1 � cÞB, where 0� c� 1. If c ¼ 1, then

only game A is played, and if c ¼ 0, then only game B

is played. In most literature, both games A and B are

played with the same probability for the capital-

dependent Parrondo’s games, so c ¼ 1
2
. Then at the

stationary distribution, Parrondo’s paradox occurs if

ð1 � q1Þð1 � q2ÞM�1

q1q
M�1
2

\1; ð3Þ

where q1 ¼ cp0 þ ð1 � cÞp1 and

q2 ¼ cp0 þ ð1 � cÞp2. The probabilities pi for the

capital-dependent Parrondo’s games, M ¼ 3 and

c ¼ 1
2
, satisfy this inequality.

Fig. 1 Capital-dependent

Parrondo’s games involve

tossing three biased coins as

described in Ref. [14]. The

probabilities for the losing

condition are 1 � pi for the

respective branches. This

will be the convention

adopted for the rest of this

article

Fig. 2 Average capital

hCðtÞi against time. The

following parameters were

chosen such that Parrondo

effect is observed. The

capital is averaged over n ¼
106 simulations for t ¼ 100

time steps for the following

values of p: p0 ¼
0:5 � e; p1 ¼ 0:1 � e and

p2 ¼ 0:75 � e, setting

e ¼ 0:005
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2.2 History-dependent Parrondo’s games

The history-dependent Parrondo’s games build on the

concept of capital-dependent games by keeping game

A to be similar as before. However, game B is now

independent of the capital—we will call it game B0 so

as not to confuse with the earlier game B. In game B0,
there are four biased coins and the coin to be played

depends on the history of the outcomes from previous

games [47, 48]. At each time step t, the player chooses

to play either game A or B0 according to some rule.

When the player wins the selected game, the player’s

outcome is labelled as ‘‘win’’ and

Cðt þ 1Þ ¼ CðtÞ þ 1; otherwise, the outcome is

labelled as ‘‘lose’’ and Cðt þ 1Þ ¼ CðtÞ � 1.

The rules for game A are similar to the capital-

dependent game A. Game B0 is defined according to

the history of the past two time steps. The probability

of winning at time t is given by:

– p1, if player ‘‘lose’’ at both t � 1 and t � 2,

– p2, if player ‘‘lose’’ at t � 1 and ‘‘win’’ at t � 2,

– p3, if player ‘‘win’’ at t � 1 and ‘‘lose’’ at t � 2,

– p4, if player ‘‘win’’ at both t � 1 and t � 2.

The dynamics of the game is described in Fig. 4.

Playing games A and B0 individually will produce a

net loss over time, but playing a combination of games

A and B0 can result in an overall win. As an

illustration, the history-dependent Parrondo’s games

use biased dice with winning probabilities p1 ¼ 9
10
� e,

p2 ¼ p3 ¼ 1
4
� e and p4 ¼ 7

10
� e, with e ¼ 0:005. The

outcome of this simulation is shown in Fig. 5.

2.3 Cooperative Parrondo’s games

The application of Parrondo’s games to social dynam-

ics mainly hinges on cooperative Parrondo’s

games [49]. Cooperative Parrondo’s games are struc-

tured differently and, unlike their counterparts in

capital-dependent and history-dependent games, these

games are played by an ensemble of agents following

certain social rules. Much like social interaction, this

set of ‘‘social rules’’ is determined by the interaction

between agents.

In cooperative Parrondo’s games, consider N

players each with individual capital

CiðtÞ; i ¼ 1; . . .;N. This capital evolves by a combi-

nation of two games, A and B00. In the version of the

game introduced by Toral [49], at a time step t, a

player i is randomly chosen among the N players.

Player i then chooses to play either game A or B00

according to some rule. When player i wins the

selected game, the particular player is labelled as

‘‘win’’ and Ciðt þ 1Þ ¼ CiðtÞ þ 1; otherwise, the out-

come is labelled as ‘‘lose’’ and Ciðt þ 1Þ ¼ CiðtÞ � 1.

Player i’s label does not change until the player is

Fig. 3 The states i representing i � C mod M. (Left) Markov

Chain for game A: probability of winning is p0 and probability

of losing is 1 � p0. (Right) Markov Chain for game B: If the

capital is a multiple ofM, then the probability of winning is p1; if

it is not a multiple of M, then the probability of winning is p2.

Image adapted from Ref. [46]
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chosen again to play a game. The combination of

games is considered a winning game if the average

total capital, hCðtÞi, increases with time, where

CðtÞ ¼
XN

i¼1

CiðtÞ: ð4Þ

The dynamics of the cooperative Parrondo’s games is

illustrated in Fig. 6.

The rules for game A are similar to the ones

described in Sect. 2.1. Game B00 (not to be confused

with earlier versions) is defined according to the state

of the two neighbouring players iþ 1 and i� 1

(assume periodic boundary conditions). The probabil-

ity of winning at time t is given by:

– p1, if both players at site i� 1 and iþ 1 are

labelled ‘‘lose’’,

– p2, if the players at site i� 1 is labelled ‘‘lose’’ and

the player at iþ 1 is labelled ‘‘win’’,

– p3, if the players at site i� 1 is labelled ‘‘win’’ and

the player at iþ 1 is labelled ‘‘lose’’,

– p4, if both players at site i� 1 and iþ 1 are

labelled ‘‘win’’.

