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Abstract A new adaptive neural control method,

with the actuators multiple constraints of amplitude

and rate into consideration, is proposed in this paper

for the flexible air-breathing hypersonic vehicle

(AHV). In order to better reflect the characteristics

of the actual AHV model, we regard the AHV as a

completely unknown non-affine system in the control

law design process, which is different from the

existing AHV control methods, thus ensuring the

reliability of the designed control law. On the basis of

the implicit function theorem, the radial basis function

neural network (RBFNN) is introduced to approxi-

mate the model. Meanwhile, the minimum learning

parameter algorithm is adopted to adaptively adjust

the weight vector of RBFNN, then the design of the

ideal control law is completed. When the amplitude

and rate of the actuator are saturated, the designed

novel auxiliary error compensation system is used to

effectively compensate for the ideal control law, and

the stability of the closed-loop control system is

proved via the Lyapunov stability theory. In addition,

to avoid the ‘‘explosion of terms’’ problem in the

control law design process, the finite-time-

convergence-differentiator is introduced to accurately

estimate the differential signal. Finally, the effective-

ness of the control method designed in this paper is

verified by simulation.

Keywords Air-breathing hypersonic vehicle �
Auxiliary error compensation system � Adaptive
neural control � Implicit function theorem � Minimum

learning parameter algorithm

List of symbols

m Vehicle mass

g Gravitational constant

Iyy Moment of inertia

fi Damping ratio for flexible modes gi
xi Natural frequency for flexible modes gi
~wi

Constrained beam coupling constant for gi
Lf The length of forward beam

La The length of aft beam

m̂f Mass distribution of forward beam

m̂a Mass distribution of aft beam

/fð�Þ Structural mode shape of forward beam

/að�Þ Structural mode shape of aft beam

�q Dynamic pressure

S Reference area

zT Thrust moment arm

�c Aerodynamic chord

�q Air density at height h

h0 Nominal altitude

�q0 Air density at the altitude h0
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1=hs Air density decay rate

ce Elevator coefficient

Cai
T

ith order coefficient of a in T

Cai
D

ith order coefficient of a in D

Cdei

T
ith order coefficient of de in T

Cdei

D
ith order coefficient of de in D

C0
T

Constant coefficient in T

C0
D

Constant coefficient in D

C0
L

Constant coefficient in L

Ca
L Coefficient of a in L

Cde
L

Coefficient of de in L

Cai
M;a

ith order coefficient of a in M

C0
M;a Constant coefficient in M

Nai
j

ith order contribution of a to Nj

N0
i

Constant term in Ni

Nde
2

Contribution of de to N2

biðh; �qÞ ith trust fit parameter

1 Introduction

The air-breathing hypersonic vehicle is a new type of

aircraft flying in the near space at a speed of more than

5 Ma. It has the advantages of fast flight speed, strong

penetration ability and high effect cost ratio, making it

the prior development direction of the world’s aero-

space powers for the air right [1–3]. However, the air

density, pressure, radiation, temperature, and wind

field in the AHV’s flight airspace are greatly different

from those in the environment where the traditional

aircraft is located. This results in AHV’s exhibiting

more significant cross-coupling, nonlinearity, non-

minimum phase behavior, and model uncertainty than

traditional aircraft in terms of dynamics [4, 5].

These characteristics of AHV bring great chal-

lenges to the design of control system, making AHV’s

flight control a frontier issue in the control field.

Considering that Scramjet is extremely sensitive to

flight attitude and to save fuel, AHV should avoid

lateral maneuvers in actual flight as far as possible [6].

Therefore, the modeling and control research of AHV

is mainly carried out in its longitudinal motion plane.

In order to solve this kind of complex control

problems, many scholars have carried out research in

recent years and achieved many results.

Some have carried out research on control methods

based on the idea of linear parameter-varying (LPV)

[7–15]. For rigid body model of AHV, Gang Gao and

Jinzhi Wang firstly obtain the LPV model using the

feedback linearization technique and then design a

robust controller via H1 method, which achieves

desired tracking performance with well robustness [7].

However, because they fail to consider the flexible

modes of the AHV, the designed control method is not

applicable to the flexible AHV model. In Ref. [8], for

flexible hypersonic vehicles, the reference tracking

problem is investigated via a novel switched LPV

framework. Hu Chaofang et al. propose a novel

passive fault-tolerant control method based on poly-

topic LPV for AHV [9]. In terms of basic theory,

Ref. [10] studies the design of H�=H1 fault detec-

tion observer for LPV descriptor systems, and

Ref. [11] studies the problem of asymptotic stability

for switched linear systems. Aiming at the control

problem of hypersonic vehicle, LPV anti-windup

model reference controller and finite-time LPV sliding

mode controller are designed in [12, 13], respectively.

Although the LPV-based control method has achieved

certain effects, it will offset some beneficial nonlinear

characteristics of AHV, resulting in wasting the

effectiveness of AHV actuators.

Many people choose to directly design the con-

troller for the nonlinear model of AHV, and back-

stepping control is such an important method. Using

flexible AHV model as a controlled object and

converting it to strict feedback form, Refs. [16, 17]

provide two effective backstepping control methods,

respectively. Combining backstepping scheme and

barrier Lyapunov functions, Refs. [18, 19] study the

finite-time tracking control problem of hypersonic

vehicle. For discrete-time switched piecewise-affine

systems, Yan-zheng Zhu and Wei Xing Zheng inves-

tigate the asymptotic stability analysis and state-

feedback control [20]. Based on extended state

observer and disturbance observer, anti-disturbance

backstepping control and robust backstepping control

are designed in Refs. [21, 22], respectively. In order to

deal with uncertainties and external disturbances in the

tracking process, Ref. [23] proposes a robust back-

stepping method based on a novel tracking differen-

tiator, and a fixed-time disturbance observer-based

fixed-time backstepping method is designed in

Ref. [24]. These methods have achieved good results,

but most of them are based on backstepping control
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methods, which require the continuous design steps of

virtual control laws, resulting in a cumbersome design

process.

Many scholars combine artificial intelligence with

automatic control, and propose some intelligent con-

trol methods. Among them, adaptive neural control

[25–27] and fuzzy control [28] occupy an important

position. By treating AHV as an unknown affine

system, Bu and Wu [29] propose an adaptive neural

control strategy, in which a neural network is

employed for the unknown function approximation.

Also based on neural networks, Refs. [30, 31] propose

integral sliding mode control method and stochastic

adaptive attitude control method to solve the control

problem of hypersonic vehicle, respectively. In order

to improve the transient performance of the control

system, Zhao and Liang [32] propose a prescribed

performance dynamic neural network control method.

Aiming at robust stability of system, the data-driven

realization of the closed-loop stability margin has been

studied in Ref. [33]. Based on fuzzy logic system,

Refs. [34, 35] design robust tracking controller and

fuzzy tracking controller, respectively. To improve the

performance of attitude command tracking, Liu

et al. [36] propose a fuzzy fast terminal sliding mode

control method. These methods have been proved to

have good control effects, but most of them simplify

the motion model of the AHV to the affine form of the

control input, which has certain limitations.

It is worth noting that the height and attitude of

AHV’s longitudinal motion are mainly controlled by

elevators, the efficiency of the elevator will decrease

significantly as the flying height increases [6]. On the

other hand, the AHV can be affected by unknown

airflows such as turbulence and gust during the flight

process. So the phenomenon of elevator saturation is

easy to appear when AHV flying at high altitude. Once

the actuators reach saturation, it may cause failure of

the control system [37]. Some scholars have conducted

research on anti-saturation control method of AHV. By

designing an adaptive law to approximate the actuator

constraints dynamics, Xu et al. [38] design a neural

controller via time-scale decomposition, which guar-

antees the uniformly ultimately boundedness of the

system. But they only consider the throttle setting

constraint of the engine. An adaptive terminal sliding

mode control method based on the inner-loop and

outer-loop systems is designed via using multilayer

neural networks for the approximation of the saturation

property of two control inputs in Ref. [37]. Similar to

Refs. [37, 38], through proposing adaptive laws to

estimate the information of input saturation constraint

online, Bing et al. [39] design an adaptive fault tolerant

control strategy, which makes AHV track the desired

trajectories in the presence of actuator fault and input

saturation. In Ref. [40], in order to deal with actuator

magnitude constraints, two auxiliary systems are

constructed to generate certain compensating signals.

Guangfu and Chen [41] introduce a sigmoid function

to approximate the saturation and guarantee that the

control input is bounded. In Ref. [42], Zhonghua Wu

et al. overcome the problem of actuator constraint with

the utilization of an assistant compensation system.

