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Abstract Nowadays, the novel coronavirus (COVID-
19) is spreading around the world and has attracted
extremely wide public attention. From the beginning
of the outbreak to now, there have been many math-
ematical models proposed to describe the spread of
the pandemic, and most of them are established with
the assumption that people contact with each other
in a homogeneous pattern. However, owing to the
difference of individuals in reality, social contact is
usually heterogeneous, and the models on homoge-
neous networks cannot accurately describe the out-
break. Thus, we propose a susceptible-asymptomatic-
infected-removed (SAIR) model on social networks to
describe the spread of COVID-19 and analyse the out-
break based on the epidemic data of Wuhan from Jan-
uary 24 to March 2. Then, according to the results of
the simulations, we discover that the measures that can
curb the spread of COVID-19 include increasing the
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recovery rate and the removed rate, cutting off con-
nections between symptomatically infected individu-
als and their neighbours, and cutting off connections
between hub nodes and their neighbours. The feasible
measures proposed in the paper are in fair agreement
with themeasures that the government took to suppress
the outbreak. Furthermore, effective measures should
be carried out immediately, otherwise the pandemic
would spread more rapidly and last longer. In addi-
tion, we use the epidemic data of Wuhan from Jan-
uary 24 to March 2 to analyse the outbreak in the city
and explain why the number of the infected rose in the
early stage of the outbreak though a total lockdown
was implemented. Moreover, besides the above mea-
sures, a feasible way to curb the spread of COVID-
19 is to reduce the density of social networks, such
as restricting mobility and decreasing in-person social
contacts. This work provides a series of effective mea-
sures, which can facilitate the selection of appropriate
approaches for controlling the spread of the COVID-
19 pandemic to mitigate its adverse impact on people’s
livelihood, societies and economies.

Keywords COVID-19 · social network · SAIR
model · latent period

1 Introduction

In the last two decades, large-scale pandemics caused
by coronaviruses have occurred three times, one of
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which was the outbreak of Severe Acute Respiratory
Syndrome (SARS) in 2003 in Guangdong Province
of China [1], the others were the outbreak of Middle
East Respiratory Syndrome (MERS) in 2012 in Saudi
Arabia and 2015 in South Korea [2,3]. Unfortunately,
at the end of December 2019, a new kind of coron-
avirus, called COVID-19, was discovered in Wuhan,
the capital of Hubei Province of China. It is reported
thatCOVID-19 is a single-strandedRNAvirus and usu-
ally causes respiratory symptoms and fever, as well as
death in severe cases [4,5]. Later on, during investi-
gating and tracking the infected, it is found that a part
of infected people are asymptomatic, but could infect
others. Besides, Wuhan has a large and highly mobile
scale of population and is a transportation hub in central
China. These factorsmade the prevention and control of
COVID-19 evenmore tough. So, on January 23Wuhan
went into lockdown and the government took first-level
public health emergency response to the outbreak.

With COVID-19 spreading around the world, there
have emerged an enormous number of works about the
pandemic [6–10]. Tang et al. [11] proposed a determin-
istic susceptible-exposed-infected-removed (SEIR) com-
partmental model to describe the spread of COVID-19,
and used partial data obtained for the confirmed cases
of COVID-19 to estimate the basic reproduction num-
ber of the disease transmission. Zhao et al. [12] mod-
elled the epidemic time series of COVID-19 cases and
estimated the transmission rate of COVID-19 via the
basic reproduction number based on the data ofWuhan
from January 10 to 24.Wu et al. [13] used a SEIR com-
partmental model to infer the number of infections in
Wuhan from December 1, 2019, to January 25, 2020,
from the data from December 31 to January 28 on the
number of cases exported fromWuhan internationally.
Above works assume that population is mixed homo-
geneously. But in reality, the differences of individu-
als and environments lead to particular contact patterns
amongpeople; thus,modelswith the homogeneousness
assumption do not apply to real cases. Therefore, to
describe the outbreak accurately, we establish a model
on a social network, where nodes represent individuals
and links stand for the contacts between individuals.