Fig. 4 Construction of the history-dependent games, where game B0 has four possible historic outcomes. Depending on the four

historic outcomes of the game, the probability of winning is pi, i ¼ f1; 2; 3; 4g. Image adapted from Ref. [47]

Fig. 5 Average capital

hCðtÞi against time. The

following parameters were

chosen such that Parrondo

effect is observed. The

capital is averaged over n ¼
106 simulations for t ¼ 100

time steps for the following

values of p: p0 ¼
0:5 � e; p1 ¼ 0:9 � e; p2 ¼
p3 ¼ 0:25 � e and

p4 ¼ 0:7 � e, setting

e ¼ 0:005
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The dynamics of choosing which game to play will

determine the final outcome. A random game, denoted

as ½A þ B00�, plays games A and B00 in random

succession such that as t ! 1, there is a probability

1/2 of choosing game A and probability 1/2 of

choosing game B00 at each time step. The chosen

parameters (leading to a winning outcome) are p0 ¼
0:5; p1\0:5395 or p1 [ 0:98; p2 ¼ p3 ¼ 0:16 and

p4 ¼ 0:7. Players form a ring of N nodes (i.e. agent

0’s neighbours are agent 1 and agent N � 1). The

simulation results for a chosen set of parameters

displaying Parrondo’s paradox are shown in Fig. 7.

The cooperative game is the first multi-agent game

to display Parrondo’s paradox and lays the foundation

for game theoretic Parrondo’s games modelling of

various aspects of social dynamics.

Since the introduction of cooperative Parrondo’s

games, the theoretical framework of these games has

been extended and analytical derivations of the

cooperative Parrondo’s games have been carried out

to identify the values of pj; j 2 f0; 1; . . .; 4g for

population size N which gives rise to the Parrondo

effect [50–58]. Modifications were made to include

Fig. 6 Flowchart diagram for cooperative Parrondo’s games, where game B00 has four possible neighbouring states. Depending on the

four states of Player i’s neighbours, the probability of winning is pi, i ¼ f1; 2; 3; 4g. Image adapted from Ref. [49]

Fig. 7 Average capital per

player hCðtÞi=N against

time. The following

parameters were chosen

such that Parrondo effect is

observed. N ¼ 100,

averaged over n ¼ 107

simulations for t ¼ 100 time

steps for the following

values of p: p0 ¼
0:5 � e; p1 ¼ 1:0; p2 ¼
p3 ¼ 0:16 and p4 ¼ 0:7,

setting e ¼ 0:0005
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synchronous (all players play at the same time for each

time step) cooperative Parrondo’s games [59]. Fol-

lowing the same game rules, it is possible to arrange

N �M players in a two-dimensional lattice (assume

periodic boundary conditions) to achieve Parrondo

effect for games played in an asynchronous (one

player is chosen at every time step) [60] and a

synchronous [61] manner. These theoretical advance-

ments allow for more complex and realistic social

dynamics to be explored.

3 Aspects of social dynamics and Parrondo’s

paradox

Parrondo’s paradox, in the context of modelling social

dynamics, is an agent-based model that involves a

large (but finite) number of interacting agents with

differing rules of behaviour or information. These

behaviours and information are often simplified to

remain analytically tractable. The dynamics of the

interaction can be implemented as a mathematical

function or algorithmic procedure [62, 63]. Most real-

world social systems are complex due to the large

number of connections between agents, and high

dimensional due to the number of features describing

behaviours and information. In all the presented work,

as is common in social dynamics research, the agents

act rationally. Their choices are also not entirely

deterministic as it may be affected by internal factors

such as errors in perception and idiosyncrasies in

behaviour, as well as external factors such as random

perturbations from the environment. In this section,

we will review related work involving Parrondo’s

paradox on long-term behaviour in social dynamics. In

modelling social dynamics, the ‘‘capital’’ introduced

in Parrondo’s games can represent many social

aspects. For example, the most direct analogy of

capital is money itself. It can also be regarded as

certain benefits that flow from the trust, reciprocity,

information, and cooperation associated with social

networks.

3.1 Cooperation and competition

A key aspect of social dynamics is the study of how

interaction within a group leads to cooperation and

competition among its agents. These interactions are

often modelled using a complex network that has a

small-world topology. For the modelling to be realis-

tic, there are local and global measures that have to be

made so that predictions can be inferred on the group

dynamics and its implications for the evolution of

behaviours. There are several ways to define the

emergence of cooperation or competition, and they are

discussed in the work of Wang and Ye et al. [64–66].

In the work of Wang et al. [64], they have

investigated agent’s cooperation and competition

(coopetition) behaviour, as well as the impact of

heterogeneity of the degree distribution of network on

coopetition. The agent-based Parrondo’s games con-

sist of a zero-sum game (game A) among agents and a

negative sum game (game B) between agents and the

environment. Considering a population of N agents, at

each time step, a principal i is randomly chosen to play

game A with probability p or game B with probability

1 � p. If game A is chosen, a receptor j is chosen,

where j is connected to i, where i 6¼ j. Two networks

were chosen—a fully connected network and the

Barabási–Albert (BA) model scale-free network. In

both networks, each agent is represented by a node.