Although Refs. [37–42] solve the problem of AHV

control input constraints to some extent, none of them

theoretically proves that the tracking error is bounded

when the actuator is saturated. In view of this,

Xiangwei and Xiaoyan [43] construct an auxiliary

system to compensate the desired control laws thus

ensuring the stability of the closed-loop control system

and the boundedness of the tracking error. However,

most of the existing AHV anti-saturation control

methods only consider the case where the amplitude

of the actuator is constrained, and do not consider the

problem of its rate constraint.

In general, the above studies on AHV control

methods have achieved good results, but there are still

some shortcomings. Firstly, forcing AHV’s non-affine

motion model into an affine model will inevitably

result in the loss of certain key dynamic characteris-

tics. The control law designed based on the simplified

affine model will have the risk of partial or complete

failure. Secondly, the use of backstepping design

strategy requires repeated derivation of the virtual

control law, which leads to a cumbersome control law

design process and will have a certain adverse effect

on the final control accuracy. Thirdly, the above

studies on AHV anti-saturation control only consider

the condition of actuator amplitude constraint without

any compensation for its rate constraint, which will

cause the closed-loop control system to destabilize

when the control input rate is saturated.

In view of the above shortcomings, there are three

contributions in this paper. The first is to design the

control law with AHV as a completely unknown non-

affine system to enhance the reliability of the

controller. In combination with the implicit function

theorem, RBFNN is used to approximate the model by
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designing the appropriate adaptive law, then to

complete the design of the non-affine control law.

The second is to design a new type of adaptive neural

controller by equivalently transforming the AHV

model, which avoids the cumbersome backstepping

design process and ensures the control accuracy. The

third is to further consider the more realistic situation

in which both the amplitude and rate of the actuator are

constrained. A novel auxiliary error compensation

strategy is designed to effectively compensate for the

ideal control law, thus guaranteeing the stability of the

closed-loop control system and the boundedness of the

tracking error when the amplitude and rate of the

actuator are simultaneously constrained. The simula-

tion results verify the effectiveness and superiority of

the proposed method.

The rest of this paper is structured as follows:

Sect. 2 describes the longitudinal motion model of

AHV and prepares for the design of controller. And the

proposed adaptive neural control method is presented

in Sect. 3. Then, Sect. 4 analyzes the stability of the

proposed control method. Moreover, the simulation

results are shown in Sect. 5 to illustrate the effective-

ness of designed controller. Finally, Sect. 6 summa-

rizes the work of this paper and gives an outlook for

the future work.

2 AHV model and preliminaries

This section introduces the longitudinal motion model

of AHV and prepares for the design of subsequent

control laws. Firstly, in Sect. 2.1, the control-oriented

AHV longitudinal motion parameter fitting model is

described in detail. Then, the control objective of this

paper is explained in Sect. 2.2 and the AHV model is

converted equivalently to facilitate the design of the

controller later. Thirdly, in order to better design the

subsequent adaptive law, RBFNN is briefly introduced

in Sect. 2.3.

2.1 Model description

Based on the study of Bolender and Doman [44],

Parker, a scholar of the US Air Force Research

Laboratory, establishes a control-oriented AHV lon-

gitudinal motion parameter fitting model by neglect-

ing some weak coupling and slow dynamics in the

model [45].

_V ¼ T cos h� cð Þ � D

m
� g sin c ð1Þ

_h ¼ V sin c ð2Þ

_c ¼ Lþ T sin h� cð Þ
mV

� g

V
cos c ð3Þ

_h ¼ Q ð4Þ

_Q ¼ M þ ~w1€g1 þ ~w2€g2
Iyy

ð5Þ

k1€g1 ¼ �2f1x1 _g1 � x2
1g1 þ N1 � ~w1

M

Iyy
�

~w1
~w2€g2
Iyy

ð6Þ

k2€g2 ¼ �2f2x2 _g2 � x2
2g2 þ N2 � ~w2

M

Iyy
�

~w2
~w1€g1
Iyy

ð7Þ

with

k1 ¼ 1þ
~w1

Iyy

k2 ¼ 1þ
~w2

Iyy

~w1 ¼
Z 0

�Lf

m̂f n/f ðnÞdn

~w2 ¼
Z La

0

m̂an/aðnÞdn

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð8Þ

where velocity V , altitude h , flight-path c , pitch angle
h and pitch rate Q are the five rigid-body states; the

four flexible modes g1 , _g1 , g2 , _g2 denote the first two
bending modes of the fuselage. Force map of a AHV

model is shown in Fig. 1. The approximations of thrust

T , drag D , lift L , pitching moment M and the

generalized forces Niði ¼ 1; 2Þ are expressed as

Eq. (9).

Fig. 1 Force map of a AHV model
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T � Ca3
T a3 þ Ca2

T a2 þ Ca
Taþ C0

T

D � �qS Ca2
D a2 þ Ca

Daþ C
d2e
D d2e þ Cde

D de þ C0
D

� �

L � �qS Ca
Laþ Cde

L de þ C0
L

� �

M � zTT þ �qS�c Ca2
M;aa

2 þ Ca
M;aaþ C0

M;a þ cede
h i

N1 � Na2
1 a2 þ Na

1aþ N0
1

N2 � Na2
2 a2 þ Na

2aþ Nde
2 de þ N0

2

Ca3
T ¼ b1 h; �qð ÞUþ b2 h; �qð Þ

Ca2
T ¼ b3 h; �qð ÞUþ b4 h; �qð Þ

Ca
T ¼ b5 h; �qð ÞUþ b6 h; �qð Þ

C0
T ¼ b7 h; �qð ÞUþ b8 h; �qð Þ

�q ¼ 1

2
�qV2

�q ¼ �q0 exp
h0 � h

hs

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

where a ¼ h� c is angle of attack; fuel equivalence

ratio U and elevator angular deflection de are control

inputs. The definitions of the relevant parameters in

the above model are shown in Nomenclature. The

specific values can be found in Ref. [45].

2.2 Control objective and model conversion

According to Ref. [29], and by combining Eqs. (1)–

(5) and Eq. (9), we know that velocity V is mainly

controlled by fuel equivalence ratio U since the thrust

T is directly affected byU; on the other hand, altitude h
is mainly controlled by elevator angular deflection de
since de directly affects pitch rate Q, and then affects

pitch angle h and flight-path c, ultimately controls the

change of h. Therefore, we can firstly decompose the

AHV model into velocity subsystem [Eq. (1)] and

altitude subsystem [Eqs. (2)–(5)], and then design the

control law separately [46, 47].

For the velocity subsystem, the control objective is

to make V steadily track its reference commandV ref by

designing the control law U. Based on the research of

Ref. [29], the velocity subsystem of AHV is further

expressed as the following more general non-affine

form.

_V ¼ FVðV ;UÞ

yV ¼ V

(
ð10Þ

where FVðV ;UÞ is a completely unknown continu-

ously differentiable function; yV is the output signal of

the system (10).

At the same time, according to Ref. [45], the

following reasonable assumption is given.

Assumption 1 For any V;Uð Þ 2 XV � R, there is

the following inequality established.

oFVðV ;UÞ
oU

[ 0 ð11Þ

where XV is a controllable area.

For the altitude subsystem, the control target is to

design the control law de to make h stably track its

reference command href . Define the altitude tracking

error as ~h ¼ h� href . According to the research

conclusion of Ref. [29], the control target can be

converted to ensure c ! cd, where cd is the path angle
command, which is taken as

cd ¼ arcsin
�kc1 ~h� kc2

R t
0
~hdsþ _href

V

 !
ð12Þ

Similarly, according to the research conclusion in

Ref. [29], the rest of the altitude subsystem [Eqs. (3)–

(5)] is further expressed as the following more general

non-affine form

_c ¼ f 1ðc; hÞ
_h ¼ Q

_Q ¼ f 2ðx; deÞ

yh ¼ c

8>>>>><
>>>>>:

ð13Þ

where x ¼ c; h;Q½ �T. Both f 1ðc; hÞ and f 2ðx; deÞ are

completely unknown continuous differentiable func-

tions; yh is the output signal of system (13).

In order to facilitate subsequent control law design,

the following assumption is also given according to

Ref. [45].

Assumption 2 [48, 49] For any ðx; deÞ 2 Xx � R,

there is the following inequality established
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of 1ðc; hÞ
oh

[ 0

of 2ðx; deÞ
ode

[ 0

8>><
>>:

ð14Þ

where Xx is a controllable area.

In order to avoid the complex design process caused

by the search for virtual control laws in the backstep-

ping control, the following equivalent changes are

made to the system (13).

