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Abstract Quasi-zero stiffness (QZS) isolators, a

nonlinear vibration isolation technique, enhance the

isolation performance, by lowering the natural fre-

quencies of an isolation system while providing higher

static load bearing capacity compared to similarly

performing linear isolators. Despite its performance

improvement, the challenge of implementing QZS

isolation systems is due to their highly nonlinear

stiffness characteristics as a result of cubic like

behavior of stiffness elements used. Although increas-

ing linear damping in the isolation alleviates the input

dependency of the QZS isolation systems by reducing

the resonance amplitudes, it results in increased

transmissibility in the isolation region, which is an

adverse effect. Therefore, in this study, in order to

overcome this, dry friction damping is implemented

on the QZS isolation system. Hysteresis loop for the

new QZS dry friction element is obtained and a

mathematical model is introduced. For the nonlinear

isolation system, harmonic balance method is used to

transform the nonlinear differential equations into a

set of nonlinear algebraic equations. For single

harmonic motion, analytical expressions of Fourier

coefficients are obtained in terms of elliptic integrals.

Numerical solution of the resulting set of nonlinear

algebraic equations is obtained via Newton’s method

with arc-length continuation. Performance of the

isolation system under periodic base excitation is

studied for different base excitation levels and the

stability of the periodic steady-state solutions is

investigated.

Keywords Quasi-zero stiffness isolator �Quasi-zero
stiffness dry friction element � Harmonic balance

method � Nonlinear vibration isolator �
Transmissibility

1 Introduction

Passive isolation techniques using linear vibration

isolators are widely and effectively used in the

industry for solving various vibration-related prob-

lems, a very common one of which is the protection of

sensitive measurement devices from vibratory envi-

ronment. There is, however, a particular limitation of

the performance of the passive linear isolation

systems, which is static deflection caused by the

weight of the payload. Decreasing the natural fre-

quency of the vibration isolation system, which can be

achieved by means of softer isolators, extends the

isolation frequency range. However, due to the

limitation of the maximum static deflection in the
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design of vibration isolation systems, it is not possible

to decrease the stiffness of the isolators below a certain

value, which adversely affects isolation performance.

As a remedy for this trade-off in the isolation

performance, passive nonlinear isolators containing

high-static-low-dynamic stiffness are utilized [1–8].

These nonlinear isolators provide ultra-low frequency

isolation with the smaller static deflections compared

to similar linear isolators. If parameters are chosen

carefully, one can obtain even quasi-zero stiffness

around the equilibrium of the system [9].

There are a variety of studies to obtain the quasi-

zero stiffness (QZS) character by utilizing elastic and

magnetic elements. These methods are reviewed by

Ibrahim [3] in his review of passive vibration isolation

methods. Themost commonmethod is integrating pre-

compressed linear springs to the system horizontally.

Liu et al. [10] obtained this horizontal stiffness by

means of buckled Euler beams; whereas, Wu et al. [4]

obtained similar nonlinear stiffness characteristic by

means of magnetic springs. Recently, a similar

nonlinear magnetic isolator possessing high-static-

low-dynamic behavior is studied experimentally by

Yan et al. [11]. Zhou et al. [12] conducted experi-

mental and theoretical research on QZS vibration

isolator and obtained QZS characteristics using cam-

roller mechanisms. Sun and Jing [13] proposed a

scissor-like structure to obtain high-static-low-dy-

namic stiffness. Although the aforementioned nonlin-

ear QZS elements widen the isolation region

(frequency range), their response is highly nonlinear

and input dependent which presents challenges in

design, modeling, and analysis of the isolation system

performance. Carrella et al. [9] analyzed a negative

stiffness mechanism and obtained an approximate

expression of the nonlinear stiffness force around the

equilibrium position utilizing Taylor Series. This

analysis reveals that the nonlinear equation of motion

contains cubic nonlinearity. Therefore, equivalent

stiffness is highly dependent on excitation levels and

unless excitation levels are well defined, even worse

performance than the linear vibration isolator systems

can be obtained by using QZS isolation systems.

Another issue is the bifurcation of the system to

chaotic motions where non-periodic solutions may

occur depending on excitation amplitude and fre-

quency, which may be a disadvantage for an isolation

system [12].

Another important design parameter which affects

the isolation performance is damping in the QZS

element, since resonance response depends on the

damping characteristic of the mechanical system.

Although the highly nonlinear response of QZS

isolator systems can be limited by increasing linear

damping in the QZS element, it adversely affects the

performance of the isolation system away from the

resonance frequency [14–16]. Therefore, it can be

concluded that a more favorable damping character-

istic is the one that should be effective only in the

resonance regions. Jing and Lang [17] and Xiao et al.

[18] state that this type of damping characteristic can

be obtained through a geometrically nonlinear damp-

ing mechanism. A combination of the QZS isolators

and geometrically nonlinear damping is studied by

Cheng et al. [19] and Dong et al. [7]. It is observed in

these studies that highly nonlinear dynamics of the

QZS isolator can be limited by introducing nonlinear

damping.