Agents that have means of interaction will be

connected with an edge. In a fully connected network,

all nodes are pair-wise connected. In the BA scale-free

network, the nodes are connected based on a degree

distribution that follows a power distribution [67].

The dynamics of the Parrondo’s game is summarised

in Fig. 8.

Game A is designed to have no impact on the total

benefit of the population; however, it changes the

distribution of benefit in the population. The dynamics

of game A, in Fig. 8, are determined by the interaction

relationship between principal i and receptor j. Four

patterns, corresponding to interactions, are defined:

1. Competition pattern: the winning probabilities of

the principal i and receptor j are both 0.5. When

i wins, j pays one unit to i; otherwise, i pays one

unit to j.

2. Cooperation pattern: the principal i pays one unit

to the receptor j for free.

3. Harmony-based pattern: when capital

CiðtÞ�CjðtÞ i pays one unit to j; otherwise, when

CiðtÞ\CjðtÞ, j pays one unit to i.

4. Poor-competition–rich-cooperation (PCRC) pat-

tern: when capital CiðtÞ�C0, the initial capital,

principal i will cooperate with receptor j; other-

wise, it will compete.
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Patterns (1)–(3) are ‘‘pure strategies’’. However, in

reality, an individual cannot always have the same

strategy and it will adjust its strategy accordingly.

Thus, pattern (4), which is called ‘‘macrostrategy’’, is

modelled according to the philosophy of self-cultiva-

tion, that is, ‘‘in success, commit oneself to the welfare

of society; in distress, maintain one’s own integrity’’.

Game B reflects the interaction mechanism

between the population and the environment. It is

specially designed to be a negative sum game similar

to game B of the capital-dependent Parrondo’s para-

dox introduced in Sect. 2.1. Game B is analogous to

the ratcheting effect that natural environment has on

biotic evolution. The two networks are compared by

calculating the fitness index

dðtÞ ¼ WðtÞ
T

; ð5Þ

where WðtÞ ¼ CðtÞ � C0, W(t) and C(t) are the

winnings and capital at time t, respectively. C0 is the

original capital, and T is the total time of the game with

N, the population size. From this definition, the fitness

of agent i and the average fitness of the population at

time t are, respectively

diðtÞ ¼
WiðtÞ
T

; and ð6Þ

�dðtÞ ¼

�PN
i¼1 WiðtÞ=N

�

T
:

ð7Þ

For both networks, N ¼ 500, T ¼ 100 and the prob-

abilities are p ¼ 0:5, p1 ¼ 0:1 � e and p2 ¼ 0:75 � e,
with M ¼ 3 and e ¼ 0:005. Additionally, the BA

network has an average degree of hki ¼ 3:984 and

clustering coefficient G ¼ 0:035652. By calculating

the average fitness index, the simulation results in

Fig. 9 predict:

1. The BA network, which models many social

networks, is conducive to cooperation.

2. Cooperation and competition in any forms are

adaptive behaviours, and these behaviours could

convert the losing games into a winning outcome.

This implies that coopetition is in a successful

evolutionary direction.

Further analytical and simulation results were later

derived in [66], which also discusses the ‘‘Matthew

effect’’ (associated with the effect of accumulated

advantage), or simply known as ‘‘the rich get richer,

while the poor get poorer’’. Furthermore, Ye et al. also

investigated agent’s coopetition in history-dependent

Parrondo’s games on networks [65]. Modifications

were made to game A to investigate only the

competition and cooperation patterns. Game B was

substituted with game B0 to reflect the favourable and

adverse impact of the environment on agents, mod-

elled according to game B0 of the history-dependent

game discussed in Sect. 2.2. The dynamics of the

Parrondo’s games are summarised in Fig. 10.

Game B0 is a negative sum game if

Fig. 8 Population

Parrondo’s games model on

a network, modified from

the capital-dependent

Parrondo’s games. Image

adapted from Ref. [64]
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ð1 � p3Þð1 � p4Þ
p1p2

[ 1 ð8Þ

The parameters are p ¼ 0:5, p1 ¼ 0:9, p2 ¼ p3 ¼ 0:21

and p4 ¼ 0:76. Additionally, the BA network has an

average degree of hki ¼ 3:984 and clustering coeffi-

cient G ¼ 0:035650. By making this modification to a

history-dependent game and calculating the average

fitness index, the simulation results in Fig. 11 predict:

1. Ye et al. arrived at the same conclusions as those

from the population capital-dependent Parrondo’s

games.

2. In the BA network subjected to the cooperation

pattern, agents with higher degree (i.e. connected

Fig. 9 Average fitness �dðtÞ
against time for both BA and

fully connected networks.

The following parameters

were chosen such that

Parrondo effect is observed.

