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Abstract To explore memcapacitors and their char-
acteristics in chaotic oscillators, this paper proposes
a logarithmic charge-controlled memcapacitor model.
Using power-off plot analysis, we show that the mem-
capacitor possesses continuous non-volatile character-
istic. Also, its dynamic route map shows the memca-
pacitor can rapidly switch from onememcapacitance to
another by applying a single voltage pulse.Based on the
memcapacitor model, we design a chaotic oscillator,
which can exhibit some complex dynamic character-
istics, such as chaos, hyperchaos and various coexist-
ing attractors. The multistable coexisting oscillation of
the system is further analyzed by using phase portraits,
basins of attraction and double-bifurcation diagrams.
Symmetric coexistence attractors with infinite homo-
geneity and heterogeneity are also found, which can
evolve into hyperchaos under certain initial conditions.
Finally, the chaotic oscillator is verified by numerical
simulations and digital signal processor experiments.

Keywords Chaos · Memcapacitor · Multistability

W. Zhou · G. Wang (B) · Y. Shen · Y. Liang
Institute of Modern Circuit and Intelligent Information,
Hangzhou Dianzi University, Hangzhou 310018, China
e-mail: wanggyi@163.com

H. H.-C. Iu
School of Electrical, Electronic, and Computer Engineering,
The University of Western Australia, Perth, WA 6009, Australia

1 Introduction

In 1971, Professor Chua proposed the definition of the
fourth circuit element, memristor, and in 1976, the con-
cept of the memristive system. Until 2008, the phys-
ical implementation of a TiO2 memristor was firstly
reported by HP Labs in Nature. On November 2008, at
the International Symposium onMemristors andMem-
ristor Systems held at the University of California at
Berkeley, the memcapacitor was defined, and it was
pointed out that a memcapacitor lost less data in data
reading, writing and storage than a memristor. In 2009,
the definitions of memristive systems are extended to
the memcapacitor and meminductor, namely a mem-
capacitor and a meminductor whose memcapacitance
and meminductance depend on the state and history
of the system. A memcapacitor is actually a nonlin-
ear capacitor whose capacitance depends on its internal
state and the input signal. The basic characteristic of a
memcapacitor is its non-volatility of memcapacitance,
which has great potential in information storage, mul-
tiharmonic oscillation, chaotic oscillation and secure
communications and so on [1].

Memristors can be used in non-volatile memories,
logical circuits, neural networks, chaotic circuits and
other fields [2–5]. The preliminary commercialization
ofmemristors has been realized in 2018 [6], which is of
practical significance for the realization and application
of new memory components. Under the background
that memcapacitors have not been commercialized yet,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05722-3&domain=pdf
http://orcid.org/0000-0002-6777-8234


3938 W. Zhou et al.

there is an interest in researching the modeling, charac-
teristics and potential applications of memcapacitors.

It is of theoretical and engineering significance to
study the non-volatile characteristics of memcapaci-
tors and their state transition rules. It is also of practi-
cal value to explore the characteristics of memcapac-
itors and their complex behavior in chaotic nonlinear
circuits. Compared with memristors, the research on
thememcapacitor-based chaotic oscillators is relatively
less. In 2016, Ref. [7] proposed a smooth curve-type
memcapacitor model and applied it to a chaotic oscil-
lation circuit that was simulated through DSP (dig-
ital signal process). In 2018, Ref. [8] introduced a
memcapacitor simulator into a multivibrator circuit
and proposed a flux-controlled coupled double mem-
capacitor analog circuit. In addition, the mathematical
relationship between its memcapacitance and flux was
established theoretically. Karthikeyan et al. proposed
a hyperchaotic oscillator based on a charge-controlled
memcapacitor and carried out a detailed dynamic anal-
ysis, whichwas verified by FPGA (field-programmable
gate array) simulations [9].

Multistability is an intrinsic property of many non-
linear dynamical systems, which reveal the abundant
dynamic characteristics of the system, and has attracted
much attention in recent years. Specifically, when the
parameters of the system are the same, but the initial
conditions are different, if the system has several dif-
ferent attractors, the system can be said to have mul-
tistability [10], which can be widely used for many
information engineering. For example, an improved
Chua’s circuit with double stable node-foci is proposed
in Ref. [11] and the multistability of this system is
analyzed. Ref. [12] proposed a simple chaotic circuit
that only contains three memory devices in parallel:
a memristor, a memcapacitor and a meminductor. Its
complex dynamics, especially multistability, was fur-
ther observed and investigated. An active BPF-based
memristive circuit was established in Ref. [13], and the
flux-charge analysis method was used to control the
extreme multistability of this circuit in the flux-charge
domain.

Most of the existing memcapacitor models are
only concerned with the nonlinear constitutive relation
vc (t) = C−1 (x) q (t), and there is no attention to its
essential memory characteristics and the non-volatility.
In addition, the inverse memcapacitance, C−1 (x), is
generally set as the power function of σ = ∫

qdt . How-
ever, recently, it is found by experiments that the inter-

nal particle motion of some memory nanodevices usu-
ally obeys the exponential (or logarithmic) laws [14].

In order to conform to the characteristics of actual
memory devices, especially to reflect the non-volatility
of memcapacitor, this paper proposes a mathemati-
cal model with a logarithmic function for a memca-
pacitor and analyzes its non-volatile characteristics.
Based on this model, a hyperchaotic oscillation circuit
is designed,whosemultistability and complex dynamic
characteristics are discovered.