Dry friction damping is a potential candidate for

enhancing the damping characteristic of QZS isolator

systems. It is a nonlinear damping mechanism used for

vibration control in mechanical systems [20] such as

gas turbine engines [21–23], large space structures

[24] and railway bogies [25, 26]. In this paper, a QZS

mechanism coupled with a dry friction damper is

proposed in order to overcome these shortcomings of

the nonlinear QZS isolators. Such a combination

provides low frequency isolation, at a relatively high

loading capacity and effective isolation in a larger

excitation range due to the nonlinear stick–slip

behavior of the dry friction damper. Furthermore,

since dry friction damping is only effective at large

relative displacements, i.e., around the resonance

region, the negative effect of damping in the isolation

region is eliminated. In the following parts of the

paper, the nonlinear stiffness and damping models of

the proposed isolator are introduced. Performance of

the QZS vibration isolator coupled with a dry friction

damper is investigated under base excitation by

utilizing a single term harmonic balance method

(HBM). Stability of the steady-state solutions is

studied by utilizing Hill’s Method. Isolation perfor-

mance of isolation system having a QZS dry friction

element is compared with the one having QZS

element, i.e., no friction damping, and the effect of

slip force on the isolation performance is investigated.
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2 Mathematical development

2.1 Quasi-zero stiffness model

The stiffness properties of the QZS mechanism shown

in Fig. 1a are studied in detail by Carrella et al. [9].

Pre-compressed spring which is hinged at both ends is

placed horizontally. This spring is called as the

‘‘negative stiffness’’, since it provides force in the

direction of the motion. Although all the components

are linear, the isolator is nonlinear because of the

isolator geometry.

In the equilibrium position, the vertical component

of the compressed spring is zero. kh, kv are the

horizontal and vertical spring stiffnesses, respectively,

and cv is the viscous damping coefficient. The distance

between the two ends of the horizontal spring is

designated by y tð Þ; whereas, the free length of the

horizontal spring is Lo. The length of the horizontal

spring at the equilibrium point is a, the vertical

displacement of the mass is x tð Þ, and g is the

gravitational acceleration. The free body diagram of

the mass for the static loadings can be seen in Fig. 1b.

When loading, i.e., fk is applied to the mass, it will

deflect from its equilibrium point which is defined as x.

The vertical force component of the horizontal spring

can be found as follows [14]

fv ¼ f sin h ¼ kh Lo � yð Þ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p ; ð1Þ

where fv is the vertical component of the force exerted

by the horizontal spring, h is the angle between the

horizontal spring force vector and horizontal axis. The

relationship between the vertical displacement of the

mass and the distance between two ends of the

horizontal spring can be defined as

y tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p

; ð2Þ

which is the source of nonlinear behavior. Considering

the vertical spring and the applied load, force balance

in the vertical direction can be written as

fk þ kh
Lo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p � 1

� �

xþ kv xo � xð Þ ¼ mg; ð3Þ

where xo is defined as the vertical displacement of the

mass when the horizontal spring is at its free length

such that xo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2o þ a2
p

. Assuming mg ¼ kvxo, the

applied force fk can be given as

fk ¼ kv þ kh 1� Lo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p

� �� �

x: ð4Þ

The non-dimensional form can be obtained as

follows

fk
kva

¼ c 1� d
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x̂2 þ 1
p

� �

þ 1

� �

x̂; ð5Þ

where d ¼ Lo=a; c ¼ kh=kv; x̂ ¼ x=a:
Differentiating the non-dimensional force with

respect to displacement, stiffness of the nonlinear

isolator can be obtained as follows

k̂½x̂� ¼ c 1� d

x̂2 þ 1ð Þ3=4

 !

þ 1: ð6Þ

The effect of non-dimensional parameters d and c
was investigated in [14]. The authors indicated that an

increase of Lo=a ratio may result in even overall

negative stiffness around the equilibrium point.

Likely, if stiffer horizontal springs relative to vertical

ones are placed, the effect of negative stiffness

becomes more dominant and overall negative stiffness

may be obtained. Furthermore, a proper choice of d

Fig. 1 a Schematic

diagram of QZS vibration

isolation system, b free-

body diagram of the mass

suspended on QZS vibration

isolation system
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and c values results in quasi-zero stiffness around the

equilibrium point. If the QZS condition is satisfied,

k̂½x̂ ¼ 0� ¼ 0 which results in c 1� dð Þ þ 1 ¼ 0.