N ¼ 500, averaged over n ¼
100 simulations for t ¼ 100

time steps for the following

values of p: p ¼ 0:5, p1 ¼
0:1 � e and p2 ¼ 0:75 � e,
with M ¼ 3 and e ¼ 0:005

Fig. 10 Population Parrondo’s games model on a network, modified from the history-dependent Parrondo’s games. Image adapted

from Ref. [65]

123

Social dynamics and Parrondo’s paradox: a narrative review 9



to more individuals) are observed to have higher

fitness.

3. Coopetition behaviour (game A) makes agents in

the network interact, which pushes flows of capital

among agents and produces diversity of winning

or losing states in the history. Therefore, coope-

tition behaviour results in the diversity which

would promote the adaptation of the

population.

These games show that social dynamics can be

modelled effectively using Parrondo’s games, and

coopetition behaviour results in the diversity which

will promote the adaptation of the population.

The dynamics of competition among agents is

further studied by Arizmendi [68]. A competition

model is applied to the context of competition between

agents in a dating game. The matching problem

involves two sets of agents matched pairwise. Each

agent has a list of preferred partners from the other set.

Agents that have each other ranked higher in the

preference list have a higher probability to be accepted

for a match. Arizmendi then asks the question, ‘‘Can

the usual losers in the dating game achieve a better

performance?’’ and shows that it is possible by

considering a type of collective Parrondo’s games.

On the topic of competition, survival of the weakest is

often observed as an emerging trend in systems. This is

also discussed in the same vein in the works of

Amengual et al. [69].

Any competition and survival of the weakest model

can be thought of as a matching game. For generality,

consider the dating game where there are N men and N

women, who will interact for a time period T. Then, vmj
is the ‘‘value’’ of woman j to every man, and similarly,

vwi is the ‘‘value’’ of man i to every woman. These

‘‘values’’ remain constant with time. In each period,

man i is chosen randomly. The expected man i’s

payoff of dating woman j is

payoffmi;j½t� ¼ Qm
i;j½t� � pmi;j½t�; ð9Þ

where Qm
i;j½t� is man i’s estimate of the ‘‘value’’ of

going out with woman j at time t and pmi;j½t� is man i’s

estimate at time t of the probability that woman j will

go out with him if he asks her out. The term, pmi;j½t�,
models a man’s decision that is based on prior beliefs

and the number of benefits he has received. The

expected ‘‘value’’ on a date and the probability that

particular woman will accept his offer are taken

account in Eq. 9. The expected woman j’s payoff of

dating man i is

payoffwi;j½t� ¼ Qw
i;j½t�; ð10Þ

where Qw
i;j½t� is woman j’s estimate of the ‘‘value’’ of

going out with man i at time t. In this case, the

probability term is not considered because woman j

can only accept an offer if man i makes a proposal.

Since the underlying vmj and vwi are constant,

Qm
i;j½t� ¼

X
vmj þ m

� �
; ð11Þ

where the sum is made on the effective dates between i

and j and m is noise drawn from a normal distribution.

In the same way,

Fig. 11 Average fitness
�dðtÞ against time for both

BA and fully connected

networks. The following

parameters were chosen

such that Parrondo effect is

observed. N ¼ 500,

averaged over n ¼ 100

simulations for t ¼ 100 time

steps for the following

values of p: p ¼ 0:5,

p1 ¼ 0:9, p2 ¼ p3 ¼ 0:21

and p4 ¼ 0:76
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Qw
i;j½t� ¼

X
vwi þ m
� �

: ð12Þ

Since the probability pmi;j½t� changes with interaction

and learning, it is updated according to

pmi;j½t� ¼ ð1 � gÞpmi;j½t � 1� þ g
offers acceptedi;j½t � 1�

offers madei;j½t � 1� ;

ð13Þ

where g is a constant learning parameter. The man’s

decision problem: the top ranked woman from the list

of preferred partners of man i is selected to ask out for

a date. The ranks in the preference list are determined

according to the expected i’s payoff of dating woman

j according to Eq. 9. The man i acts in a greedy way,

asking out woman j at the top of his preference list.

The woman’s decision problem: the rank of the

woman’s preference list is determined by the expected

payoff according to Eq. 10. The decision depends on

the two games.

(A) In game A, the women have two options to

consider: exploration or exploitation. Exploita-

tion is analogous to the greedy choice of

maximising expected reward. For exploration,

the women selects an action with lower

expected payoff in the present in order to learn

and increase future rewards. In game A, the

exploration–exploitation trade-off depends on a

probability distribution. The woman accepts the

man’s i offer to date with probability pA ¼ 1=2

(exploration) or she acts greedily and goes out

with her best payoffw choice with probability

1 � pA.

(B) In game B, the choice of exploration or greedy

behaviour is dependent on the collective state of

all the men agents. A man is a ‘‘winner’’ if he

receives his date by his last game; otherwise, he

is a ‘‘loser’’. This exploration probability takes

three possible values, determined by the number

of winners w within the total number of players

N, defined by

pB ¼
p1
B if w[ ½2N=3�

p2
B if ½N=3�\w� ½2N=3�

p3
B if w� ½N=3�

8
><

>:
ð14Þ

where ½�� denotes the nearest integer. The

woman accepts man i’s offer to date with

probability pB (exploration) or she goes out with

her payoffw choice with probability 1 � pB. The

set of values pkB, k 2 f1; 2; 3g is chosen in order

that the game remains fair and depend on the

total number of players N, discussed in

Ref. [51].

