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Abstract In this research, a typical Chua’s circuit
with a piecewise nonlinear resistor and a slow-varying
periodic excitation is considered to investigate the
dynamical mechanisms of bursting oscillations in the
piecewise-smooth dynamical system. A set of new
bursting oscillations is observed when the amplitude
of the excitation is changed. By regarding the excita-
tion term as a bifurcation parameter, the codimension-
1 conventional bifurcations and non-smooth bifurca-
tions of the fast subsystem are explored. Fold bifur-
cation, supercritical Hopf (sup-Hopf) bifurcation, non-
smooth Hopf bifurcation, grazing bifurcation, and C-
bifurcation are discovered via theoretical and numeri-
calmethods. TheC-bifurcation connects the stable lim-
ited cycle bifurcated from non-smooth Hopf bifurca-
tion with the stable limited cycle bifurcated from the
sup-Hopf bifurcation. When the fast subsystem driven
by the slow subsystem passes through the bifurcation
points, slow passage effect near the non-smooth Hopf
bifurcation and delay of the C-bifurcation take place.
The delayed C-bifurcation may lead to multiple tran-
sition patterns between different attractors, including
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two transition patterns of reverse direction near the
fold and sup-Hopf bifurcations. The delayed transition
to other attractor creates a non-smooth hysteresis loop
and enables the generation of bursting oscillations.

Keywords Slow-varying periodic excitation · Chua’s
circuit · Delayed C-bifurcation · Bursting oscillations

1 Introduction

Bursting oscillations, as a typical representative behav-
ior of the slow–fast dynamical system, characterized
by a combination of large amplitude oscillation and
relatively small amplitude oscillation during each evo-
lution period, are ubiquitous in various fields of sci-
ence and engineering, such as chemical experiments
[1], electromechanical engineering [2], neuroscience
[3], and physics [4]. The generation mechanisms of
bursting oscillations of slow–fast system have been
understood thanks to the slow–fast analysis method
introduced byRinzel [5]. Subsequent to this pioneering
work, the investigation of bursting in dynamical sys-
tems has received much attention in both theory and
practical applications. However, most of the research
in this area is made for smooth systems (e.g., [6–12]
and the references therein).

Piecewise-smooth system can be observedwidely in
many fields of science and engineering. A piecewise-
smooth system always has one or more switching man-
ifolds, which can cause qualitative changes in the sys-
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tem’s dynamics, termed discontinuity-induced bifurca-
tions or non-smooth bifurcations, including boundary
equilibrium bifurcations and non-smooth limit cycle
bifurcations [13]. For the low-dimensional piecewise-
smooth system, different types of the non-smooth bifur-
cations as well as the conditions have been reported
[14], which may lead to non-smooth dynamical behav-
iors [15]. When the coupling of multi time scales
involves the vector field, bursting oscillations may
occur. For example, Simpson et al. analyzed a piece-
wise linear FitzHugh–Nagumo model and found the
addition of small noise induces mixed-mode oscilla-
tions in the vicinity of the canard point [16]; Zhang et
al. investigated the influence of non-smooth fold bifur-
cations on the bursting oscillations in a piecewise lin-
ear system [17]; Fernández et al. showed the dynamical
mechanisms of mixed-mode oscillations of three dif-
ferent amplitudes and frequencies in a piecewise linear
system with three time scale coupling [18]; Li et al.
studied the existence condition and generation mecha-
nisms of bursting oscillations in a piecewise mechan-
ical system with different time scales and proposed
focus-type periodic bursting oscillations [19]; Singla
et al. studied the relationship of the frequency of the
perturbation and that of the antiperiodic oscillations in
a Chua’s circuit with periodic forcing [20]; Qu et al.
investigated bursting oscillations with sliding bifurca-
tion in a Filippov system [21]. Recently, Wang et al.
have investigated the non-smooth Hopf bifurcation on
the discontinuity boundary and its effect on the bursting
oscillations [22]. Even so, up to now, few results have
been published recently on the effect of delayed non-
smooth limit cycle bifurcation on the bursting oscilla-
tions.

The present paper investigates the bursting dynam-
ics in the piecewise nonlinear system, focusing on the
effects of the delayedC-bifurcation on bursting dynam-
ics. For this purpose, a modified Chua’s circuit, pos-
sessing a slow-varying periodic excitation and a non-
linear resistor, is considered, in which the characteris-
tics of the resistor can be described by a continuous
piecewise nonlinear function.

