
ORIGINAL PAPER

Stability analysis and synthesis of stabilizing controls
for a class of nonlinear mechanical systems

A. Yu. Aleksandrov

Received: 21 November 2019 / Accepted: 18 May 2020 / Published online: 5 June 2020

� Springer Nature B.V. 2020

Abstract This paper is concerned with the problems

of stability and stabilization for a class of nonlinear

mechanical systems. It is assumed that considered

systems are under the action of linear gyroscopic

forces, nonlinear homogeneous positional forces and

nonlinear homogeneous dissipative forces of posi-

tional–viscous friction. An approach to strict Lya-

punov functions construction for such systems is

proposed. With the aid of these functions, sufficient

conditions of the asymptotic stability and estimates of

the convergence rate of solutions are found. Moreover,

systems with delay in the positional forces are studied,

and new delay-independent stability conditions are

derived. The obtained results are used for developing

new approaches to the synthesis of stabilizing controls

with delay in feedback law.
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1 Introduction

Stability analysis of nonlinear mechanical systems is

fundamental and challenging research problem due to

its broad applications. The general approach to the

problem is the Lyapunov direct method [1–3].

However, it is worth mentioning that in numerous

real-world applications motions of mechanical sys-

tems are described by essentially nonlinear multivari-

ate systems of differential equations of the second

order [4–8]. For such systems, the explicit construc-

tion of Lyapunov functions taking the nonlinear

dynamics into account remains a difficult problem

[1, 3, 9, 10].

An efficient tool to overcome this difficulty is the

decomposition method [3, 11]. The method is suc-

cessfully used in various forms for the investigation of

stability of wide classes of mechanical systems, see,

for example, [1, 12–16] and references therein.

One of the forms of decomposition of mechanical

systems is based on the reducing stability problem for

an original second-order system to that for two

independent first-order auxiliary subsystems. With

the aid of such an approach, in [12, 13], asymptotic

stability conditions for linear time-invariant gyro-

scopic systems were found. In [15, 17, 18], results of

[12, 13] were extended to some classes on nonlinear

nonstationary mechanical systems.

In the present contribution, this approach is used for

the stability analysis of mechanical systems with
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linear gyroscopic forces, nonlinear homogeneous

positional forces and nonlinear homogeneous dissipa-

tive forces of positional–viscous friction.

It is known that experimental investigation of

elastic properties for a significant number of materials

applied in contemporary mechanical and civil engi-

neering gives the nonlinear strain–stress relation

[4, 6, 7, 19]. For instance, in [19], nonlinear homo-

geneous positional forces were used for the construc-

tion of seismic mitigation devices. Furthermore, in

models of some mechanical systems it is necessary to

take into account the dependence of damping coeffi-

cients on generalized coordinates (see [6]). In partic-

ular, nonlinear homogeneous forces of positional–

viscous friction were applied in [20, 21] for modeling

dynamics of a gimbal gyro.

It should be noted that sufficient conditions of the

asymptotic stability for the considered class of

systems were derived in [17]. However, results of

[17] are based on constructing weak Lyapunov

functions and using Barbashin–Krasovskii theorem

[1]. Derivatives of weak Lyapunov functions with

respect to investigated systems are only nonnegative.

It is well known [9] that such Lyapunov functions are

insufficient to analyze general nonlinear systems.

These functions are not well suited to robustness

analysis, since their negative semi-definite derivatives

along trajectories could become positive under arbi-

trarily small perturbations of the dynamics. This has

motivated a great deal of significant research on

methods to explicitly construct strict Lyapunov func-

tions, i.e., functions with negative definite derivatives

(see, for instance, [9, 10, 22–24]).

In this paper, new constructions of strict Lyapunov

functions for considered nonlinear mechanical sys-

tems are proposed. With the aid of these functions, not

only asymptotic stability conditions but also estimates

of the convergence rate of solutions are derived.

Moreover, systems with delay in positional forces are

studied, and new delay-independent stability condi-

tions are found. In addition, the obtained results permit

us to propose new approaches to the synthesis of

stabilizing controls with delay in feedback law.

2 Preliminaries

In the sequel, R denotes the field of real numbers, and

Rn the n-dimensional Euclidean space. The Euclidean

norm will be used for vectors.

For a given number s0 [ 0, let C1ð½�s0; 0�;RnÞ be

the space of continuously differentiable functions

uðhÞ : ½�s0; 0� ! Rn with the uniform norm

kuks0
¼ max

h2½�s0;0�
kuðhÞk þ k _uðhÞkð Þ:

Definition 1 (see [2]) A function f ðxÞ : Rn ! R is

called homogeneous of the order l[ 0 (with respect

to the standard dilation) if f ðcxÞ ¼ clf ðxÞ for any

c[ 0 and x 2 Rn.

