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Abstract In this paper, we introduce the third-order
flow equation of the Kaup–Newell (KN) system. We
study this equation, and we obtain different types of
solutions by using the Darboux transformation (DT)
and the extendedDTof theKNsystem, such as solitons,
positons, breathers, and rogue waves. The extended
DT is obtained by taking the degenerate eigenvalues
λi → λ1(i = 3, 5, 7, . . . , 2k − 1) and by performing
the Taylor expansion near λ1 of the determinants of DT.
Some analytic expressions are explicitly given for the
first-order solutions.We study the uniquewaveforms of
both the first-order and higher-order rogue-wave solu-
tions for special choices of parameters, and we find dif-
ferent types of such wave structures: fundamental pat-
tern, triangular, modified-triangular, pentagram, ring,
ring-triangular, and multi-ring wave patterns. We con-
clude that the third-order dispersion and quintic nonlin-
ear term of the KN system modify both the trajectories
and speeds of the solutions as compared with those
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1 Introduction

In recent decades, the soliton concept plays an increas-
ing role in mathematics, physical sciences, and in other
areas of science and engineering. From the perspectives
of soliton theory and real-world applications, many dif-
ferent types of solitons have been extensively studied
under various physical conditions [1–16]. The soliton
is a category of special localized solutions of non-
linear partial differential equations and is also one of
the abstract mathematical concepts that can be directly
transformed into crucial technological advances [17].
For instance, due to the fact that the optical soliton
can maintain its shape and energy during long-distance
propagation, it is considered to be the ideal informa-
tion carrier in modern optical fiber communications
systems [17–22].

When a picosecond optical pulse propagates in a
single-mode fiber, the soliton solution of the famous
nonlinear Schrödinger (NLS) equation is considered
to be the result of the delicate balance between disper-
sion and cubic (Kerr) nonlinearitywithout the inclusion
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of higher-order nonlinear effects into the dynamical
model [23,24]. However, in optical fibers, other physi-
cal effects such as self-steepening, self-frequency shift,
and self-phase modulation have a great impact on the
propagation dynamics of optical pulses in these non-
linear and dispersive optical media [7,25]. With the
development of high-bit-rate optical fiber communica-
tion system and laser technology, higher-order nonlin-
ear effects should be taken into account when model-
ing the propagation of ultra-short and high-intensity
optical pulse in nonlinear optical media. Thus, dur-
ing the past decades, several types of nonlinear partial
differential equations that include the effects of third-
order dispersion, quintic nonlinear terms, and other
effects have been investigated, such asKundu–Eckhaus
equation [26,27], Hirota equation [28,29], generalized
NLS equation [30,31], and derivative NLS equation
(which is also the second-order flow of the KN sys-
tem) [32,33]. For instance, a generalized NLS equation
with the fourth-order dispersion and quintic nonlinear
terms to describe the optical pulse propagation in non-
linearmetamaterials has been studied [34].Meanwhile,
the equation investigated in Ref. [34] can be extended
to a more general model with the fourth-order disper-

sion
∂4q

∂x4
and a quintic nonlinear term having the form

∂(|q|4q)

∂x
, which this quintic nonlinear term accounts

for the self-steepening effect related to the higher-order
quintic optical nonlinearity [35].

Many works have been devoted to the study of
higher-order nonlinearities and generalized (higher-
order) NLS equations. For example, in Ref. [36] the
problem of wave train generation of solitons in sys-
tems with higher-order nonlinearities has been inves-
tigated and in Ref. [37] the impact of dispersion and
non-Kerr nonlinearity on the modulational instabil-
ity of the higher-order nonlinear Schrödinger equa-
tion has been studied in detail. However, the effect of
the fifth-order nonlinear term of the Ginzburg–Landau
(GL) equation has been observed experimentally in
mode-locked fiber lasers [38,39]. Although the third-
order GL equation and the fifth-order GL equation
have both of them stable solutions whose amplitudes
are arbitrary (the so-called flat-top solutions) [40,41],
the stable fixed amplitude solution only exists in the
fifth-order GL equation. This means that the fifth-
order nonlinear term is useful to improve the stability
of the solution [42,43]. Very recently, several NLS-

type models were extended and studied in detail [44–
47].