The rest of this paper is organized as follows: Sect. 2
shows the logarithmic memcapacitor model and the
state transition characteristics. In Sect. 3, a newly
chaotic oscillator is constructed based on this mem-
capacitor. In Sect. 4, multistable coexisting oscillation
and coexisting attractors are studies in detail. In Sect. 5,
the logarithmic memcapacitor oscillator is verified by
DSP experiment. At last, the main research conclu-
sion is summarized, and a simple outlook for the future
research is given.

2 A novel logarithmic memcapacitor (LMC)

2.1 LMC model

The logarithmic charge-controlled memcapacitor pro-
posed in this paper can be described as

{
v = (−k + ln(m + nσ 2))q
dσ
dt = q

(1)

where v and q are the voltage and charge of the mem-
capacitor, respectively; σ is the integral of q, that is,
σ = ∫ t

t0
q (τ ) dτ ; C−1 = −k + ln

(
m + nσ 2

)
denotes

the inverse memcapacitance at time t ; k, m and n are
all real constants.

As shown in Fig. 1, the q−v curve of the memca-
pacitor is a pinched hysteresis loop when a sinusoidal
signal q = Q sinωt is applied to the memcapacitor.
Observe that the area of the pinched hysteresis loops
decreasesmonotonically as the frequency f of the input
signal increases or the amplitude Q decreases. In addi-
tion, the shape of the pinched hysteresis loops changes
as the frequency f varies and will shrink to a single
valued function through the origin, as the frequency
tends to infinity.
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Fig. 1 Pinched hysteresis
loops of LMC at
k = 0.01VC−1,
m = 0.3VC−1,
n = 1.2VC−3 S−2 with a
different frequency and b
different amplitude

Fig. 2 Charge–discharge diagram of LMC

2.2 Non-volatile analyses of the memcapacitor

Non-volatility of the logarithmic memcapacitor is fur-
ther studied by using the charge–discharge characteris-
tic of the memcapacitor. As mentioned above, memca-
pacitor is a kind of nonlinear capacitor, whose memca-
pacitance can change with the historical values of the
input state variable. The charge–discharge diagram of
the memcapacitor is shown in Fig. 2. By controlling
the switch K, the memcapacitor and the resistor R are
connected in series when charging and in parallel when
discharging, where the resistor R can be regarded as a
parasitic resistor with a tiny resistance.

Assume that the initial values of the voltage, charge
and charge integral at both ends of the memcapacitor
are v (t0) = 0, q (t0) = 0 and σ (t0) = σ1 at time t0,
respectively. When the memcapacitor is connected to
the power supply E, it will start to be charged through
the series resistor R. From the KVL, the following
equations can be obtained:

{
E = RiR + C−1q
iR = dq

dt
(2)

where iR denotes the current flowing through the resis-
tor R while charging. C−1 is the inverse memcapaci-
tance defined as

C−1 = −k + ln
(
m + nσ 2

)
(3)

From Eqs. (1) and (2), we can obtain:
{

dq
dt = 1

R

(
E − (−k + ln

(
m + nσ 2

))
q
)

dσ
dt = q

(4)

If a voltage pulse with the amplitude E and widthW
is applied to the memcapacitor, the waveforms of volt-
age v, charge q and charge integral σ can be described
in Fig. 3c during the memcapacitor charging, where
R = 0.0001�, k = 0.01VC−1, m = 0.3VC−1, and
n = 1.2VC−3 S−2.

Because of the tiny parasitic resistance, the charg-
ing time constant is very small. Consequently, when
charging begins at t1, v and q of the memcapacitor will
rise rapidly. When the charging reaches t2, the voltage
v of the memcapacitor is equal to the voltage E of the
power supply, and the charging stops. At this point, the
circuit has no current, and the charge of the memca-
pacitor stabilizes at q = q (t1) = q1.

When t = t3, the voltage pulse jumps to zero and the
memcapacitor starts discharging through the resistor R
in parallel. According to the KVL, we obtain:

RiR = C−1q (5)

Similarly, it follows from Eqs. (1) and (5) that:
{

dq
dt = 1

R

(−k + ln
(
m + nσ 2

))
q

dσ
dt = q

(6)

According to Eq. (6), the change process of voltage
v, chargeq and charge integralσ canbeobtainedduring
thememcapacitor discharging, as shown in Fig. 3c. The
memcapacitor discharges at t = t3, causing a rapid
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Fig. 3 DRM diagram and corresponding switching process of LMC

drop in voltage v and charge q, which then become to
zero at time t4. Simultaneously, σ increases slowly and
stabilizes at σ2.

The memcapacitance (C(σ )) is controlled by state
variable σ , which is governed by the state equation
dσ/dt = f (q). The memcapacitor is said to be non-
volatile if its state variable or memcapacitance remains
unchanged before and after power off.Whenwe switch
off the memcapacitor, the σ − dσ/dt curve is called
power-off plot (POP). A memcapacitor is non-volatile
if, and only if, its POP coincides with the σ -axis.

By setting q = 0, the state equation of the memca-
pacitor can be described by

dσ

dt
= q = 0 (7)

where dσ/dt is identically equal zero, independent of
the state variable σ . Observe from Fig. 3b that the POP
coincides with the σ -axis, thereby meaning that the
memcapacitor is non-volatile.