Remark 1 It is known [2] that if f ðxÞ is a continuous

homogeneous of the order l function, then

a1kxkl � f ðxÞ� a2kxkl

for x 2 Rn, where

a1 ¼ min
kxk¼1

f ðxÞ; a2 ¼ max
kxk¼1

f ðxÞ;

and in the case where f ðxÞ is positive definite, the

constant a1 is positive.

We will use the following lemmas, see [25].

Lemma 1 Let x; y 2 Rn,

Wðx; yÞ ¼ kxka þ kykb � ckxkckykd:

Here c; a; b; c; d are positive constants. Then function

Wðx; yÞ is positive definite for any c[ 0 if and only if

c=aþ d=b[ 1. In the case where c=aþ d=b ¼ 1,

function Wðx; yÞ is positive definite for sufficiently

small positive values of c.

Lemma 2 Let x; y 2 Rn,

Wðx; yÞ ¼ kxka þ kykb þ c1kxkgkykf � c2kxkckykd:

Here c1; c2; a; b; c; d; g; f are positive constants. If

g
a
þ f
b
\1;

then function Wðx; yÞ is positive definite for any

c1 [ 0 and c2 [ 0 if and only if
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cþ d
a� g
f

[ a; c
b� f
g

þ d[ b:

3 Statement of the problem

In [13], stability of the linear gyroscopic system

€xðtÞ þ Bþ hGð Þ _xðtÞ þ CxðtÞ ¼ 0 ð1Þ

was studied. Here xðtÞ 2 Rn, B;G;C are constant

matrices, and h is a positive parameter. It was assumed

that B is a symmetric positive definite matrix of

dissipative forces, and G is a skew-symmetric and

nonsingular matrix of gyroscopic forces.

To derive stability conditions, an expansion of the

roots of the characteristic equation for (1) in the series

with respect to the negative powers of h was used. It

was proved that, if the auxiliary subsystem

_xðtÞ ¼ �G�1CxðtÞ ð2Þ

is asymptotically stable, then, for sufficiently large

values of h, system (1) is also asymptotically stable.

Thus, the stability problem for original second-order

system (1) can be reduced to that one for first-order

subsystem (2).

The objective of the present paper is an extension of

the Merkin’s result to mechanical systems with

nonlinear force fields.

Let motions of a mechanical system be defined by

the equations

€xðtÞ þ FðxðtÞÞ þGð Þ _xðtÞ þQðxðtÞÞ ¼ 0: ð3Þ

Here xðtÞ 2 Rn, G is a constant matrix, entries of the

matrix FðxÞ are continuously differentiable for x 2 Rn

homogeneous functions of the order r[ 1; compo-

nents of the vector QðxÞ are continuously differen-

tiable for x 2 Rn homogeneous functions of the order

k[ 1.

System (3) admits the equilibrium position

x ¼ _x ¼ 0: ð4Þ

We will look for asymptotic stability conditions of the

equilibrium position.

Assumption 1 The matrix G is skew-symmetric and

nonsingular.

Remark 2 If Assumption 1 is fulfilled, then n is an

even number [13].

Assumption 2 For every x 6¼ 0, the matrix FðxÞ þ
F>ðxÞ is positive definite.

Remark 3 Under Assumption 2, there exists a

positive constant c such that _x>FðxÞ _x� ckxkrk _xk2

for all x; _x 2 Rn, i.e., the forces �FðxÞ _x are dissipative

ones.

Thus, the considered system is under the action of

linear gyroscopic forces �G _x, nonlinear homoge-

neous positional forces �QðxÞ and nonlinear homo-

geneous dissipative forces of positional–viscous

friction �FðxÞ _x. Such systems are widely applied in

nonlinear mechanics (see, for instance, [4, 6, 19]). For

example, they can be used for modeling dynamics of a

gimbal gyro [20, 21] or for modeling magnetic

suspension control system of a gyro rotor (see

[26, 27]).

Moreover, system (3) may be treated as a vector

Lienard equation [28]. Such an equation is widely used

for modeling mechanical and electromechanical sys-

tems [28–32].

Remark 4 It is worth noting that, in the present

paper, mechanical systems with unity mass matrices

are considered. However, with the aid of the standard

technique (see [1]), the obtained results can be

extended to holonomic mechanical systems in the

Lagrangian form.

In addition, let the following assumptions be

fulfilled:

Assumption 3 The inequality

k[ rþ 1 ð5Þ

holds.

Assumption 4 The zero solution of the auxiliary

subsystem

_xðtÞ ¼ �G�1QðxðtÞÞ ð6Þ

is asymptotically stable.

