
Nonlinear Dyn (2020) 100:2673–2686
https://doi.org/10.1007/s11071-020-05653-z

ORIGINAL PAPER

Population rate coding in recurrent neuronal networks
consisting of neurons with mixed excitatory–inhibitory
synapses

Xiaojuan Sun · Hao Si

Received: 12 December 2019 / Accepted: 20 April 2020 / Published online: 14 May 2020
© Springer Nature B.V. 2020

Abstract Neural coding is a key problem in neuro-
science aimed to understand the information process-
ing mechanism in brain. Among the classical theo-
ries of neural coding, population rate coding has been
studied widely in many works. In computational stud-
ies, neurons are usually classified into excitatory or
inhibitory ones. Excitatory neurons have excitatory
output synapses, and inhibitory neurons have inhibitory
output synapses. However, according to physiologi-
cal observations, neurons potentially have both types
of output synapses. Thus, in this paper, neuronal net-
works consisting of neurons with mixed excitatory–
inhibitory synapses are constructed to investigate the
population rate coding fidelity of neuronal systems. It
is revealed that, under intermediate values of recur-
rent probability, inhibitory–excitatory strength ratio,
and noise intensity, the performance of population rate
coding could be improved by both excitatory synaptic
strength and synaptic time constant. It is indicated that
external stimuli can be encoded in the form of popula-
tion firing rate by the studied neuronal networks very
well. What is more exciting is that we find the neuronal
networks considered in our work have higher coding
efficiency than the traditional ones. Therefore, neu-
rons with mixed excitatory–inhibitory synapses may
be much more rational.
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1 Introduction

One of themost fundamental questions in neuroscience
is the neural coding, which is a key to understand the
brain. A neural code is a system of rules and mecha-
nisms by which a signal carries information [1]. To our
knowledge, two types of neural coding are mainly con-
sidered including rate coding [2–5]and temporal coding
[6–9]. Rate coding encodes the neuronal information
by mean firing rate, while temporal coding(synchrony
coding) encodes the neuronal information by the pre-
cise spike times. Though the two coding strategies are
alternative to each other [9], there exist some works
trying to reconcile the two mechanisms, like the mean
firing rate propagation based on synchrony [10], or both
types of encoded information exist and propagated in
the same neuronal networks [11–15]. Up to now, how
neuronal information is coded in the brain cortex is still
under debate.

According to the classical rate coding, neurons
encode the information through representing it in the
number of spikes per time window(firing rate) [16,17].
Neurons, however, need a short integration time to esti-
mate the signal [18]. If it is required for every synaptic
stage to average in time to calculate the firing rate, it
could be seen that rate coding is slow for the brain [9].
Therefore, the slow rate coding is highly impossible for
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the information coding in the brain because the brain is
a highly efficient structure and its mechanism of infor-
mation coding is ought to be performed at high speed.
How to solve the efficiency problemof the classical rate
coding? The population rate coding was introduced,
which calculates the population firing rate instead of
the mean firing rate, improving the efficiency of rate
coding. Population rate coding is capable of faster and
more accurate processing information since averaging
is performed acrossmany fast-responding neurons [19–
22]. The population rate coding is a mechanism based
on the experimental observation that the firing rates of
neurons are related to the intensity of external stimuli
[21,23]. Recently, the population rate coding has been
widely investigated in many works [12,24–28].

In theoretical studies, for simplicity, neurons are
classified into excitatory and inhibitory neurons. The
activity patterns and spiking dynamics of excitatory–
inhibitory (E–I ) neuronal networks have been inves-
tigated in many works [29–33]. What is more, sig-
nal coding in recurrent E–I network also attracted
much attentions [13,14,26–28,31,34–40]. In most of
these works, neurons are classified into excitatory and
inhibitory neurons and whether the synaptic connec-
tions are excitatory or inhibitory is mainly determined
by the type of presynaptic neurons. In those models,
neurons have only one type of output synapses, respec-
tively. Here, we call this kind of neuronal network
model as single excitatory–inhibitory network (SEIN).
However, according to recent physiological evidence,
there exists the other case. Root et al. [41,42] report a
novel case: a large fraction of rodent ventral tegmen-
tal area (VTA) neurons that project to lateral habenula
(LHb) co-release glutamate (a main excitatory neuro-
transmitter) and GABA (a main inhibitory fast neu-
rotransmitter) from single axon terminals. There are
also other studies suggesting the co-release of both
excitatory and inhibitory neurotransmitters or recep-
tors [43–49]. These findings demonstrated that neurons
potentially have both types of output synapses. There-
fore, inspired by these experimental studies, we con-
struct a novel neuronal network, in which neurons have
mixed excitatory–inhibitory output synapses; here, we
call our model as mixed excitatory–inhibitory network
(MEIN). In the following contents, we will mainly
study the representation of populationfiring rate in such
a recurrent neuronal network in detail.