Furthermore, it is found that it is practical andmean-
ingful to study propagation of epidemics on networks
[14–18]. In 2002, Newman [19] showed that a large
class of the so-called SIR models of epidemic dis-
ease can be solved exactly on a wide variety of net-
works using a combination of mapping to percola-

tion models and generating function methods. Later
on, Pastor-Satorras et al. [20] modelled the spread of
epidemics on scale-free networks. It was found that
epidemics was prevalent on scale-free networks and
the topology of networks had a great influence on
the behaviours of epidemic spreading. Granell et al.
[21] combined the spread of information and diseases
to propose an unaware-aware-unaware-susceptible-
infected-susceptible (UAU-SIS) model on networks
and revealed that information awareness prevented epi-
demic spreading.Wei et al. [22]modelled a cooperative
spreading process over an interconnected network and
found that inter-layer links promoted epidemics spread-
ing. Existing works indicate that behaviours of epi-
demic spreading are not only influenced by the charac-
teristics of the diseases, but also impacted by the under-
lying network structures [23–27]. As Wuhan went into
lockdown from January 23, ignoring the number of
medical teams dispatched to assist Wuhan, the new-
born, natural deaths and deaths caused by reasons other
than the coronavirus, we can assume that the total pop-
ulation in Wuhan is unchanged. Therefore, modelling
the outbreak of COVID-19 during the lockdown on a
sparse social network is reasonable. We will explore
whether the measures the government took were effi-
cient and why the number of the infected was rising
in the early stage even though the government took
several restrictive measures to fight against the novel
coronavirus.

Motivated by above discussions, we introduce a new
SAIR model on a social network to describe the spread
of COVID-19 inWuhan after January 23 and then anal-
yse how to suppress the spread of the pandemic. Spe-
cially, by calculating the basic reproduction number,
we find that there are several measures that can curb
COVID-19 spreading, and these measures are in fair
agreementwith themeasures the government took. Fur-
thermore, based on the epidemic data of Wuhan from
January 24 to March 2, we analyse the outbreak in
Wuhan and find that the outbreak is gradually under
control after February 13.

The paper is organized as follows. In Sect. 2, a SAIR
model is established and the basic reproduction number
is obtained. Next, numerical simulations are provided
to verify the effectiveness of the proposed measures
with the model in Sect. 3. Then, some analyses and
discussions about the outbreak of COVID-19 are given
in Sect. 4. Finally, conclusions are drawn in Sect. 5
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2 Model and analysis

As is well known, there exists asymptomatic transmis-
sion in the spread of COVID-19; thus, we propose
a new SAIR model on network G which consists of
susceptible (S), asymptomatically infected (A), symp-
tomatically infected (I ) and removed (R) individuals,
and the total number of individuals is N . For a sus-
ceptible individual, if he (she) is infected by contact-
ing with infected individuals (including asymptomat-
ically and symptomatically infected individuals), he
(she) could become symptomatic or asymptomatic.
For an asymptomatically infected individual, he (she)
might be symptomatic after a latent period or get
immunized against the virus. Define Sk as the fraction
of susceptible individuals out of the individuals with
degree k. Similarly, Ak, Ik and Rk represent the frac-
tion of asymptomatically infected, symptomatically
infected and removed individualswith degree k, respec-
tively. Obviously, Sk(t), Ak(t), Ik(t), Rk(t) ≥ 0 and
Sk(t) + Ak(t) + Ik(t) + Rk(t) = 1. The propagation
process of COVID-19 can be described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)

dt
= −β1kSk(t)�A(t) − β2kSk(t)�I (t),

dAk(t)

dt
= α(β1kSk(t)�A(t)

+ β2kSk(t)�I (t)) − mAk(t − τ) − γ1Ak(t),

dIk(t)

dt
= (1 − α)(β1kSk(t)�A(t)

+ β2kSk(t)�I (t)) + mAk(t − τ) − γ2 Ik(t),

dRk(t)

dt
= γ1Ak(t) + γ2 Ik(t),

(1)

where �A(t) =
∑

k′ k′ p(k′)Ak′ (t)〈k〉 and

�I (t) =
∑

k′ k′ p(k′)Ik′ (t)〈k〉 . Here, p(k) is the degree dis-
tribution of network G and 〈k〉 is the average degree of
network G (Table 1).

Define X = (Sk1 , . . . , Skn , Ak1 , . . . , Akn , Ik1 , . . .
, Ikn , Rk1 , . . . , Rkn ), where {k1, . . . , kn} is a set of
the node degrees of network G. It is obvious that
system (1) has a disease-free equilibrium E0 =
(1, . . . , 1, 0, . . . , 0). By thedefinitionof next-generation
matrix [28], combining with compartments Ak and Ik
in system (1), we get F , the growth rate of secondary
infection, and V , the rate of individuals removed from
compartments Ak and Ik . The expressions of F and V