Step 1 Let z1 ¼ c, z2 ¼ _z1 ¼ f 1ðc; hÞ. According to

Eq. (13), the time derivative of z2 is derived as

_z2 ¼
of 1ðc; hÞ

oc
_cþ of 1ðc; hÞ

oh
_h

¼ of 1ðc; hÞ
oc

f 1ðc; hÞ þ
of 1ðc; hÞ

oh
Q

,f h1ðxÞ

ð15Þ

Step 2 Let z3 ¼ _z2 ¼ f h1ðxÞ. From Eq. (13), the time

derivative of z3 is derived as

_z3 ¼
of h1ðxÞ

oc
_cþ of h1ðxÞ

oh
_hþ of h1ðxÞ

oQ
_Q

¼ of h1ðxÞ
oc

f 1ðc; hÞ þ
of h1ðxÞ
oh

Qþ of h1ðxÞ
oQ

f 2ðx; deÞ

,f h2ðx; deÞ
ð16Þ

After the above model transformation, Eq. (13) is

transformed to the following non-affine pure feedback

model.

_z1 ¼ z2

_z2 ¼ z3

_z3 ¼ f h2ðx; deÞ

yh ¼ z1

8>>>>><
>>>>>:

ð17Þ

where f h2ðx; deÞ is a completely unknown continu-

ously differentiable function.

Remark 1 The existing references for the study of

flexible AHV model control problems mostly use

AHV as a strict feedback model with affine form (such

as Refs. [37–43]), which do not reflect the non-affine

form of the actual AHV model well. In this paper,

AHV is regarded as a non-affine pure feedback model

[Eqs. (10) and (13)], which better reflects the

characteristics of actual AHVmodel, and the proposed

non-affine control method is more reliable.

Remark 2 According to the value range of the rigid

body state of the AHV flight envelope described in

Ref. [45], Assumptions 1 and 2 are established.

Remark 3 From Eqs. (14)–(16), we can see

of h2ðx; deÞ
ode

¼ of h1ðxÞ
oQ

of 2ðx; deÞ
ode

¼ of 1ðc; hÞ
oh

of 2ðx; deÞ
ode

[ 0

ð18Þ

2.3 RBFNN approximation

The RBFNN owns a simple structure, strong learning

ability, and a global approximation ability for arbitrary

nonlinear continuous functions [50]. It can be

expressed as a mapping from input to output as follows

y ¼ WThðXÞ ð19Þ

where X ¼ ½X1;X2; . . .;Xn�T 2 Rn is the input vector;

n stands for the dimension of the input vector; W ¼
½w1;w2; . . .;wN �T 2 RN is the weight vector; N repre-

sents the number of hidden layer nodes;

hðXÞ ¼ ½h1ðXÞ; h2ðXÞ; � � � ; hNðXÞ�T 2 RN ; hiðXÞ
denotes activation function. Here, hiðXÞ is chosen as

the following Gaussian function

hiðXÞ ¼ exp � X � cik k2

2b2i

 !
; i ¼ 1; 2; . . .;N ð20Þ

where b ¼ ½b1; b2; . . .; bN �T 2 RN ; bi is the width of

the ith Gaussian function; c ¼ ½c1; c2; . . .; cN � 2 Rn�N ,

ci represents the center of the ith Gaussian function. It

can be expressed as follows

c ¼
c11 � � � c1N

..

. . .
. ..

.

cn1 � � � cnN

2
664

3
775

For any unknown nonlinear continuous function FðXÞ,
by using RBFNN and selecting enough nodes (select-

ing a sufficiently large N), there must be a set of ideal

weight vectorW� ¼ ½w�
1;w

�
2; . . .;w

�
N �

T 2 RN to satisfy

[50]
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FðXÞ ¼ W�ThðXÞ þ l; lj j � lM ð21Þ

where l 2 R is approximation error; lM 2 Rþ repre-

sents the upper bound of approximation error. When

taking N large enough, lM can be arbitrarily small.

Remark 4 Since expð	Þ is a strictly monotonically

increasing and positive function, and

�jjX � cijj2=ð2b2i Þ� 0, there is

0\hiðXÞ� hið0Þ ¼ 1. Therefore, there must be a

bounded constant �h 2 Rþ such that jjhðXÞjj � �h.

3 Adaptive neural controller design

This section presents the proposed adaptive neural

control method for AHV with actuators multiple

constraints. In Sects. 3.1 and 3.2, the adaptive neural

controllers are designed for velocity subsystem and

altitude subsystem, respectively. Then, in order to

accurately estimate the high-order differential signals

existing in the controller design process, finite-time-

convergence-differentiator (FD) is introduced in

Sect. 3.3.

3.1 Controller design for velocity subsystem

For the velocity subsystem [Eq. (10)], first define the

velocity tracking error

~V ¼ V � V ref ð22Þ

where V ref is velocity reference command.

Consider the actuator U constraint and define it as

U ¼

Umax;Uc [Umax

Uc;Umin �Uc �Umax

Umin;Uc\Umin

8>><
>>:

ð23Þ

where Uc is the ideal control law to be designed; Umin

and Umax are the upper and lower bound of U,
respectively.

In reality, the control input of the velocity subsys-

tem (fuel equivalence ratio U) can change at a faster

rate so that the phenomenon of actuator rate constraint

is not easy to occur, thus only the amplitude constraint

of actuator U is considered in this paper. However, for

the altitude subsystem [Eq. (13)], when the elevator is

in operation, its execution rate (the deflection rate of

the elevator _de) is affected by the physical structure

and servo performance, so that it is subject to certain

inherent constraints. Coupled with external distur-

bances such as gusts and turbulence, the deflection rate

of the elevator will easily be constrained. Therefore,

when designing the altitude subsystem controller in

the following, both the amplitude and rate constraints

of de will be considered.
In order to deal with the actuator saturation problem

mentioned above, design the following novel auxiliary

error compensation system

_nV ¼ �/Vsgn nVð Þ n2V
n2V þ bV

þ kVðU� UcÞ ð24Þ

where /V ; bV ; kV 2 Rþ are design parameters; nV is

the state variable of auxiliary system

Correct velocity tracking error ~V to

eV ¼ ~V � nV ð25Þ

Taking time derivative along Eq. (25) and combining

Eqs. (10), (22) and (24), we obtain

_eV ¼ _~V � _nV

¼ F�
VðV ;UÞ � _V ref þ /Vsgn nVð Þ n2V

n2V þ bV

þ kVUc

ð26Þ

where F�
VðV ;UÞ ¼ FVðV ;UÞ � kVU is a completely

unknown continuously differentiable function.

Design the ideal control law Uc as

Uc ¼ k�1
V Uc0 � Uc1ð Þ

Uc0 ¼ �kV1eV � kV2

Z t

0

eVdsþ _V ref

� /Vsgn nVð Þn2V=ðn
2
V þ bVÞ

8>>>><
>>>>:

ð27Þ

where kV1; kV2 2 Rþ are design parameters; Uc1 is an

adaptive neural control law to be designed to coun-

teract the influence of F�
V V ;Uð Þ.

In order to design Uc1, we use RBFNN to approx-

imate F�
V V ;Uð Þ and discuss it in two cases.

Case 1 If U is in saturation, there is U ¼ Umin or

U ¼ Umax. Since Umin and Umax are constants,

F�
V V;Uð Þ can be considered as a function of V. Taking

RBFNN’s input vector as V can achieve an effective

approximation to F�
V V ;Uð Þ.

Case 2 If U is not saturated, there is U ¼ Uc, then
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F�
VðV ;UÞ,F�

VðV ;UcÞ ð28Þ

For subsequent analysis, introduce the implicit func-

tion theorem [51]

Theorem 1 Assume that implicit function L : Rm �
Rn ! Rm is continuously differentiable at each point

x; yð Þ on open set Y 
 Rm � Rn. x0; y0ð Þ is the point

where L x0; y0ð Þ ¼ 0 is established in Y, and Jacobian

matrix oL=oxð Þ x0; y0ð Þ is non-singular. Then, there is
a neighborhood U 
 Rm of x0 and a neighborhood

G 
 Rn of y0, so that for any y 2 G, the equation

L x; yð Þ ¼ 0 has a unique solution x 2 U, and the

solution can be expressed as x ¼ g0ðyÞ. Here, g0ð	Þ is
a continuously differentiable function on y ¼ y0.

Remark 5 Theorem 1 shows that once implicit

function L(x, y) satisfies all conditions in the theorem,

x can be expressed as a continuously differentiable

function of y, and then there is x ¼ g0ðyÞ. Therefore,
when RBFNN is used to approximate L(x, y), a

satisfied approximation effect can be obtained only

by using y instead of x as the input signal of the neural

network. This is where the special meaning of the

implicit function theorem lies.