In the simulation performed by Arizmendi [68], it

involves a group of N ¼ 4 men and women. The

learning rate is g ¼ 0:05, and the probabilities are

p1
B ¼ 0:79, p2

B ¼ 0:65 and p3
B ¼ 0:15. The noise signal

is drawn from a normal distribution of standard

deviation 0.5 and vmk ¼ vwk ¼ N � k þ 6, where

1� k� 4. Arizmendi showed that losers benefit from

the mixing of both games A and B. In the case where

players are initially optimistic, but have their level of

optimism declining over time, the loser acceptance

increases by a factor of 10. The results are highly

dependent on both the number N of players and the

mixing probability of the games A and B. These

results can generally apply to standard models of

matching in economics or matching problems with

partial information [70–72] to improve the outcome

for the agent that is typically the weakest in a group in

a matching game. The matching problem is an

important problem in game theory, with applications

in areas such as scheduling, planning, and network

flows. More specifically, matching strategies are very

useful in flow network algorithms such as the Ford–

Fulkerson algorithm and the Edmonds–Karp algo-

rithm. Parrondo’s paradox can potentially be used to

expand and improve the outcome of matching algo-

rithms in these applications.

Roca et al. [73] discusses a wider problem in social

dynamics relating to imitation dynamics. As an

analogy to Parrondo’s paradox, the authors managed

to show that poor imitative behaviour due to local

information can result in the promotion of coopera-

tion, but these are often observed in the fast timescale

behaviour.

3.2 Resource redistribution and social welfare

Resource redistribution is another key topic in social

dynamics. It observes how the moral assessment of

individual or collective decisions evolves in the light

of how they affect distributions [74, 75]. However,

while the number of independent factors affecting

moral assessments may be difficult to quantify, models
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have been drawn up to quantitatively analyse its

collective effect. The concept of redistribution has

been invoked extensively in discussions of distributive

justice in sociology; therefore, it is an important topic

to study. In this section, we observe how modelling

social groups through Parrondo’s games can lead to

increased resource or welfare in groups.

The original cooperative Parrondo’s games were

extended to feature wealth redistribution in another

work by Toral [76]. As discussed in Sect. 2.3, it is

possible for a multi-agent game to have a net increase

in capital despite playing two losing games. In this

extension, capital redistribution was considered for

game A and the Parrondo effect is still observed.

In the first version, at each time step, an agent i is

chosen at random. The chosen agent can play game A0

or game B with probability 1/2. Game B has the same

mechanism as the game B in Sect. 2.1. If game A0 is

chosen, then agent i gives away one unit of his capital

to a randomly selected agent j. Game A0 is a losing

game for agent i, but it is a zero-sum game across all

players as it simply redistributes the capital. In the

second version, the same game A0 is played, but game

B is replaced by the game B0 as discussed in Sect. 2.2.

In a third version, game A0 is replaced by another

capital redistribution game A00. Agent i gives away one

unit of its capital to any of its nearest neighbours, in a

closed ring of N nodes, with probability proportional

to their capital difference. These probabilities imply

that the capital always goes from one agent to a

neighbouring agent with a smaller capital and never

otherwise. The results of playing any combination of

these games are shown in Fig. 12. Notice that the

combination of the games between A, A0 and A00 with

B and B0 gives a positive capital—winning games,

representing successful gain in average capital under

redistribution.

These new versions of Parrondo’s games involving

ensemble of agents allow the redistribution of capital

among the agents to be studied. Notice that the

redistribution has no effect on the flow to total capital

among the agents. By redistributing capital and

combining it with other losing games, it can poten-

tially increase the total capital made available.

Zappalà et al. [77] further developed the model

designed by Toral by considering that all agents in a

system may not always have the same strategy. Thus,

in their extension, they included selfish and altruistic

agents in the group. In the model, the population N is

partitioned into selfish agents and altruistic agents. In

the first version of the game, the strategy of selfish

agents is to only play game B (the same game B as

Sect. 2.1), while the strategy of altruistic agents is to

randomly play two games, game A0 (the same game A0

as designed by Toral [76]) and game B. The dynamics

of the game are illustrated in Fig. 13.

In a second version of the game, the strategies

remain the same, except that the altruistic agents are

selective as to who they give a unit of their capital to.

Selective altruistic agents, when playing game A00,
give a unit of capital if the recipient is also an altruistic

agent. The dynamics of the game is illustrated in

Fig. 14. When the population is allowed to change

their behaviour, Zappalà et al. concluded that altru-

istic behaviour is discouraged because selfish agents

tend to get richer, while altruistic agents get poorer.