2.2 QZS dry friction element

In modeling of dry friction damping, macroslip model

is widely used in the literature due to its mathematical

simplicity compared to microslip models. According

to macroslip friction model, in which Coulomb

friction model with a constant coefficient of friction

is used, the entire friction interface is either at slip or

stick states. Friction damper is modeled as a spring one

end of which slips if the spring force exceeds a certain

value, which is referred as the slip force. Therefore,

damping is only possible if relative displacement is

large enough to overcome the slip force which is

usually the case at resonance regions if slip force is

chosen properly. However, it should be noted that in

the case where friction damper is in complete stuck

state, it only acts like an additional stiffness [27]. It

will be shown later that, for the isolator problem

considered in this study, stick–slip motion of the

friction interface occurs at very low frequencies;

hence, the dependency of coefficient of friction on

sliding velocity can be neglected.

QZS system coupled with a dry friction damper

proposed in this study is shown in Fig. 2. As it is

detailed in Sect. 2, the overall vertical stiffness is

nonlinear and dependent on the position of the mass.

Therefore, overall stiffness can be defined as a

position-dependent nonlinear stiffness element as

shown in Fig. 2. Friction force in the proposed system

is different than the macroslip friction models used in

the literature due to the presence of nonlinear contact

stiffness caused by the geometric nonlinearity of the

isolator. Therefore, for this new friction element,

friction force can be defined as

where k½� is the position-dependent stiffness, w tð Þ is

the slip motion, lN is the slip force, x tð Þ is the input

relative displacement.

2.2.1 Stick–slip case

For single harmonic input, i.e., x tð Þ ¼
X sin xt þ /ð Þ ¼ X sin wð Þ, slip to stick transitions

occur when the relative motion reverses its direction,

i.e., w ¼ p
2
; 3p
2
. During the stick state, it is known that

slipvelocity is zero, i.e., _w ¼ 0, andw ¼ wo. Therefore,

the friction force during stick state can be given by

Ff ¼ k x tð Þ � w0½ � � x tð Þ � w0ð Þ: ð8Þ

The position-dependent stiffness of the QZS dry

friction element given in Eq. (8) is obtained by the

analysis of the QZS isolator as described in Sect. 2.1,

which results in the following relation

k x tð Þ � w0½ � ¼ kv þ kh 1� Lo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x tð Þ � w0ð Þ2þa2
q

0

B

@

1

C

A

:

ð9Þ

At the time of transition from positive slip to stick

state transition angle w equals to p=2; hence, initial
values of the displacement and the friction force at the

beginning of stick state can be obtained as follows
Fig. 2 QZS dry friction element model proposed in this study

Ff ¼
k x tð Þ � w tð Þ½ � � x tð Þ � w tð Þð Þ jk x tð Þ � w tð Þ½ � � x tð Þ � w tð Þð Þj � lN

lNsign _w tð Þð Þ jk x tð Þ � w tð Þ½ � � x tð Þ � w tð Þð Þj[ lN

� �

; ð7Þ
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x w ¼ p=2ð Þ¼ X sin
p
2

� �

¼ X; ð10Þ

Ff ¼ lN; ð11Þ

where X is the amplitude of harmonic input relative

motion. Substituting Eqs. (9)–(11) into Eq. (8) results

in

lN ¼ kv þ kh 1� L0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X � w0ð Þ2þa2
q

0

B

@

1

C

A

0

B

@

1

C

A

X � w0ð Þ:

ð12Þ

Squaring both sides of Eq. (12) and rewriting it,

yields the following fourth-order polynomial

kh þ kvð Þ2 X � w0ð Þ4�2lN kh þ kvð Þ X � w0ð Þ3

þ a2 kh þ kvð Þ2�Lo2k2h þ lNð Þ2
� �

X � w0ð Þ2

� 2a2lN kh þ kvð Þ X � w0ð Þ þ lNað Þ2¼ 0;

ð13Þ

largest real root of which gives wo. When the

magnitude of the force across the nonlinear stiffness

element reaches to �lN, the transition from stick to

negative slip occurs

�lN ¼ k X sinw1 � wo½ � � X sinw1 � woð Þ: ð14Þ

Substitution of Eq. (12) into Eq. (14) and utilizing

the symmetry of the stiffness with respect to x-axis,

transition angle from stick to negative slip, w1, can be

obtained as follows

w1 ¼ arcsin
2wo

X
� 1

� �

and
p
2
\w1\

3p
2
: ð15Þ

Due to the single harmonic input motion, hysteresis

curve is symmetric with respect to the origin; hence,

the transition from stick to positive slip occurs at

w2 ¼ w1 þ p.
For single harmonic input motion, hysteresis curve

can be obtained by using Eqs. (8) and (15) as shown in

Fig. 3. As can be seen from in Fig. 3, the resulting

hysteresis curve is symmetric and consists of a

positive slip, a negative slip, and two stick regions.