In this paper, we construct a neuronal network of
neurons with mixed excitatory–inhibitory synapses to

study the population rate coding. The contents are
arranged as follows. In ‘Model and Method’ section,
we introduce the computational model of neurons,
synapses, and networks as well as measurements of
neuronal information coding. In ‘Results’ section, the
effects of some critical parameters on the population
rate coding will be illustrated and discussed. Finally,
we try to compare the performance of population rate
coding in the traditional model (SEIN) with the novel
one (MEIN) proposed by us. In ‘Conclusion and Dis-
cussion’ section, we give a summary of this work and
some discussions about future works.

2 Model and method

According to recent physiological evidences [41,42],
neurons potentially have both types of output synapses.

Therefore, in our constructedmodel, one neuron has
different types of output synapses: Some of them are
excitatory, while others are inhibitory. And we set that
there is only one type of synapse between two coupled
neurons. Note that excitatory connections could grow
from a neuron who also grow inhibitory connections.
That is why we named such neurons as neurons with
mixed excitatory–inhibitory synapses. We constructed
a recurrent network of N neurons coupled through
excitatory and inhibitory synaptic connections, as is
shown in Fig. 1. Neurons are connected with recur-
rent probability Prc. We keep the excitatory–inhibitory
connection ratio in the whole network as 4:1; there-
fore, among those connections, 80% of them are mod-
eled as excitatory synaptic connections, while 20% are
inhibitory. Namely, excitatory probability PE

rc = 0.8
and inhibitory probability P I

rc = 0.2. Generally, N =
100 and Prc = 0.12 if not specified otherwise.

The neuronal model used in this paper is the
Hodgkin–Huxley model [50] whose equations are
shown as follows.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C dVi
dt = I ext + I ioni + I syni + Dξ,

dmi
dt = am(Vi )(1 − m) − bm(Vi )m,

dhi
dt = ah(Vi )(1 − h) − bh(Vi )h,

dni
dt = an(Vi )(1 − n) − bn(Vi )n,

(1)

with

I ioni = − gNam
3
i hi (Vi − VNa)

− gK n
4
i (Vi − VK ) − gl(Vi − Vl), (2)
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Exc. Inh.

Fig. 1 Illustration of the recurrent network. Light blue solid
circles denote neurons, and the total number of neurons in the
considered network is set as N . The red lines with an arrow
denote excitatory synaptic connections, while the blue lines with
a solid circle denote inhibitory synaptic connections. The side
of the arrow and circle points to the postsynaptic neurons. The
ratio between the number of excitatory and inhibitory synaptic
connections in such a network is about 4:1. (Color figure online)

where Vi denotes the membrane potential of each neu-
ron i (i = 1, . . . , N ). C = 1μF/cm2 is the membrane
capacity. I ext denotes the external stimuli injected into
all neurons in the network. I ioni denotes the ion cur-
rent, where m, h, and n are activation and inactivation
gate variables of sodium channels, activation gate vari-
able of potassium channels, respectively. The related
parameters are listed in Table 1. Dξ is the background
noise with D denoting the noise intensity (unit: pA)
and ξ being the white Gaussian noise, whose mean
is zero and the standard deviation is 1. The functions
ax (V ) and bx (V ) with x = m, n, h are given by:
am = 0.1(V + 40)/(1 − exp[(−V − 40)/10]), bm =
4 exp[(−V − 65)/18], ah = 0.07 exp[(−V − 65)/20],
bh = 1/(1 + exp[(−V − 35)/10]), an = 0.01(V +
55)/(1−exp[(−V −55)/10]), bn = 0.125 exp[(−V −
65)/80] from Hansel et al [51]. All numerical simula-
tions are performed in Euler–Maruyama method with
temporal resolution fixing at 0.05ms. The systems start
from t = 0 ms and the initials are V (0) = −61 mV,
m(0) = 0.08, h(0) = 0.46, n(0) = 0.37.