In this paper, we study the third-order flow equation
of the Kaup–Newell system (TOFKN equation) that
contains the third-order dispersion and quintic nonlin-
ear terms. It is an integrable system that is obtained
from the coupled TOFKN equation proposed by Kenji
Imai in 1999 [48]. We reduce the coupled TOFKN
equation by imposing the condition r = −q∗ and some
special values of the parameters, and then, we get the
general form of the TOFKN equation:

qt + qxxx − 3i(|q|2qx )x − 3

2
(|q|4q)x = 0. (1)

To the best of our knowledge, Eq. (1) is new and thus
deserves further studies in this paper.

During the past 2 decades, rogue waves have
attracted considerable attention inmany researchfields,
such as oceanography [49], optical fibers [5,50],
plasma physics [51], and Bose–Einstein condensates
[52]. The rogue waves, or freak waves, were originally
used to describe extraordinarily high and steep waves
in deep ocean, and their appearance or disappearance
is always sudden and traceless [53–63]. Although the
intrinsic nature of the rogue waves is elusive and they
are essentially difficult to monitor due to their fleeting
existences, satellite monitoring has confirmed that they
wander in deep oceans [49]. When rogue wave occa-
sionally encounter ships, huge casualties and losseswill
occur. The first experimental observation of a rogue
wave in an optical system was reported in 2007 [50],
and in 2011, the rogue wave formation in a water wave
tank was reported [64]. We point out that the rogue
waves can create conditions for generating highly ener-
getic pulses in different optical settings [50,65,66].

The purpose of this paper is to generate various types
of solutions of the TOFKN equation by using the Dar-
boux transformation (DT), and to discuss the effects of
fifth-order nonlinear terms on the KN system by com-
paring the obtained results with those corresponding to
the solutions of the derivative nonlinear Schrödinger
equation (DNLS) equation [32,33]. First, we introduce
the DT and the extended DT of the KN system [32,33].
The extended DT [67] is obtained via taking the degen-
erate eigenvalues λi → λ1(i = 3, 5, 7, . . . , 2k − 1) of
the determinant formula of the DT and by performing
the Taylor expansion near λ1 of the determinants of DT.
Second, we directly obtain several categories of solu-
tions of the TOFKN equation, such as solitons, posi-
tons, breathers, rogue waves, and rational solutions.
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The detailed analytical expressions of some obtained
solutions and their dynamics are given. Third, we arrive
at the conclusion that the fifth-order nonlinear term of
theKN system can affect the trajectory and the speed of
the obtained solutions and we compare this result with
that corresponding to the second-order flow equation
of the KN system.

The organization of this paper is as follows: In
Sect. 2, we present the coupled TOFKN equation, the
Lax pair, and the formula of the nth-order solutions
of the TOFKN equation, see also Refs. [32,33,48].
Through the application of the obtained formula, some
analytic expressions of different types of solutions from
zero seed solution are given, which include solitons,
positons, and rational solutions. In Sect. 3, we obtain
both the breather solutions and the rogue wave solu-
tions from the nonzero seed solution by using the DT
and we plot these types of solutions. In Sect. 4, by
modifying the coefficients of eigenfunctions, we gen-
erate different types of multiple-rogue waves. For spe-
cial choices of the parameters, we obtain seven types
of higher-order rogue waves having fundamental pat-
tern, triangular, modified-triangular, pentagram, ring,
ring-triangular, and multi-ring structures. We point out
that the pentagram waveform is investigated here for
the first time, to the best of our knowledge. Finally,
summary and discussion are given in Sect. 5.

2 Solutions of the TOFKN equation from zero seed
solution

Let us start from the second non-trivial flow (the third-
order flow) of the KN system [48]:

⎧
⎪⎪⎨

⎪⎪⎩

qt + qxxx + 3i(qrqx )x − 3

2
(q3r2)x = 0,

rt + rxxx − 3i(qrrx )x − 3

2
(q2r3)x = 0.