After determining transition angles, nonlinear fric-

tion force can be written as follows by using a single

harmonic Fourier series representation

Ff ¼ fns sin xt þ /ð Þ þ fnc cos xt þ /ð Þ
¼ fns cos/þ fnc sin/ð Þ sinxt
þ fnc cos/þ fns sin/ð Þ cosxt;

ð16Þ

where fns and fnc are the sine and cosine Fourier

coefficients, considering the symmetry of the hystere-

sis loop, which can be obtained as follows

fns ¼
2

p

Z

w1

p=2

k X sinw� wo½ � X sinw� woð Þ sinwdw

0

B

@

�
Z

3p=2

w1

lN sinwdw

1

C

A

;

ð17Þ

fnc ¼
2

p

Z

w1

p=2

k X sinw� w0½ � X sinw� w0ð Þ coswdw

0

B

@

�
Z

3p=2

w1

lN coswdw

1

C

A

:

ð18Þ

Analytical results for Fourier coefficients fns and fnc
are provided in ‘‘Appendix’’.

2.2.2 Fully stuck case

For the fully stuck case, only the QZS element is

effective; hence, the friction force can be written asFig. 3 Hysteresis loop of the proposed QZS dry friction

element
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Ff ¼ k x tð Þ½ � � x tð Þ: ð19Þ

Therefore, the coefficients of single harmonic

Fourier series friction force representation can be

written as

fns ¼
2

p

Z

p

0

k X sinw½ � � X sinwð Þ sinwdw; ð20Þ

fnc ¼
2

p

Z

p

0

k X sinw½ � � X sinwð Þ coswdw: ð21Þ

Evaluation of the integrals yields

fns ¼ kv þ khð ÞX þ 4Lokh
Xp

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ a2
p � K X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ a2
p
	 
	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ a2
p

� E 1;
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ a2
p

	 



;

ð22Þ

fnc ¼ 0: ð23Þ

where K x½ � and E x½ � are Elliptic integrals which are

defined in ‘‘Appendix’’.

2.3 Vibration isolation system with QZS dry

friction element

The mathematical development of the QZS dry

friction element is given in Sect. 2.2 in detail. In this

section, this nonlinear element is integrated into a

single degree of freedom base excitation problem as

shown in Fig. 4, which is referred as QZS dry friction

isolator. As can be seen from Fig. 4, the friction

interface is placed between the mass and massless

platform on which the vertical and pre-stressed

horizontal springs are attached. The base excitation

is defined as z tð Þ and the absolute displacement of the

mass is x tð Þ. Equation of motion of the mass

suspended by the proposed nonlinear QZS dry friction

element can be given as

m€xþ cv _xþ Ff x� z½ � ¼ cv _z; ð24Þ

where Ff x� z½ � is the friction force due to the QZS dry

friction element which is defined in Eq. (7).

For a single harmonic base input, i.e.,

z tð Þ ¼ Z sinxt, the response of the mass can as well

be assumed harmonic in the following form x tð Þ ¼
Xs sinxt þ Xc cosxt utilizing a single harmonic rep-

resentation. Then, the nonlinear differential equation

of motion given in Eq. (24) can be converted into a set

of nonlinear algebraic equations [14, 23] by using

harmonic balance method (HBM). The resulting set of

nonlinear algebraic equations of motion becomes as

R x;xð Þ ¼ �x2m �cvx
cvx �x2m

	 


Xs

Xc

� �

þ fns
fnc

� �

� Z
cvxZ

� �

¼ 0;

ð25Þ

where R x;xð Þ is the nonlinear vector function, x ¼
Xs Xcð ÞT and, Xs and Xc are the sine and cosine

coefficients of the absolute displacement. fns and fnc
are the sine and cosine coefficients of the friction force

to be determined by Eqs. (17)–(18) or Eqs. (22)–(23).

x and Z are the frequency and the amplitude of the

base excitation, respectively.

The solution of the resulting set of nonlinear

algebraic equations is obtained by Newton’s method,

and arc-length continuation is used in order to follow

the solution path even it reverses its direction. A single
Fig. 4 Base excitation model of the isolation system with QZS

dry friction element
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step of Newton’s method with arc-length continuation

is given as

qiþ1
k ¼ qik �

oR

oxq¼qi
k

oR

oxq¼qi
k

oh

oxq¼qi
k

oh

oxq¼qi
k

2

6

6

4

3

7

7

5

R qik
� �

h qik
� �

� �

; ð26Þ

where i is the iteration number. Details of the solution

method can be found in [23, 28]. The additional arc-

length equation can be defined as follows which

represents an n-dimensional sphere in which the

solution is sought

h qik
� �

¼ DqTkDqk � s2: ð27Þ

Here qik ¼ xk xð Þ; Dqk ¼ qik � qk�1, k corre-

sponds to the kth solution point, i is the iteration

number and s is the radius of the hypothetical sphere.

2.4 Absolute and relative transmissibility

Isolation performance of the proposed QZS dry

friction isolator is evaluated by comparing the abso-

lute and relative transmissibility for different case

studies in Sect. 4. The relative displacement of massm

given in Fig. 4 with respect to the input platform

motion can be defined as

u tð Þ ¼ x tð Þ � z tð Þ ¼ Xs � Zð Þ sinxt þ Xc cosxt:

ð28Þ

Then, the magnitude of the relative transmissibility

is given by

U

Z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xs � Zð Þ2þX2
c

q

Z
; ð29Þ

where U is the amplitude of the relative motion u tð Þ.
Similarly, the absolute transmissibility can be

obtained as

X

Z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
s þ X2

c

p

Z
; ð30Þ

where X is the amplitude of motion of mass m.