Instead, ‘‘selective altruism’’ reacts to altruistic

behaviour according to reputation, or past informa-

tion; this prevents selfish agents from taking advan-

tage of altruistic agents. This also better reflects the

real-world situation [78]. With a mechanism of rep-

utation built into the model, altruistic agents can be

aware of which agents are ‘‘trustworthy’’ so that they

can overcome the negative effects of naive altruism. In

fact, selectively altruistic agents obtain higher gains

(in terms of capital) than selfish agents, eventually

leading to selfish agents imitating them and in the

population becoming altruistic. The works of Koh and

Cheong [79, 80] and Ye et al. [81] provide further

theoretical analyses of redistribution of wealth in

networks by considering the redistribution games

discussed.

3.3 Information flow and decision-making

In this section, we evaluate the use of Parrondo’s

games to model the flow of information leading to

decision-making. A key function of social groups is

information transfer. This requires communication

amongst agents in the group [82]. In social or group

dynamics, communication and information flow are

often directed, as information can be personalised and

targeted. This can thus result in social consensus or

polarisation—herd behaviour. Agents change their

decisions and beliefs on particular issues by interact-

ing with other agents in the group and being influenced
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by external factors [83]. Changes in perception and

decision can effect consensus or partisanship, which in

turn can affect group action in social activities such as

voting.

Early work on decision-making and voting using

the Parrondo’s model comes from Dinı́s and Parrondo

et al. [84, 85]. This was later extended to collective

voting by Xie et al. [86], and it follows the same

development as Ref. [64]. Dinı́s and Parrondo et al.

consider an ensemble of agents who has to make a

collective decision while playing the capital-depen-

dent Parrondo’s games, for parameters described in

Sect. 2.1. In the form of collective Parrondo’s games,

this would mean that agents will decide as a whole, on

which game they should play collectively. Some of the

agents who have a capital multiple of M ¼ 3 will

prefer to play game A, while the rest of the agents will

prefer to play game B. This tension of individual

interest makes Parrondo’s games a suitable candidate

as a model for analysing the effective outcome of

collective decision. The model is simulated by varying

the value of N, the number of agents. At every turn, the

agents have to decide whether to play game A or B.

Every agent in the population must play the same

game. There are two ways to play (of course there are

an infinite number of strategies, but we choose two

that are interesting), (i) the random strategy, where the

game is chosen randomly with equal probability. As

Fig. 13 Altruism-selfishness model played by a population N of

fully connected agents. Selfish agents only play game B as they

do not want to give away any capital. Altruistic agents consider

two games A0 and B, where from time to time they consider

giving away any capital. Image adapted from Ref. [77]

Fig. 12 Average capital per

player hCðtÞi=N against

time for each game played

independently (left) and the

games played in a random

combination (right). For the

simulation, there are N ¼
100 agents, for a time

duration of t ¼ 100,

averaged over n ¼ 106

games. Note that since

games A0 and A00 are both

zero-sum games, their lines

overlap at zero capital
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observed previously, this strategy is a winning strategy

for the parameters chosen. (ii) The majority rule

strategy, or democratic strategy, where every agent

votes for the game giving him/her the highest prob-

ability of winning, with the game obtaining the most

votes being the collective action. One would think that

a democratic majority rule approach would lead to

better performance as it optimises the winnings of the

majority. However, as it turns out, for large N, strategy

(ii) is a losing strategy. To see why, consider the

stationary distribution of each game. Let piðtÞ be the

fraction of players whose capital at time t is

C � i mod 3. With reference to Fig. 3, for M ¼ 3,

the equation for detailed balance for game A is

p0ðt þ 1Þ
p1ðt þ 1Þ
p2ðt þ 1Þ

0

B@

1

CA ¼
0 1=2 þ e 1=2 � e

1=2 � e 0 1=2 þ e

1=2 þ e 1=2 � e 0

2

64

3

75

�
p0ðtÞ
p1ðtÞ
p2ðtÞ

0
B@

1
CA;

ð15Þ

which can be written in vector notation

pðt þ 1Þ ¼ PApðtÞ: ð16Þ

Similarly, the same can be written for game B, with

pðt þ 1Þ ¼ PBpðtÞ; ð17Þ

where

PB ¼
0 1=4 þ e 3=4 � e

1=10 � e 0 1=4 þ e

9=10 þ e 3=4 � e 0

2
64

3
75: ð18Þ

Then, the evolution for strategy (i), the random

strategy, is

pðt þ 1Þ ¼ 1

2

�
PA þPB

�
pðtÞ; ð19Þ

and for strategy (ii), the majority rule strategy,

pðt þ 1Þ ¼
PApðtÞ if p0ðtÞ� 1=2

PBpðtÞ if p0ðtÞ\1=2

�
: ð20Þ

The winning probability in each game is

pAwinðtÞ ¼
1

2
� e; ð21Þ

pBwinðtÞ ¼
1

10
p0ðtÞ þ

3

4

�
1 � p0ðtÞ

�
� e; ð22Þ

and the average capital hCðtÞi per agent evolves as

hCðt þ 1Þi ¼ hCðtÞi þ 2plwinðtÞ � 1; ð23Þ

where plwinðtÞ, for l 2 fA;Bg depending on the

strategy played at turn t. By recursively performing

Eq. 23, for the respective game, the long-term effect

would be the loss in capital per player. Intuitively,

majority rule goes against cooperation (discussed in

Sect. 2.3 to have a net positive gain), where agents

think of the long-term benefit over short-term gain. In

Fig. 14 Selective altruism-selfishness model played by a

population N of fully connected agents. Selfish agents only

play game B as they do not want to give away their capital.