(2)

This system of coupled equations can be generated by
the integrability condition, i.e., the zero curvature equa-
tionMt −Nx +[M, N ] = 0 of theKN spectral problem
(Lax pair) [48]:

{
Ψx = MΨ = (Jλ2 + Qλ)Ψ,

Ψt = NΨ = (V6λ
6 + V5λ

5 + V4λ
4 + V3λ

3 + V2λ
2 + V1λ)Ψ.

(3)

with

J =
(
i 0
0 −i

)

, Q =
(
0 q
r 0

)

,

V6 = 4J, V5 = 4Q, V4 = 2qr J,

V3 =
(

0 −2iqx + 2q2r
2irx + 2qr2 0

)

,

V2 =
(
3

2
q2r2 + i(qrx − qxr)

)

J,

V1 =
(

0 3
2q

3r2 − 3iqrqx − qxx
3
2q

2r3 + 3iqrrx − rxx 0

)

.

Here, λ ∈ C, Ψ ∈ C
2, and Ψ is the eigenfunction

associated with eigenvalue λ of the KN system.
When r = −q∗, Eq. (2) can be reduced to Eq. (1),

and ‘∗’ denotes the complex conjugation here.

2.1 The formula for the nth-order solutions of the
TOFKN equation

In order to obtain different solutions of the TOFKN
equation, we refer to theDT and extendedDT formulae
of the second-order flow of the KN system, i.e., the
DNLS equation in [32,33]. It is easy to see that the
DT is also applicable to the TOFKN equation. Further,
the formulae for the nth-order solutions of the TOFKN
equation are provided as follows:

Lemma 1 [32] We set Ψi =
(
fi
gi

)

(i = 1, 2, . . . , n),

which is the eigenfunction corresponding to eigenvalue
λi of the spectral equation (3), and then, the new
nth-order solutions (q[n], r [n]) of Eq. (2) are directly
obtained by the DT formulae:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q[n] = Ω2
11

Ω2
21

q + 2i
Ω11Ω12

Ω2
21

,

r [n] = Ω2
21

Ω2
11

r − 2i
Ω21Ω22

Ω2
11

.

(4)

Here, for n = 2k, we have the following formulae of
the determinants:

Ω11 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λn−1
1 g1 λn−2

1 f1 λn−3
1 g1 · · · λ1g1 f1

λn−1
2 g2 λn−2

2 f2 λn−3
2 g2 · · · λ2g2 f2

...
...

...
. . .

...
...

λn−1
n gn λn−2

n fn λn−3
n gn · · · λngn fn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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Ω12 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λn1 f1 λn−2
1 f1 λn−3

1 g1 · · · λ1g1 f1

λn2 f2 λn−2
2 f2 λn−3

2 g2 · · · λ2g2 f2
...

...
...

. . .
...

...

λnn fn λn−2
n fn λn−3

n gn · · · λngn fn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Ω21 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λn−1
1 f1 λn−2

1 g1 λn−3
1 f1 · · · λ1 f1 g1

λn−1
2 f2 λn−2

2 g2 λn−3
2 f2 · · · λ2 f2 g2

...
...

...
. . .

...
...

λn−1
n fn λn−2

n gn λn−3
n fn · · · λn fn gn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Ω22 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λn1g1 λn−2
1 g1 λn−3

1 f1 · · · λ1 f1 g1

λn2g2 λn−2
2 g2 λn−3

2 f2 · · · λ2 f2 g2
...

...
...

. . .
...

...

λnngn λn−2
n gn λn−3

n fn · · · λn fn gn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

And for n = 2k + 1, we have the following formulae
for the determinants:

Ω11 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λn−1
1 g1 λn−2

1 f1 λn−3
1 g1 · · · λ1 f1 g1

λn−1
2 g2 λn−2

2 f2 λn−3
2 g2 · · · λ2 f2 g2

...
...