In order to examine the accuracy of signal repre-
sentation, we use a kind of time-varying input whose
distribution is Gaussian distribution, though stimuli
in neural systems are considered as a Poisson distri-
bution. Here, such the external stimuli I ext are used
widely in many papers [25–28], constructed from the
low-pass filtered and half-wave rectified Gaussian-
distributed white noise. The external stimuli can be
described by

Table 1 Parameters of H–H neurons

Parameter Symbol Value Unit

Membrane capacitor C 1 μF/cm2

Maximum sodium conduc-
tance

gNa 120 mS/cm2

Maximum potassium con-
ductance

gK 36 mS/cm2

Maximum leaky conduc-
tance

gl 0.3 mS/cm2

Reversal potential of sodium VNa 50 mV

Reversal potential of potas-
sium

VK −77 mV

Reversal potential of leaky
channels

Vl −54.4 mV

I ext(t) =
{
Kη(t), if η ≥ 0
0, if η < 0

, (3)

where η(t) is an Ornstein–Uhlenbeck process

τc
dη(t)

dt
= −η(t) + √

2Aξ(t), (4)

where ξ(t) is Gaussian white noise. K = 15 denoting
the modulation strength. The correlation time τc is set
as 80 ms. The external input current intensity is set as
A = 200.

I syni is the synaptic current of each neuron from the
coupled presynaptic neurons and can be described by

I syni =
Npre∑

k=1

Gx
k (t)(Vi (t) − Vsyn), (i = 1, 2, ..., N )

(5)

and

Gx
k (t) =

{
gxαx (t − tspk), t − tspk > 0
0, else

, (6)

with αx (t) = (t/τ x )e(−t/τ x ). Npre denotes the amount
of presynaptic neurons coupled with the neuron (i).
Vsyn denotes the reversal potential of synapse with
Vsyn = 0 for excitatory connections and Vsyn =
−75mV for inhibitory connections. The function
Gx

k (t) denotes the synaptic conductance from the
kth presynaptic neuron based on alpha-function time
courses. The x denotes the types of synapses include
excitatory (x = exc) and inhibitory (x = inh) types.
tspk is the spike timings of the presynaptic neurons. τ x is
synaptic time constant. τ exc = 0.3ms for the excitatory
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connections, while τ inh = 0.6ms for inhibitory con-
nections. If not specified below, the excitatory synaptic
strength is set as gexc = 0.102. The inhibitory synaptic
strength ginh is calculated by excitatory one:

R = ginh

gexc
, (7)

inwhich R denotes the inhibitory and excitatory synap-
tic strength ratio (I/E ratio). Note that ginh and gexc

are two bifurcation parameters of the model that are
summarized in the parameter R.

In order to study population rate coding, some
parameters and measures are introduced as follows.
The population firing rate is used to represent the sig-
nal, which is calculated as

p(t) = n(Δt)

NΔt
, (8)

whereΔt is a given short time interval centered at time
t ; here, Δt is taken as 10 ms, and n(Δt) is the total
amount of spikes in the neuronal population during this
given time interval.

The correlation coefficient C(τ ) of input s(t) and
population rate p(t) in target layer i is introduced to
quantify how well the input is encoded by the network.
C(τ ) is calculated as [26]

C(τ ) = 〈[s(t) − s̄][p(t + τ) − p̄]〉t√〈[s(t) − s̄]2〉t
〈[p(t + τ) − p̄]2〉t

, (9)

where p(t) is the population firing rate in a 10 ms time
window sliding with a step of 1 ms. Here, we term the
maximum of the correlation coefficients as encoding
fidelity,

Q = max{(C(τ )}, (10)

through which we could know how much information
is captured by population firing rate.

3 Results

In this section, simulated results and relevant anal-
yses are presented. We mainly pay attention to dis-
cussing how stochastic stimuli can be represented with
the population firing rate in the studied neuronal net-
work and how to improve the encoding quality. The key
parameterswe investigate include I/E strength ratio R,
recurrent probability Prc, noise intensity D, excitatory
strength gexc, and the synaptic time constant τ exc, τ inh.

Finally, we compare the encoding quality of our pro-
posed neuronal network (mixed excitatory–inhibitory
network, MEIN) with the neuronal networks in previ-
ous works which consist of neurons with one type of
output synapses (single excitatory–inhibitory network,
SEIN).