When the memcapacitor is charging, the rate of
change of the state variable σ satisfies the curve param-
eterized by the memristor charge q (dσ/dt = q).
The set of curves corresponding to different charge is
defined as dynamical route map (DRM). The DRM of
the memcapacitor is shown in Fig. 3b, for five dynamic
routes, each parameterized by a value of thememcapac-
itor charge q. Furthermore, DRM reflects the change
tendency of the state variableσ on different charges and
has non-backtracking property. That is, if a dynamic
route is located in the upper (resp., lower) half plane,
where dσ/dt > 0 (resp., dσ/dt < 0), the state vari-
able σ must move to the right (resp., left) with a rate of
dσ/dt = q.

According to the above analysis, it can be found that
when the pulse voltage E is applied to the memcapac-
itor at t1, the charge rises rapidly from zero to q1 at
t2. Synchronously, the σ of the memcapacitor jumps
rapidly from point A on POP to point B on DRM and
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Fig. 4 Hyperchaotic logarithmic memcapacitor oscillator
(HLMCO)

then moves to the right at the rate of dσ/dt = q1. Until
t3, the pulse voltage E jumps to zero, and the mem-
capacitor is cut off and then discharged through the
resistor R. At this point, the charge drops rapidly and
became zero at t4. Simultaneously, the σ jumps rapidly
from point C on DRM to point D on POP and stays in
point D, remaining its state values at σ(D). Figure 3c
shows the change processes of the state variable σ and
corresponding memcapacitance.

In summary, regardless of the charge values of the
memcapacitor when power-off, the state variable σ of
the memcapacitor can always memory the state before
power-off, which proves that the memcapacitor is non-
volatile.

3 Hyperchaotic logarithmic memcapacitor
oscillator (HLMCO)

3.1 HLMCO and its typical attractors

Based on the proposed memcapacitor described by Eq.
(1), a HLMCO is designed as shown in Fig. 4, which
consists of an inductance (L), a capacitance (C2), two
conductance (G0 andG1) and amemcapacitance (CM).

According to Kirchhoff’s laws and volt–ampere
relationship between components shown in Fig. 4, the
following differential equations can be obtained:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diL
dt = 1

L vC2
dvC2
dt = G1

C2
(v − vC2) − 1

C2
iL

dq
dt = G1 (vC2 − v) + G0v
dσ
dt = q

(8)

where v = (−k + ln
(
m + nσ 2

))
q; k, m and n are all

real constants.

With suitable parameters and initial values, the sys-
temwill exhibit chaotic or hyperchaotic characteristics.
For example, when k = 0.01VC−1, m = 0.3VC−1,
n = 1.2VC−3 S−2, L = 0.33mH, G0 = 1.17mS,
G1 = 2.69mS, C2 = 3.2 nF and the initial val-
ues are (0, 0.01, 0, 0), the Lyapunov exponents of this
HLMCO system are calculated as LE1 = 0.0810,
LE2 = 0, LE3 = −0.0032, LE4 = −2.2330, with
the Lyapunov dimension DL = 2.0821, which shows
the HLMCO system is chaotic. The corresponding typ-
ical chaotic attractors can be obtained as shown in
Fig. 5a–c. Figure 5d–f shows the time-domain wave-
forms, iL − vC2 plane Poincaré mapping and its three-
dimensional attractor, respectively.

When L = 0.17mH, G0 = 1.12mS, G1 =
2.69mS, C2 = 3.8 nF and initial values (0, 0.01, 0, 0),
the HLMCO system Lyapunov exponents are LE1 =
0.0874, LE2 = 0.0215, LE3 = −0.0027 ≈ 0, LE4 =
−2.2870, with the Lyapunov dimension DL = 3.0464,
so exhibiting a weakly hyperchaotic oscillation. The
corresponding attractors, time-domain waveforms and
iL−vC2 planePoincarémapping are displayed inFig. 6.

An appropriate set of initial values are chosen to
make the system oscillate chaotically. Note that the
initial values of the system should be in its attraction
regions, which can include equilibrium points of the
system or be close to a bifurcation point. For a fixed
set of parameter values of a system, different dynamics
such as chaos, limit cycles and fixed points depend on
the initial values of the systemvariables,which is called
coexisting oscillation of bifurcation without parame-
ters.

3.2 Dissipativity and stability

The dissipativity of the HLMCO system can be
described as

divV = ∂ i̇L
iL

+ ∂v̇C2

vC2
+ ∂ q̇

q
+ ∂σ̇

σ

= −G1

C2
+ (G1 − G0)

(
−k + ln

(
m + nσ 2

))

(9)

When (G1 − G0)
(−k + ln

(
m + nσ 2

))−G1/C2 < 0,
the system is dissipative and converges exponentially,
dV

dt
= e(G1−G0)

(−k+ln
(
m+nσ 2

))−G1/C2 (10)

That is, each volume element containing the sys-
tem trajectories shrinks to zero at an exponential rate
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Fig. 5 Typical chaotic attractors with its time-domain waveforms and Poincaré mapping, where L = 0.33mH, G0 = 1.17mS,
G1 = 2.69mS, C2 = 3.2 nF, and initial values (0, 0.01, 0, 0)

Fig. 6 Typical hyperchaotic attractors with its time-domain waveforms and Poincaré mapping, where L = 0.17mH, G0 = 1.12mS,
G1 = 2.69mS, C2 = 3.8 nF, and initial values (0, 0.01, 0, 0)

(G1 − G0)
(−k + ln

(
m + nσ 2

))−G1/C2 when t →
∞. Hence, all trajectories are eventually confined to a
set of zero volumes and fixed on an attractor.