Remark 5 It is worth noting that system (3) is

nonlinear and nonhomogeneous, whereas (6) is a

homogeneous system. Therefore, known approaches

for the stability analysis of homogeneous systems (see

[2, 33]) can be applied to (6).
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Let us determine conditions under which the

asymptotic stability of the zero solution of (6) implies

that equilibrium position (4) of system (3) is also

asymptotically stable.

The main contributions of this paper are described

below:

(i) An original approach to the construction of a

strict Lyapunov function for (3) is proposed.

(ii) Conditions are derived under which the

stability problem for second-order system

(3) can be reduced to that one for auxiliary

first-order subsystem (6). It should be noted

that, compared with the linear case [13], an

important feature of the obtained result is

that, to guarantee the asymptotic stability,

there is no need to use a large parameter at the

vector of gyroscopic forces.

(iii) Estimates of the convergence rate of solutions

are derived.

(iv) New delay-independent stability conditions

for mechanical systems with delay in posi-

tional forces are found.

(v) On the basis of the obtained results, an

original approach to the stabilization of

nonlinear mechanical systems is proposed.

4 Stability conditions and estimates of solutions

To determine stability conditions for (3), with the aid

of a special substitution, we will represent the original

system as a complex system describing interaction of

two subsystems. Next, we will construct a strict

Lyapunov function for the complex system. Such

approach will permits us not only to obtain conditions

of the asymptotic stability, but also to estimate

convergence rate of solutions.

Theorem 1 Under Assumptions 1–4, equilibrium

position (4) of system (3) is asymptotically stable.

Proof From Assumptions 1 and 2 it follows that the

matrix FðxÞ þG is nonsingular for all x 2 Rn. Let

zðtÞ ¼ _xðtÞ þ FðxðtÞÞ þGð Þ�1QðxðtÞÞ: ð7Þ

Then

_zðtÞ ¼ � FðxðtÞÞ þGð Þ _xðtÞ �QðxðtÞÞ

þ
o FðxðtÞÞ þGð Þ�1QðxðtÞÞ
� �

ox
_xðtÞ

¼ � FðxðtÞÞ þGð ÞzðtÞ

þ
o FðxðtÞÞ þGð Þ�1QðxðtÞÞ
� �

ox�
zðtÞ � FðxðtÞÞ þGð Þ�1QðxðtÞÞ

�
:

Thus, substitution (7) transforms system (3) to the

following one:

_xðtÞ ¼zðtÞ � FðxðtÞÞ þGð Þ�1QðxðtÞÞ;
_zðtÞ ¼ � FðxðtÞÞ þGð ÞzðtÞ

þ
o FðxðtÞÞ þGð Þ�1QðxðtÞÞ
� �

ox�
zðtÞ � FðxðtÞÞ þGð Þ�1QðxðtÞÞ

�
:

ð8Þ

It is known (see [2, 33]) that if the zero solution of (6)

is asymptotically stable, then, for any m1 [ 1, there

exists a Lyapunov function V1ðxÞ such that

(a) it is homogeneous of the order m1;

(b) it is continuously differentiable for x 2 Rn;

(c) it is positive definite, while its derivative with

respect to (6) is negative definite.

Construct a Lyapunov function for complex system (4)

in the form

Vðx; zÞ ¼ V1ðxÞ þ gkzkm2 � ekzkb�1z>x; ð9Þ

where g[ 0, e[ 0, m2 [ 1, b� 1.

Then

a1kxkm1 þ gkzkm2 � ekzkbkxk�Vðx; zÞ
� a2kxkm1 þ gkzkm2 þ ekzkbkxk

for x; z 2 Rn. Here a1; a2 are positive constants.

Differentiating function (9) with respect to system

(4), we obtain
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_V ¼ oV1ðxðtÞÞ
ox