3.1 I/E strength ratio and recurrent probability

The network state has a directive effect on information
encoding. How network state affects encoding fidelity
of the population rate is an important problem. In the
current studied network, the ratio between inhibitory
and excitatory synaptic strengths directly determines
the network state. If the ratio is small, excitation domi-
nates; otherwise, inhibition dominates. Meanwhile, the
recurrent probability Prc determines how tightly neu-
rons in the network connect with each other, which
directly influences the total number of excitatory and
inhibitory connections. That is to say that the I/E
strength ratio R and recurrent probability Prc definitely
have great influences on the networks’ state. Therefore,
in this subsection, we will discuss the effects of R and
Prc on encoding quality Q first.

Dependence of Q with respect to R under some
certain parameters is shown in Fig. 2a. From this fig-
ure, we see that there exists an optimal range of R
(15 < R < 40) for a better encoding performance.
And for some values of R, the encoding quality Q
could take values as large as 92.03%. It indicates that
the current studied neuronal network could encode the
external stimuli in the form of population firing rate as
much as 92.03%. In order to have an intuitive knowl-
edge about the dependence of R on encoding fidelity Q,
three typical results are presented in Fig. 2b–d,where R
takes 5, 25, and 60, respectively. In these three figures,
stochastic external input, network spiking raster, and
the correspondingpopulationfiring rate are shown from
top to bottom. Referring to the results shown in Fig. 2a,
Q takes larger value for R = 25 than for R = 5 and
R = 60. Combining with the results shown in Fig. 2b
and (d), it can be observed that population firing rate of
the neuronal system for R = 25 is much similar to the
stochastic external input. Thus, the case corresponding
to R = 25 has a better performance on representing
the input using population firing rate, which preserves
the input more completely, while in the other two cases
signals are weakened or amplified.
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Fig. 2 a Dependence of coding fidelity Q with respect to the
I/E synaptic strength ratio R. Prc = 0.1, D = 1, gexc = 0.102,
τ exc = 0.3, τ inh = 0.6. Population firing rate encoding from the
same stimuli injected into the recurrent network are presented

for three typical values of R, b R = 5, c R = 25 and d R = 60.
From the top to the bottom are external input, spike raster of
the studied neuronal network, and the corresponding population
firing rate, respectively

Now, it is observed that the I/E strength ratio actu-
ally has important effects on encoding fidelity of the
neuronal system where Prc is fixed to be 0.1. As stated
above, Prc also influences the network state. Could the
obtained results above be observed for other values of
Prc? What will happen if Prc is altered? In order to
answer these questions, we test the dependence of Q on
the parameters Prc and R. Results are shown in Fig. 3.
In the parameter space of R and Prc, it seems that Q
takes higher values below the blackdashed curve (noted
as the blue area), while it takes smaller values above

the dashed curve (noted as the orange area). Interest-
ingly, for most Prc below the black dashed curve, e.g.,
0.06 < Prc < 0.3, there exists an optimal range of R
in which Q takes higher values, while it takes smaller
values if R is out of the range. Meanwhile, the width
of the optimal range of R gets wider as Prc decreases
to 0.06 approximately.

From the statistical characteristic shown in Fig. 4a,
the mean values of Q, however, present a decaying
trend as R increases, in which the large error bars are
almost due to the lower encoding quality in the orange
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Fig. 3 Dependence of encoding fidelity Q on R and Prc. Dark
blue color represents high Q, while light orange color represents
small Q. In the parameter space of R and Prc, it seems that Q
takes higher values below the black dashed curve (noted as blue
area), while it takes smaller values above the dashed curve (noted
as orange area). In the blue area, especially around Prc = 0.1,
the quality Q has a clear tendency to increase firstly and then
decrease, similar to the curve shown in Fig. 2a. The encoding
quality has a better performance when the recurrent probability
is set around 0.1. D = 1, gexc = 0.102, τ exc = 0.3, τ inh = 0.6
(averaged in 10 trials). (Color figure online)

area. Therefore, we should focus on the blue area with
high encoding performance. The green curve in Fig. 4b
shows that Q presents a decaying trend with increasing
Prc and takes optimal values around Prc ≈ 0.1.Accord-
ing to the two statistical results and corresponding anal-
ysis, we now turn to Fig. 3 again. Obviously, most opti-
mal ranges of R located in the blue area, though the
range gets narrower as Prc increases. In the blue area,
especially around Prc = 0.1, the quality Q has a clear
tendency to increase firstly and then decrease, similar
to the curve shown in Fig. 2a. Thus, encoding quality
has a better performance as the recurrent probability is
set around 0.1.