2.5 Stability of steady-state solutions

Periodic solutions can be found by HBM as described

in Sect. 2.3. However, HBM does not give any

information on the stability of the solutions. Hill’s

Method, which is based on the Floquet Theory, is used

to determine the stability of the solutions obtained

from HBM. In this method, the perturbation around

the periodic solution is defined as the combination of

harmonic functions and exponential functions, the

substitution of which into equation of motion yields

below quadratic eigenvalue problem [28].

oR

ox
þ kD1 þ k2D2

� �

u ¼ 0; ð31Þ

where u is the complex eigenvector, oR=ox is the

Jacobian Matrix, D1 and D2 are defined as follows

D1 ¼
cv �2xm

2xm cv

	 


; ð32Þ

D2 ¼
m 0

0 m

	 


: ð33Þ

The solution of this eigenvalue problem can be used

to obtain Floquet exponentials which contains infor-

mation about the stability of the solution [29, 30].

Since the Jacobian matrix, oR=ox, is already calcu-

lated during the solution process, one can easily obtain

complex eigenvalues ki. For single harmonic motion,

Jacobian matrix given in Eq. (34) can be represented

as follows

oR

ox
¼ a11 a12

a21 a22

	 


ð34Þ

In order to have a non-trivial solution, determinant

of the coefficient matrix given in Eq. (31) must be

equal to zero. Substituting Eqs. (32) to (34) into

Eq. (31) and equating determinant to zero yields the

following fourth-order polynomial

m2k4 þ 2cvmk
3 þ 4m2x2 þ m a11 þ a22ð Þ þ c2v

� �

k2

þ 2xm a21 � a12ð Þ þ cv a11 þ a22ð Þð Þk
þ a11a22 � a12a21 ¼ 0:

ð35Þ

As stated in [29, 30], only two complex eigenvalues

k which have the smallest imaginary parts correspond

to Floquent exponents. The stability of the solution

can be determined by checking whether the real part of

any ki is negative or not. Therefore, condition for the

stability follows that

Re kið Þ\0; i ¼ 1; 2: ð36Þ
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3 Validation of the solution method

In this section, results obtained by HBM for the

isolation system with a QZS dry friction element are

validated by time integration. MATLAB ode45 is used

for the time integration. To determine the slip-stick

states, zero-crossing detection (ZCD) method

explained in [31] is used. ZCD algorithms seek the

events defined in Eq. (37). The friction force for stick

and slip case is defined in Eq. (7). The transition from

stick to slip and slip to stick are defined as zero-

crossing events following as

Ff







� lN ¼ 0 stick to slip transition event

_x tð Þ � _w tð Þj j ¼ 0 slip to stick transition event:

ð37Þ

Whenever one of the below events is detected by

the solver, the integrator stops and the zero-crossing

point is solved numerically. Numerical integration is

restarted by using the following equations until the

next zero-crossing event is detected

_w tð Þ ¼ _z tð Þ stick to slip transition

_w tð Þ ¼ _x tð Þ slip to stick transition,
ð38Þ

where w tð Þ is the slip motion, x tð Þ is the absolute

motion of the mass, and z tð Þ is the motion of the base

as defined in Fig. 4. The following non-dimensional

parameters are defined to be used in the simulations

nv ¼
c

2
ffiffiffiffiffiffiffiffi

kvm
p ; xn ¼

ffiffiffiffi

kv
m

r

; X ¼ x
xn

; Z
_

¼ Z

a
; ð39Þ

where x is the frequency of base excitation. Param-

eters given in Table 1 are used in the simulations. The

excitation frequency x is first increased and then

decreased stepwise at a 0.1 rad/s increment. At each

frequency, after the solution reaches to steady-state,

the maximum of the absolute displacement time

history at that frequency step is recorded, since the

nonlinearity is odd symmetric, i.e., bias component of

the response is zero. The response at the end of each

frequency step is used as the initial condition for the

next frequency step.