...
. . .

...
...

λn−1
n gn λn−2

n fn λn−3
n gn · · · λn fn gn

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Ω12 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λn1 f1 λn−2
1 f1 λn−3

1 g1 · · · λ1 f1 g1
λn2 f2 λn−2

2 f2 λn−3
2 g2 · · · λ2 f2 g2

...
...

...
. . .

...
...

λnn fn λn−2
n fn λn−3

n gn · · · λn fn gn

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Ω21 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λn−1
1 f1 λn−2

1 g1 λn−3
1 f1 · · · λ1g1 f1

λn−1
2 f2 λn−2

2 g2 λn−3
2 f2 · · · λ2g2 f2

...
...

...
. . .

...
...

λn−1
n fn λn−2

n gn λn−3
n fn · · · λngn fn

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Ω22 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λn1g1 λn−2
1 g1 λn−3

1 f1 · · · λ1g1 f1
λn2g2 λn−2

2 g2 λn−3
2 f2 · · · λ2g2 f2

...
...

...
. . .

...
...

λnngn λn−2
n gn λn−3

n fn · · · λngn fn

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Under the reduction condition q[n] = −r ([n])∗ , we take

λ2l = −λ∗
2l−1, Ψ2l =

(
f2l
g2l

)

=
(
g∗
2l−1
f ∗
2l−1

)

, (l = 1, 2, . . . , k),

and one eigenvalue is pure imaginary:

λ2k+1 = iβ2k+1, Ψ2k+1 =
(
f2k+1

g2k+1

)

=
(
f2k+1

f ∗
2k+1

)

.

Lemma 2 [33] Suppose λ1 = α1 + iβ1, λ2 =
−λ∗

1, and take the degenerate limit λi → λ1(i =
3, 5, 7, . . . , 2k − 1), then a new nth-order (n = 2k)
solution q[n] of the TOFKN equation can be calculated
by the formula (4) generated at the same eigenvalue
and Taylor expansion, where

q[n] = Δ2
11

Δ2
21

q + 2i
Δ11Δ12

Δ2
21

, (5)

with

Δ11 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g[1, n − 1, 0] f [1, n − 2, 0] · · · g[1, 1, 0] f [1, 0, 0]
g[2, n − 1, 0] f [2, n − 2, 0] · · · g[2, 1, 0] f [2, 0, 0]
g[1, n − 1, 1] f [1, n − 2, 1] · · · g[1, 1, 1] f [1, 0, 1]
g[2, n − 1, 1] f [2, n − 2, 1] · · · g[2, 1, 1] f [2, 0, 1]

...
...

. . .
...

...

g[1, n − 1, k − 1] f [1, n − 2, k − 1] · · · g[1, 1, k − 1] f [1, 0, k − 1]
g[2, n − 1, k − 1] f [2, n − 2, k − 1] · · · g[2, 1, k − 1] f [2, 0, k − 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Δ12 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f [1, n, 0] f [1, n − 2, 0] g[1, n − 3, 0] · · · g[1, 1, 0] f [1, 0, 0]
f [2, n, 0] f [2, n − 2, 0] g[2, n − 3, 0] · · · g[2, 1, 0] f [2, 0, 0]
f [1, n, 1] f [1, n − 2, 1] g[1, n − 3, 1] · · · g[1, 1, 1] f [1, 0, 1]
f [2, n, 1] f [2, n − 2, 1] g[2, n − 3, 1] · · · g[2, 1, 1] f [2, 0, 1]

...
...

...
. . .

...
...

f [1, n, k − 1] f [1, n − 2, k − 1] g[1, n − 3, k − 1] · · · g[1, 1, k − 1] f [1, 0, k − 1]
f [2, n, k − 1] f [2, n − 2, k − 1] g[2, n − 3, k − 1] · · · g[2, 1, k − 1] f [2, 0, k − 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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Δ21 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f [1, n − 1, 0] g[1, n − 2, 0] · · · f [1, 1, 0] g[1, 0, 0]
f [2, n − 1, 0] g[2, n − 2, 0] · · · f [2, 1, 0] g[2, 0, 0]
f [1, n − 1, 1] g[1, n − 2, 1] · · · f [1, 1, 1] g[1, 0, 1]
f [2, n − 1, 1] g[2, n − 2, 1] · · · f [2, 1, 1] g[2, 0, 1]

...
...