Table 1 Definition of parameters

Parameters Definition

β1 Transmission rate of
asymptomatically
infected
individuals

β2 Transmission rate of
symptomatically
infected
individuals

α Rate of being
asymptomatic after
infected

m Rate of being
symptomatic after
latent period

τ Latent period

γ1 Recovery rate of
asymptomatically
infected
individuals

γ a
2 Removed rate of

symptomatically
infected
individuals

aHere, removed rate γ2 is the sum of death rate and recovery rate

are

F =
[

αβ1P αβ2P
(1 − α)β1P (1 − α)β2P

]

and

V =
[
(m + γ1)In 0

−mIn γ2 In

]

, respectively,

where P = 1
〈k〉

⎡

⎢
⎢
⎢
⎣

k21 p(k1) k1k2 p(k2) . . . k1kn p(kn)
k2k1 p(k1) k22 p(k2) . . . k2kn p(kn)

...
...

. . .
...

knk1 p(k1) knk2 p(k2) . . . k2n p(kn)

⎤

⎥
⎥
⎥
⎦

and In is the n × n identity matrix.
Then, the basic reproduction number is R0 =

ρ(FV−1), where ρ(·) is the spectrum radius of a
matrix. Thus, we obtain

FV−1 =
[

αβ1P αβ2P
(1 − α)β1P (1 − α)β2P

]

[
1

m+γ1
In 0

m
(m+γ1)γ2

In
1
γ2
In

]

=
[

(
αβ1
m+γ1

+ mαβ2
(m+γ1)γ2

)P αβ2
γ2

P

(
(1−α)β1
m+γ1

+ m(1−α)β2
(m+γ1)γ2

)P (1−α)β2
γ2

P

]

.
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As rank(FV−1) = rank(P), there is

ρ(FV−1) = trace((
αβ1

m + γ1
+ mαβ2

(m + γ1)γ2

+ (1 − α)β2

γ2
)P)

= (
αβ1

m + γ1
+ mαβ2

(m + γ1)γ2

+ (1 − α)β2

γ2
)trace(P),

where rank(·) is the rank of a matrix and trace(·)
is the sum of the diagonal elements of a matrix. As

trace(P) =
∑n

i=1 k
2
i p(ki )〈k〉 = 〈k2〉

〈k〉 , the basic reproduc-
tion number R0 is

R0 =
(

αβ1

m + γ1
+ mαβ2

(m + γ1)γ2
+ (1 − α)β2

γ2

) 〈k2〉
〈k〉 .

(2)

From the expression of R0, we find that the first

term ( αβ1〈k2〉
(m+γ1)〈k〉 ) represents the number of individuals

who are infected by an asymptomatically infected indi-
vidual during recovery and latent period, and the third

term ( (1−α)β2〈k2〉
γ2〈k〉 ) is the number of individuals who

are infected by a symptomatically infected individual
during the recovery period, whereas the second term

( mαβ2〈k2〉
(m+γ1)γ2〈k〉 ) indicates the number of individuals who
are infected by the individual that is transformed from
an asymptomatically infected to a symptomatical one.

Nowadays, the most attractive issue for the public
is how to control the spread of COVID-19. Therefore,
we are not going to elaborate the stability of system (1)
here, with analysis being attached in “Appendix A”.
In the following sections, we focus on how to curb the
spread of COVID-19 and analyse the outbreak based on
the epidemic data of Wuhan from January 24 to March
2.

Throughout the paper, S(t), A(t), I (t) and R(t) are
the fraction of susceptible, asymptomatically infected,
symptomatically infected and removed individuals on
network G, respectively, where S(t) = ∑

k p(k)Sk(t),
A(t) = ∑

k p(k)Ak(t), I (t) = ∑
k p(k)Ik(t) and

R(t) = ∑
k p(k)Rk(t), and S(t)+A(t)+I (t)+R(t) =

1. Owing to the truth that only the infected can turn into
the removed, the removed in the stable state (referred
to as R∞) represents the fraction of all infected indi-

viduals from the outbreak to extinction of COVID-19.
Furthermore, we refer to themeasure of cutting off con-
nections between symptomatically infected individuals
and their neighbours, and that of cutting off connections
between hub nodes and their neighbours as Measures
1 and 2, respectively.