In order to determine the relationship of Q versus R
around Prc ≈ 0.1, we show some curves selected from
the results around Prc ≈ 0.1 in Fig. 4c. As shown in
this figure, the other four curves have the similar varia-
tion tendency of Q with respect to R as the curve with
Prc = 0.1 (green line with upper triangles). However,
in detail, the curve tends to be saturated as R increases
if Prc > 0.12; the curve tends to decay rapidly as R
increases if Prc < 0.12. In other words, the optimal
range tends to be wider for Prc > 0.12, while the opti-
mal range tends to be narrower for Prc < 0.12. Thus, in

the following simulations, we choose Prc = 0.12 since
there is no obvious saturation and sharp decay, but a
suitable optimal range of R.

3.2 Effects of considered parameters on population
rate coding

3.2.1 Noise intensity

Neurons in the biological environment receive back-
ground noise from time to time. In this work, we use
Gaussian noise to mimic the background noise. In the
previous studies, it is reported that noise intensity is a
key parameter in information coding [10,25,52]. Here,
we also discuss effects of noise intensity D on encoding
fidelity Q. Figure 5a presents the dependence of encod-
ingfidelity Q on noise intensity D and I/E ratio R. The
red color represents the better performance of informa-
tion coding, while blue is for the opposite. Obviously
there exists an optimal area of R and D where Q takes
high values (refer to the red area in Fig. 5a).

For 0.6 < D < 1.2, the network encodes the input
information very well within an optimal range of R,
within which Q could be larger than 0.9. Meanwhile,
it could be seen that the minimal and maximal optimal
value of R both decreases with D increasing from 0.6
to 1.2. In order to get a deeper understanding of the
relationship between Q, D, and R, we perform some
statistical analysis of the results presented in Fig. 5a.
The statistical results are shown in Fig. 5c, d.

In Fig. 5c, the solid orange line indicates the mean
values of Q vs. R averaged with respect to D, and the
orange bar denotes the corresponding standard devia-
tion. Similarly, the blue line (Fig. 5d) shows the mean
values of Q vs. D averaged with respect to R, and the
blue bar denotes the corresponding standard deviation
too. As shown in these two figures, it can be observed
that Q takes higher values for moderate R and an opti-
mal range of D is found where encoding fidelity is
better.

The optimal performance of some certain interme-
diate noise strength on the population coding can be
well explained by the stochastic resonance (SR, or
stochastic facilitation) phenomenon [53,54]. The SR
phenomenon [55,56] is found that there exist optimal
noise strengths promoting the neuronal representation
of input signals. In other words, by altering the strength
of additive noise, the input information (such as the
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Fig. 4 Statistical results and samples of data calculated or sam-
pled from the results about effects of Prc and R on the population
rate coding. a The purple line denotes variations of the mean val-
ues of Q versus R under different Prc. The purple bar denotes
the corresponding SD. b The green line denotes variations of the
mean values of Q versus Prc under different R, and the green bar
denotes the corresponding SD. c Effects of R on the population
rate coding at some selected Prc. Red circle: Prc = 0.08, blue

square: Prc = 0.10, green upper triangle: Prc = 0.12, purple
lower triangle: Prc = 0.14, orange diamond: Prc = 0.16. The
subgraph denotes the overlapping curves located in the gray area
where R takes value from 12 < R < 30. The encoding quality
performs worse in the case of low and high values of R, while it
performs better in themoderate values of R. (Color figure online)
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Fig. 5 Effect of noise intensity on encoding fidelity. a Depen-
dence of encoding fidelity on D and R. Red denotes higher Q and
indicates higher coding fidelity. b Samples of the dependence of
noise intensity of D = 0.7 (blue triangle), 1 (purple square), 1.2
(green circle). c Statistics of the data calculated from the results
about effects of noise intensity on the population rate coding.
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SD. The curve shows the same trends that lower Q is for small
and large R, while higher Q is for intermediate R. dThe blue line
denotes variations of the mean values of Q vs. D under differ-
ent R, and the blue bar denotes the corresponding SD. The curve
shows that D around 1 is better for information encoding fidelity.
Prc = 0.12, gexc = 0.102, τ exc = 0.3, τ inh = 0.6. (Color figure
online)
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weak signal) can be amplified. From Fig. 5a, for dif-
ferent R, the optimal range of noise strength D is also
changing.