� �>
zðtÞ � FðxðtÞÞ þGð Þ�1QðxðtÞÞ

� �

þ gm2kzðtÞkm2�2z>ðtÞ
�
�ðFðxðtÞÞ þGÞzðtÞ

þ
o FðxðtÞÞ þGð Þ�1QðxðtÞÞ
� �

ox�
zðtÞ � FðxðtÞÞ þGð Þ�1QðxðtÞÞ

��
� ekzðtÞkbþ1

þ ekzðtÞkb�1z>ðtÞ FðxðtÞÞ þGð Þ�1QðxðtÞÞ

� ex>ðtÞ
o kzðtÞkb�1zðtÞ
� �

oz

�
� FðxðtÞÞ þGð ÞzðtÞ

þ
o FðxðtÞÞ þGð Þ�1QðxðtÞÞ
� �

ox�
zðtÞ � FðxðtÞÞ þGð Þ�1QðxðtÞÞ

��

� � oV1ðxðtÞÞ
ox

� �>
G�1QðxðtÞÞ þ oV1ðxðtÞÞ

ox

����
����kzðtÞk

þ oV1ðxðtÞÞ
ox

����
����kG�1 � ðFðxðtÞÞ þGÞ�1kkQðxðtÞÞk

� gm2kzðtÞkm2�2z>ðtÞðFðxðtÞÞ þGÞzðtÞ

þ gm2kzðtÞkm2�1
o FðxðtÞÞ þGð Þ�1QðxðtÞÞ
� �

ox

������

������
���zðtÞ

� FðxðtÞÞ þGð Þ�1QðxðtÞÞ
���� ekzðtÞkbþ1

þ ekzðtÞkb ðFðxðtÞÞ þGÞ�1
�� ��kQðxðtÞÞk

þ ekxðtÞk
o kzðtÞkb�1zðtÞ
� �

oz

������

������
���� FðxðtÞÞ þGð ÞzðtÞ

þ
o FðxðtÞÞ þGð Þ�1QðxðtÞÞ
� �

ox�
zðtÞ � FðxðtÞÞ þGð Þ�1QðxðtÞÞ

�����:

From Assumptions 1, 2, 4 it follows that

� oV1ðxðtÞÞ
ox

� �>
G�1QðxðtÞÞ� � a3kxðtÞkm1þk�1;

� gm2kzðtÞkm2�2z>ðtÞðFðxðtÞÞ þGÞzðtÞ
¼ �gm2kzðtÞkm2�2z>ðtÞFðxðtÞÞzðtÞ
� � ga4kxðtÞkrkzðtÞkm2

for xðtÞ; zðtÞ 2 Rn, where a3 [ 0, a4 [ 0.

Taking into account Remark 1, it is easy to show

that that there exist positive numbers D1; a5; a6; a7

such that the estimate

_V � � a3kxðtÞkm1þk�1 � ga4kxðtÞkrkzðtÞkm2

� ekzðtÞkbþ1 þ ea5kxðtÞkkzðtÞkb�1ðkzðtÞk þ kxðtÞk2k�1Þ
þ ga6kxðtÞkk�1kzðtÞkm2�1ðkzðtÞk þ kxðtÞkkÞ
þ a7kxðtÞkm1�1ðkzðtÞk þ kxðtÞkrþkÞ

is valid for kxðtÞk\D1, zðtÞ 2 Rn.

Applying Lemmas 1 and 2, it can be verified that if

m1 þ k� r� 1 ¼ km2; ð10Þ

b ¼ m2 þ r� 1; ð11Þ

then, for sufficiently small values of e and sufficiently

large values of g, one can choose D2 [ 0 such that

1

2
ða1kxðtÞkm1 þ gkzðtÞkm2Þ�VðxðtÞ; zðtÞÞ

� 2ða2kxðtÞkm1 þ gkzðtÞkm2Þ;
ð12Þ

_V � � 1

2
a3kxðtÞkm1þk�1 þ ekzðtÞkbþ1

� �
ð13Þ

for kxðtÞk þ kzðtÞk\D2.

Thus, (9) will be a strict Lyapunov function for

complex system (4). Hence, the zero solution of (4) is

asymptotically stable.

From the properties of substitution (7), it follows

that equilibrium position (4) of system (3) is also

asymptotically stable. h

Next, let us show that, with the aid of Lyapunov

function (9), estimates of the convergence rate for

solutions of system (3) can be obtained.

Theorem 2 Under Assumptions 1–4, there exist

positive numbers ~D; c1; c2 such that if for a solution

xðtÞ of (3) the inequalities t0 � 0, kxðt0Þk þ
k _xðt0Þk\ ~D hold, then

kxðtÞk� c1ðt � t0 þ 1Þ�l;

k _xðtÞk� c2ðt � t0 þ 1Þ�1=r
ð14Þ

for t � t0, where l ¼ 1=ðk� 1Þ for k[ 1 þ rðrþ 1Þ,
and l ¼ f=ðrðrþ 1ÞÞ for k� 1 þ rðrþ 1Þ. Here f is

an arbitrary chosen number from the interval (0,1).
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Proof Consider Lyapunov function (9). We will

assume that, for chosen values of parameters

m1; m2; g; e; b of this function, equalities (10), (11) hold

and estimates (12), (13) are valid for

kxðtÞk þ kzðtÞk\ ~D1, where ~D1 ¼ const[ 0.

Using inequalities (12), (13) and properties of

homogeneous functions (see [2, 33]), we obtain

_V � � ~c1 kxðtÞkm1ðxþ1Þ þ kzðtÞkm2ðxþ1Þ
� �

� � ~c2 2a2kxðtÞkm1 þ 2gkzðtÞkm2ð Þxþ1

� � ~c2Vxþ1ðxðtÞ; zðtÞÞ

for kxðtÞk þ kzðtÞk\ ~D1, where ~c1; ~c2 are positive

constants, x ¼ maxfðk� 1Þ=m1; r=m2g.