3 Numerical simulation

Real-world networks are usually scale free [29]. Thus,
we use the algorithm proposed by Barabási and Albert
[30] to generate BA networks of size N = 1000,
and carry out simulations on these networks. Specif-
ically, start with a fully connected network of m0 = 3
nodes, then sequentially add the remaining nodes, each
connecting to m = 3 existing nodes with a proba-
bility which is proportional to the number of links
that the existing nodes already have. Furthermore,
because cutting off connections between symptomat-
ically infected individuals and their neighbours (Mea-
sure 1) at each step is a dynamical process, we take
the Monte Carlo (MC) method to obtain the values
S(t), A(t), I (t) and R(t). Therefore, initially we
set S(t) = 0.99, A(t) = 0.005, I (t) = 0.005
and R(t) = 0, and seed the infected individuals on
a BA network randomly. Then, we take 100 repeti-
tions of MC simulations on the network, and aver-
age corresponding values over 10 BA networks. Since
S(t) + A(t) + I (t) + R(t) = 1, we only present the
evolution of A(t), I (t) and R(t).

First, we explore the impact of recovery rate γ1 and
removed rate γ2 on the spread of COVID-19. From
Fig. 1, we discover that increasing γ1 and γ2 can obvi-
ously suppress the number of infected cases. Specif-
ically, comparing Panels (a) and (b), we observe that
A(t) and I (t) in Panel (a) are smaller than those inPanel
(b). Similarly, A(t) and I (t) are much smaller in Panel
(c) than those in Panel (b). These indicate that increas-
ing the recovery rate and removed rate can effectively
curb the spread of COVID-19.

Next, we investigate the roles of Measures 1 and 2
playing in the inhibition of COVID-19. We can obtain
that taking Measures 1 and 2 immediately is the best
approach to curb the spread of the pandemic. Specifi-
cally,when γ1 = 0 and γ2 = 0.1,without anymeasures
taken to control the spread, the pandemic becomes
prevalent (see Fig. 1a), and with measures taken, R∞
becomes much smaller (refer to the top panels of Fig.
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Fig. 1 Time evolution of A(t), I (t) and R(t), where β1 =
0.25, β2 = 0.3, α = 0.3, τ = 14, m = 0.9. The pink solid
line, blue dotted-dashed line and green dashed line represent the

fraction of asymptomatically infected, symptomatically infected
and removed individuals, respectively
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Fig. 2 Time evolution of A(t), I (t) and R(t), where β1 =
0.25, β2 = 0.3, α = 0.3, τ = 14, and m = 0.9. In the top
panels, γ1 = 0 and γ2 = 0.1, and in the bottom panels, γ1 = 0.1
and γ2 = 0.1. a, e Measure 1 is taken immediately at t = 0; b,
f Measures 1 and 2 are taken from t = 0; c, g Measure 1 comes

into force at t = 20; d, h twomeasures come into force at t = 20.
We set that nodes with degree of over 10 are hub nodes. The pink
solid line, blue dotted-dashed line and green dashed line repre-
sent the fraction of asymptomatically infected, symptomatically
infected and removed individuals, respectively

2), especially in the case of both Measures 1 and 2
taken. Furthermore, comparing with the case that mea-
sures are taken immediately (see Fig. 2a, b), we can
observe that for the case of taking measures at t = 20,
R∞ is much larger and the time that I (t) arrives at
zero becomes longer (Fig. 2c, d). Similar observations
can be obtained from the bottom panels of Fig. 2 for
γ1 = 0.1 and γ2 = 0.1. These indicate that to curb the
spread of COVID-19, we should take Measures 1 and
2 immediately, otherwise the COVID-19 would spread

rapidly around the globe and the duration time will
become very long, which might cause serious conse-
quence.

In summary, the best way to curb the spread of
COVID-19 is to increase the recovery rate and the
removed rate and cut off connections between symp-
tomatically infected individuals and their neighbours,
as well as to cut off connections between hub nodes
and their neighbours. Indeed, the measures proposed
by us coincide with those the government had taken to
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prevent the spread of COVID-19. Specifically, in order
to prevent the spread of COVID-19, the government
encourages the public to enhance immunity, segregates
the infected with the symptomatic, prevents citizens
from aggregating, by shutting down all the places of
entertainment and imposing a home quarantine mecha-
nism. Increasing the recovery rate and the removed rate
means enhancing immunity. In fact, the most effective
way to prevent the spread of the pandemic is vaccina-
tion (that is, γ1 = γ2 = 1). However, since COVID-
19 is single-stranded RNA virus, vaccine development
is difficult and faces many uncertainties. Thus, one of
the feasible methods to curb the spread of COVID-
19 is to enhance individual immunity. Measure 1 rep-
resents quarantining the infected with symptoms and
Measure 2 represents preventing citizens from aggre-

gating. From Eq. (2), Measure 1 reduces not only 〈k2〉
〈k〉 ,

but also β1 and β2. And Measure 2 weakens the effect

of hub nodes to further reduce 〈k2〉
〈k〉 .