In order to set a more reasonable value for noise
intensity D in the following discussions, variances of
Q with respect to R for three different values of D
(D = 0.7, 1, 1.2) are plotted in Fig. 5b. As we dis-
cussed above, the three cases all have an optimal range
of R, the case D = 0.7 has a wider optimal range of
R and its lower and upper limits are larger, the case
D = 1.2 has a narrower optimal range of R and its
lower and upper limits are smaller. Comparing to the
other two cases, the case D = 1 has a moderate opti-
mal range of R maintaining the high level of Q and Q
does not decay rapidly if R exceeds the corresponding
optimal range. It makes the case D = 1 be a compro-
mise of the other two cases and proves the rationality
of the parameter D = 1 that we selected before. Of
course, we could get some very high encoding quality
with some noise intensity like D = 0.7. We still select
D = 1 in the later simulations because that does not
affect the results that we investigate the effects of other
parameters on the encoding performance.

3.2.2 Excitatory synaptic strength

The excitatory synaptic strength is a key parame-
ter who directly determines the strength of excita-
tory synapses and indirectly determines the inhibitory
synaptic strength together with R. Therefore, the exci-
tatory synaptic strength gexc together with I/E ratio R
could have great influences on the network state and
the performance of population rate coding. The depen-
dence of encoding fidelity on gexc and R is shown in
Fig. 6.

As shown in this figure, there is an orange area locat-
ing between two parallel black dashed lines.Within this
area, the studied neuronal network has a better perfor-
mance of population rate coding with Q being almost
above 0.9, while outside this area, the performance of
population rate coding is worse with Q being smaller.
To describe the graph in detail, we separate the 2-D
parameter space into three parts. Q takes higher values
in the middle area (orange color), second high values
in the lower left corner (white color) and low values in
the upper right corner (purple color). Meanwhile, we
note that the product of R and gexc takes lower values in
the lower left corner, medium values in the middle area
and high values in the upper right corner, as is shown

in Fig. 6b. It seems that the product of R and gexc has a
positive correlationwith the encoding quality. Since the
product of R and gexc is exactly the inhibitory synap-
tic strength ginh, the inhibitory synaptic strength might
have a great influence on the encoding quality of the
neuronal systems.

Now, we try to give some illustrations on the
observed effects of inhibitory synaptic strength on
encoding fidelity. For large ginh, the encoding qual-
ity is worse, which suggests that too strong inhibitory
synapses depress encoding ability of the network and
then leading to smaller Q; for small ginh, Q is larger
than the values for large ginh, but still smaller than Q for
intermediate ginh. It suggests that decreasing inhibitory
strength could facilitate the encoding quality of the
network, while too weak inhibition could indirectly
make the neuronal networkmuchmore excited and then
reduce the accuracy of information coding. For inter-
mediate ginh, the network could keep in an intermediate
state—not too excitatory or too inhibitory—so that the
neuronal network could respond to the signals verywell
and possess a better performance of rate coding.

Therefore, with the results obtained in this subsec-
tion, it can be observed that intermediate values of ginh

are needed for the neuronal networks to have better
encoding abilities. Since ginh is determined by the exci-
tatory synaptic strength gexc and I/E ratio R, it means
that the excitatory synaptic strength and I/E ratio influ-
ence the encoding quality together. Then, the existence
of an optimal range of R for some fixed gexc (not too
large) observed here could be understood easily.Hence,
we can also see that gexc = 0.102 as fixed in the above
discussions is suitable.

3.2.3 Synaptic time constant

In this subsection, we investigate effects of the synap-
tic time constant on the encoding performance. In the
simulations, we fix the ratio between the inhibitory
and excitatory synaptic time constant as 2, i.e., τ inh =
2 τ exc. Then, τ exc is altered to investigate effects of
synaptic time constant on the encoding performance.
As shown in Fig. 7, the results indicate that only
small synaptic time constant is good for encoding
performance. It is easy to understand that only if a
synapse with a small synaptic time constant, namely,
fast dynamics, could respond to the coming synaptic
currents with high speed so that the coding is more
accurate.

123



Population rate coding in recurrent neuronal networks consisting 2681

0 10 12 14 16 18 20 22 24 26 28 30 40 50 60 70 80

0.16
0.152
0.144
0.136
0.128

0.12
0.112
0.104
0.096
0.088

0.08
0.072
0.064
0.056
0.048

0.04
0.032
0.024
0.016
0.008

R

gex
c

0.6

0.7

0.8

0.9

0 10 12 14 16 18 20 22 24 26 28 30 40 50 60 70 80

0.16
0.152
0.144
0.136
0.128

0.12
0.112
0.104
0.096
0.088

0.08
0.072
0.064
0.056
0.048

0.04
0.032
0.024
0.016
0.008

Product (ginh)