. . .
...

...

f [1, n − 1, k − 1] g[1, n − 2, k − 1] · · · f [1, 1, k − 1] g[1, 0, k − 1]
f [2, n − 1, k − 1] g[2, n − 2, k − 1] · · · f [2, 1, k − 1] g[2, 0, k − 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Here, the new functions Ψ [i, j, k] are defined as fol-
lows:

λ
j
i Ψ = Ψ [i, j, 0] + Ψ [i, j, 1]ε + Ψ [i, j, 2]ε2

+ · · · + Ψ [i, j, k]εk + · · · ,

Ψ [i, j, k] = 1

k!
∂k(λ

j
i Ψ (λi ))

∂λki

, Ψ [1, 1, 0]

= λ1Ψ (λ1), Ψ [i, j, 0] = λ
j
i Ψ (λi ),

(6)

where the eigenfunction Ψ = Ψ (λ) corresponding to
eigenvalue λ is similar to that of Lemma 1.

2.2 Solutions from zero seed solution

Here, by the application of the above DT and its
extendedmethod, wewill discuss several types of solu-
tions from zero seed solution.

For q = r = 0,we can generate the following eigen-
function related to λ:

Ψ =
(
f
g

)

,

f = exp(i(4λ6t + λ2x)),

g = exp(−i(4λ6t + λ2x)). (7)

Case 1 (n = 1). Assuming λ1 = iβ1, then a solution of
theTOFKNequation can be simply obtained byEq. (4):

q[1] = −2β1 exp(2i(4β
6
1 t + β2

1 x)). (8)

This simple solution is a plane wave with a constant
amplitude.

Case 2 (n = 2). Setting λ1 = i(l +m), λ2 = i(l −m),
and substituting the eigenfunctions in Eq. (7) back in
Eq. (4), we can generate a quasi-periodic solution:

q[2] = −4lm
(m cos (2G) + il sin (2G))3 exp(−2iF)

((−l2 + m2
)
(cos (2G))2 + l2

)2 ,

(9)

where

G =
(
24l5m + 80m3l3 + 24 lm5

)
t + 2lmx,

F = (
4 l6 + 60 l4m2 + 60 l2m4 + 4m6) t + (

l2 + m2) x .

Next, supposing λ1 = α1 + iβ1, λ2 = −α1 + iβ1,
and substituting the eigenfunctions (7) in formula (4),
the following solution of the TOFKN equation can be
simply obtained by the twofold DT:

q[2]

= − 4α1β1
(α1 cosh (2H) + iβ1 sinh (2H))3 exp(2ih)

((
α1

2 + β1
2
)
(cosh (2H))2 − β1

2
)2 ,

(10)
with

H =
(
24α1

5β1 − 80 α1
3β1

3 + 24α1 β1
5
)
t + 2α1 β1 x,

h = (
4α1

6 − 60 α1
4β1

2 + 60 α1
2β1

4 − 4β1
6) t

+ (
α1

2 − β1
2) x,

which is a bright one-soliton solution.We plot its three-
dimensional waveform and its density plot in Fig. 1a,
b, respectively.

Furthermore, if we assume α1 → 0 in the above
equations, we obtain a rational soliton solution:

q[2]

= − 4β1
e−2 iβ12

(
4β1

4t+x
) (
4 iβ1

2
(
12 β1

4t + x
) + 1

)3

(
16β1

4
(
12 β1

4t + x
)2 + 1

)2 ,

(11)

with an arbitrary real constantβ1. This rational solution
is a line-type soliton and is plotted in Fig. 1c, d. The
peak trajectory of this rational solution is obtained by
analyzing the analytic expression of Eq. (11). Thus, the
soliton trajectory is the line x = −12β4

1 t on the (x − t)
plane.