Construct the following function

H1ðV ;Uc0;Uc1Þ,F�
VðV ;UÞ � Uc1

,F�
VðV ;UcÞ � Uc1

¼ F�
VðV ; kV�1ðUc0 � Uc1ÞÞ � Uc1

ð29Þ

To illustrate that H1ðV;Uc0;Uc1Þ satisfies the implicit

function theorem, the following theorem is firstly

given.

Theorem 2 If

kV [
1

2

oFVðV ;UÞ
oU

ð30Þ

Then, for any ðV ;Uc1Þ 2 XV � R, there is a control-

lable domain XV 
 R and a unique Uc1, so that

H1ðV ;Uc0;Uc1Þ ¼ 0 ð31Þ

Proof According to Ref. [52], the sufficient condi-

tion for Uc1 to exist is that the following inequality

holds

oF�
VðV;UcÞ
oUc1

����
����\1 ð32Þ

Combine Eqs. (11), (27), (28) and (30)

oF�
VðV ;UcÞ
oUc1

����
���� ¼ oF�

VðV;UÞ
oUc1

����
����

¼ o½FVðV;UÞ � kVU�
oU

oUc

oUc1

����
����

¼ oFVðV;UÞ
oU

� kV

� �
1

kV

����
����

¼ 1

kV

oFVðV ;UÞ
oU

� 1

����
����\1

ð33Þ

Therefore, Uc1 exists. h

And then

oH1ðV ;Uc0;Uc1Þ
oUc1

¼ o½FVðV;UÞ � kVU�
oU

oUc

oUc1

� 1

¼ oFVðV;UÞ
oU

� kV

� �
� 1

kV

� �
� 1

¼ � 1

kV

oFVðV ;UÞ
oU

ð34Þ

Considering Eqs. (11) and (34), we get

oH1ðV ;Uc0;Uc1Þ
oUc1

\0 ð35Þ

Combining Theorems 1, 2 and Eq. (35), we can see

that H1ðV ;Uc0;Uc1Þ satisfies the implicit function

theorem. Therefore, Uc1 can be seen as a function of

Uc0 and V, and further F�
V V;Uð Þ can be regarded as a

function of Uc0 and V.

Considering the above two conditions comprehen-

sively, regardless of whether the actuator U is

constrained, and when the input vectors of the RBFNN

are taken as V and Uc0, an effective approximation to

F�
V V;Uð Þ can be achieved, which can be expressed as

follows.

F�
VðV ;UÞ ¼ W�T

V hðX1Þ þ e; ej j � eM ð36Þ

where X1 ¼ ½V ;Uc0�T 2 R2 is the input vector;W�T
V ¼

½w�
V1;w

�
V2; . . .;w

�
VN1

�T 2 RN1 is the weight vector; N1

represents the number of hidden layer nodes; e and eM
stand for approximation errors and its upper bounds;

hðX1Þ ¼ ½h1ðX1Þ; . . .hN1
ðX1Þ�T 2 RN1 , where hiðX1Þ
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is the activation function, here it is chosen as the

Gaussian function.

The following is based on the minimum learning

parameter algorithm (MLP) idea and adaptively

adjusting the norm of the RBFNN’s weight vector.

Define xV ¼ W�
V

		 		2 and design Uc1 as

Uc1 ¼
1

2
eV x̂Vh

TðX1ÞhðX1Þ ð37Þ

where x̂V is the estimation of xV ; and design its

adaptive law as

_̂xV ¼ lV
2
e2Vh

TðX1ÞhðX1Þ � 2x̂V ð38Þ

where lV 2 Rþ is design parameter.

3.2 Controller design for altitude subsystem

For the altitude subsystem (13), define flight-path

tracking error ~c and error function E

~c ¼ c� cd ¼ z1 � cd

E ¼ d

dt
þ k

� �3 Z t

0

~cds

¼ €~cþ 3k _~cþ 3k2~cþ k3
Z t

0

~cds

8>>>>>>><
>>>>>>>:

ð39Þ

where k 2 Rþ is design parameter. Since ðsþ kÞ3 is a
Hurwitz polynomial, when E is bounded, ~c must be

bounded.

Considering that elevator angular deflection de is

constrained in both amplitude and rate, define it as

de ¼

demax; dec [ demax

dec; demin � dec � demax

demin; dec\demin

8>><
>>:

ð40Þ

xe ¼

xemax;xec [xemax

xec;xemin �xec �xemax

xemin;xec\xemin

8>><
>>:

ð41Þ

wherexe ¼ _de is the deflection rate of the elevator; dec
andxec are the ideal control laws to be designed; demin

and demaxðdemax ¼ �demin [ 0Þare the upper and

lower bound of de, respectively; xemin and

xemaxðxemax ¼ �xemin [ 0Þ stand for the upper and

lower bound of xe, respectively.

In order to deal with the problem of amplitude

saturation of de [Eq. (40)], a new high-order auxiliary

system is designed as follows

_nh1 ¼ nh2

_nh2 ¼ nh3

_nh3 ¼ �/h1sgn nh3ð Þ n2h1
n2h1 þ bh1

� /h2

n2h2
n2h2 þ bh2

� /h3sgn nh3ð Þ n2h3
n2h3 þ bh3

þ kh de � decð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð42Þ

where nh1; nh2; nh3 2 R are the state variables of

auxiliary system; /h1, /h2, /h3, bh1, bh2, bh3 and kh 2
Rþ are design parameters.

Correct ~c and E as

ec ¼ ~c� nh1 ¼ z1 � cd � nh1

E0 ¼ d

dt
þ k

� �3 Z t

0

ecds

¼ €ec þ 3k _ec þ 3k2ec þ k3
Z t

0

ecds

8>>>>>>><
>>>>>>>:

ð43Þ

The first three order derivatives of ec are

_ec ¼ _z1 � _cd � _nh1 ¼ z2 � _cd � nh2

€ec ¼ _z2 � €cd � _nh2 ¼ z3 � €cd � nh3

e
...
c ¼ _z3 � c

...

d � _nh3 ¼ f h2ðx; deÞ � khde þ khdec � c
...

d

þ /h1sgn nh3ð Þn2h1
n2h1 þ bh1

þ /h2n
2
h2

n2h2 þ bh2
þ /h3sgn nh3ð Þn2h3

n2h3 þ bh3

¼ Fhðx; deÞ þ khdec � c
...

d þ
/h1sgn nh3ð Þn2h1

n2h1 þ bh1

þ /h2n
2
h2

n2h2 þ bh2
þ /h3sgn nh3ð Þn2h3

n2h3 þ bh3

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð44Þ

where Fhðx; deÞ ¼ f h2ðx; deÞ � khde.
Taking time derivative along E0 and combining

Eqs. (43) and (44), we have
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_E0 ¼ e
...
c þ 3k€ec þ 3k2 _ec þ k3ec

¼ Fhðx; deÞ þ khdec � c
...

d þ
/h1sgn nh3ð Þn2h1

n2h1 þ bh1

þ /h2n
2
h2

n2h2 þ bh2
þ /h3sgn nh3ð Þn2h3

n2h3 þ bh3
þ 3k€ec

þ 3k2 _ec þ k3ec

ð45Þ

Through the previous model conversion process, we

can see z2 ¼ _c and z3 ¼ €c. In order to avoid the

‘‘explosion of terms’’ problem, the FD will be used to

accurately estimate the differential signal. Use c as the
FD’s input signal (take n ¼ 4) to get the estimations of

z2 and z3, denoted as ẑ2 and ẑ3; Similarly, using cd as
the FD’s input signal (takes n ¼ 4), we can get

estimations for _cd, €cd, and c
...

d, represented as
_̂cd, €̂cd, and

ĉ
...

d, respectively.