When the parameters are set as in Fig. 5, i.e., k =
0.01VC−1, m = 0.3VC−1, n = 1.2VC−3 S−2, L =
0.33mH, G0 = 1.17mS, G1 = 2.69mS, C2 = 3.2 nF
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and σ0 = 0, the dissipativity of the HLMCO system
can be obtained from Eq. (12)

divV = (2.69 − G0) (−0.01 + ln 0.3) − 2.69/3.2

(11)

Since the dissipativity needs to be less than zero, the
value range of parameter G0 is

G0 < 3.3824 (12)

If the system satisfies both the dissipativity and insta-
bility conditions, chaos may occur in the system.

Next, the stability of this system is judged according
to the set of its equilibrium points. Let i̇L = v̇C2 = q̇ =
σ̇ = 0, and the equilibrium equations can be obtained
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
L vC2 = 0
G1
C2

((−k + ln
(
m + nσ 2

))
q − vC2

) − 1
C2
iL = 0

(G0 − G1)
(−k + ln

(
m + nσ 2

))
q + G1vC2 = 0

q = 0

(13)

That is, the system equilibrium can be calculated
as E = { (iL , vC2, q, σ )| iL = vC2 = q = 0, σ ∈ R},
which indicates this system has infinite numbers of
equilibria. According to Routh and Hurwitz’s stabil-
ity criterion, the stability of this system is discussed as
follows.

The Jacobian matrix J at this equilibrium set E is

J =

⎡

⎢
⎢
⎢
⎣

0 1
L 0 0

− 1
C2

−G1
C2

G1
C2

W (σ ) 0

0 G1 (G0 − G1)W (σ ) 0
0 0 1 0

⎤

⎥
⎥
⎥
⎦

(14)

where W (σ ) = −k + ln
(
m + nσ 2

)
. The correspond-

ing characteristic equation is

λ4 +
[
G1

C2
− (G0 − G1)W (σ )

]

λ3

+
[

1

C2L
− G1G0

C2
W (σ )

]

λ2

− (G0 − G1)W (σ )

C2L
λ = 0 (15)

Let a4 = 1, a3 = G1/C2 − (G0 − G1)W (σ ),
a2 = 1/ (C2L)−G1G0W (σ ) /C2,a1 = − (G0 − G1)

W (σ ) / (C2L), a0 = 0. Stability of the system can
be obtained according to the necessary conditions of
Routh and Hurwitz’s stability criterion, i.e., the coeffi-
cients ai of the characteristic equation are all positive.
Observe from Eq. (15) that because the coefficient a0
is zero, the system is in an unstable or critical stable
state at the equilibrium set E .

4 Dynamic analysis of the HLMCO

4.1 Evolution of the system under variation of
parameters

With the changes of the system parameters, the stabil-
ity of the system equilibrium point also switches, and
so the system orbit will be in different states. If the
parameters are set as L = 0.33mH, G0 = 1.17mS,
G1 = 2.69mS with initial conditions (0, 0.01, 0, 0),
the Lyapunov exponent spectrum of the HLMCO sys-
tem can be obtained when parameter C2 varies in the

Fig. 7 a Lyapunov exponent spectrum, and b bifurcation diagram with parameter C2, where L = 0.33mH,G0 = 1.17mS,G1 =
2.69mS with initial conditions (0, 0.01, 0, 0)
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Fig. 8 Corresponding evolution process of the HLMCO system with changing parameter C2

Fig. 9 Dynamic map with parameters C2 and L , where G0 =
1.17mS,G1 = 2.69mS with initial conditions (0, 0.01, 0, 0)

range of [0, 10], as shown in Fig. 7a. Tomake the graph
more clearly, the fourth Lyapunov exponential curve is
not drawn (always less than zero). Figure 7b shows the
corresponding bifurcation diagram of the state variable
iL varying with parameter C2.

Observe from Fig. 7 that the system transforms from
the stable points to period doubling bifurcation within
C2 ∈ [0, 1.38]. Then, at C2 = 1.39 nF, the system
enters a chaotic state and switches between chaotic
and hyperchaotic state.Moreover, the system exhibits a
distinct ‘period-three window’ when C2 ∈ [3.9, 4.55].
Under the influence of parameter C2, the evolution-

ary process of the HLMCO system is shown in Fig. 8,
which also shows the variation of scroll attractors. That
is, the attractor of the systemwill evolve from the upper
single-scroll to the lower single-scroll through some
double-scroll, and then back to the double-scroll finally
with changing C2.

Next, we change both C2 and L in order to fur-
ther observe how the dynamic characteristics change
with these two parameters. The evolution process of
the system can be intuitively observed by the cor-
responding dynamic map. Fixing the parameters as
G0 = 1.17mS, G1 = 2.69mS with initial conditions
(0, 0.01, 0, 0), the dynamic map is shown in Fig. 9
when simultaneously changing parameters C2 and L
in the range of [0, 10] and [0, 0.38], respectively. The
yellow region, light-blue region and blue region denote
periodic, chaotic and hyperchaotic orbit, respectively.
Moreover, there is a thin red line close to the vertical
axis, which indicates the system is in a stable point
state.