Selective altruistic agents consider two games A00 and B, where

from time to time they consider giving away a unit of capital to

another altruistic agent. Image adapted from Ref. [77]
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fact, it is no surprise that if N ¼ 1, the group that has a

single agent will have the highest capital per agent.

The single agent will always play the game that gives

him/her the highest chance of winning. However, as

N increases, the capital per agent decreases.

Another form of collective decision-making is a

dictatorship. In a dictatorship, a single agent plays the

role of a dictator, and the other agents are ‘‘citizens’’.

The dictator chooses the game to play, and the citizens

must accept that decision. It is thus logical that the

dictator will flourish in this case as he/she can always

choose a strategy that best benefits his/her chance of

winning. In Ref. [85], a group of N ¼ 10 agents play

this form of dictatorship decision-making game. It can

be shown that the net capital gain per turn of the

dictator is gd ¼ 12
37
	 0:324, while the citizens have a

net capital gain per turn of gc ¼ 628;224
13;685;449

	 0:0459.

While the citizens’ gain is much lesser than the

dictator, counter-intuitively, a dictatorship does lead

to a net positive gain for citizens. Additionally, the net

capital gain per turn for a citizen under dictatorship is

higher than the citizen simply playing a random

sequence of games, grand 	 0:0262. The performance

of the whole population under dictatorship is given by

g ¼ gd þ ðN � 1Þgc

N
: ð24Þ

One would suggest that a way to ensure all agents end

up with equal gains is to rotate the agent that gets to

play the role of a dictator or to allow the ‘‘poorest’’

citizen to be the dictator at each turn. However, this is

not the case because there will always be a single

player with the role of the dictator, while the rest play

the role of citizens. Thus, the net gain per turn can

never exceed g in Eq. 24.

The third option for decision-making is to try

improve the performance of the whole population by

reducing the decision-making group to a small subset

of the population, or an ‘‘oligarchy’’. The oligarchs

make a decision by performing a vote, with a

threshold, as the democratic strategy discussed earlier.

However, simulations performed by Parrondo et al.

showed that the optimal size of an oligarch is the

whole population. The reason being increasing the size

of the oligarch has two effects (1) the oligarch’s

weight in the entire population increases, improving

the net capital gain per turn for a larger group, and (2)

the sequence of games approach ‘...AAB...’, which has

a positive net capital gain per turn in a capital-

dependent Parrondo’s games as well.

In the same vein, Ma et al. [87] examine group

Parrondo’s games as a means to model information

transmission to observe the outcome from herd effect

in a social network. The dynamics of the model is to

employ the use of discrete-time Markov chains in a

partial information setting. Consider a group of agents

who enters a casino to play slot machines. The agents

form a closed ring of N nodes. Each agent has two slot

machines C and D to play from. Machine C is installed

with either game A or B, and machine D is installed

with the game not on machine C. The games A and B

are the capital-dependent games discussed in

Sect. 2.1. All agents know that the mapping of the

slot machines (C,D) can either be (A,B) or (B,A).

Furthermore, between the agents, they can exchange

information with only nearest immediate neighbours.

At each time step, each agent receives the following

information:

(a) the machine he/she played in the previous

round;

(b) the outcome (win or lose) of the game from the

previous round;

(c) the machine his/her nearest neighbours played

in the previous round; and

(d) the outcome of the game played by his/her

nearest neighbours in the previous round.

The agents do not and are not keeping track of

anyone’s capital, including their own. This ensures

that the information that an agent receives is minimal;

otherwise, the agent can always play the machine that

gives the highest payoff. Each agent can adopt one of

the two strategies. (i) ‘‘Avoid the loser’’—agent will

play the slot machine not played by the loser(s) when

there is no ambiguity; otherwise, the agent will

continue playing the same slot machine in the previous

game. (ii) ‘‘Follow the winner’’—agent will play the

slot machine played by the winner(s) when there is no

ambiguity; otherwise, the agent will continue playing

the same slot machine in the previous game. For

example, suppose the neighbours of agent i lost in the

last game and both used machine C, then i will choose

to use machine D in this round. If there is no clear loser

to avoid, then i will keep playing the same slot

machine from the previous round. In the event that the

outcome is always ambiguous such that all agents keep
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playing their previous slot machines, this is a losing

outcome as CCC...C and DDD...D are both losing

games.

A Markov chain is set up to perform numerical

simulations of the overall effect of this sharing of

information. Ma et al. showed that if all agents use the

strategy ‘‘Follow the winner’’, this results in a losing

strategy. Agents become single-minded, resulting in

only one of the two games being played in the long

run, without switching (see Fig. 15a). As discussed

earlier, this leads to negative returns. Intriguingly,

when all agents use the strategy ‘‘Avoid the loser’’,

agents do not end up playing the same slot machine.