The zero solution of (4) is asymptotically stable.

Hence, there exist a number ~D2 [ 0 such that if t0 � 0,

0\kx0k þ kz0k\ ~D2, then

_eV ðtÞ� � ~c2
eVxþ1ðtÞ ð15Þ

for t� t0. Here ðx>ðtÞ; z>ðtÞÞ> is the solution of (4)

satisfying the conditions xðt0Þ ¼ x0, zðt0Þ ¼ z0, and

eV ðtÞ ¼ VðxðtÞ; zðtÞÞ.
Integrating differential inequality (15) and taking

into account estimates (12), we obtain that

1

2
ða1kxðtÞkm1 þ gkzðtÞkm2Þ� eV ðtÞ

� eV ðt0Þ þ x~c2ðt � t0Þ
� ��1

x

� ~c3 1 þ t � t0ð Þ�
1
x

for t� t0, where ~c3 ¼ const[ 0.

Hence,

kxðtÞk� d1ðt � t0 þ 1Þ�
1

xm1 ; kzðtÞk� d2ðt � t0 þ 1Þ�
1

xm2

for t� t0, where d1 and d2 are positive constants.

From substitution (7) it follows that if ~D2 is

sufficiently small, then

k _xðtÞk� d3kxðtÞkk þ kzðtÞk; d3 ¼ const[ 0;

for t� t0.

It is easy to verify that 1=m2\k=m1. Therefore, one

can choose ~D3 [ 0 and d4; d5 [ 0 such that

kxðtÞk� d4ðt � t0 þ 1Þ�
1

xm1 ; ð16Þ

k _xðtÞk� d5ðt � t0 þ 1Þ�
1

xm2 ð17Þ

for t0 � 0, kxðt0Þk þ k _xðt0Þk\ ~D3, t � t0.

Finally, let us note that, to derive more precise

estimate (16) (in the sense of minimization of the

exponent), one should pass to the limit in the exponent

as m1 ! þ1, whereas, to derive more precise esti-

mate (17), one should pass to the limit in the

corresponding exponent as m2 ! 1. As a result, we

arrive at inequalities (14). h

Remark 6 In the case where k� rðrþ 1Þ, values of
~D; c1; c2 in Theorem 2 depend on chosen number f.

The more close is the parameter f to 1, the more

precise is the estimate for kxðtÞk in the sense of

minimization of the exponent.

5 Delay-independent stability conditions

Consider a nonlinear mechanical system with delay in

positional forces. Let equations of motion be of the

form

€xðtÞ þ FðxðtÞÞ þGð Þ _xðtÞ þQðxðtÞÞ þ Lðxðt � sðtÞÞÞ ¼ 0:

ð18Þ

Here components of the vector LðxÞ are continuously

differentiable for x 2 Rn homogeneous functions of

the order k[ 1, sðtÞ is a continuous delay that is

nonnegative and bounded for t � 0, and the rest

notation is the same as for (3).

Denote s0 ¼ supt � 0 sðtÞ. We will assume that

initial functions for solutions of (18) belong to the

space C1ð½�s0; 0�;RnÞ. Let xt denote the restriction of

a solution xðtÞ of (18) to the segment ½t � s0; t�, i.e.,

xt : h ! xðt þ hÞ, h 2 ½�s0; 0�.
It is well known (see, for example, [34]) that delay

may seriously affect on the stability and others

dynamical properties of a system. Moreover, in

numerous practical problems, values of delays could

be unknown. Therefore, delay-independent stability

conditions are very important in applications [34, 35].

We will show that the approach to a strict Lyapunov

function construction proposed in the previous section

and the original technique of application of the

Razumikhin condition for nonlinear systems devel-

oped in [36, 37] permit us to obtain delay-independent

conditions of asymptotic stability for equilibrium

position (4) of system (18).

Construct the auxiliary delay-free subsystem
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_xðtÞ ¼ �G�1 eQðxðtÞÞ; ð19Þ

where eQðxÞ ¼ QðxÞ þ LðxÞ.

Assumption 5 The zero solution of (19) is asymp-

totically stable.

Theorem 3 Let Assumptions 1, 2, 3, 5 be fulfilled.

Then equilibrium position (4) of system (18) is

asymptotically stable for an arbitrary continuous

delay that is nonnegative and bounded for t� 0.