From Fig. 9, we can obtain the evolution law of the
HLMCO system under the changes of parameters C2

and L . As parameter L is close to zero, the system is in
a red stable point state and its corresponding attractor
is shown in Fig. 10a. As parameter L varies in the range
of [0, 0.1], the system keeps in the yellow periodic
state, regardless of the effect with parameterC2. Figure
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Fig. 10 Typical attractors with parameters C2 and L , where initial conditions are (0, 0.01, 0, 0)

Table 1 Corresponding parameters and states of the typical attractors shown in Fig. 10

Figure Parameters System state

Figure 10a L = 0.01mH,C2 = 9.8 nF,G0 = 1.17mS,G1 = 2.69mS Stable point

Figure 10b L = 0.16mH,C2 = 3.2 nF,G0 = 1.17mS,G1 = 2.69mS Period attractor

Figure 10c L = 0.26mH,C2 = 8.5 nF,G0 = 1.17mS,G1 = 2.69mS Chaotic attractor

Figure 10d L = 0.31mH,C2 = 1.9 nF,G0 = 1.17mS,G1 = 2.69mS Hyperchaotic attractor

10b shows the corresponding attractor. When parame-
ter L changeswithin the interval [0.1, 0.38], parameters
C2 and L jointly affect the dynamic behaviors of the
system, making the system switch between periodic,
chaotic and hyperchaotic orbits, where the blue hyper-
chaotic dots scatter like snowflakes in the light-blue
chaotic and yellow periodic regions. The correspond-
ing attractors are shown in Fig. 10c, d. The parame-

ter values of different typical attractors in Fig. 10 are
shown in Table 1.

4.2 Multistable symmetrical coexisting oscillations
with initial values

Dynamic behaviors of the HLMCO system are affected
not only by the parameters but also by the initial val-
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Fig. 11 Lyapunov exponent spectrum with initial value σ0,
where L = 0.33mH,C2 = 3.2 nF,G0 = 1.17mS,G1 =
2.69mS, and (iL0, vC20, q0) = (0, 0.01, 0)

ues. Under certain parameters, different combinations
of initial values will lead the system in a different state.
These different attractors are called coexisting attrac-
tors, which can be classified into two categories accord-
ing to whether they have the same dynamic behavior or
not. That is, one is the homogeneous coexisting attrac-
tors which have different attractors but with the same
dynamics. Another is heterogeneous coexisting attrac-
tors with different dynamics [15].

By setting the parameters as L = 0.33mH,C2 =
3.2 nF,G0 = 1.17mS,G1 = 2.69mS with initial val-
ues (iL0, vC20, q0) = (0, 0.01, 0), the Lyapunov expo-
nent spectrum is shown in Fig. 11, as changing initial
value σ0 in the range of [−1.5, 1.5]. For the sake of
clarity, the fourth Lyapunov exponential curve is not
drawn (always less than zero). Observe that with the
change of initial condition σ0, the systemfirst enters the

Fig. 12 Corresponding coexisting attractors and their evolutionary process with initial value σ0
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Fig. 13 Basin of attraction under the influence of initial val-
ues q0 and σ0, where L = 0.33mH,C2 = 3.2 nF,G0 =
1.17mS,G1 = 2.69mS, and (iL0, vC20) = (0, 0.01)

periodic orbit from the chaotic and hyperchaotic orbits,
then returns the periodic orbit, and eventually evolves
the hyperchaotic and chaotic orbit, hence showing that

the system possesses coexisting attractors and multi-
stability. The corresponding evolutionary attractors of
the HLMCO system are shown in Fig. 12.

As illustrated in Fig. 12, the attractors of the
HLMCO system under initial conditions σ0 ≥ 0 and
σ0 < 0 are represented in red and blue, respectively.
From the red orbits in Fig. 12a–d, we can see the evo-
lution process of the system under initial condition
σ0 ≥ 0. With σ0 increases, the system transitions from
double-scroll chaotic attractor to single stable point,
then enters single-scroll chaotic attractor and finally
remains in the double-scroll chaotic state. Similarly, the
evolutionary process of the system in σ0 < 0 is shown
as the blue orbits in Fig. 12a–d (and not be repeated
here).

Furthermore, by combining the exponential spec-
trum in Fig. 11 and corresponding typical attractors in

Fig. 14 Typical coexisting attractors in the attraction basin with respect to q0 and σ0, where L = 0.33mH,C2 = 3.2 nF,G0 =
1.17mS,G1 = 2.69mS
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Table 2 Corresponding initial values, types and colors of coexisting attractors of Fig. 14

Figure Initial values (iL0, vC20, q0, σ0) Type of coexisting attractors Color

Figure 14a (0, 0.01,−0.63,−0.66) Type1

(0, 0.01, 0.63, 0.66) Type2

Figure 14b (0, 0.01, 0.91, 0.76) Type3

Figure 14c (0, 0.01, 0.10, 0.86) Type4

(0, 0.01,−0.10,−0.86) Type5

Fig. 12, it can be found that the attractors of the sys-
tem will be symmetrical about the origin when initial
value σ0 is negative, that is, there are symmetrical coex-
isting attractors. Actually, the system will not change
when the initial values transform from (iL , vC 2, q, σ )

to (iL , vC 2, q,−σ), i.e., the phase space related to the
state variable will be symmetric with respect to the ori-
gin. That is to say, the symmetric coexisting oscillation
of the HLMCO system is caused by the symmetry of
the system itself.

As mentioned above, we can find that the attraction
domain of the systemwill change correspondinglywith
the convert of the initial values. When initial values q0
andσ0 are changed simultaneously, the dynamic behav-
ior of the system can be determined by the basin of
attraction. It can be visualized that the various coexist-
ing attractors are identified with different colors in the
basin of attraction, according to its gravity center and
shape. Fixing the parameters as L = 0.33mH,C2 =
4.2 nF,G0 = 1.17mS,G1 = 2.69mS, and initial val-
ues (iL0, vC 20) = (0, 0.01), Fig. 13 shows the basin

Fig. 15 Basin of attraction under the influence of initial val-
ues iL0 and σ0, where L = 0.33mH,C2 = 3.2 nF,G0 =
1.17mS,G1 = 2.69mS, and (vC20, q0) = (0.01, 0)

of attraction as changing initial values q0 and σ0 in the
region of [−2, 2] and [−5, 5], respectively.