2 Mathematical model

ThemodifiedChua’s circuit is shown in Fig. 1, inwhich
N R is a piecewise nonlinear resistor and iG is a peri-
odically exciting electric current.

Fig. 1 A Chua’s circuit with a piecewise nonlinear resistor and
a slow-varying periodic excitation

The model’s equations are

C1
dV1
dτ

= G(V2 − V1) − g(V1) + IGsin(ωτ),

C2
dV2
dτ

= G(V1 − V2) + iL ,

L
diL
dτ

= −V2,

(1)

where g(V1) denotes the relationship between the cur-
rent and voltage passing across the nonlinear resistor,
N R, described by

g(V1) =
⎧
⎨

⎩

GK V1 + (GK + GA)V0 − GBV
3
0 , if V1 < −V0,

−GAV1 + GBV
3
1 , if |V1|≤V0,

GK V1 − (GK + GA)V0 + GBV
3
0 , if V1 > V0,

(2)

with GK , GA, and GB being conductances. Equa-
tion (1) can be normalized by applying the following
change of variables: V1 = IC

G x, V2 = IC
G y, iL = IC z,

and time τ = C2
G t , where IC is a variable direct current

constant. Defining the new parameters: α = C2
C1

, β =
C2
LG2 , a = GA

G , b = GB IC 2

G3 , k = GK
G , d = GK+GA

IC
V0 −

GB
IC

V 3
0 , x0 = GV0

IC
, γ = IGC2

ICC1
, and � = ωC2

G , the
dimensionless model of (1) is given by

dx

dt
= α(y − x − f (x)) + w,

dy

dt
= x − y + z,

dz

dt
= −βy,

(3)

where

f (x) =
⎧
⎨

⎩

kx + d, if x < −x0,
−ax + bx3, if |x |≤x0,
kx − d, if x > x0,

(4)

and w = γ sin(�t).
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(a) (b)

Fig. 2 Bursting oscillations for γ = 0.16: a time history on the (t, x) plane; b time history on the (t, y) plane

The discontinuity boundaries �± = {x|x = ±x0},
where x = (x, y, z) ∈ R3, partition the phase space
into three regions, denoted by D− = {x|x < −x0},
D0 = {x||x |≤x0}, and D+ = {x|x > x0}, in which
the dynamics of the system are governed by three dif-
ferent subsystems in (3), denoted by S−, S0, and S+,
respectively. When the frequency of the excitation sat-
isfies 0 < � � 1, the effect of two scales in frequency
domain may appear, yielding complicated dynamical
behaviors.

3 Evolution of the bursting oscillations

Now we turn to the evolution of the dynamical behav-
iors of the system (3). When the parameters are fixed
at a = 1.05, b = 0.5, α = 2.75, β = 3.0, k =
2.0, x0 = 0.645, and� = 0.001, the coupling effect of
two scales may influence the dynamics of the system.
With the variation in the excitation amplitude, a set
of bursting oscillations can be observed. Notice that
the parameter d in the system can be computed by
d = (k+a)x0−bx30 . For convenience, in what follows,
we use SP and QS to denote the spiking state and qui-
escent state of the bursting oscillations, respectively.

Symmetric bursting oscillations can be observed
when γ = 0.16 (Fig. 2), which can be roughly divided
into two stages corresponding to two spiking states,
denoted by SP1 and SP2, respectively. One may find
that some of the trajectories of the spiking states are
located in region D0, and the rest of the trajectories
pass through the discontinuous boundary �+ or �−,

implying non-smooth bifurcations of the limit cycle
may involve the spiking attractor.

With the increase in the excitation amplitude γ , the
structure of the bursting attractor may change. Bound-
ary equilibrium bifurcations may involve the bursting
attractor when γ is larger than some critical value γ0,
which may cause each of the spiking states in Fig. 2
to be divided into two asymmetric spiking states, see
the bursting oscillations in Fig. 3 for γ = 0.35. In this
case, the spiking state SP1 in Fig. 2 is divided into SP2
and SP3 in Fig. 3, while the spiking state SP2 in Fig. 2
is divided into SP4 and SP1 in Fig. 3.