Comparison of the results obtained by HBM and

time integration is given in Fig. 5 for low-level Z
_

¼
0:035 and high-level excitations Z

_

¼ 0:055. As can be

seen from the results, both solutions agree well with

each other having only some minor deviations around

the resonance region where the relative displacement

has its peak value. Therefore, it can be concluded that

Table 1 Parameters used in the simulations

m ¼ 1 kg kv ¼ 20; 000 N=m Z
_

¼ 0:035; 0:055 a ¼ 0:08 m

Lo ¼ 0:16 m kh ¼ 20; 000 N=m lN ¼ 10 N nv ¼ 0:015

Fig. 5 Comparison of time simulation results and HBM

solution a low level Z
_

¼ 0:035, b high-level base excitations

Z
_

¼ 0:055, ‘dashed line’ single harmonic balance method,

‘double dashed’: unstable solutions, ‘green circle’ increasing

frequency-ODE45, ‘red cross’ decreasing frequency-ODE45
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utilizing a single harmonic term in the solution is

sufficient. This agreement is observed in fully stuck

case as well as the stick–slip case for both low-level

and high-level excitations. Stick–slip occurs within

X � ½0:161; 0:164� at upper branch of Fig. 5a while it

has a larger frequency range X � ½0:145; 0:183� for
high-level excitations as shown in Fig. 5b. For both

cases, absolute transmissibility decreases after the

transition from fully stuck to stick–slip. This trend and

the effect of additional damping introduced by the

friction interface will be subjected to further exami-

nation in Sect. 4. A sample time history of the friction

force, i.e., Ff tð Þ, is shown in Fig. 6 which clearly

shows when the damper is fully stuck or goes under

stick–slip behavior. Moreover, the jump-down phe-

nomena can also be observed. For this plot, the

frequency is varied by a 0.1 rad/s increments within

x � ½3; 50� for Z
_

¼ 0:055. Other parameters are given

in Table 1. At each step, time integration is performed

for 15 forcing cycles for which the frequency is kept

constant. It can be seen that friction force increases as

the excitation frequency increases for t\1800 s and

the friction interface is at stuck state, since Ff tð Þ is less
than lN ¼ 10N. Around t ¼ 1800 s, friction force

reaches the slip force (10 N) and the friction interface

transforms from fully stuck to stick–slip behavior. A

closer examination of the time history around t ¼
2000 s demonstrates the transition between the posi-

tive slip–stick-negative slip where the friction force is

limited by ± lN. Further increase of the frequency

causes the jump down of the solution to the lower

branch of the frequency response as shown in Fig. 5b.

Figure 7 shows the relative displacement uðtÞ versus
friction force Ff tð Þ, i.e., the hysteresis curve, for a

selected normalized frequency ofX ¼ 0:155 as shown

in Fig. 6.

4 Case studies

In this section, performance of the proposed isolator is

investigated under harmonic base excitation by using

the parameter set given in Table 1. In these case

studies, different features of QZS dry friction isolator

are studied. In Case Study-1 and Case Study-2,

displacement transmissibility of the proposed isolator

is compared with that of QZS isolator for various base

excitation amplitudes and damping ratios. In Case

Study-3, the influence of the damping ratio on the

transmissibility of the proposed isolator is discussed.

Case Study-4 is the assessment of the effect of slip

force amplitude on the transmissibility, which is one

of the critical design parameters of QZS dry friction

isolator.

4.1 Case study-1: Comparison of QZS dry friction

isolator and QZS isolator for various base

excitation amplitudes

To observe the isolation performance of the QZS dry

friction isolator with respect to the classical QZS

isolator, three different isolation systems with: (a)

QZS dry friction isolator (b) QZS isolator, i.e., lN ¼
1 and (c) linear spring-damper isolator, schematics of

which are given in Fig. 8, are studied under different

Fig. 6 Time history of friction force Ff ðtÞ obtained by varying
frequency x � ½3; 50� for Z

_

¼ 0:055

Fig. 7 Hysteresis loop for X ¼ 0:155
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base excitation amplitudes. Based on the QZS condi-

tion given in Sect. 2, the non-dimensional parameters

d and c are taken as d ¼ 2, c ¼ 1 which results in zero

stiffness at the equilibrium point. The other parameters

are given in Table 1.

The displacement transmissibility plots for low and

high-level excitations are given in Fig. 9a, b, respec-

tively. The low excitation levels can be considered as

the input range for which the QZS isolator is designed

to work. For this excitation range, the addition of the

pre-stressed horizontal springs reduces the resonance

frequency and dry friction has little influence on the

frequency response only around the resonance region

of the case where Ẑ ¼ 0:035. As reported by many

researchers [3, 6, 10], FRF bends towards higher

frequencies due to the cubic stiffness of the QZS

mechanism with the increase of the base excitation

amplitude. If one keeps increasing the base excitation,

resonance amplitude increases and even worse per-

formance than the simple linear isolator can be

observed as shown in Fig. 9b. This undesired behavior

can be reduced in the QZS dry friction isolator, thanks

to the dry friction damping introduced by the slip

motion at the friction interface. The decrease in

absolute transmissibility after the transition from fully

stuck to stick–slip can be seen in Fig. 9b within X �
½0:148; 0:176� for Ẑ ¼ 0:045 and within X �
½0:146; 0:191� for Ẑ ¼ 0:065 where the results for

QZS Dry Friction isolator and the QZS isolator are

splitted from each other. These normalized frequency

bands represent the range of stick–slip motion and

depending on the slip force and excitation level it

shifts. This trend will be examined further in Case

Fig. 8 Isolation system with a QZS dry friction isolator, b QZS isolator, c linear isolator