However, the agents also do not switch between the

slot machines (see Fig. 15b), another losing outcome.

Thus, both strategies (models of herd behaviour) lead

to losses. When agents employ a mix of both

strategies, the expected capital gain increases over

time. This shows that herd behaviour on a simple

social network can be detrimental to the progress of

the group, whereas randomly switching strategies

executed individually without communication may

result in progress. Herd behaviour may result in agents

making decisions they conclude (or assume) will

benefit the group, when in fact, it results in the lack of

flow of discourse. This is likened to extreme consensus

or polarisation, in both cases, a detriment to the group.

If instead, information is allowed to flow and individ-

uals continue to make a decision beneficial to the

individual, then this seemingly selfish decision does

collectively lead to progress.

4 Conclusions and outlook

The use of Parrondo’s games in modelling social

dynamics has shed light on many important phenom-

ena that can be beneficial in understanding coopera-

tion and competition, wealth redistribution and

welfare, and in information flow and decision-making.

Parrondo’s paradox has also been applied to model

simple social networks. In fact, only the nearest

neighbour networks, BA networks, and fully con-

nected networks have been used as models to simulate

collective Parrondo’s games. However, there are many

other forms of network that allow for social interac-

tions. With the rise in social media as a means to

transmit information, it has become an integral part of

determining social dynamics. For example, the Inter-

net communication network is a scalable multi-agent

system which is a gigantic network of communication.

The network used by various social media is also

different. Social interactions on Facebook is a bidi-

rected network, and two agents who are ‘‘friends’’ can

see each other’s posts and influence each other’s

information in-take. Social interactions on Twitter are

a directed network. It works on a ‘‘follower’’ frame-

work, where an user sees the posts of the people he/she

follows, but the person will not see his/her posts if the

person does not follow back. Social interactions on

Reddit are more complicated, as it takes on more

dimensions. The various topologies of networks may

present new applications of Parrondo’s paradox in

social dynamics and open up new dimensions of

research.

Fig. 15 a Outcome of all

agents playing the strategy

‘‘Follow the winner’’,

resulting in all agents

playing the same slot

machine C over time.

b Outcome of all agents

playing the strategy ‘‘Avoid

the loser’’, resulting in all

agents playing different slot

machines, but not switching

between the slot machines

over time. Both strategies

are losing strategies. Image

reproduced from Figs. 3b

and 4b of Ref. [87] with

explicit permission.
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Another area of development is to broaden the

potential impact of real-world data, for example, in

performing parameter fitting. This may allow social

dynamics to be modelled in a more realistic manner. It

is worth noting that most work performed thus far treat

social behaviour as discrete units, modelled by

discrete ‘‘capital’’ from Parrondo’s games. This has

led to deterministic outcomes with little sensitivity to

initial conditions. However, most social outcomes fall

on a continuous spectrum with many deciding fea-

tures. All these point to the fact that there remains

potential for the continuous analogue of Parrondo’s

paradox to fill this gap in research. The employment of

continuum may reveal important nonlinear phenom-

ena and even chaotic behaviour due to perturbations

that fall outside of the bounded confidence of initial

conditions. This is closely related to the field of

opinion dynamics [88–91]—another aspect of social

dynamics where computational tools are used to

predict the effect of influence in a multi-agent

model [92, 93]. Recent interest in how opinions can

shape decision-making has renewed interest in

how social network structures can reflect the emer-

gence of herd behaviour in political discourse [94, 95],

disease spreading [96, 97] and the vaccination

dilemma [98–100]. To motivate the potential appli-

cation of Parrondo’s paradox in these highlighted

cases, we take the vaccination dilemma as a way of

example. A deliberate decision made by individuals

not to vaccinate for an infectious disease may be

viewed as a ‘‘losing’’ outcome for society as it does not

attain the required level of herd immunity. In the event

that a pandemic (which may not be entirely related to

the vaccination for the aforementioned disease)

strikes, this may lead to an outbreak and possibly

deaths—another ‘‘losing’’ outcome. We hypothesise

that this may then lead to a surge in vaccination

uptake, which can be viewed as a ‘‘winning’’ outcome.

Finally, we highlight the theoretical application of

Parrondo’s paradox in interacting systems. For exam-

ple, the Ising model is a many-body system of

interacting particles, used to predict phase transitions

in statistical mechanics [101, 102]. The Ising model

can be used to predict inter-particle interaction and

interactions with the environment. Thus, it may be

useful to apply the Ising model to predict transitions in

social behaviour by using Parrondo’s games as a

control mechanism to the dynamics of these

interactions.

In this review article, we have discussed the

applications of Parrondo’s paradox to social dynam-

ics—in observing important trends such as voting,

redistribution of resources, cooperation and competi-

tion, communication, improved welfare, as well as

survival of the weakest through evolutionary beha-

viour. As the field of Parrondo’s paradox progresses,

we are likely to observe increased applicability and

accuracy in using it to model complex social interac-

tions for predicting group behaviour. Similarly,

greater familiarity with social interactions will lead

to informed modelling, which in turn can lead to

advancements in research pertaining to Parrondo’s

paradox.
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