A new limit cycle bifurcation occurring on the dis-
continuity boundary may involve bursting attractor
when the excitation amplitude γ is larger than some
critical value γ1, leading to new bursting oscillations,
see Fig. 4 for γ = 0.5, in which the spiking state SP1
comes from the combination of SP1 and SP2 in Fig. 3,
while the spiking state SP2 comes from the combina-
tion of SP3 and SP4 in Fig. 3.

When the excitation amplitude γ is larger than some
critical value γ2, the new limit cycle bifurcation men-
tioned above may no longer affect the structure of the
bursting attractor, and the spiking states in Fig. 4 exhibit
division behaviors again. A typical pattern of bursting
oscillations is shown in Fig. 5 for γ = 0.84. Notice
that the bursting oscillations in this case are different
from that in Fig. 3.

With the increase in the excitation amplitude γ , the
number of the spiking states remains unchanged in
one period of bursting oscillations, but the structure
of the bursting attractor may change. A typical pattern
of bursting oscillations is shown in Fig. 6 for γ = 0.93.
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(a) (b)

(c) (d)

Fig. 3 Bursting oscillations for γ = 0.35: a time history on the (t, x) plane; b time history on the (t, y) plane; c, d the local enlargements
of (a)

(a) (b)

Fig. 4 Bursting oscillations for γ = 0.5: a time history on the (t, x) plane; b time history on the (t, y) plane

Compared with Fig. 5, one may find that there exists a
quiescent state not only between SP1 and SP2, but also
between SP3 and SP4 in Fig. 6.

Remark 1 According to the “Bifurcation analysis” dis-
cussed in Sect. 4, the critical value γ0 can be proved
to be γ0 = α

(
(1 − a) x0 + bx03

) ≈ 0.2803, while the
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(a) (b)

(c) (d)

Fig. 5 Bursting oscillations for γ = 0.84: a time history on the (t, x) plane; b time history on the (t, y) plane; c, d the local enlargements
of (a)

critical values γ1 and γ2 can be approximated numeri-
cally, which are γ1 ≈ 0.4778 and γ2 ≈ 0.7288, respec-
tively.

It can be found that, with the increase in the ampli-
tude of the excitation, the spiking attractors undergo
several times of division and combination, resulting in
complicated bursting oscillations, in which the non-
smooth bifurcations on the discontinuity boundaries
and traditional bifurcations may play important roles.
To explore the mechanisms of the bursting oscillations,
we have presented above, in the following section, we
will turn to the bifurcation analysis of the non-smooth
vector field.

4 Bifurcation analysis

Note that the discontinuity boundaries �± divide the
phase space into three regions. In the regions D± and

D0, the behaviors of the system are governed by the
subsystems S± and S0, respectively. The equilibrium
state of the generalized autonomous system (3) can be
defined by dx

dt = 0, dy
dt = 0, dz

dt = 0, in which the slow-
varying excitation term w = γ sin(�t) is regarded as
a bifurcation parameter.

4.1 Equilibrium analysis of the subsystems S±

For the two linear subsystems S±, the equilibria can
be computed at E± = (± αd±w

α(1+k) , 0,∓ αd±w
α(1+k) ), respec-

tively. The stability of E± can be determined by the
associated characteristic equations, written in the same
form

λ3 + P2λ
2 + P1λ + P0 = 0, (5)

where P0 = αβ+αkβ, P1 = β+αk, P2 = 1+αk+α.
It is easy to check that Pi > 0, i = 0, 1, 2, and
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(b)(a)

(d)(c)

Fig. 6 Bursting oscillations for γ = 0.93: a time history on the (t, x) plane; b time history on the (t, y) plane; c, d the local enlargements
of (a)

P1P2 − P0 = β + αk + α2k2 + α2k > 0 under the
assumptions α > 0, β > 0, a > 0, b > 0 and k > 0,
implying the equilibria E± are stable hyperbolic equi-
librium points. In other words, there are no bifurcation
phenomena associated with the equilibria in the two
linear subsystems S±.