R

gex
c

Small

Medium

Large

(a) (b)

Fig. 6 a Dependence of encoding fidelity on gexc and R. Orange
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the two black dashed parallel lines, but lower values out of the
area especially in the upper right corner. Prc = 0.12, D = 1,
τ exc = 0.3, τ inh = 0.6. b The product of gexc and R, which

is also the inhibitory synaptic strength ginh. Yellow color, red
color, and blue color denote small, medium, and large values of
ginh, respectively. Then, it can be seen that medium values of ginh

almost correspond to the orange area with the better performance
of information encoding. (Color figure online)
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coding for 0 < R < 80. The color decodes the encoding quality,
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0.102. (Color figure online)

3.3 Comparison with single excitatory–inhibitory
network

We have studied effects of multiple parameters on
the population rate coding quality of the neuronal

network, in which we claimed that presynaptic neurons
have mixed excitatory and inhibitory output synapses.
This is different from the previously studied neu-
ronal networks where neurons have one type of output
synapses. In order to elucidate the differences, we com-
pare the population rate codingfidelity between the pre-
vious networks (single excitatory–inhibitory network,
SEIN) with our studied network (mixed excitatory–
inhibitory network, MEIN). The synaptic strength and
noise intensity aremainly considered in this subsection.

Firstly, let us introduce the setup of the SEINmodel.
The network consists of 100 neurons with 80 excitatory
neurons and 20 inhibitory neurons, which are named as
excitatory subpopulation E and inhibitory subpopula-
tion I , respectively. And the connection probabilities
of excitatory to excitatory neurons PEE, excitatory to
inhibitory neurons PEI, inhibitory to excitatory neurons
PIE and inhibitory to inhibitory neurons PII are set as
PEE = PEI = PIE = PII = 0.12. The values of the
other parameters are set the same as the parameters in
our considered network mentioned above.

Results of the SEIN model are shown in Fig. 8a, b.
As shown in this figure, noise intensity and synaptic
strength have the similar effect on the encoding qual-
ity to ours. Namely, too weak and strong noise depress
the population rate coding, while intermediate noise
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Dependence of encoding fidelity on excitatory synaptic strength
gexc and I/E strength ratio R in SEIN model with D = 0.7.
c, d Comparison of the encoding fidelity of the determined and
undetermined models. c The red color denotes the SEIN model,

while blue color denotes our MEIN model. It can be observed
that Q takes higher values in our models than that in the tra-
ditional ones. gexc = 0.1. d The green color denotes the SEIN
model, while the purple color denotes our model. Similar to that
observed in (c), the optimal Q takes higher values in our models
than that in the SEIN ones. D = 0.7. (Color figure online)

facilitates coding, and intermediate values of the prod-
uct R ∗ gexc (inhibitory synaptic strength ginh) could
promote the population rate coding fidelity. However,
comparing with the results shown in Figs. 5 and 6a,
it is easily found that Q takes smaller values in the
SEIN models. To make it much more clear, compar-
isons of some parameters are presented in Fig. 8c, d.
From this figure, it is obviously observed that Q takes
smaller values in the SEIN model than that in MEIN
model when R falls into the optimal range. It indicates
that the encoding fidelity of the neuronal networks with
one-type output synapse neurons seems worse than the
networks with mixed-type output synapse neurons. In
other words, the model raised in our work could have
better performance of the population rate coding than
the traditional model usually used in the former works.

4 Conclusion and discussion

Information coding in cortical network is one of the
critical problems for people to understand the brain,
which has attracted extensive attention. In the past
decades, people developed many potential strategies of
information coding [2,8,25,26,57–61], in which there
are two main types of coding paradigm including tem-
poral coding [6,8,9] and rate coding [2,25]. Among
these neural code hypthesis, the population rate cod-
ing has been widely studied in many works [12,19–
22,24,25,27,28].

Some researchers have constructed some recurrent
networks consisting of excitatory and inhibitory neu-

rons to model the cortical neuronal networks. In these
works, different types of neurons have different corre-
sponding synapses. Considering the physiological find-
ings [41,42], however, neurons potentially have both
types of output synapses. Inspired by these experi-
mental results, we construct a recurrent neuronal net-
work in which one presynaptic neuron has two types of
output connections including excitatory and inhibitory
synapses.