Observed the anti-S-shape q0−σ0 basin of attraction
shown in Fig. 13, the HLMCO system has five coex-
isting attractors with different colors which in different
gravity centers or shapes, in which the ivory regions
indicate that the system is in a divergent state. Combin-
ing with the corresponding typical attractors in Fig. 14,
we can see that the type1 and type2 attractors are a
pair of symmetrical homogeneous single-scroll coex-
isting attractors as shown in Fig. 14a. The type3 double-
scroll chaotic attractor in Fig. 14b is a combination
of type1 and type2 attractors, and the three attractors
are all homogeneous coexisting attractors. Moreover,
the type4 and type5 attractors in Fig. 14c are a pair of
symmetrically homogeneous coexisting stable points,
and the corresponding waveforms of type4 attractor
are shown in Fig. 14d. Table 2 lists the corresponding
initial values, types and colors of these above typical
attractors.

Similarly, Fig. 15 shows the S-shape iL0 − σ0 basin
of attraction as changing initial values iL0 and σ0 in the
ranges of [−3, 3] and [−4, 4], respectively. The corre-
sponding typical attractors are shown in Fig. 16, which
indicates some changes compared with the attractors
in Fig. 14. That is, the type4 and type5 attractors dis-
appear in the S-shape basin of attraction, while type1,
type2 and type3 attractors remain, and six other types
of attractors appear.

As shown in Fig. 16, type6 and type7, type8 and
type9 attractors are two pairs of symmetric coexistence
attractors and homogeneous periodic attractors for each
other. Type10 and type11 attractors are a pair of single-
scroll chaotic attractors which are different from the
type1 and type2 attractors. These four attractors and
type3 attractor are all homogenous chaotic attractors.
Moreover, the chaotic attractors and periodic attrac-
tors are heterogeneous coexisting attractors. The cor-
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Fig. 16 Typical attractors
of the iL0 − σ0 basin of
attraction, where
L = 0.33mH,C2 =
3.2 nF,G0 =
1.17mS,G1 = 2.69mS

Table 3 Corresponding initial values, types and colors of coexisting attractors of Fig. 16

Figure Initial values (iL0, vC20, q0, σ0) Type of coexisting attractors Color

Figure 16a (0.58, 0.01, 0,−0.69) Type1

(−0.58, 0.01, 0, 0.69) Type2

Figure 16b (0.85, 0.01, 0,−0.68) Type3

Figure 16c (−1.18, 0.01, 0, 1.66) Type6

(1.18, 0.01, 0,−1.66) Type7

Figure 16d (0.33, 0.01, 0, 1.41) Type8

(−0.33, 0.01, 0,−1.41) Type9

Figure 16e (−0.33, 0.01, 0, 0.69) Type10

(0.33, 0.01, 0,−0.69) Type11
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Fig. 17 Double-bifurcation diagram and Lyapunov exponent spectrum under the co-influence of parameter C2 and initial value σ0

responding initial values, types and colors of the above
typical attractors are listed in Table 3.

It follows from the above analysis that the HLMCO
system has as many as 11 types of attractors, when
changing initial values q0, iL0, and σ0 in the scopes
of [−2, 2], [−3, 3] and [−4, 4], respectively. Further-
more, each kind of the coexisting attractors also has a
different state like chaotic, periodic and other states,
which indicate that the HLMCO system has infinite
coexisting attractors under different initial values.

4.3 Dynamics with respect to both parameters and
initial values

In this part, the dynamic characteristics of the HLMCO
system are further analyzed with changing the parame-
ter and initial value simultaneously. Fix the parameters
as L = 0.33mH,G0 = 1.17mS,G1 = 2.69mS with
initial values (iL0, vC20, q0) = (0, 0.01, 0), and the

double-bifurcation diagram is shown in Fig. 17a with
changing parameter C2 from 0 to 8.12, where the red
bifurcation diagram is at σ0 = 0.1 and the blue one is at
σ0 = −0.1, respectively. The corresponding Lyapunov
exponent spectrum with σ0 = 0.1 and σ0 = −0.1 is
shown in Fig. 17b and c, respectively. The fourth Lya-
punov exponential curves are not drawn to make the
graph clearer (always less than zero). The correspond-
ing typical coexisting attractors are shown in Fig. 18.

From Figs. 17 and 18, the systemwill be in different
states under the influence of the parameter C2 when
the initial values and other parameters are fixed. The
corresponding parameter settings, colors and states of
the attractors in Fig. 18 are shown in Table 4.