In Fig. 2, the dynamical behaviours of system (1)
are more complicated with γ1 = 0 and γ2 = 0.1, thus
we explore the effect of network structures on the pan-
demic when γ1 = 0, γ2 = 0.1 and Measures 1 and 2
are taken immediately. From Fig. 3, we discover that
the spread of the pandemic almost has the same ten-
dency. Specifically, when measures are taken to con-
trol the spread immediately, at t = 14, I (t) reaches
peak and A(t) drops, then during t = 14 to 28, I (t)
falls slowly and A(t) falls fast. When measures come
into force at t = 20, we can obtain that when the aver-
age degree of network is 4 or 6, I (t) and A(t) reach
peaks at t = 20, then during the next latent period I (t)
falls slowly and A(t) falls fast, finally after t = 34
they all arrive at zero. The phenomenon indicate that
the latent period and measures play important roles in
the spread of the pandemic, which is beneficial for us
to analyse the spread of COVID-19 by using the epi-
demic data of Wuhan from January 24 to March 2 in
the next section. Furthermore, it is found that with the
average degree of network changing from 2 to 4 and
6, R∞ becomes larger and the duration of the outbreak
becomes longer. Thus, another feasible way to curb the
spread of COVID-19 is to reduce the density of social
networks, such as restricting mobility and decreasing
in-person social contacts.

4 Data analysis

In this section,we use the epidemic data ofWuhan from
January 24 toMarch 2 to analyse the spread of COVID-
19 in the city after January 23. We define the net incre-
ment of the infected with symptoms as �nI (t) at t .
Obviously, �nI (t) = �I (t) − �R(t), where �I (t)
is the increment of infected cases at t , and �R(t) is
the increment of removed cases at t . According to the
official data published by the Chinese government, we
can obtain �nI from January 24 to March 2, as shown
in Fig. 3a (the data are attached in “Appendix B”).
Similarly, we define the net increment rate of symp-
tomatically infected individuals as�nIr(t) at t , where
�nIr(t + 1) = I (t + 1) − I (t).

From Fig. 4, we realize that the spread of the pan-
demic is sensitive to the latent period. Specifically, from
Fig. 4b, c, we observe that at about t = 14 (28), �nIr
goes up sharply then falls, and for t ∈ (1, 13)((15, 26)),
�nIr fluctuates. In Fig. 4a, we can obtain that from
January 23 to February 4 (except January 27 and 28),
�nI rose, then from February 4 to 13, �nI fluctuated
and after February 13, �nI had a downward trend.

Thus, in our opinion, the first stage of the outbreak
of COVID-19 is from January 23 to February 4. In
this stage, because there were many asymptomatically
infected people (secondary infected) before January
23, �nI rose continually even though the government
had taken efficient measures to prevent the spread of
COVID-19 on January 23. In the second stage, from
February 4 to 13, �nI fluctuated because the asymp-
tomatically infectedpeople began todisplay symptoms.
After February 13, as the third stage, the trend of �nI
was down and especially �nI decreased to negative
after February 19. This indicates that the spread of
COVID-19 is gradually under control.

From the aforementioned analysis of Fig. 4, we
realize that the net increment rate of symptomatically
infected individuals �nIr fluctuates during the latent
period. And throughout the spread of COVID-19 in
Wuhan, the net increment of the infected with symp-
toms �nI fluctuated from February 4 to 13, thus we
reckon that the latent period is around 9 days. Thus, the
opinion that the latent period can be extremely longer
than one or twomonth iswrong. Perhaps there are some
cases that asymptomatically infected people begin to
exhibit symptoms after one month, but these are small
probability events.
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Fig. 3 Time evolution of A(t) and I (t), where β1 = 0.25, β2 =
0.3, α = 0.3, τ = 14, m = 0.9, γ1 = 0 and γ2 = 0.1. From
left to right, the average degree of network is 2, 4, and 6, respec-
tively. In top panels, measures are taken immediately, whereas in

the bottom panels, measures come into force at t = 20. The pink
solid line, blue dotted-dashed line and green dashed line repre-
sent the fraction of asymptomatically infected, symptomatically
infected and removed individuals, respectively
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Fig. 4 a The net increment of the infected �nI from January
24 to March 2. b The net increment rate of the symptomati-
cally infected �nIr with γ1 = 0, and c the net increment rate

of the symptomatically infected �nIr with γ1 = 0.1. We set
β1 = 0.25, β2 = 0.3, α = 0.3, τ = 14, m = 0.9 and
γ2 = 0.1, and Measures 1 and 2 are taken immediately