4.2 Bifurcation of the subsystem S0

The equilibrium of the subsystem S0 can be computed
at E0 = (X0, 0,−X0), where X0 satisfies the equation

α
(
(a − 1)X0 − bX3

0

) + w = 0. (6)

The stability of E0 can be determined by the associated
characteristic equation, expressed as

λ3 + Q2λ
2 + Q1λ + Q0 = 0, (7)

where Q0 = 3αbβX2
0 − αaβ + αβ, Q1 = 3αbX2

0 +
β − αa, Q2 = 3αbX2

0 + 1+ α − αa. Fold bifurcation

of the equilibrium point may be observed if

3αbβX2
0 − aαβ + αβ = 0. (8)

This shows that fold bifurcations may occur for

w = ±2
√
3bα(a − 1)

3
2

9b
, (9)

at each of which there exists one zero eigenvalue, lead-
ing to possible jumping behavior. These two loci meet
and disappear in a cusp catastrophe for a = 1. The
Hopf bifurcation may occur if

Q1Q2 − Q0 = 0, (10)

and Q0 > 0, Q2 > 0. These show that Hopf bifurca-
tions may take place for

w = ±
√
6α b (M1 + M2) (M3 + M2)

36α b
, (11)

or

w = ±
√
6α b (M1 − M2) (M3 − M2)

36α b
, (12)
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(a) (b)

Fig. 7 One-parameter bifurcation diagram: a one-parameter bifurcation diagram with respect to w on the (w, x) plane; b the local
enlargement of (a)

where M1 = 2α a − α − 1, M2=
√

α2 + 2α+1−4β,

M3 = 5α − 4α a− 1. A pair of pure imaginary eigen-
values of Eq. (7) may be observed at each of the critical
values in (11)–(12), leading to possible periodic move-
ment.

4.3 Non-smooth bifurcations on the discontinuity
boundaries

If the equilibrium branches of the subsystems inter-
sect the discontinuity boundaries �±, boundary equi-
librium bifurcations may appear at the intersections.
When the bifurcation parameter w = α

(
(1 − a)x0 +

bx30
)
, the boundary equilibria can be computed at

E∗± = (±x0, 0,∓x0), respectively, and the characteris-
tic equation related to the generalized matrix upon the
differential inclusion theory [23] can be written as

λ3 + N2λ
2 + N1λ + N0 = 0, (13)

where q(q ∈ [0, 1]) is introduced as an auxiliary
parameter, Ni = qQi + (1 − q)Pi , i = 0, 1, 2. With
the variation in the auxiliary parameter q, the associ-
ated eigenvalues may pass across the real or the pure
imaginary axes, resulting in possible non-smooth bifur-
cations. Non-smooth fold bifurcation may appear if

qQ0 + (1 − q)P0 = 0, (14)

and N2 > 0, N1N2 − N0 > 0, which shows that if

q = 1 + k

−3 bx02 + a + k
∈ (0, 1), (15)

the non-smooth fold bifurcation may take place, while
the non-smooth Hopf bifurcation may occur if

N1N2 − N0 = 0 (16)

and N0 > 0, N2 > 0, which shows that if

q = α + 1 + 2α k + √
α2 + 2α + 1 − 4β

2α
(−3 bx02 + a + k

) ∈ (0, 1),

(17)

or

q = α + 1 + 2α k − √
α2 + 2α + 1 − 4β

2α
(−3 bx02 + a + k

) ∈ (0, 1),

(18)

the non-smooth Hopf bifurcation may take place, lead-
ing to possible periodic movement.

4.4 Bifurcation diagram

The one-parameter bifurcation diagram of system (3)
with respect to w for the parameter conditions: a =
1.05, b = 0.5, α = 2.75, β = 3.0, k = 2.0, and x0 =
0.645, is computed numerically and shown in Fig. 7.
The bifurcations as well as the abbreviations in Fig. 7
are summarized in Table 1. The branches of stable and
unstable equilibria as well as the labels in Fig. 7 are
summarized in Table 2.

In Fig. 7a, the limit cycles LC±1 connect with the
limit cycles LC±2 by CB±, in which LC±1 are bifur-
cated from the non-smoothHopf bifurcations occurring
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Table 1 Bifurcations as well as the abbreviations in Fig. 7

Abbreviation NH± GB± CB± HB± FB±

Bifurcation Non-smooth Hopf Grazing C Supercritical Hopf Fold

Critical value w ±0.2803 ±0.1036 ±0.0543 ∓0.0105 ∓0.0167

Auxiliary parameter q 0.9978

Table 2 Equilibria as well as the stability

Label EB±1 EB±2 EB±3 EB0

Stability Stable foci Unstable foci Stable foci Unstable foci

(a) (b) (c)