Therefore, the estimate of the first three derivatives

of ec can be expressed as

_̂ec ¼ ẑ2 � _̂cd � nh2

€̂ec ¼ ẑ3 � €̂cd � nh3

ê
...

c ¼ Fhðx; deÞ þ khdec � ĉ
...

d þ
/h1sgn nh3ð Þn2h1

n2h1 þ bh1

þ /h2n
2
h2

n2h2 þ bh2
þ /h3sgn nh3ð Þn2h3

n2h3 þ bh3

8>>>>>>>>>>><
>>>>>>>>>>>:

ð46Þ

Combining Eqs. (43), (45) and (46), the estimations of

E0 and _E
0
are

Ê0 ¼ €̂ec þ 3k _̂ec þ 3k2ec þ k3
Z t

0

ecds ð47Þ

_̂
E0 ¼ Fhðx; deÞ þ khdec � ĉ

...

d þ
/h1sgn nh3ð Þn2h1

n2h1 þ bh1

þ /h2n
2
h2

n2h2 þ bh2
þ /h3sgn nh3ð Þn2h3

n2h3 þ bh3
þ 3k€̂ec

þ 3k2 _̂ec þ k3ec

ð48Þ

Design the ideal control law dec as

dec ¼ k�1
h ðdec0 � dec1Þ

dec0 ¼ �kh1Ê
0 þ ĉ

...

d � 3k€̂ec � 3k2 _̂ec

� k3ec �
/h1sgn nh3ð Þn2h1

n2h1 þ bh1
� /h2n

2
h2

n2h2 þ bh2

� /h3sgn nh3ð Þn2h3
n2h3 þ bh3

8>>>>>>>>>>><
>>>>>>>>>>>:

ð49Þ

where kh1 2 Rþ is design parameter. dec1 is the neural
control law to be designed to counteract the influence

of the unknown function Fhðx; deÞ.
Using RBFNN to approximate Fhðx; deÞ, the

following two situations are discussed.

Case 1 If de is in saturation, there is de ¼ demin or

de ¼ demax. Since both demin and demax are constants,

Fhðx; deÞ can be regarded as a function of x. Further-

more, using x as the input vector of RBFNN can

achieve an effective approximation to Fhðx; deÞ.
Case 2 If de is not saturated, there is de ¼ dec, and

then there is

Fhðx; deÞ,Fhðx; decÞ ð50Þ

Construct the following function

H2ðx; dec0; dec1Þ,Fhðx; deÞ � dec1

,Fhðx; decÞ � dec1

¼ Fhðx; kh�1ðdec0 � dec1ÞÞ � dec1

ð51Þ

Similar to the analysis process of Theorems 2, 3 is

given here, and the proof process is not repeated.

Theorem 3 If

kh [
1

2

of h2ðx; deÞ
ode

ð52Þ

For any ðx; dec0Þ 2 Xx � R, there is a controllable

domain Xx 
 R3 and a unique dec1, such that

H2ðx; dec0; dec1Þ ¼ 0 ð53Þ

Similar to Eq. (34), there is

oH2ðx; dec0; dec1Þ
odec1

\0 ð54Þ
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According to Theorem 3 and Eq. (54),

H2ðx; dec0; dec1Þ satisfies the implicit function theo-

rem. Then, dec1 can be regarded as a function of x and

dec0, and further Fhðx; deÞ can be regarded as a

function of x and dec0.
Considering the above two cases comprehensively,

if x and dec0 are used as the input vectors of the

RBFNN, an effective approximation to Fhðx; deÞ can
be achieved, which can be expressed as

Fhðx; deÞ ¼ W�T
h h X2ð Þ þ i; ij j � iM ð55Þ

where X2 ¼ ½xT; dec0�T 2 R4 is the input vector;

W�T
h ¼ ½w�

h1;w
�
h2; . . .;w

�
hN2

�T 2 RN2 is the weight vec-

tor; N2 represents the number of hidden layer nodes; i
and iM stand for approximation errors and its upper

bounds; hðX2Þ ¼ ½h1ðX2Þ; . . .hN1
ðX2Þ�T 2 RN2 , where

hiðX2Þ is the activation function, here it is chosen as

the Gaussian function.

Define xh ¼ W�
h

		 		2, design dec1 as

dec1 ¼
1

2
Ê
0
x̂hh

TðX2ÞhðX2Þ ð56Þ

where x̂h is the estimation of xh; Its adaptive law is

designed to

_̂xh ¼
lh
2
Ê
02
hTðX2ÞhðX2Þ � 2x̂h ð57Þ

where lh 2 Rþ is design parameter.

Through the above analysis, under the condition

that the amplitude of the elevator angular deflection is

constrained, we have obtained the control law de
[Eqs. (40), (49) and (56)] that needs to be executed.

However, considering the saturation of the deflection

rate of the elevator [Eq. (41)], the above de may not be

effectively executed, resulting in the instability of the

closed-loop control system. The following is divided

into three cases.

Case 1 If de is in saturation, there is de ¼ demax or

de ¼ demin. In this case, there is xe ¼ _de ¼ 0, the

deflection rate of the elevator is not saturated, and the

control law de can be effectively executed.

Case 2 If de is not in saturation, there is

demin � de ¼ dec � demax. And if xemin\ _de\xemax,

then de can be effectively executed.

Case 3 If demin � de ¼ dec � demax, and if
_dec [xemax or _dec\xemin, then de cannot be effec-

tively executed.

In order to avoid the instability of the closed-loop

control system caused by de being unable to be

executed, the ideal control law dec needs to be

corrected. The corrected control law is designed as

follows

d�ec ¼
dec; Case 1 and Case 2

d0ec; Case 3



ð58Þ

For Case 3, define the execution error of de

~de ¼ d0ec � dec ð59Þ

where d0ec stands for executable de. Its first derivative
_d
0
ec ¼ xe is the actual deflection rate of the elevator.

Considering that the deflection rate of the elevator

is constrained, design the following auxiliary system

_nd ¼ �/dsgn ndð Þ n2d
n2d þ bd

þ ðxe � xecÞ ð60Þ

where /d; bd 2 Rþ are design parameters; nd is the

state variable of auxiliary system.

Correct ~de to

ed ¼ ~de � nd ð61Þ

Take time derivative along Eq. (61)

_ed ¼ _~de � _nd

¼ xe � _dec � xe þ xec þ /dsgn ndð Þ n2d
n2d þ bd

¼ xec � _dec þ /dsgn ndð Þ n2d
n2d þ bd

ð62Þ

Design the ideal control law xec as

xec ¼ �kd1ed � kd2

Z t

0

eddsþ _̂dec �
/dsgn ndð Þn2d
n2d þ bd

ð63Þ

where kd1; kd2 2 Rþ are design parameters;
_̂dec is the

estimation of _dec, which can be acquired using FD

below.

Combining Eqs. (41) and (63), the actual xe can be

obtained so that d0ec can be expressed as
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d0ec ¼
Z t

0

xeds ð64Þ

3.3 Finite-time-convergence-differentiator (FD)

Consider the following FD [53]

_x1 ¼ x2

_x2 ¼ x3

..

.

_xn�1 ¼ xn

_xn ¼ Rn �a1 arctan x1 � tðtÞð Þ � a2 arctan
x2
R

� �h

� � � � � an arctan
xn

Rn�1

� ��

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð65Þ

where R; aiði ¼ 1; 2; . . .; nÞ 2 Rþ are design parame-

ters;xiði ¼ 1; 2; . . .; nÞ are the state variables of sys-

tem; x1 is the estimation of tðtÞ; xiði ¼ 2; 3; . . .; nÞ
stands for the estimation of the ði� 1Þth derivative of

tðtÞ.
According to Ref. [53], for the system (65), there

are /[ 0 and i/[ n so that

xi � tði�1ÞðtÞ ¼ O
1

R

� �i/�iþ1
 !

; i ¼ 1; 2; . . .; n

ð66Þ

where Oðð1=RÞi/�iþ1Þ represents the approximation

of ð1=RÞi/�iþ1
order between xi and tði�1ÞðtÞ.

Therefore, there must be a bounded constant

miM [ 0

xi � tði�1ÞðtÞ
�� ��� miM ð67Þ

The above FD is used to estimate z2, z3, _cd, €cd, c
...

d and
_dec.

_̂z1 ¼ ẑ2

_̂z2 ¼ ẑ3

_̂z3 ¼ ẑ4

_̂z4 ¼ R4
1 �a11 arctan ẑ1 � cð Þ � a12 arctan

ẑ2
R1

� ��

�a13 arctan
ẑ3
R2
1

� �
� a14 arctan

ẑ4
R3
1

� ��

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð68Þ

ðĉdÞ0 ¼ _̂cd

ð _̂cdÞ0 ¼ €̂cd

ð€̂cdÞ0 ¼ ĉ
...

d

ð ĉ
...

dÞ0 ¼ R4
2 �a21 arctan ĉd � cdð Þ � a22 arctan

_̂cd
R2

 !"