Proof The substitution

FðxðtÞÞ þGð Þ _xðtÞ þ eQðxðtÞÞ ¼ FðxðtÞÞ þGð ÞzðtÞ

transforms (18) to the system

_xðtÞ ¼ zðtÞ � FðxðtÞÞ þGð Þ�1 eQðxðtÞÞ;
_zðtÞ ¼ � FðxðtÞÞ þGð ÞzðtÞ

þ
o FðxðtÞÞ þGð Þ�1 eQðxðtÞÞ
� �

ox�
zðtÞ � FðxðtÞÞ þGð Þ�1 eQðxðtÞÞ

�

þ LðxðtÞÞ � Lðxðt � sðtÞÞÞ:

ð20Þ

Choose a Lyapunov function for (20) in form (9),

where parameters m1; m2; b satisfy conditions (10) and

(11). Then, for sufficiently small values of e and

sufficiently large values of g, there exist positive

numbers D; a1; a2; a3; a4; a5 such that, for the function

Vðx; zÞ and its derivative with respect to system (20),

the estimates

a1kxðtÞkm1 þ g
2
kzðtÞkm2 �VðxðtÞ; zðtÞÞ

� a2kxðtÞkm1 þ 2gkzðtÞkm2 ;

_V � � a3kxðtÞkm1þk�1 � ga4kxðtÞkrkzðtÞkm2

� e
2
kzðtÞkbþ1 þ a5

�
kxðtÞkkzðtÞkb�1

þ kzðtÞkm2�1
�
kLðxðtÞÞ � Lðxðt � sðtÞÞÞk

ð21Þ

hold for kxðtÞk þ kzðtÞk\D.

Consider a solution ðx>ðtÞ; z>ðtÞÞ> of (20). Let the

inequality kxðnÞk þ kzðnÞk\D and the Razumikhin

condition VðxðnÞ; zðnÞÞ� 2VðxðtÞ; zðtÞÞ be fulfilled

for n 2 ½t � s0; t�. Then from (21) it follows that

kxðnÞk� d1ðkxðtÞk þ kzðtÞkm2=m1Þ; ð22Þ

kzðnÞk� d2ðkxðtÞkm1=m2 þ kzðtÞkÞ ð23Þ

for n 2 ½t � s0; t�. Here d1 and d2 are positive

constants.

Let L1ðxÞ; . . .; LnðxÞ be components of the vector

LðxÞ. With the aid of the mean value theorem, we

obtain

LiðxðtÞÞ � Liðxðt � sðtÞÞÞj j

¼ sðtÞ _x>ðt � visðtÞÞ
oLiðxðt � visðtÞÞÞ

ox

				
				

� d3k _xðt � visðtÞÞkkxðt � visðtÞÞkk�1

� d4k _xðt � visðtÞÞk
�
kxðtÞkk�1

þ kxðtÞ � xðt � visðtÞÞkk�1
�
; i ¼ 1; . . .; n:

Here d3; d4 are positive constants, vi 2 ð0; 1Þ.
Applying the mean value theorem once again to

estimate the terms kxðtÞ � xðt � visðtÞÞkk�1
and using

inequalities (22), (23), we have

kLðxðtÞÞ � Lðxðt � sðtÞÞÞk� d5

�
kxðtÞkk�1þm1=m2

þ kxðtÞkkm1=m2 þ kzðtÞkk þ kxðtÞkk�1kzðtÞk
�
;

where d5 ¼ const[ 0.

Using this inequality and applying Lemma 2, it can

be shown that if D is sufficiently small, then

_V � � 1

2
a3kxðtÞkm1þk�1 þ e

2
kzðtÞkbþ1

� �
:

Hence (see [34]), the zero solution of (20) is asymp-

totically stable. h

The constructed strict Lyapunov function permits

us to derive estimates of the convergence rate of

solutions for time-delay system (18), as well.

Theorem 4 Let Assumptions 1, 2, 3, 5 be fulfilled.

Then there exist positive numbers ~D; c1; c2 such that if

for a solution xðtÞ of (18) the inequalities t0 � 0,

kxt0ks0
\ ~D hold, then

kxðtÞk� c1ðt � t0 þ 1Þ�l; k _xðtÞk� c2ðt � t0 þ 1Þ�1=r

for t � t0, where l ¼ 1=ðk� 1Þ for k[ 1 þ rðrþ 1Þ,
and l ¼ f=ðrðrþ 1ÞÞ for k� 1 þ rðrþ 1Þ. Here f is

an arbitrary chosen number from the interval (0,1).
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The proof of the theorem is a similar to that of

Theorem 2.

6 Synthesis of stabilizing controls

Consider the system

€xðtÞ þ FðxðtÞÞ þGð Þ _xðtÞ þQðxðtÞÞ ¼ U: ð24Þ

Here U is a control vector and the rest notation is the

same as for (3).

Let equilibrium position (4) of the corresponding

uncontrolled (U � 0) system is unstable.

We are going to design a feedback control law to

stabilize the equilibrium position in the case where

there exists a delay in the control scheme. Assume that

the delay sðtÞ is a continuous function that is

nonnegative and bounded for t� 0.

Remark 7 It is worth noting that, for a linear control

law, we cannot guarantee the stabilization for an

arbitrary continuous nonnegative and bounded delay

[34].