Moreover, observe from Figs. 17 and 18 that the
dynamic behavior of the HLMCO system changes con-
sistently no matter σ0 is 0.1 or -0.1. That is, the sys-
tem enters chaotic and hyperchaotic states from the
doubling bifurcation periodic state. More detailed, the
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Fig. 18 Typical coexisting attractors varying with parameters C2 and initial value σ0, where L = 0.33mH,G0 = 1.17mS,G1 =
2.69mS, and (iL0, vC20, q0) = (0, 0.01, 0)

Table 4 Corresponding parameter settings, colors, and states of the attractors in Fig. 18

Figure The value of C2 The value of σ0 Color of the attractor State of the system

Figure 18a C2 = 0.30 σ0 = 0.1 Red Period

σ0 = −0.1 Blue Period

Figure 18b C2 = 1.15 σ0 = 0.1 Red Period

σ0 = −0.1 Blue Period

Figure 18c C2 = 1.46 σ0 = 0.1 Red Chaos

σ0 = −0.1 Blue Chaos

Figure 18d C2 = 1.83 σ0 = 0.1 Red Period

σ0 = −0.1 Blue Period

Figure 18e C2 = 3.60 σ0 = 0.1 Red Chaos

σ0 = −0.1 Blue Chaos

Figure 18f C2 = 6.60 σ0 = 0.1 Red Chaos

σ0 = −0.1 Blue Chaos

attraction region of the system will vary according
to initial value σ0 at parameter C2 ∈ [0, 3.3]. For
example, the system is in a red attractor with a upper
single-scroll at σ0 = 0.1, while it has a lower single-
scroll attractor in blue at σ0 = −0.1, as shown in
Fig. 18c. When parameter C2 changes in the region of
[3.4, 8.12], the system is always in the double-scroll
attractor state at initial value σ0 = ± 0.1, and the
shape of the attractor is basically the same as shown

in Fig. 18f. From the above analysis, it can be proved
that the HLMCO system has two independent and dis-
connected basins of attraction under these parameters
and initial values, with the attractors in a symmetrical
topological structure.

Now, we further study the dynamic behaviors by
using the evolution processes of coexisting attrac-
tors and attraction basins when parameter C2 and ini-
tial conditions q0, σ0 are changed simultaneously.
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Fig. 19 Evolution of the attraction basin related to q0 − σ0 varying with the parameter C2, and corresponding coexisting attractors,
where L = 0.33mH,G0 = 1.17mS,G1 = 2.69mS , and (iL0, vC20) = (0, 0.01)

Figure 19 shows the evolution processes of the coex-
isting attractors and their attraction basins versus q0,
σ0 and C2. Observe that the shapes of the attraction
basins are basically the same, while the color distribu-
tion varies greatly with different parameter C2, indi-
cating that the unstable regions of the HLMCO system
are basically the same, while the system has unique
dynamic behaviors which represented by different col-

ors. Observe from Fig. 19 that the system will be in
different states with a fixed set of parameters and dif-
ferent initial values. Figure 19 also shows the corre-
sponding typical attractors. Their parameter settings,
types and colors of coexisting attractors are shown in
Table 5.

Likewise, when changing parameter L and initial
condition σ0 simultaneously, the inconsistent dynam-
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Table 5 Corresponding parameters, types and colors of coexisting attractors of Fig. 19

Figure Parameter C2 Initial values (q0, σ0) Type of attractors Color

Figure 19a, d 0.3 (0.7859, 0.8427) Type1

(−0.7859,−0.8427) Type2

(0.4716, 0.8427) Type6

(−0.4716,−0.8427) Type7

Figure 19b, e 1.15 (1.3246, 0.7303) Type1

(−1.3246,−0.7303) Type2

(0.7858, 0.7303) Type3

(0.5164, 0.7303) Type6

(−0.5164,−0.7303) Type7

Figure 19c, f 1.46 (0.7211, 0.8333) Type1

(−0.7211,−0.8333) Type2

(0.4517, 0.8333) Type6

(−0.4517,−0.8333) Type7

Figure 19g, j 1.83 (0.9182, 0.8486) Type1

(−0.9182,−0.8486) Type2

(−0.8191,−0.8486) Type3

(−1.7580, 1.8690) Type7

Figure 19h, k 3.6 (1.0300, 0.7576) Type1

(0.7071, 0.7576) Type2

(0.1010, 0.7576) Type4

(−0.1010,−0.7576) Type5

Figure 19i, l 6.6 (−0.6667,−0.8586) Type1

(0.6667, 0.8427) Type2

(0.1818, 0.7576) Type6

(−0.1818,−0.7576) Type7

ics behavior of the HLMCO system can be observed
more clearly. As shown in Fig. 20 with parameter L
increasing in the scope of [0, 0.38], the red bifurca-
tion is at σ0 = 0.1 and the blue one is at σ0 = −0.1.
The corresponding Lyapunov exponent spectrumswith
σ0 = 0.1 and σ0 = −0.1 are illustrated in Fig. 20b and
c, respectively. For the sake of clarity, the fourth Lya-
punov exponential curves are not drawn (always less
than zero).

According to the double-bifurcation diagram and
Lyapunov exponent spectrum in Fig. 20, it can be con-
cluded that the system has the same evolutionary pro-
cess under the influence of parameter L whether ini-
tial value σ0 = 0.1 or σ0 = −0.1, i.e., the system
finally enters chaos with some periodic windows from

the period doubling bifurcation in general. To be more
detailed, after parameter L = 0.19, the trajectory state
of the system remains same, that is, the system is in the
chaotic state at L ∈ [0.191, 0.255]∪ [0.314, 0.38] and
is in the periodic window at L ∈ [0.256, 0.313]. These
typical attractors are presented in Fig. 21c–f. However,
the evolutions of trajectories started from different ini-
tial values σ0 = 0.1 and σ0 = −0.1 are not synchro-
nized at L ∈ [0.141, 0.19], that is, the system with
σ0 = −0.1 has already entered the chaotic state, but
the system with σ0 = 0.1 is still in the period doubling
bifurcation. This phenomenon indicates that the system
is in an asymmetric situation and the corresponding typ-
ical attractors are shown in Fig. 21b. The above analysis
can be further proved that the HLMCO system has two
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Fig. 20 Double-bifurcation diagramandLyapunov exponent spectrumswith parameter L and initial valueσ0, whereC2 = 0.3 nF,G0 =
1.17mS,G1 = 2.69mS, and (iL0, vC20, q0) = (0, 0.01, 0)

independent and disconnected attractive domain with
the symmetrical topological structure under different
parameters and initial values.