�a23 arctan
€̂cd
R2
1

 !
� a24 arctan

ĉ
...

d

R3
2

 !#

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð69Þ

ðd̂ecÞ0 ¼ _̂dec

ð _̂decÞ0 ¼ R2
3 �a31 arctan d̂ec � dec

� �
� a32 arctan

_̂dec
R3

 !" #
8>>><
>>>:

ð70Þ

where Ri; aijði ¼ 1; 2; 3; j ¼ 1; 2; 3; 4Þ 2 Rþ are

design parameters; ð�Þ0 represents the first derivative

of �; ẑ1, ẑ2, ẑ3 and ẑ4 represent the estimations of z1ðcÞ,
z2ð _cÞ, z3ð€cÞ and z4ðc

...Þ, respectively;ĉd, _̂cd, €̂cd and ĉ
...

d

stand for the estimations of cd, _cd, €cd and ĉ
...

d,

respectively; d̂ec and
_̂dec are the estimations of dec

and _dec, respectively.
The structure of the proposed control scheme is

shown in Fig. 2.

4 Stability analysis

This section analyzes the stability of the proposed

control method. In Sect. 4.1, the proof of Theorem 4

shows that the velocity subsystem is stable and

velocity tracking error ~V is bounded. And in Sect. 4.2,
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the stability of the altitude subsystem and the bound-

edness of path angle tracking error ~c are proved by

Theorem 5.

4.1 Stability analysis for velocity subsystem

Theorem 4 For the velocity subsystem of AHV

[Eq. (10)], considering the saturation of actuator U
[Eq. (23)], and using the designed control laws (27),

(37) and the adaptive law (38), the closed-loop control

system is semi-globally uniformly ultimately stable,

and the velocity tracking error ~V is bounded.

Proof The proof process can be divided into two

steps.

Step 1. Prove that eV is bounded.

Define the estimation error of xV

~xV ¼ x̂V � xV ð71Þ

Substituting Eqs. (27), (36) and (37) into Eq. (26), we

get

_eV ¼ Uc0 � Uc1 þW�T
V hðX1Þ þ e� _V ref þ

/VsgnðnVÞn2V
n2V þ bV

¼ �kV1eV � kV2

Z t

0

eVds�
1

2
eVx̂Vh

TðX1ÞhðX1Þ

þW�T
V hðX1Þ þ e

ð72Þ

Choose the following Lyapunov function

WV¼
1

2
e2V þ 1

2
kV2

Z t

0

eVds

� �2

þ ~x2
V

2lV
ð73Þ

Taking time derivative along Eq. (73) and invoking

Eqs. (38) and (72), we have

Fig. 2 The structure of the

proposed control scheme
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_WV ¼ eV _eV þ kV2eV

Z t

0

eVdsþ
~xV

_̂xV

lV

¼ eV �kV1eV � kV2

Z t

0

eVds

�

� 1

2
eVx̂Vh

TðX1ÞhðX1Þ þW�T
V hðX1Þ þ e

�

þ kV2eV

Z t

0

eVdsþ
~xV

lV

lV
2
e2Vh

TðX1ÞhðX1Þ � 2x̂V

h i

¼ �kV1e
2
V � 1

2
e2VxVh

TðX1ÞhðX1Þþ

eVW
�T
V hðX1Þ þ eVe�

2 ~xVx̂V

lV

ð74Þ

Since

eVW
�T
V hðX1Þ�

eV
2

2
W�T

V hðX1Þ
		 		2 þ 1

2

eVe�
eV

2

4
þ e2M; 2 ~xV x̂V � ~x2

V � x2
V

According to Cauchy–Schwarz inequality

W�T
V hðX1Þ

		 		� W�
V

		 		 hðX1Þk k

And then

eVW
�T
V hðX1Þ�

eV
2

2
W�

V

		 		2 hðX1Þk k2 þ 1

2

¼ eV
2

2
xVh

TðX1ÞhðX1Þ þ
1

2

At this point, Eq. (74) becomes

_WV � � kV1 �
1

4

� �
e2V � ~x2

V

lV
þ 1

2
þ e2M þ x2

V

lV
ð75Þ

Let kV1 [ 1=4 and define the following compact sets

XeV ¼ eV eVj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ e2M þ x2

V

lV

� �
= kV1 �

1

4

� �s�����
( )

X ~xV
¼ ~xV ~xVj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ e2M þ x2

V

lV

� �
=

1

lV

� �s�����
( )

ð76Þ

If eV 62 XeV or ~xV 62 X ~xV
, then _WV\0, so the closed-

loop control system is semi-globally uniformly ulti-

mately stable. The errors eV and ~xV are semi-globally

uniformly ultimately bounded, and eventually

converge into compact setsXeV andX ~xV
, respectively.

By selecting kV1 sufficiently large and lV sufficiently

small, the compact sets XeV and X ~xV
can be arbitrarily

small, and the errors eV and ~xV can also be arbitrarily

small.

The above analysis process proves the stability of

the closed-loop control system and ensures that the

correct error eV is bounded, but it cannot ensure that

the velocity tracking error ~V is bounded such that the

control task still has the risk of failure. To illustrate

that ~V is bounded, further analysis is performed as

follows.

Step 2 Prove that ~V is bounded.

It has been proved that eV and ~xV are bounded, and

because /VsgnðnVÞn2V= n2V þ bV
� 
�� ��\/V is also

bounded, it is known from Eq. (27) thatUc is bounded.

Combining with the Assumption 1, we can see that

there must be a bounded constant #U

jU� Ucj �#U ð77Þ

Select the following Lyapunov function

W1 ¼
1

2
n2V ð78Þ

Taking time derivative along Eq. (78) and invoking

Eq. (24), we get

_W1 ¼ nV _nV

¼ �/Vsgn
2ðnVÞ

n3V
n2V þ bV

þ kVnVðU� UcÞ

� � /V

nVj j3

n2V þ bV
þ kV nVj j#U

¼ � nVj j /V

nVj j2

n2V þ bV
� kV#U

 !

ð79Þ

If /V [/V nVj j2= n2V þ bV
� 


[ kV#U, then _W1\0. So

the closed-loop system is globally uniformly ulti-

mately stable, and nV is globally uniformly ultimately

bounded.

Therefore, ~V ¼ eV þ nV is also bounded. h

4.2 Stability analysis for altitude subsystem

Theorem 5 For the altitude subsystem of AHV

[Eq. (17)], considering the amplitude and rate
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saturation of actuator de [Eqs. (40) and (41)], and

using the designed control laws (49), (58) and the

adaptive law (56), then the closed-loop control system

is semi-globally uniformly ultimately stable, and the

path angle tracking error ~c is bounded.

Proof Prove in three steps.

Step 1 Prove that ~de is bounded.
First, it is explained that the elevator execution

error ~de is bounded. From Eq. (67), there is a bounded

constant 1M such that

_̂dec � _dec
���

���� 1M ð80Þ

Substituting Eq. (63) into Eq. (62), we obtain

_ed ¼ xec � _dec þ /dsgn ndð Þ n2d
n2d þ bd

¼ �kd1ed � kd2

Z t

0

eddsþ _̂dec � _dec

ð81Þ

Take the following Lyapunov function

Wd ¼
e2d
2
þ kd2

2

Z t

0

edds

� �2

ð82Þ

Take time derivative along Eq. (82) and invoke

Eq. (81)

_Wd ¼ ed _ed þ kd2ed

Z t

0

edds

¼ ed �kd1ed � kd2

Z t

0

eddsþ _̂dec � _dec

� �

þ kd2ed

Z t

0

edds

¼ �kd1e
2
d þ ed

_̂dec � _dec
� �

ð83Þ

Combining with Eq. (80), we can see

_Wd � � kd1e
2
d þ ed1M

� � kd1 �
1

2

� �
e2d þ

1

2
12M

ð84Þ

Let kd1 [ 1=2 and define the following compact sets

Xd ¼ ed edj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12M= 2kd1 � 1ð Þ

q����

 �

ð85Þ

If ed 62 Xd, then _Wd\0. Therefore, the closed-loop

control system is semi-globally uniformly ultimately

stable, and the error ed is semi-globally uniformly

ultimately bounded, and eventually converges into the

compact set Xd.

/dsgnðndÞn2d= n2d þ bd
� 
�� ��\/d is bounded, soxec is

bounded by Eq. (63). Combining Eq. (41), it can be

derived thatxe is bounded, so there must be a bounded

constant #d so that

xe � xecj j �#d ð86Þ

Select the following Lyapunov function

W2¼
1

2
n2d ð87Þ

Take time derivative along Eq. (87) and invoke

Eq. (60)

_W2 ¼ nd _nd

¼ �/dsgn
2ðndÞ

n3d
n2d þ bd

þ ndðx� xecÞ

� � /d
ndj j3

n2d þ bd
þ ndj j#d

¼ � ndj j /d
ndj j2

n2d þ bd
� #d

 !
ð88Þ

If /d [/d ndj j2=ðn2d þ bdÞ[#U, then _W2\0, so nd is
globally uniformly ultimately bounded.