In this paper, we mainly discuss the population
rate coding fidelity of our considered neuronal net-
works. The I/E strength ratio R is a key parameter
that determines how different between the excitatory
and inhibitory synaptic strength, which indirectly influ-
ences the network state. It is found that there exist some
intermediate R at which neuronal network could have
better performance of population rate coding. And the
recurrent probability has a similar optimal interme-
diate range in which the population rate coding per-
forms well. After determining these two key param-
eters, effects of the noise intensity, synaptic strength,
and synaptic time constant on the population rate cod-
ing are investigated in the following simulations. For
noise intensity, it is revealed that intermediate noise
intensity could facilitate the encoding quality, while
large and small noise intensity depresses it. For synap-
tic strength, it is found that the population rate coding
quality could be optimized by some intermediate values
of R if the excitatory synaptic strength is not too large.
Finally, since the synaptic time constant determines the
speed of neurons’ response to signals, small synaptic
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time constants are reported to promote the accuracy of
population rate coding. With these obtained results, it
can be seen that intermediate values of these param-
eters (except the synaptic time constant) could make
the neuronal network possess better performance of the
population rate coding. Thus, with the suitable combi-
nation of these parameters, the studied neuronal net-
work could encode signal information in population
rate coding very well.

Furthermore,we compare the population rate coding
performance of our considered network (MEINmodel)
with the previous networks (SEIN model). It is found
that, similar to that observed in MEIN model, inter-
mediate values of the controlled parameters are also
shown to enhance encoding fidelity. However, with the
same setting parameters, the population rate coding
performance in the SEIN model is worse than ours. To
sum up, the simulation results suggested that neuronal
networks with one-type output synapse neurons have
similar regulated effects of the population rate coding
fidelity as the ones with mixed-type output synapse
neurons. Moreover, our model has a much better per-
formance in population rate coding and a more rational
architecture to some sense.

In this paper, the changing of I/E strength ratio is
found to play an important role in information cod-
ing. The excitability of neuronal networks is altered as
the I/E strength ratio changed, which hence affects
the ability of information processing of neuronal net-
works. In the field of psychiatric disorders, studies have
found E–I balance has an important effect on neural
disorders such as autism (ASD) and schizophrenia [62].
Some forms of ASD might be caused by changing the
circuits’ E–I balance [63]. It was hypothesized that
severe behavioral deficits in psychiatric diseases might
arise from elevations in the cellular balance of E–I bal-
ance within neural microcircuitry [63–65]. Yizhar et al.
showed that the compensatory elevation of inhibitory
cell excitability partially rescued social deficits caused
by E/I balance elevation [66]. Selimbeyoglu et al. also
showed that real-time modulation of E–I balance in
the mouse prefrontal cortex can rescue social behavior
deficits reminiscent of autism phenotypes [67]. These
two studies suggest that the excitation–inhibition bal-
ance can be used as a framework for investigating
mechanisms in neuropsychiatric disorders [62]. It is
shown that increasing the E/I ratio (either by increas-
ing excitation or by impairing inhibition) within mPFC
tends to cause social deficits,whereas increasing inhibi-

tion decreases the E/I ratio and can rescue some social
deficits [66,67]. The role of alterations to the function
of the inhibitory system as a cause of psychiatric dis-
orders has been studied [68–70]. Research shows that
the specific modulations of E/I balance lead to the
interruption of specific functions in the network, which
affect signal processing in a specific way, leading to a
specific psychiatric phenotype [68]. To study the effect
of modulations of excitatory–inhibitory strength ratio
on the neuronal networks, information processing abil-
ity might provide potential contributions to the study
of psychiatric disorders.

We use numerical simulation to study the popula-
tion rate coding in neural systems. Through compu-
tational and physical methods to study neuroscience
is a new subject named as theoretical neuroscience or
computational neurodynamics [71]. In this field, peo-
ple usually apply mathematical physical methods and
reasonable simplifications to model neural systems. In
this paper, although we construct a network of neurons
with mixed excitatory–inhibitory synapses according
to the co-release of both types of neurotransmitters and
receptors, it is still not very biological enough. In fact,
many unknown issues about the co-release of excita-
tory and inhibitory synaptic receptors remain. Mean-
while, neuronal noise in this paper is modeled as the
Gaussian noise, which is a simplified version. In recent
studies, it is shown that the neuronal fluctuations are
produced by the network topology and internal neu-
ronal parameters [72–78]. In the future, more complex
and realistic synaptic model can be considered such
as introducing the stochastic process of neural trans-
mitters and receptors. Apart from the population rate
coding, other kinds of neuronal information based on
different coding mechanisms are also worth studying
to open our minds.
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