5 DSP experiment of the HLMCO system

In this section, we consider the implementation of the
HLMCO system by using DSP technology. DSP is a
fast processor to realize the digital signal algorithm. In
order to realize the continuous chaotic system through
digital devices, it is necessary to discretize the chaotic
system. Here, the classical Euler algorithm is used to
discretize theHLMCOsystem,which is achieved based
on the definition of derivative, that is,

f ′ (x) = lim
�t→0

x (tn + �t) − x (tn)

�t
= lim

�t→0

xn+1 − xn
�t

(16)

Equation (16) is approximated to the following for-
mula, while �t tends to zero,

f ′ (x) ≈ xn+1 − xn
�t

= x (n + 1) − x (n)

�t
(17)

Substituting Eq. (17) into Eq. (8), we can get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

iL (n + 1) = iL (n) + �t
[ 1
L vC2 (n)

]

vC2 (n + 1) = vC2 (n) + �t
[
G1
C2

(v (n) − vC2 (n)) − 1
C2

iL (n)
]

q (n + 1) = q (n) + �t [G1 (vC2 (n) − v (n)) + G0v (n)]
σ (n + 1) = σ (n) + �tq (n)

(18)

where v (n) = (−k + ln
(
m + nσ 2 (n)

))
q (n). Equa-

tion (18) is the discretized chaotic system.
Then, the system (18) is simulated on the DSP

platform, and the results are converted by D/A con-
verter to get the analog signal which can be observed
on the oscilloscope. Here, the DSP evaluation module
ICETEK-VC5509A is employed in this paper. Select-
ing the same parameter values and initial conditions as
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Fig. 21 Typical coexisting attractors under the co-influence of the parameters L and initial value σ0

in Fig. 5, the typical chaotic attractors can be observed
in the oscilloscope as shown in Fig. 22a–c. Similarly,
the hyperchaotic attractors are shown in Fig. 22d–f
while selecting the same parameter values as in Fig. 6.
It follows from Figs. 5, 6 and 22 that the experimental
results are agreed well with the numerical simulations.

6 Conclusions

Wehavedesigned anovel logarithmic charge-controlled
memcapacitor. Its continuousnon-volatility and switch-
ing features have been verified theoretically by using
POP and DRM, respectively. Based on the memcapac-
itor, we also designed a hyperchaotic oscillator, and
its complex dynamics have been analyzed via coexist-
ingbifurcation,Lyapunov exponent spectrum, dynamic
map and attraction basin.

In this work, it has been found that the proposed
memcapacitor has infinite stable equilibria on its POP
and thus has continuous non-volatility. By applying
an appropriate voltage plus to the memcapacitor, it
can be quickly switched from any state to another,
which can be used to imitate synaptic properties of neu-
rons and to implement information storage and logic
operations. The proposed chaotic circuit has a riddled
basin, in which chaos and hyperchaos appear alter-

nately with the changes of parameters C2 and L in
the intervals 0 < C2 < 10 and 0.1 < L < 0.4. We
also proved that the circuit proposes complex multi-
stable symmetrical coexisting oscillation and various
homogeneous and heterogeneous coexisting attractors,
including coexisting chaotic and hyperchaotic attrac-
tors, symmetrical coexisting chaotic attractors and peri-
odic orbits (Type 1–Type 5) with respect to initial val-
ues σ0 and q0 over the intervals of −5 < σ0 < 5
and −2 < q0 < 2; coexisting chaotic and periodic
attractors with respect to initial values iL0 and σ0 over
the intervals of −3 < iL0 < 3 and −4 < σ0 < 4.
We also proved the coexisting attractors varying with
both system parameters and initial values, including
coexisting bifurcations with respect to both C2 and
σ0 in the range of 0 < C2 < 8 and the values of
σ0 = ± 0.1; riddled basins of coexisting attractors with
respect to parameter C2 and initial values q0 and σ0
in the range of −2 < q0 < 2 and −5 < σ0 < 5,
and some typically coexisting chaotic and periodic
attractorswithC2 = 0.3, 1.15, 1.46, 1.38, 3.6, and6.6.
We also observed some novel coexisting phenomena
of chaotic attractors, hyperchaotic attractors, periodic
orbits and stable points, which vary with both parame-
ter L and initial value σ0.

The proposed memcapacitor model can serve as
models to study memcapacitive memory and memca-
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Fig. 22 Experimental results observed from the oscilloscope of the HLMCO system: a–c chaotic attractors; d–f hyperchaotic attractors

pacitive synaptic plasticity for memcomputing, which
can store and process information on the same physi-
cal platform. Furthermore, there is evidence that neu-
ral networks can exhibit enhanced computational com-
plexity when operated at the chaotic state. Hence,
the proposed memcapacitor-based controllable chaotic
oscillator can be incorporated into a memcapacitive
neural circuit for optimizing neural computations in
a memcomputing scheme. This paper only proposed a
memcapacitormodel, but its realization is not involved.
It will be a challenging task for us to study the real-
ization and applications of the memcapacitor. Further-
more, how to implement memcapacitor-based mem-
computing is also one of our future researches.

We end this paper with a DSP experiment, which
verifies the dynamics of the memcapacitor-based cir-
cuit.
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