Define a control vector by the formula

U ¼ �hG
oWðxðt � sðtÞÞÞ

ox
; ð25Þ

where WðxÞ is a twice continuously differentiable for

x 2 Rn positive definite homogeneous of the order kþ
1 function and h is a positive parameter.

Theorem 5 Under Assumptions 1–3, one can

choose a number h0 [ 0 such that equilibrium posi-

tion (4) of system (24) closed by control (25) is

asymptotically stable for any h� h0 and any contin-

uous delay that is nonnegative and bounded for t� 0.

Proof Let us show that, for sufficiently large values

of h, all the conditions of Theorem 3 are satisfied for

the closed-loop system. To do this, it is sufficient to

verify the fulfilment of Assumption 5.

In this case, subsystem (19) is of the form

_xðtÞ ¼ �G�1QðxðtÞÞ � h
oWðxðtÞÞ

ox
: ð26Þ

Choose a Lyapunov function for (26) as follows:

VðxÞ ¼ kxk2
. Then

_V �ða1 � ha2ÞkxðtÞkkþ1:

Here a1 and a2 are positive constants independent of

h. Hence, for sufficiently large values of h, the zero

solution of (26) is asymptotically stable. h

Next, consider the case where positional forces in

(24) are potential, i.e.,

QðxÞ ¼ oPðxÞ
ox

; ð27Þ

where the potential energy PðxÞ is a twice continu-

ously differentiable for x 2 Rn negative definite

homogeneous of the order kþ 1 function.

Using the Lyapunov function

Vðx; _xÞ ¼ 1

2
k _xk2 þPðxÞ

and applying the Krasovskii instability theorem (see

[1]), it is easy to verify that the equilibrium position of

uncontrolled (U � 0) system (24) with positional

forces (27) is unstable.

Construct a control vector by the formula

U ¼ �hkxðt � sðtÞÞkk�1Gxðt � sðtÞÞ; ð28Þ

where h is a positive parameter.

Theorem 6 Let Assumptions 1–3 be fulfilled. Then

equilibrium position (4) of system (24) with potential

positional forces (27) and control (28) is asymptoti-

cally stable for any h[ 0 and any continuous delay

that is nonnegative and bounded for t� 0.

Proof Let us show that, for any h[ 0, all the

conditions of Theorem 3 are satisfied for the closed-

loop system. To do this, it is sufficient to verify the

fulfilment of Assumption 5.

Consider subsystem (19) corresponding to the

closed-loop system. We obtain

_xðtÞ ¼ �G�1 oPðxðtÞÞ
ox

� hkxðtÞkk�1xðtÞ: ð29Þ

Let

VðxÞ ¼ �PðxÞ: ð30Þ

Function (30) is positive definite. Calculate the

derivative of (30) with respect to system (29). Taking

into account that G�1 is skew-symmetric matrix and

using the Euler formula for homogeneous functions

(see [2]), we obtain
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_V ¼ hkxðtÞkk�1x>ðtÞ oPðxðtÞÞ
ox

¼ hðkþ 1ÞkxðtÞkk�1PðxðtÞÞ:

Hence,

_V � � ahkxðtÞk2k; a ¼ const[ 0:

Thus, for any h[ 0, the zero solution of (29) is

asymptotically stable.

Application of Theorem 3 to the closed-loop system

completes the proof. h

Remark 8 If sðtÞ � 0, then control forces (28) are

circular or nonconservative (see [1, 13]). It is well

known [13, 20], that the influence of linear circular

forces on the stability of mechanical systems is

ambiguous: on the one hand, they can provide the

asymptotic stability of a system; on the other hand,

they can destabilize it. In this section, nonlinear

homogeneous circular forces are used to stabilize a

nonlinear mechanical system with linear gyroscopic

forces, nonlinear homogeneous potential forces and

nonlinear homogeneous dissipative forces of posi-

tional–viscous friction. It is important that we can

guarantee the stabilization even in the case where

there is a delay in the feedback law and control circular

forces are small compared with destabilizing potential

forces (for arbitrary small values of parameter h).

7 Examples

Consider some examples to demonstrate the effec-

tiveness of the obtained results.

7.1 Example 1

Let system (3) be of the form

€xðtÞ þ kxðtÞkr _xðtÞ þG _xðtÞ þ kxðtÞkk�1GxðtÞ ¼ 0:

ð31Þ

Here n ¼ 2, xðtÞ ¼ ðx1ðtÞ; x2ðtÞÞ>, r[ 1, k[ 1,

G ¼
0 1

�1 0

� �
: ð32Þ

It is worth noting that such a system can be used for the

modeling magnetic suspension control system of a

gyro rotor (see [26, 27]).