Fig. 9 Comparison of QZS dry friction isolator and QZS

isolator for various base excitation amplitudes. a Low level, b
high-level base excitations (lN ¼ 10 N d ¼ 2, c ¼ 1,

nv ¼ 0:015, ‘circle’ indicates the range of unstable solutions)

123

116 A. Donmez et al.



Study-4. Although increasing linear damping has an

effect around the resonance region; however, it

adversely affects the transmissibility in the isolation

region [16]. Unlike linear viscous damping, the

friction interface introduces damping only around

the resonance region where the absolute and relative

displacements are large. As can be seen from Fig. 9,

the friction interface is in fully stuck at the off-

resonance regions. The low damping QZS isolator and

the QZS dry friction isolator both behave completely

the same. In other words, there is no adverse effect of

the additional damping introduced by dry friction on

the isolation performance at the off-resonance fre-

quency range.

4.2 Case study-2: Comparison of QZS dry friction

isolator and QZS isolator for various damping

ratios

In order to observe the adverse effect of increasing

damping in the isolation frequency range, displace-

ment transmissibility of the QZS isolator and QZS dry

friction isolator are compared for various damping

ratios. These two isolation systems are shown in

Fig. 8a, b. The damping ratio of the QZSmechanism is

varied from 0.01 to 0.05. Slip force of the dry friction

element, i.e., lN is set to be 10 N and the damping

coefficient cv is zero; hence, the only source of

damping is due to dry friction. Absolute transmissi-

bility results for the normalized base excitation of Ẑ ¼
0:045 are given in Fig. 10. It can be observed that

resonance amplitude can be reduced without affecting

the off-resonance regions by means of dry friction.

Since dry friction element is in fully stuck state in the

isolation frequency range, the isolator acts as a QZS

element with no damping in this frequency range.

Therefore, QZS dry friction isolator provides a

significantly improved isolation performance with

respect to the QZS isolator for while maintaining a

similar or lower absolute transmissibility at the

resonance frequency which can be observed from

Fig. 10.

4.3 Case study-3: Effect of viscous damping

In this case study, the effect of viscous damping on the

transmissibility of the QZS dry friction isolator is

studied. Absolute and relative transmissibility plots

for different damping ratios are given in Figs. 11 and

12, respectively, while keeping the normalized base

excitation and slip force constant. It is clearly

observed that the best isolation performance is

obtained for the case with no viscous damper without

increasing the resonance amplitude. It should be noted

that since the dry friction provides damping as the

amplitude of the relative motion increases, response of

the system is bounded at the resonance even without

using a viscous damper. An increase in the viscous

damping ratio has an adverse effect on the isolation

performance while having a slight decrease in the

resonance amplitude. However, it should be noted that

transient solutions are not damped out for the case

Fig. 10 Comparison of QZS Dry friction isolator and QZS

isolator for various damping ratios, d ¼ 2, c ¼ 1, Ẑ ¼ 0:045,
‘circle’: indicates the range of unstable solutions

Fig. 11 Absolute transmissibility for various damping ratio,

lN ¼ 10N, Ẑ ¼ 0:045, ‘circle’: indicates the range of

unstable solutions
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when the friction damper is fully stuck and there is no

viscous damping. For that case, total system response

is composed of the summation of both steady-state and

transient responses. In order for the system to reach

steady-state, the isolation system should have some

amount of viscous damping. Hence, the best isolation

performance, while damping out the transient solu-

tions, can be obtained by considering a very small

amount of viscous damping.

4.4 Case study-4: Effect of slip force

In this case study, the effect of slip force on the

displacement transmissibility is studied for

normalized base excitation amplitude of Z
_

¼ 0:045.

Based on the observations of Case Study-3, the

damping ratio nv is set to be 0.001. Absolute

transmissibility results are shown in Fig. 13. It can

be clearly seen that as the slip force decreases, the

friction interface starts to slip at lower frequencies,

which yields attenuation of the resonance transmissi-

bility amplitudes. It should be noted that since dry

friction element only affects the resonance region, the

isolation performances of all cases are identical;

hence, the smallest possible slip force should be used.

However, it should be noted that the slip force must be

greater than the deadweight of the system. Even if the

case where lN ¼ 5N provides the best isolation

performance among other options, since the dead-

weight for this example, i.e., mg, is equal to 9:81N a

slip force larger than this value should be used. It

should be noted that performance of the QZS dry

friction isolator is independent of the slip force in the

isolation frequency range and it only affects the

amplitude at the resonance frequency.