Therefore, ~de ¼ ed þ nd is bounded. The following
shows that ec is also bounded.

Step 2 Prove that ec is bounded.

Replacing the ideal control law dec in Eq. (48) with

the correct control law d�ec, we get

_̂
E0 ¼ Fhðx; deÞ þ khd

�
ec � ĉ

...

d þ
/h1sgnðnh3Þn2h1

n2h1 þ bh1

þ /h2

n2h2
n2h2 þ bh2

þ /h3sgnðnh3Þn2h3
n2h3 þ bh3

þ 3k€̂ec

þ 3k2 _̂ec þ k3ec

ð89Þ

Taking into account the elevator deflection rate

constraint problem, the following two cases are

analyzed.

Case 1 The elevator deflection rate is not con-

strained and the control law de can be effectively

performed. At this point, d�ec ¼ dec is known from

Eq. (58). In combination with Eqs. (49), (55) and

(56), then Eq. (89) can be changed to
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_̂
E0 ¼ �kh1Ê

0 � 1

2
Ê
0
x̂hh

TðX2ÞhðX2Þ

þW�T
h h X2ð Þ þ i

ð90Þ

Define estimation error of xh

~xh ¼ x̂h � xh ð91Þ

Select the following Lyapunov function

Wh¼
1

2
Ê02 þ ~x2

h

2lh
ð92Þ

Taking time derivative along Eq. (92) and invoking

Eqs. (57), (90) and (91), we obtain

_Wh ¼ Ê0 _̂E0 þ ~xh
_̂xh

lh

¼ Ê0 �kh1Ê
0 � 1

2
Ê
0
x̂hh

TðX2ÞhðX2Þ þW�T
h h X2ð Þ

�

þi� þ ~xh

lh

lh
2
Ê
02
hTðX2ÞhðX2Þ � 2x̂h

h i

¼ �kh1Ê
02 � 1

2
Ê
02
xhh

TðX2ÞhðX2Þ þ Ê
0
W�T

h h X2ð Þ

þ Ê
0
i� 2 ~xhx̂h

lh
ð93Þ

Since,

Ê
0
W�T

h h X2ð Þ� Ê
02

2
W�T

h h X2ð Þ
		 		2 þ 1

2

2 ~xhx̂h

lh
� ~x2

h

lh
� x2

h

lh

Ê
0
i� Ê

0
i

���
���� Ê

02

4
þ i2M

According to the Cauchy–Schwarz inequality

W�T
h h X2ð Þ

		 		� W�
h

		 		 h X2ð Þk k

Further,

Ê
0
W�T

h h X2ð Þ� Ê
02

2
W�

h

		 		2 hðX2Þk k2 þ 1

2

¼ Ê
02

2
xhh

TðX2ÞhðX2Þ þ
1

2

Then, Eq. (93) can be transformed to

_Wh � � kh1 �
1

4

� �
Ê
02 � ~x2

h

lh
þ 1

2
þ i2M þ x2

h

lh
ð94Þ

Let kh1 [ 1=4 and define the following compact sets

X
Ê
0 ¼ Ê

0
Ê
0

���
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ i2M þ x2

h

lh

� �.
kh1 �

1

4

� �s�����
( )

X ~xh
¼ ~xh ~xhj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ i2M þ x2

h

lh

� �. 1

lh

� �s�����
( )

ð95Þ

If Ê
0 62 X

Ê
0 or ~xh 62 X ~xh

, then _Wh\0. Therefore, Ê
0

and ~xh are semi-globally uniformly ultimately

bounded and eventually can be converged to X
Ê
0 and

X ~xh
, respectively. By choosing appropriate parame-

ters, X
Ê
0 and X ~xh

can be arbitrarily small, and the

errors Ê
0
and ~xh can also be arbitrarily small.

Case 2 The elevator deflection rate is constrained

and the control law de cannot be effectively executed.

At this point, we can see from Eqs. (58) and (59) that

d�ec ¼ d0ec ¼ dec þ ~de ð96Þ

In combination with Eqs. (49), (55), (56) and (96),

Eq. (89) can be transformed to

_̂
E0 ¼ �kh1Ê

0 � 1

2
Ê
0
x̂hh

TðX2ÞhðX2Þ

þW�T
h h X2ð Þ þ iþ kh~de

ð97Þ

It has been proved that ~de is bounded, so there must be

a nonnegative bounded constant jM such that

~de
�� ��� jM ð98Þ

The analysis process is the same as that in case 1, and

combined with Eqs. (98), (94) can become

_Wh � � kh1 �
1

4

� �
Ê
02 � ~x2

h

lh
þ 1

2
þ i2M þ x2

h

lh
þ khjM

ð99Þ

Also let kh1 [ 1=4 and change the compact set (95) to

X0
Ê
0 ¼ Ê

0
Ê
0

���
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ i2M þ x2

h

lh
þ khjM

� �.
kh1 �

1

4

� �s�����
( )

X0
~xh
¼ ~xh ~xhj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ i2M þ x2

h

lh
þ khjM

� �. 1

lh

� �s�����
( )
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If Ê
0 62 X0

Ê
0 or ~xh 62 X0

~xh
, then _Wh\0. Therefore, at

this time, Ê
0
and ~xh are also semi-globally uniformly

ultimately bounded, and eventually converge to X0
Ê
0

and X0
~xh
, respectively.

From the analysis of cases 1 and 2, it can be seen

that Ê
0
and ~xh are always bounded regardless of

whether the elevator deflection rate is constrained. The

following further illustrates that E0 is bounded.
Define estimation error of FD

m1 ¼ ẑ2 � z2; m2 ¼ ẑ3 � z3

m3 ¼ _̂cd � _cd; m4 ¼ €̂cd � €cd; m5 ¼ ĉ
...

d � c
...

d

8<
: ð100Þ

According to Eq. (67), there is miM 2 Rþ such that

mi � miMði ¼ 1; 2; . . .; 5Þ ð101Þ

Combine Eqs. (43) (47) and (100)

E0 ¼ Ê
0 þ ðz3 � ẑ3 þ €̂cd � €cdÞ

þ 3kðz2 � ẑ2 þ _̂cd � _cdÞ

¼ Ê
0 þ m4 � m2 þ 3kðm3 � m1Þ

ð102Þ

Considering Eq. (100), then Eq. (102) becomes

E0 � Ê
0 þ m4M þ m2M þ 3kðm3M þ m1MÞ ð103Þ

Therefore, E0 is bounded and further ec is also

bounded. The following further proves the bounded-

ness of ~c.
Step 3 Prove that ~c is bounded.

For polynomial �3k€̂ec � 3k2 _̂ec � k3ec in dec0
[Eq. (49)], according to Eq. (44), (46) and (100), we

have

� 3k€̂ec � 3k2 _̂ec � k3ec

¼ �3k €ec þ m2 � m4
� 


� 3k2 _ec þ m1 � m3
� 


� k3ec

� � 3k€ec � 3k2 _ec � k3ec

þ 3k m2M þ m4Mð Þ þ 3k2 m1M þ m3Mð Þ

ð104Þ

And /hin
2
hi= n2hi þ bhi
� 
�� ��\/hiði ¼ 1; 2; 3Þ is

bounded. Since Ê
0
, ~xh, and ec have been proved to

be bounded, it can be known that dec is bounded by

combining Remark 4 and Eq. (56). Therefore, there

must be a nonnegative bounded constant #de such that

de � decj j �#de .

Select the following positive Lyapunov function

W3 ¼ /h2

Z nh1

0

s21
s21
�� ��þ bh1

ds1

þ /h2

Z nh2

nh1

s22
s22
�� ��þ bh2

ds2 þ
n2h3
2

ð105Þ

Taking time derivative along Eq. (105) and invoking

Eq. (42), we get

_W3 ¼ /h2

n2h1
n2h1 þ bh1

_nh1 þ /h2

n2h2
n2h2 þ bh2

_nh2

 

� /h2

n2h1
n2h1 þ bh1

_nh1

!
þ nh3 _nh3

¼ nh3sgn nh3ð Þ �/h1

n2h1
n2h1 þ bh1

� /h3

n2h3
n2h3 þ bh3

"

þ kh de � decð Þ�

� � /h1

n2h1
n2h1 þ bh1

þ /h3

n2h3
n2h3 þ bh3

� kh#de

" #
nh3j j

ð106Þ

If /h1 [/h1n
2
h1=ðn

2
h1 þ bh1Þ[ kh#de or

/h3 [/h3n
2
h3=ðn

2
h3 þ bh3Þ [ kh#de , then _W3\0.