Fig. 8 C-bifurcation occurring at CB+: a representative phase portrait for w < 0.0543, which is obtained when w = 0.05; b critical
phase portrait for w = 0.0543; c representative phase portrait for w > 0.0543, which is obtained when w = 0.07

at NH±, while LC±2 are bifurcated from the super-
critical Hopf bifurcations occurring at HB±1. When
the bifurcation parameter w passes through CB±, the
stability of limit cycles LC±1 and LC±2 does not
change, but the topological structures of which change.
Let’s focus on the system dynamical behaviors near the
CB+, corresponding to w = 0.0543 (Fig. 8). There
exists a limit cycle governed only by the subsystem S0
when the bifurcation parameter w < 0.0543 (Fig. 8a).
A part of the limit cycle crosses the boundary �+
continuously but non-smoothly when the bifurcation
parameter w passes through the value 0.0543, forming
another limit cycle which is governed by subsystems
S0 and S+ (Fig. 8c). Figure 8b depicts the critical orbit
which is tangent to the boundary�+, corresponding to
w = 0.0543. Based on the analysis above, there exists a
C-bifurcation atw = 0.0543 [24]. Because of the sym-
metry, another C-bifurcation occurs at w = −0.0543.
C-bifurcation can cause the system to switch from one
periodic state to another. However, the limit cycle LC0

may approach�− or�+ and then disappear after being

tangent to�− or�+, implying the grazing bifurcations
occur atGB±, corresponding tow = ±0.1036, respec-
tively,when the bifurcationparameterw passes through
GB+ from the left to the right or passes through GB−
from the right to the left. The behaviors of the system
nearGB+, corresponding tow = 0.1036, can illustrate
this point (Fig. 9). There exists a limit cycle crossing
the discontinuity boundaries �± when w < 0.1036
(Fig. 9a). Once the limit cycle is tangent to the bound-
ary�−, corresponding tow = 0.1036, it will disappear
and the trajectory will be attracted by other attractor
(Fig. 9b), implying that a bifurcation of limit cycle takes
place at w = 0.1036. Figure 9c gives a limit cycle for
w > 0.1036, which is not bifurcated from the bifur-
cation occurring at w = 0.1036 but bifurcated from
the non-smooth Hopf bifurcation occurring at point
NH+. Thus, there is a grazing bifurcation occurring at
w = 0.1036. Because of the symmetry, another graz-
ing bifurcation takes place at w = −0.1036. Grazing
bifurcation can cause a periodic state of the system to
disappear or emerge.
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(a) (b) (c)

Fig. 9 Grazing bifurcation occurring at GB+: a representative phase portrait for w < 0.1036, which is obtained when w = 0.1; b
critical phase portrait for w = 0.1036; c representative phase portrait for w > 0.1036, which is obtained when w = 0.104

The bifurcation diagram can be used to investigate
the mechanisms of the bursting oscillations, which will
be presented in the following section.

5 Mechanisms of the bursting oscillations

Now we turn to the transformed phase diagrams of the
bursting oscillations shown in Figs. 2, 3, 4, 5, and 6
and overlay them with the bifurcation diagram shown
in Fig. 7 to detect the associated bifurcation mecha-
nisms. In order to give a clear view of the dynamical
mechanism, the bursting is divided into two bursting
parts, i.e., B− and B+. Here, B− denotes the bursting
part for �t (mod2π) ∈ [−π

2 , π
2 ] and B+ means the

part for �t (mod2π) ∈ [π
2 , 3π

2 ]. The bursting B− and
bursting B+ are highlighted with dark cyan and black,
respectively.

5.1 Delayed C-bursting of point/cycle type

Figure 10a gives the overlap of the transformed phase
portrait and the bifurcation diagram on the (w, x) plane
for γ = 0.16. From the point P−, corresponding
to the minimum value of the slow-varying parameter
w(= −0.16) (Fig. 10a, b), the trajectory of B− oscil-
lates along LC−1 until it arrives at CB−, where a C-
bifurcation takes place.After passing throughCB−, the
trajectory still remains the oscillating state of cross-
ing the discontinuity boundary �− for some time
(delay interval in Fig. 10c), resulting in the increase in
the oscillation amplitude. Attraction of the limit cycle
LC−2 causes the trajectory to settle down to LC−2