Remark 2.1 We point out that the coefficient of the
independent variable t in the above expression of the
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2844 H. Lin et al.

Fig. 1 a The three-dimensional profile of the bright one-soliton

solution
∣
∣q[2]∣∣2 with parameters α1 = 0.1, β1 = 0.2. Its peak

trajectory is x = 0 in the (x − t) plane. b The density plot of the

bright one-soliton solutionwith α1 = 0.1, β1 = 0.2. cThe three-
dimensional profile of the rational solution

∣
∣q[2]∣∣2 withβ1 = 0.5.

d The density plot of the rational solution with β1 = 0.5

rational solution is different to that corresponding to
the first-order rational solution of the DNLS equation
in Ref. [32]. In other words, the propagation speed
of the above first-order rational soliton solution of the
TOFKN equation is different to that corresponding to
the rational solution of the DNLS equation, under the
same conditions. The propagation speed of the rational
solution of the TOFKN equation is −12β4

1 , which is
less than zero, whereas the propagation speed of the
rational solution of the DNLS equation is 4β2

1 , which
is greater than zero. Therefore, we find that their peak
trajectories are different, but their peak amplitudes are
equal under the same conditions.

Case 3 (n = 4). Let λ1 = α1 + iβ1, λ2 = −λ∗
1, λ3 =

α3 + iβ3, λ4 = −λ∗
3, then a new solution, the second-

order soliton solution, can be obtained by the fourfold

DT and substituting the eigenfunctions in Eq. (7) in
formula (4). Because the analytical expression of the
second-order soliton solution is very complicated, it is
omitted here, but we show its three-dimensional plot
in Fig. 2a. The typical third-order soliton is shown in
Fig. 2b (see also the discussion in Case 4 (n = 6)).
The very complicated form of its analytical expression
is also omitted here.

Furthermore, when λ1 = α1 + iβ1, λ2 = −λ∗
1 and

taking the degenerate limit λ3 → λ1, a two-positon
solution can be generated by applying Lemma 2 and
substituting the eigenfunction (7) in the formula (5).
The analytical expression of the two-positon solution
is as follows:

q[4]
posi ton = L∗

1L2

L2
1

, (12)
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Fig. 2 a The second-order

soliton solution
∣
∣q[4]∣∣2 with

parameters: α1 = 0.3, β1 =
0.3, α3 = 0.1, β3 = 0.4. b
The third-order soliton
solution with parameters:
α1 = 0.2, β1 =
−0.45, α3 = 0.2, β3 =
−0.6, α5 = 0.3, β5 =
−0.35

where

L1 = P1 − i P2,

L2 = (− cos(Q2) + i sin(Q2))(2h1 cosh(Q1)

+ 2 h2 sinh(Q1)),

P1 = α4
1 + β4

1 + 4608α2
1β

2
1 (α

2
1

+ β2
1 )

6t2 + 32α2
1β

2
1 (α

2
1 + β2

1 )
2x2

+ 768α2
1β

2
1 (α

2
1 − 2α1β1 − β2

1 )(α
2
1 + 2α1β1 − β2

1 )

(α2
1 + β2

1 )
2xt + (α4

1 − β4
1 ) cosh(2Q1),

P2 = 16α2
1β

2
1 (α1 − β1)(α1 + β1)(12α

4
1

− 168β2
1α

2
1 + 12β4

1 )t

+ 16α2
1β

2
1 (α1 − β1) (α1 + β1) x

+ 2α1β1(α
2
1 + β2

1 ) sinh(2Q1),

Q1 = 4α1β1((12α
4
1 − 40β2

1α
2
1 + 12β4

1 )t + x),

Q2 = 2(α2
1 − β2

1 )((4α
4
1 − 56β2

1α
2
1 + 4β4

1 )t + x),

h1 = −32iα2
1β

3
1 (α

2
1 + β2

1 )(60α
4
1 t

− 120α2
1β

2
1 t + 12β4

1 t + x) + 8α4
1β1,

h2 = −32α3
1β

2
1 (α

2
1 + β2

1 )(12α
4
1 t

− 120α2
1β

2
1 t + 60β4

1 t + x) + 8iα1β
4
1 .