Construct subsystem (6) corresponding to (31). We

obtain

_xðtÞ ¼ �kxðtÞkk�1xðtÞ: ð33Þ

The zero solution of (33) is asymptotically stable.

Hence (see Theorem 1), under condition (5), we can

guarantee the asymptotic stability of the equilibrium

position x ¼ _x ¼ 0 of (31).

Next, assume that k ¼ rþ 1. Then system (31)

admits the following family of solutions:

x1ðtÞ ¼ c cos t, x2ðtÞ ¼ c sin t, where c is an arbitrary

constant. Therefore, in this case the equilibrium

position x ¼ _x ¼ 0 is not asymptotically stable.

Thus, this example demonstrates that condition (5)

cannot be relaxed.

7.2 Example 2

Consider the control system

€xðtÞ þ bkxðtÞk
4
3 _xðtÞ þ gG _xðtÞ � kxðtÞk2xðtÞ ¼ U;

ð34Þ

where n ¼ 2, xðtÞ ¼ ðx1ðtÞ; x2ðtÞÞ>, g and b are pos-

itive coefficients, the matrix G is defined by formula

(32), U ¼ ðu1; u2Þ> is a control vector.

Our goal is to design a feedback control law

stabilizing the equilibrium position x ¼ _x ¼ 0 of

system (34).

Assume that there is a delay in the control scheme,

and the delay might be unknown and time-varying.

Let

U ¼ �hkxðt � sðtÞÞk2Gxðt � sðtÞÞ; ð35Þ

where h ¼ const[ 0. Verifying the conditions of

Theorem 6, we obtain that the equilibrium position

x ¼ _x ¼ 0 of system (34) closed by control (35) is

asymptotically stable for an arbitrary positive coeffi-

cient h and for any continuous delay that is nonneg-

ative and bounded for t� 0.

For simulation, we take b ¼ 1=2, g ¼ 1, h ¼ 0:35,

s ¼ 1 and xðtÞ ¼ ð0:22; 0:21Þ for t 2 ½�1; 0�. In

Fig. 1, the dependence of kxk on t is presented. The

results obtained confirm the theoretical conclusions.
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8 Conclusion

In the present contribution, an original construction of

a strict Lyapunov functions is proposed for a mechan-

ical system with linear gyroscopic forces, nonlinear

homogeneous positional forces and nonlinear homo-

geneous dissipative forces of positional–viscous fric-

tion. Using this function, new conditions of the

asymptotic stability of a trivial equilibrium position

and estimates of the convergence rate of solutions are

obtained. Furthermore, delay-independent stability

conditions are found for systems with time-varying

delay in positional forces, and new approaches to the

design of nonlinear stabilizing controls are proposed

for the case where there is a delay in the in feedback

law.

An interesting direction for further research is

application of the developed approaches for stability

analysis of nonlinear mechanical systems with

switched force fields.
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29. Tunç, C.: Stability to vector Liénard equation with constant

deviating argument. Nonlinear Dyn. 73(3), 1245–1251

(2013)

30. Caldeira-Saraiva, F.: The boundedness of solutions of a

Liénard equation arising in the theory of ship rolling. IMA J.

Appl. Math. 36(2), 129–139 (1986)

31. Heidel, J.W.: Global asymptotic stability of a generalized

Liénard equation. SIAM J. Appl. Math. 19(3), 629–636

(1970)

32. Liu, B., Huang, L.: Boundedness of solutions for a class of

retarded Liénard equation. J. Math. Anal. Appl. 286(2),

422–434 (2003)

33. Rosier, L.: Homogeneous Lyapunov function for homoge-

neous continuous vector field. Syst. Control Lett. 19(6),

467–473 (1992)

34. Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-delay

Systems. Birkhauser, Boston, MA (2003)

35. Niculescu, S.: Delay Effects on Stability: A Robust Control

Approach. Lecture Notes in Control and Information Sci-

ence. Springer, New York (2001)

36. Aleksandrov, AYu., Hu, G.D., Zhabko, A.P.: Delay-inde-

pendent stability conditions for some classes of nonlinear

systems. IEEE Trans. Autom. Control 59(8), 2209–2214

(2014)

37. Aleksandrov, AYu., Aleksandrova, E.B., Zhabko, A.P.:

Asymptotic stability conditions and estimates of solutions

for nonlinear multiconnected time-delay systems. Circuits

Syst. Signal Process. 35, 3531–3554 (2016)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

Stability analysis and synthesis of stabilizing controls 3119


	Stability analysis and synthesis of stabilizing controls for a class of nonlinear mechanical systems
	Abstract
	Introduction
	Preliminaries
	Statement of the problem
	Stability conditions and estimates of solutions
	Delay-independent stability conditions
	Synthesis of stabilizing controls
	Examples
	Example 1
	Example 2

	Conclusion
	Acknowledgements
	References