5 Conclusion

In this paper, we propose a SAIR model on social net-
works to model the spread of COVID-19 and analyse
the outbreak based on the epidemic data ofWuhan from
January 24 to March 2. By calculating the basic repro-
duction number and carrying out Monte Carlo simula-
tions, we can obtain that to curb the spread of the pan-
demic, the measures proposed by us are in fair agree-

ment with the measures the government had taken.
In particular, we divide the outbreak of COVID-19 in
Wuhan into three stages to explain why the infected
cases increased though the government had taken effi-
cient measures in the early stage. Furthermore, we
find that with the average degree of network ascend-
ing, the pandemic would spread more rapidly and the
duration time becomes longer. Therefore, another fea-
sible method to curb the spread of the pandemic is to
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reduce the density of social networks, such as limiting
the mobility and in-person social contacts.
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Appendix A

System (1) has an equilibrium E∗

=
(
S∗
k1

, . . . , S∗
kn

, 0, . . . , 0, 1 − S∗
k1

, . . . , 1 − S∗
kn

)

.

Linearizing system (1) at equilibrium E∗,we canobtain
the following system

dX (t)

dt

=

⎡

⎢
⎢
⎣

0 −β1S∗P −β2S∗P 0
0 αβ1S∗P − γ1 In αβ2S∗P 0
0 (1 − α)β1S∗P (1 − α)β2S∗P − γ2 In 0
0 γ1 In γ2 In 0

⎤

⎥
⎥
⎦

X (t) +

⎡

⎢
⎢
⎣

0 0 0 0
0 −mIn 0 0
0 mIn 0 0
0 0 0 0

⎤

⎥
⎥
⎦ X (t − τ), (A.1)

where S∗ = diag(S∗
k1

, . . . , S∗
kn

).
Then, the characteristic polynomial of the coeffi-

cient matrix of system (A.1) is

f (λ) =

∣
∣
∣
∣
∣
∣
∣
∣

λIn β1S∗P β2S∗P 0
0 λIn − αβ1S∗P + γ1 In + me−λτ In −αβ2S∗P 0
0 −(1 − α)β1S∗P − me−λτ In λIn − (1 − α)β2S∗P + γ2 In 0
0 −γ1 In −γ2 In λIn

∣
∣
∣
∣
∣
∣
∣
∣

= |λ2 In||λ2 In + [(γ1 + γ2)In − (αβ1 + (1 − α)β2)S
∗P]λ + [γ1γ2 In − (αβ1γ2

+ (1 − α)β2γ1)S
∗P] + (λIn + γ2 In − β2S

∗P)me−λτ |.

According to Schur’s Lemma, there is a unitary
matrix U such that S∗P = U−1 P̄U . Then, the above
equation can be written as

f (λ) = |λ2 In||λ2 In + [(γ1 + γ2)In − (αβ1

+ (1 − α)β2)P̄]λ + [γ1γ2 In − (αβ1γ2

+ (1 − α)β2γ1)P̄] + (λIn

+ γ2 In − β2 P̄)me−λτ |
= λ2n(λ + γ2)

n−1(λ + γ1 + me−λτ )n−1(λ2

+ q1λ + q2 + m(λ + q3)e
−λτ ),

(A.2)

where P̄ =

⎡

⎢
⎢
⎢
⎢
⎣

K
k1k2 p(k2)S∗

k1〈k〉 . . .
k1kn p(kn)S∗

k1〈k〉
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

, K =

∑
k k

2 p(k)S∗
k〈k〉 , q1 = γ1+γ2−(αβ1+(1−α)β2)K , q2 =

γ1γ2 − (αβ1γ2 + (1− α)β2γ1)K and q3 = γ2 − β2K .
Here, we present the following hypotheses that will

be used:

(H1) (q21 − 2q2 − m2)2 − 4(q22 − m2q23 ) > 0,

(H2) q21 − 2q2 − m2 ≥ 0, and q22 − m2q1 < 0,

(H3) q21 − 2q2 − m2 < 0.

Proposition 1 (i) If R0 < 1, R1 < 1, m < γ1, and
Hypothesis (H1) does not hold, for any τ ≥ 0, the real
part of all eigenvalues of Eq. (A.2) is less than or equal
to zero.
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(ii) If m > γ1, at τ
j
1 = 1

ω1,c
(arcsin(ω1,c

m ) +
2 jπ), j = 0, 1, . . ., Eq. (A.2) has a pair of pure imag-

inary roots ±ω1,ci , where ω1,c =
√

m2 − γ 2
1 .