gradually, and the trajectory oscillates along LC−2

until it arrives at the neighborhood of the point HB−

(Fig. 10d). The trajectory begins to approach the sta-
ble equilibrium branch EB−3 with gradually decreas-
ing amplitude until it arrives at the neighborhood of
FB−. Fold bifurcation at FB− causes the trajectory to
jump to the stable limit cycle LC+2 (Fig. 10d), and
the trajectory oscillates along LC+2 until it arrives at
CB+, at which another C-bifurcation occurs. The tra-
jectory turns to and oscillates along the stable limit
cycle LC+1 until it arrives at the point P+, corre-
sponding to the maximum value of w at w = 0.16
(Fig. 10a). Now half period of the bursting oscillations
is finished. Further increase in the time leads to the
other half period of the bursting, i.e., B+. When the
trajectory goes back to the point P−, a non-smooth hys-
teresis loop is closed, forming the bursting oscillations
in Fig. 2.

Considering the attractor type involved, the bursting
pattern can be called “delayedC-bursting of point/cycle
type”

Remark 2 When the slow-varying parameter moves
to the bifurcation point, the related bifurcations may
not occur. Further change of the slow-varying param-
eter may lead to the bifurcations, the phenomenon
of which is called the delay of the bifurcation. In
the case of γ = 0.16, after the slow-varying param-
eter w passes through the C-bifurcation point, the
trajectory still remains the oscillating state of cross-
ing the discontinuity boundary �− for some time.
After a while, the trajectory does not cross the bound-
ary �− again and begins to turn to other attrac-
tors, i.e., a delayed C-bifurcation behavior is cre-
ated. One may find that, with the increase in the
amplitude of the excitation, the delayed C-bifurcation
may cause the oscillating amplitude of the trajec-
tory to increase before it transfers to other attractors,
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(a) (b)

(c) (d)

Fig. 10 Slow–fast analysis of the bursting pattern for γ = 0.16.
The bursting B− and bursting B+ are highlighted with dark cyan
and black, respectively. a overlap of the bifurcation diagram and

the transformed phase portrait on the (w, x) plane; b–d the local
enlargements of (a)

which may result in other complicated bursting oscil-
lations.

5.2 Delayed C-bursting of
point/cycle/point/cycle/point type

When the excitation amplitude γ > γ0(0.2083), the
non-smooth Hopf bifurcations on the discontinuity
boundaries �± involve the bursting attractor, resulting
in new pattern of bursting oscillations, e.g., the bursting
oscillations in Fig. 3 for γ = 0.35. The overlap of the
transformed phase portrait and the bifurcation diagram
is shown in Fig. 11a.

From the point P− with w = −0.35, the trajectory
of B− moves along the stable equilibriumbranch EB−1

until it arrives at the neighborhood of the point NH−, at
which a non-smooth Hopf bifurcation occurs. Because
of the slow passage effect, the trajectory moves along
the unstable equilibrium branch EB−2 and exhibits
oscillation in small amplitude for quite some time after
it passes through the point NH− (Fig. 11b); then, it
jumps rather abruptly to the limit cycle LC−1 (Fig. 11c)
andoscillates along LC−1 until it arrives atCB−,where
a C-bifurcation occurs and delayed C-bifurcation can
be observed. After undergoing a period of large ampli-
tude oscillations, the trajectory settles down to the limit
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(a) (b)

(c) (d)

(e)

Fig. 11 Slow–fast analysis of the bursting pattern for γ = 0.35: a overlap of the bifurcation diagram and the transformed phase portrait
on the (w, x) plane; b–e the local enlargements of (a)
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Slow–fast analysis of the bursting pattern for γ = 0.5: a overlap of the bifurcation diagram and the transformed phase portrait
on the (w, x) plane; b–f the local enlargements of (a)
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cycle LC−2 and oscillates around LC−2 until it arrives
at the neighborhood of the supercritical Hopf bifur-
cation point HB− (Fig. 11d). The trajectory begins
to approach the stable equilibrium branch EB−3 with
gradually decreasing amplitude until it arrives at the
neighborhood of the fold bifurcation point FB−. With
the increase in the slow-varying parameter w, the tra-
jectory jumps to and oscillates around the limit cycle
LC+2 until it arrives at another C-bifurcation point
CB+; then, the trajectory passes through CB+ and
begins to oscillate along the stable limit cycle LC+1

until it arrives at the neighborhood of the point NH+,
at which another non-smooth Hopf bifurcation occurs
(Fig. 11e). After that, the trajectory settles down to
the stable equilibrium branch EB+1 and moves along
it until the trajectory arrives at the point P+ with
w = 0.35.Half period of the bursting oscillations is fin-
ished. Further increase in the time leads to bursting B+.
When the trajectory goes back to the point P−, a non-
smooth hysteresis loop is closed, forming the bursting
oscillations in Fig. 3. The bursting pattern is termed
“delayed C-bursting of point/cycle/point/cycle/point
type.”