When x = 0, t = 0,
∣
∣
∣q[4]

posi ton

∣
∣
∣
2 = 64β2

1 . It is easy to

find that this positon solution possesses a phase shift
relative to the two-soliton solutionwhen t → ±∞. The
evolution of positon solution of the TOFKN equation
with α1 = 0.5, β1 = 0.35 is shown in Fig. 3a, d.

Remark 2.2 A simple comparison between the above
positon solution of the TOFKN equation and the corre-
sponding positon solution of the DNLS equation [33]
shows that their explicit analytic expressions are dif-
ferent only in terms of the coefficient of the variable
t . This leads to different propagation speeds of these

solutions under the same conditions. Thus, their trajec-
tories are different, but their peak amplitudes are equal
for the same set of parameters.

Next, let α1 → 0 in the above procedure of cal-
culating the two-positon solution, then we obtain the
second-order rational traveling wave solution. Its ana-
lytical expression can also be reduced to the same form
as Eq. (12), but the values of the parameters L1 and L2

are as follows:

L1 = P1 − i P2,

L2 = e−2iβ2
1 (4β4

1 t+x)(−884736iβ19
1 t3

+ (−221184iβ15
1 x − 276480β13

1 )t2

+ (−18432iβ11
1 x2 − 27648β9

1 x + 6528iβ7
1 )t

− 512iβ7
1 x

3 − 384β5
1 x

2 − 96iβ3
1 x + 24β1),

P1 = 5308416β24
1 t4 + 1769472β20

1 xt3

+ 221184β16
1 x2t2 + 12288β12

1 x3t

− 87552β12
1 t2 + 256β8

1 x
4

+ 768β8
1 xt − 96β4

1 x
2 − 3,

P2 = −442368β18
1 t3 − 110592β14

1 xt2

− 9216β10
1 x2t − 256β6

1 x
3 − 3648β6

1 t − 48β2
1 x .

This second-order rational traveling wave solution is
plotted in Fig. 3b, e.
Case 4 (n = 6). Setting λ1 = α1 + iβ1, λ2 =
−λ∗

1, λ3 = α3 + iβ3, λ4 = −λ∗
3, λ5 = α5 + iβ5, λ6 =

−λ∗
5, we get the third-order soliton solution of the

TOFKNequation by substituting the eigenfunctions (7)
in formula (4) in Lemma 1. Its analytical expression is
omitted here because it is very complicated, but we
present here its three-dimensional plot in Fig. 2b.
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Fig. 3 a, d The two-positon solution
∣
∣
∣q[4]

posi ton

∣
∣
∣
2
with α1 = 0.5, β1 = 0.35. b, e The second-order rational traveling wave solution

∣
∣q[4]∣∣2 of the TOFKN equation with β1 = 0.3. c, f The three-positon solution

∣
∣
∣q[6]

posi ton

∣
∣
∣
2
with α1 = 0.5, β1 = 0.2

Further, when we set λ1 = α1 + iβ1 and eigen-
function (7), a three-positon solution of the TOFKN
equation can be generated by applying Lemma 2. Its
evolution is shown in Fig. 3c, f, and its complicated
analytical expression is also omitted here. Obviously,
the evolution of the three-positon solutions in Fig. 3
shows phase shifts when t → ±∞, as compared with
the corresponding three-soliton solutions.

3 Solutions of the TOFKN equation from nonzero
seed solution

In this section, we will discuss some solutions of
the TOFKN equation from nonzero seed solution that

are obtained via the above-described method. We will
obtain two types of breather solutions and rogue wave
solutions. First, we must find a special nonzero seed
solution (a plane wave solution) and spectral eigen-
functions associated with eigenvalues.