Therefore, the system (42) is uniformly stable, and

its state variables nh1, nh2 and nh3 are bounded. So it

can be further seen that ~c ¼ ec þ nh1 is also bounded.

h

5 Simulation results

With AHV longitudinal motion model [Eqs. (1)–(7)]

as the controlled object, the tracking simulation of

velocity and altitude reference commands is per-

formed using a fourth-order Runge–Kutta method.

The simulation step length is set to 0.01 s and the

simulation period is set to 300 s. The initial state value

of AHV is shown in Table 1. The velocity reference

command V ref and the altitude reference command href
are given by the following second-order system

V refðsÞ
VIðsÞ

¼ hrefðsÞ
hIðsÞ

¼ x2
n

s2 þ 2fnxnsþ x2
n

ð107Þ
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where damping ratio fn ¼ 0:9; natural frequency

xn ¼ 0:1 rad/s; VI is a step signal with a step

amplitude of 150 m/s per 100 s; hI is a square wave

signal with an amplitude of 200 m and a period of

200 s.

To verify the robustness of the control law, suppose

that there is the following perturbation of 40% in AHV

model

D ¼
D0; 50i� t\50ðiþ 1Þ

D0½1þ 0:4 sinð0:1ptÞ�; 50ðiþ 1Þ� t\50ðiþ 2Þ




where i ¼ 0; 2; 4; D0 represents nominal value;

D stands for simulation value.

At the same time, the external disturbance d1 is

added in Eq. (1), and the external disturbance d2 is

added in Eq. (5). Their expressions are as follows

d1 ¼ d2 ¼ 0; 0s� t\150s

d1 ¼ 2 sinð0:1ptÞ; d2 ¼ 0:02 sinð0:1ptÞ; t[ 150s




The simulation uses control laws (27), (58) and

adaptive laws (38), (57). The control law design

parameters are selected as: kV ¼ 0:9, kV1 ¼ 0:3,

kV2 ¼ 0:8, kc1 ¼ 2, kc2 ¼ 0:1, kh ¼ 0:9, kh1 ¼ 50,

kd1 ¼ kd2 ¼ 1 and k ¼ 7; the adaptive design param-

eters are: lV ¼ lh ¼ 0:05; auxiliary system design

parameters are taken as: /V ¼ 1,

bV ¼ bh1 ¼ bh2 ¼ bh3 ¼ 0:1, /h1 ¼ 0:5,

/h2 ¼ /h3 ¼ 1, /d ¼ 0:1 and bd ¼ 0:5; FD design

parameters are taken as:R1 ¼ R2 ¼ 0:05, R3 ¼ 2,

a11 ¼ a13 ¼ a21 ¼ a23 ¼ 0:5,

a12 ¼ a14 ¼ a22 ¼ a24 ¼ 0:1, a31 ¼ 2, a32 ¼ 1; the

numbers of RBFNN nodes are taken as

N1 ¼ N2 ¼ 20; in the velocity subsystem, the center

c1 of the Gaussian function is evenly spaced within

[2500 m/s, 3100 m/s] � [- 0.1, 1], and its width b1 is

taken as 6.56; in altitude subsystem, the center c2 of

Table 1 Initial trim

conditions
Item Value Unit

V 2500 m/s

h 27,000 m

c 0 �
h 1.5295 �
Q 0 �=s
g1 0.2857 –

g2 0.2350 –

Fig. 3 Velocity tracking performance of Example 1

Fig. 4 Altitude tracking performance of Example 1

Fig. 5 Flight-path angle of Example 1
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Gaussian function is evenly spaced in [�1�, 1�]� [0�,
5�]�[�5�=s , 5�=s ]�[0 rad, 0.35 rad]; the width b2 is

selected as 0.01. The simulation is carried out in the

following three examples.

Example 1 Under the above simulation conditions,

considering that the control inputs amplitude are

constrained, their executable range is taken as U 2
0:05; 1½ � and de 2 �18

�
; 18

�� �
. In the simulation

figures, the subscript ‘‘1’’ represents the result of

adopting the method of this paper, and the subscript

‘‘2’’ represents the result of adopting the method in

Ref. [43] (Figs. 3, 4, 5, 6, 7, 8, 9).

Example 2 Further consider that the control input

rate is also constrained, set the actuator control

constraints to U 2 0:05; 1½ �, de 2 �18
�
; 18

�� �
and

_de 2 �50
�
=s ; 50

�
=s

� �
. Use the method in Ref. [43]

for simulation (Figs. 10, 11, 12, 13, 14, 15).

Example 3 Considering that the actuator amplitude

and rate are both constrained, the actuator constraints

are the same as those in case 2, which is taken as

U 2 0:05; 1½ �, de 2 �18
�
; 18

�� �
and

Fig. 6 Flexible states of Example 1

Fig. 7 Fuel-air equivalence ratio of Example 1

Fig. 8 Elevator angular deflection of Example 1
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Fig. 9 Rate of elevator angular deflection of Example 1

Fig. 10 Velocity tracking performance of Example 2

Fig. 11 Altitude tracking performance of Example 2

Fig. 12 Flexible states of Example 2

Fig. 13 Fuel-air equivalence ratio of Example 2
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Fig. 14 Elevator angular deflection of Example 2

Fig. 15 Rate of elevator angular deflection of Example 2

Fig. 16 Velocity tracking performance of Example 3

Fig. 17 Altitude tracking performance of Example 3

Fig. 18 Flexible states of Example 3

Fig. 19 Auxiliary error compensation of Example 3
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_de 2 �50
�
=s; 50

�
=s

� �
. Use the method proposed in

this paper to simulate (Figs. 16, 17, 18, 19, 20, 21, 22).

From the above simulation results, we can see that

when the amplitude of the actuator of the AHV is

constrained but the rate is not (see Figs. 7, 8 and 9), the

method proposed in this paper or the method in

Ref. [43] can guarantee V and h stably track the

respective reference commands (see Figs. 3 and 4) .

And both of them can effectively suppress the flexible

vibration of the AHV (see Fig. 6). However, the

tracking accuracy and anti-interference ability of the

proposed method are slightly better than those in

Ref. [43] (see Figs. 3 and 4). Further, when both the

amplitude and rate of the actuator of the AHV are

constrained (see Figs. 13, 14 and 15), the stability of

the closed-loop control system cannot be guaranteed

by the method in Ref. [43] (see Figs. 10 and 11). But

using the method designed in this paper, even if U, de,

and _de are all constrained (see Fig. 20, 21 and 22),

V and h can still stably track the reference commands

(see Figs. 16 and 17) by the effective compensation of

Fig. 20 Fuel-air equivalence ratio of Example 3

Fig. 21 Elevator angular deflection of Example 3

Fig. 22 Rate of elevator angular deflection of Example 3
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the auxiliary system (see Fig. 19). And it can effec-

tively suppress the flexible vibration (see Fig. 18).

Remark 6 On one hand, in [43], forcibly simplifying

non-affine motion model of AHV to affine motion

model will inevitably result in the loss of some key

kinematic characteristics. However, in this paper, the

control law designed for the AHV non-affine motion

model is more reliable. In addition, different from

Ref. [43], the high-order differential signal is accu-

rately estimated by using FD in this paper, which

reduces the influence of external noise on the control

system and further improves the anti-interference

ability and robustness of the control system.

On the other hand, in [43], by adopting relevant

methods to modify the ideal control law, only the

condition of actuator amplitude constraint can be dealt

with, but its rate constraint is not compensated in any

way. Therefore, when the amplitude and rate of the

actuator are constrained at the same time, if the control

method in [43] is used, the control system may

diverge. In contrast, in this paper, by designing a new

type of auxiliary system to repeatedly modify the ideal

control law, the stability of the closed-loop control

system can be guaranteed when the amplitude and rate

of the actuator are simultaneously constrained.

6 Conclusion

(1) For the flexible AHV model, when the actuator

amplitude is constrained and the control inputs

are saturated, the control method designed in

this paper can effectively compensate for the

saturation state, thus ensuring the stability of the

closed-loop control system.

(2) When there are parametric perturbation and

external strong interference in the AHV model,

the control method designed in this paper

reflects strong robustness and anti-interference

capability.

(3) When further considering a situation closer to

reality that both amplitude and rate of actuator

are constrained, different from existing studies,

the method designed in this paper can still

achieve the velocity and altitude stably tracking

their respective reference commands.

In addition, this paper and most of the existing papers

often only focus on its saturation characteristics when

considering the constraint of AHV’s actuators. How-

ever, the actual AHV’s actuator has more complicated

nonlinear characteristics. Therefore, in view of the

complex nonlinear characteristics of the AHV’s

actuator, further research on the AHV’s input con-

straint control method will be the next step.
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