5 Performance of QZS dry friction isolator

under broadband random excitation

Harmonic excitation employed in Sect. 4 allows the

analytical treatment of the problem for parametric

studies and for the determination of the optimum

parameters of the QZS dry friction isolator in a

computationally efficient way. However, in many

applications, a vibration isolator is as well subjected to

broadband random excitations. In this section, the

performance of the proposed isolator under stochastic

excitations is investigated through the comparisons of

time-domain analyses. The response to a random base

acceleration is obtained by employing the integration

scheme provided in Sect. 3. Here, the base accelera-

tion is assumed to be a Gaussian white noise covering

the frequency range of 1–500 Hz with a constant

power spectral density of S0 ¼ 0:1 g2=Hz. The param-

eters used in the analyses are provided in Table 1. The

base acceleration used in the time domain analyses and

the corresponding power spectral density (PSD) of it

are shown in Fig. 14. It is seen that the input PSD

covers a wide frequency range including the natural

frequency of the system, i.e., fn ¼ 22:51 Hz.

Fig. 12 Relative transmissibility for various damping ratios,

lN ¼ 10N, Ẑ ¼ 0:045, ‘circle’: indicates the range of

unstable solutions

Fig. 13 Effect of slip force d ¼ 2, c ¼ 1, nv ¼ 0:001,

Ẑ ¼ 0:045, ‘circle’: indicates the range of unstable solutions
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Figure 15 shows a comparison of PSD of the

acceleration response €xðtÞ for the linear isolator, QZS
isolator, and QZS dry friction isolator. It is seen that

the addition of the QZS mechanism reduces the

resonance frequency as well as the resonance ampli-

tude under the given excitation level, i.e.,

S0 ¼ 0:1 g2=Hz. It can be seen that response PSD of

the QZS dry friction isolator converges to the response

PSD of the QZS isolator for lN ¼ 50N, whereas, slip

force of lN ¼ 10N results in the smallest resonance

amplitude and the largest isolation region. These

results are in agreement with the observations of

Sect. 4 that are obtained by the use HBM analytical

Fourier coefficients, which is significantly more

efficient compared to time integration.

6 Conclusion

In this study, a newQZS isolator is proposed by adding

dry friction damping between the isolated mass and

the stiffness of the isolator. Steady-state response of

this nonlinear system is obtained by utilizing HBM

which transforms the nonlinear differential equations

of motion into a set of nonlinear algebraic equations.

Analytical Fourier sine and cosine coefficients of the

nonlinear element are derived to be used in HBM. The

resulting set of nonlinear algebraic equations is solved

numerically by using Newton’s method with arc-

length continuation, and stability of the obtained

solutions is identified by using Hill’s method. The

proposed QZS dry friction isolator is compared with

the existing QZS isolator under different excitation

levels and different system parameters.

Based on the frequency and time domain analyses

the following conclusions can be made:

• First, from time simulation analyses, it can be

concluded that a single solution is sufficient to

represent the dynamics of the proposed QZS dry

friction isolator.

• The input dependency of QZS dry friction isolator

is reduced due to the use of dry friction element

• Proposed isolator does not affect the transmissi-

bility in the isolation region, since the dry friction

introduces damping only around the resonance

region. Thus, the adverse effect of increasing linear

viscous damping on the isolation performance is

eliminated.

• It is observed that decreasing slip force of the dry

friction element reduces the resonance amplitudes.

However, since the friction interface shall carry

deadweight of the system, the minimum slip force

is limited by the deadweight of the isolated mass.

• It is observed that the isolation performance of the

proposed QZS dry friction isolator is maximized

by considering the smallest possible viscous

damping that provides sufficient time to reduce

the transient response of the system.

• Overall, it is observed that QZS dry friction

isolator improved the isolation performance sig-

nificantly compared to the QZS isolator without

Fig. 14 Random base acceleration €zðtÞ a the time signal and

b PSD

Fig. 15 Acceleration response PSD to the random base

excitation given in Fig. 14
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sacrificing from the transmissibility around the

resonance region.
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Appendix

fns ¼ S1 þ
2khLo
pX

S2
S3 cos w1ð Þ � S4E /; k½ � � j2aX

S4
F /; k½ �

� �

fnc ¼
2lN sin w1ð Þ þ 1ð Þ

p

where

S1 ¼ X kh þ kvð Þ cosw1 þ w1 � p=2ð Þ � 2lN cos w1ð Þð Þ=p;
S2 ¼ 2X2 � 6Xw0 þ 4w2

0 þ 1� sin w1ð Þð Þ a2 þ w2
0

� �

S3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X � w0ð Þ2þa2
q

;

S4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X � jað Þ2�w02
q

/ ¼ 1

cosw1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X � jað Þ2�w2
0

X � w0ð Þ2þa2

s

sinw1 � 1ð Þ;

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X þ jað Þ2�w2
0

X � jað Þ2�w2
0

s

; j ¼
ffiffiffiffiffiffiffi

�1
p

:

.

Incomplete first and second kind Elliptic integrals

are defined as

E a; b½ � ¼
Z

a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2t2
p

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p dt

F a; b½ � ¼
Z

a

0

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2b2
p dt

K k½ � ¼
Z

1

0

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2k2
p dt
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