(iii) if Hypotheses (H1) and (H2) or Hypotheses
(H1) and (H3) hold, at τ

j
2 =

1
ω2,c

(arcsin(
mω2,c(ω

2
2,c−q2+q3)

m2(ω2
2,c+q23 )

) + 2 jπ), j = 0, 1, . . .,

Eq. (A.2) has a pair of pure imaginary roots ±ω2,ci ,
where ω2,c satisfies (ω2)2 + (q1−2q2 −m2)ω2 +q22 −
m2q23 = 0.

Proof (i) If τ = 0, Eq. (A.2) can be expressed as

f (λ) = λ2n(λ+γ2)
n−1(λ+γ1+m)n−1(λ2+(q1+m)λ+q2+mq3).

According to Hurwitz Criterion, the real part of all
eigenvalues of Eq. (A.2) is less than or equal to zero if
and only if q1 + m > 0 and q2 + mq3 > 0, that is,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ1 + γ2 + m − (αβ1 + (1 − α)β2)K

= (γ1 + γ2 + m)(1 − R1) > 0,

(γ1 + m)γ2 − (mβ2 + αβ1γ2 + (1 − α)β2γ1)K

= (γ1 + m)γ2(1 − R2) > 0,

where R1 = αβ1+(1−α)β2
γ1+γ2+m

〈k2〉
〈k〉 and R2 = (

αβ1
m+γ1

+
mαβ2

(m+γ1)γ2
+ (1−α)β2

γ2
)

∑
k k

2 p(k)S∗
k〈k〉 .

Because Sk(t) ≤ 1, there is R2 < R0. Thus, if R0 <

1 and R1 < 1, the real part of all eigenvalues of Eq.
(A.2) is non-positive.

(ii) Suppose that system (A.1) has a pair of pure
imaginary eigenvalues ±ωi (ω �= 0). Obviously, λ

satisfies f1(λ) = λ + γ1 + me−λτ = 0 or f2(λ) =
λ2 +q1λ+q2 +m(λ+q3)e−λτ . For simplicity, we set
λ = ωi . In the following, we discuss these two cases
separately.

Case 1: λ satisfies f1(λ) = λ + γ1 + me−λτ = 0.
Substitutingλ = ωi and eωτ i = cos(ωτ)+i sin(ωτ)

into equation f1(λ) = 0, we obtain

ωi + γ1 + m(cos(ω1τ) − i sin(ω1τ)) = 0. (A.3)

Separating the real part from the imaginary part, we
can write Eq. (A.3) as

{
γ1 + m cos(ωτ) = 0,

ω − m sin(ωτ) = 0.

Combining with sin(ωτ)2 + cos(ωτ)2 = 1, we
obtain ω2 = m2 − γ 2

1 . Thus, if m > γ1, there

is ω =
√

m2 − γ 2
1 and the corresponding τ is

τ
j
1 = 1√

m2−γ 2
1

(arcsin(

√

m2−γ 2
1

m )+ 2 jπ), j = 0, 1, . . .,

whereas if m < γ1, a real ω does not exist.
Case 2: λ satisfies f2(λ) = λ2 + q1λ + q2 +m(λ +

q3)e−λτ .
Similarly, we obtain

{
− ω2 + q2 + mω sin(ωτ) + mq3 cos(ωτ) = 0,

q1ω + mω cos(ωτ) − mq3 sin(ωτ) = 0.

Then, ω satisfies (ω2)2 + (q1 − 2q2 − m2)ω2 + q22 −
m2q23 = 0. Thus, if Hypotheses (H1) and (H2) or
Hypotheses (H1) and (H3) hold, we can get ω2,c and
τ
j
2 . 
�

Proposition 2 (i) If m > γ1, the transversality condi-
tion of f1(λ) = 0 is

(
d(Reλ)

dτ

)−1 ∣
∣
∣
τ=τ

j
1

> 0, j = 0, 1, . . . .

(ii) if Hypotheses (H1) and (H2) orHypotheses (H1)

and (H3) hold, the transversality condition of f2(λ) =
0 is

(
d(Reλ)

dτ

)−1 ∣
∣
∣
τ=τ

j
2

> 0, j = 0, 1, . . . .

Proof (i) Taking the derivative of λ with respect to τ ,
we get

(1 − mτe−λτ )
dλ

dτ
− mλe−λτ = 0,

that is,

(
dλ

dτ

)−1

= 1 − mτe−λτ

mλe−λτ
= − 1

λ(λ + γ1)
− τ

λ
.