Remark 3 Similar to the conventional Hopf bifurca-
tion, the slow passage effect can also be observed near
non-smooth Hopf bifurcation.

5.3 Delayed C-bursting of point/cycle/point type

Because of the effect of the delay of C-bifurcation,
the amplitude of spiking states SP1 and SP3 further
increases with the increase in excitation amplitude
γ . When γ > γ1(0.4778), the trajectory begins to
enter the attraction basin of limit cycle LC0 before
it settles down to LC±2, which results in the com-
bination of the spiking state SP1 and SP2 as well
as the combination of the spiking state SP3 and
SP4, forming the bursting oscillations in Fig. 4.
Here SPi , i = 1, 2, 3, 4 are the spiking states in
Fig. 3.

Figure 12a gives the overlap of the transformed
phase portrait and the bifurcation diagram for γ = 0.5.
Starting at the point P− with w = −0.5, the trajec-
tory of B− moves along the stable equilibrium branch
EB−1 (Fig. 12a) until it arrives at the neighborhood
of the point NH−. The slow passage effect near the
non-smooth Hopf bifurcation causes the trajectory to

oscillate around the unstable equilibrium branch EB−2

in small amplitude for some time after it passes through
the point NH− (Fig. 12b). Then, the trajectory jumps
rather abruptly to the limit cycle LC−1 and oscillates
along LC−1 (Fig. 12c) until it arrives at CB−, where
the C-bifurcation occurs.With the increase in the slow-
varying parameterw, the amplitudes of the oscillations
increase gradually and the trajectory tends to the stable
limit cycle LC0 (Fig. 12d). After that, the trajectory
oscillates along LC0 until it arrives at GB+, where
the grazing bifurcation occurs. The amplitudes of the
oscillations decrease gradually, and then, the trajectory
oscillates along the stable limit cycle LC+1 until it
arrives at the neighborhood of the non-smooth Hopf
bifurcation point NH+,(Fig. 12e,f). The trajectory set-
tles down to the stable equilibrium branch EB+1 and
moves along EB+1 until it arrives at the point P+ with
w = 0.5. Half period of the bursting oscillations is fin-
ished. Further increase in the time leads to the bursting
B+. When the trajectory goes back to the point P−,
a non-smooth hysteresis loop is closed, forming the
bursting oscillations in Fig. 4. The bursting pattern is
termed “delayed C-bursting of point/cycle/point type.”

5.4 Delayed C-bursting of point/cycle/cycle/point
type with reverse transition

When the excitation amplitude γ is larger than
γ2(0.7288), the grazing bifurcations do not involve
bursting attractor again, resulting in the divisions of
spiking states in Fig. 4, forming the bursting oscil-
lations in Fig. 5. The transformed phase portrait of
Fig. 5a and the bifurcation diagram is overlapped in
Fig. 13a.

The trajectory of B−, starting at the point P− with
w = −0.84,moves along the stable equilibriumbranch
EB−1 with the increase in the slow-varying parame-
ter w until it reaches the non-smooth bifurcation point
NH− (Fig. 13a). After a relatively long period of
small amplitude oscillation, the trajectory jumps rather
abruptly to the limit cycle LC−1 until it arrives at CB−
(Fig. 13b,c). The delay of the C-bifurcation causes the
trajectory to begin to oscillate along LC−2 in large
amplitude. Before settling down to LC−2 , the tra-
jectory arrives at the neighborhood of the sup-Hopf
bifurcation point HB+ and then enters into the basin
of attraction of the stable limit cycle LC+2 bifurcated
from HB+. The slow passage effect near the sup-Hopf
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(a) (b)

(c) (d)