Therefore, the transversality condition of f1(λ) = 0
is

(
d(Reλ)

dτ

)−1 ∣
∣
∣
τ=τ j

= 1

m2 > 0.
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(ii)By the samemethod,wecanprove
(
d(Reλ)
dτ

)−1∣∣
∣
τ=τ

j
2

>

0, j = 0, 1, . . .. 
�
From Propositions 1 and 2, we can obtain the fol-

lowing theorem.

Theorem 1 (i) If R0 > 1, for any τ ≥ 0, the equilib-
rium E∗ of system (1) is unstable.

(ii) If R0 < 1, R1 < 1, m < γ1 and Hypothesis
(H1) does not hold, then for any τ ≥ 0, system (1) will
get stabilized on the equilibrium E∗.

(iii)Suppose R0 < 1, R1 < 1, m > γ1 andHypoth-
esis (H1) does not hold. If τ ∈ [0, τ 01 ), the equilibrium
E∗ of system (1) is stable. If τ > τ 01 , the equilibrium
E∗ of system (1) will be unstable. Furthermore, when
τ = τ

j
1 , j = 0, 1, . . ., Hopf bifurcation occurs.

(iv) Suppose R0 < 1, R1 < 1, m < γ1 and
Hypotheses (H1) and (H2) or Hypotheses (H1) and
(H3) hold. If τ ∈ [0, τ 02 ), the equilibrium E∗ of system

(1) is stable. If τ > τ 02 , the equilibrium E∗ of system

(1) will be unstable. Furthermore, if τ = τ
j
2 , Hopf

bifurcation occurs.
(v) Suppose R0 < 1, R1 < 1, m > γ1 and

Hypotheses (H1) and (H2) or Hypotheses (H1) and
(H3) hold. If τ ∈ [0,min(τ 01 , τ 02 )), the equilibrium E∗
of system (1) is stable. If τ > min(τ 01 , τ 02 ), the equilib-
rium E∗ of system (1) will be unstable. Furthermore,
when τ = τ

j
1 (τ

j
2 ), Hopf bifurcation occurs.

Appendix B

According to the official data published by the Chinese
government, we can obtain �I , �R and �nI from
January 24 to March 2, shown as Table 2.

Table 2 The epidemic data of Wuhan from January 23 to March 2, 2020

Date �I �Ra �nI Date �I �Ra �nI

1/24 77 16 (15+1) 61 1/25 46 15 (7+8) 31

1/26 80 20 (18+2) 60 1/27 892 22 (22) 870

1/28 315 19 (19) 296 1/29 356 32 (25+7) 324

1/30 378 56 (30+26) 322 1/31 576 69 (33+36) 507

2/1 894 64 (32+32) 830 2/2 1033 94 (41+53) 940

2/3 1242 127 (48+79) 1115 2/4 1967 114(49+65) 1853

2/5 1766 115 (52+63) 1651 2/6 1501 167 (64+103) 1334

2/7 1985 231 (67+164) 1754 2/8 1379 242 (63+179) 1137

2/9 1921 240 (73+167) 1681 2/10 1552 229 (67+162) 1323

2/11 1104 243 (72+171) 861 2/12 1072b 620 (82b+538) 452

2/13 2243b 458 (88+370) 1785 2/14 1001b 332 (77b+255b) 669

2/15 1548 523 (110+413) 1025 2/16 1690 619 (76+543) 1071

2/17 1600 833 (72+761) 767 2/18 1660 792 (116+676) 868

2/19 615 641 (88+553) − 26 2/20 319 865 (99+766) − 546

2/21 314 1082 (90+992) − 768 2/22 541 1047 (82+965) − 506

2/23 348 903 (131+772) − 555 2/24 464 1447 (56+1391) − 983

2/25 370 1498 (42+1456) − 1128 2/26 383 1554 (19+1535) − 1171

2/27 313 2526 (28+2498) − 2213 2/28 420 1763 (37+1726) − 1343

2/29 565 1701(26+1675) − 1136 3/1 193 1990 (32+1958) − 1797

3/2 111 1870 (24+1846) − 1759

http://www.hubei.gov.cn/zhuanti/2020/gzxxgzbd/zxtb/index_16.shtml
a Here �R is the sum of the increment of dead cases and recuperative cases
b The native data includes clinical diagnosis, and the data has been processed. 1072 = 13436 − 12364, 82 = 216 − 134, 2243 =
3910 − (14031 − 12364), 1001 = 1923 − 922, 77 = 107 − 30, 255 = 486 − 231
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