Fig. 13 Slow–fast analysis of the bursting pattern for γ = 0.84: aOverlap of the bifurcation diagram and the transformed phase portrait
on the (w, x) plane; b–d the local enlargements of (a)

bifurcation causes the trajectory to oscillate around
EB+2 in small amplitude for a while (Fig. 13d). Then,
the trajectory jumps to and oscillates along LC+2 until
it arrives at CB+. The trajectory turns to and oscillates
around LC+1 until it arrives at NH+. After that, the
trajectory settles down to the stable equilibrium branch
EB+1 until it reaches the point P+ withw = 0.84, cor-
responding to themaximumof the slow-varyingparam-
eter w (Fig. 13a). Half period of the bursting oscilla-
tions is finished. Further increase in the time leads to
the other half period of the bursting, i.e., B+. When
the trajectory goes back to the point P−, a non-smooth
hysteresis loop is closed, forming the bursting oscilla-
tions in Fig. 5. The bursting pattern is termed “delayed

C-bursting of point/cycle/cycle/point type with reverse
transition.”

5.5 Delayed C-bursting of
point/cycle/point/cycle/point type with reverse
transition

Further increase in the excitation amplitude γ does
not change the numbers of the spiking and quiescent
attractors in one period, but the structure of burst-
ing attractor changes. Figure 14a gives the overlap
of the transformed phase portrait and the bifurcation
diagram for γ = 0.93. The trajectory of B−, start-
ing at the point P− with w = −0.93 (Fig. 14a),
moves along the stable equilibrium branch EB−1 until

123



Bursting oscillations with delayed C-bifurcations in a modified Chua’s circuit 2913

(a) (b)

(c) (d)

Fig. 14 Slow–fast analysis of the bursting pattern for γ = 0.93: a overlap of the bifurcation diagram and the transformed phase portrait
on the (w, x) plane; b–d the local enlargements of (a)

it arrives at the neighborhood of NH− (Fig. 14b).
The slow passage effect causes the trajectory to oscil-
late in small amplitude along the unstable equilibrium
branch EB−2 (Fig. 14c) for a long period of time.
Then, the amplitude increases abruptly, and the tra-
jectory oscillates along the limit cycle LC−1 until it
passes through the C-bifurcation point. The delay of
C-bifurcation causes the trajectory to oscillate around
LC−2 in large amplitude until it arrives at the neigh-
borhood of the fold bifurcation point FB+. The trajec-
tory moves along the stable equilibrium branch EB+3

with the increase in w in quiescent state until it passes
through the Hopf bifurcation point HB+. Slow pas-
sage effect near the Hopf bifurcation causes the tra-
jectory to oscillate around the unstable equilibrium
branch EB+2 in small amplitude for a long period

of time, resulting in the occurrence of delayed C-
bifurcation after the trajectory passes through CB+.
Then, the trajectory jumps rather abruptly to the limit
cycle LC+1 and oscillates along the limit cycle LC+1

gradually until it arrives at the neighborhood of NH+
(Fig. 14c, d, b). The trajectory moves along the sta-
ble equilibrium branch EB+1 in quiescent state until
it arrives at P+ (Fig. 14a). Half period of the burst-
ing oscillations is finished. Further increase in the time
leads to the bursting B+. When the trajectory goes
back to the point P−, a non-smooth hysteresis loop
is closed, forming the bursting oscillations in Fig. 6.
The bursting pattern is termed “delayed C-bursting of
point/cycle/point/cycle/point type with reverse transi-
tion.”
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Remark 4 The delayed C-bifurcation may lead to a
transition pattern from spiking state to quiescent state
by jumping behavior in reverse direction near the fold
bifurcation, or from spiking state to spiking state by
jumping behavior in reverse direction near the super-
critical Hopf bifurcation.

6 Conclusion

A slow–fast piecewise-smooth system may exhibit
complicated bursting oscillations. Not only the con-
ventional bifurcations, such as fold and Hopf bifur-
cations, but also the non-smooth bifurcations, such as
C-bifurcation, non-smooth Hopf and grazing bifurca-
tions, can lead to transitions between different attrac-
tors. Slow passage effect, being frequently observed
near the conventionalHopf bifurcation, canbeobserved
near the non-smooth Hopf bifurcation as well. Delayed
C-bifurcation can lead to multiple behaviors of tran-
sitions, such as from cycle to cycle or from cycle to
stable equilibrium, resulting in different bursting pat-
terns. The non-smooth hysteresis loop caused by the
delayed transition to other attractor is responsible for
the generation of bursting oscillations.
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