We set a nonzero periodic solution

q = cei(ax+bt), b = a

(
3

2
c4 − 3c2a + a2

)

,

a, c ∈ R, (13)

and substituteEq. (13) in the spectral problem (3).After

that, the eigenfunction Ψ =
(
f
g

)

associated with the

eigenvalue λ is given by using themethod of separation
of variables and the superposition principle.

(
f (x, t, λk)
g(x, t, λk)

)

=
⎛

⎝
D1


1
1k(x, t, λk) + D2


2
1k(x, t, λk) + D1


1
2k

∗
(x, t,−λ∗

k) + D2

2
2k

∗
(x, t,−λ∗

k)

D1

1
2k(x, t, λk) + D2


2
2k(x, t, λk) + D1


1
1k

∗
(x, t,−λ∗

k) + D2

2
1k

∗
(x, t,−λ∗

k)

⎞

⎠ , (14)
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where

{
D1 = 1,

D2 = 1,
(


 1
1k(x, t, λk)


 1
2k(x, t, λk)

)

=
(

exp(s(x + (4λ4k + 2(a − c2)λ2k + a2 − 3ac2 + 3
2c

4)t) + 1
2 (i(ax + bt)))

ia−2iλ2k+2s
2cλk

exp(s(x + (4λ4k + 2(a − c2)λ2k + a2 − 3ac2 + 3
2c

4)t) − 1
2 (i(ax + bt)))

)

,

(

 2

1k(x, t, λk)

 2

2k(x, t, λk)

)

=
(

exp(−s(x + (4λ4k + 2(a − c2)λ2k + a2 − 3ac2 + 3
2c

4)t) + 1
2 (i(ax + bt)))

ia−2iλ2k−2s
2cλk

exp(−s(x + (4λ4k + 2(a − c2)λ2k + a2 − 3ac2 + 3
2c

4)t) − 1
2 (i(ax + bt)))

)

,


 1(x, t, λk) =
(


 1
1k(x, t, λk)


 1
2k(x, t, λk)

)

, 
 2(x, t, λk) =
(


 2
1k(x, t, λk)


 2
2k(x, t, λk)

)

,

s =
√

−a2 − 4λ4k − 4λ2k(c
2 − a)

2
.

(15)

In order to obtain the breather solutions and rogue
wave solutions, we have to set n = 2k, i.e., the value
of n is even.

3.1 The breather solutions of the TOFKN equation

Case 5 (n = 2). Let λ1 = α1 + iβ1, λ2 = −λ∗
1, and we

substitute their eigenfunctions (14) in the formula (4).
(1) For simplicity, we set a = c2 + 2α2

1 − 2β2
1 so that

Im(−a2 − 4λ41 − 4λ21(c
2 − a)) = 0, and then, a new

solution can be obtained as follows:

∣
∣
∣q[2]

∣
∣
∣
2 = c2 − ω1(cα1 cos(F2) cosh(F1) − cβ1 sin(F2) sinh(F1) + 2α1β1)

ω2 cos(F2) cosh(F1) + ω3 sin(F2) sinh(F1) + ω4 cosh(2F1) + ω5 cos(2F2) + ω6
, (16)

with

ω1 = 16α1β1(c
2 + 4α2

1)(c
2 − 4β2

1 ),

ω2 = 8cα1
2β1(c

2 + 4α1
2),

ω3 = −8cα1β1
2(c2 − 4β1

2),

ω4 = 16α1
2β1

2(α1
2 + β1

2),

ω5 = c2(α1
2 + β1

2)(c2 + 4α1
2 − 4β1

2),

ω6 = c4(α1
2 − β1

2) + 4c2(α1
2 + β1

2)2

+ 16α1
2β1

2(α1
2 − β1

2),

F1 = K {[12α1
4 − 2α1

2(c2 + 20β1
2) − c4

2
+ 2c2β1

2 + 12β1
4]t + x},

F2 = 24Kα1β1(α1
2 − β1

2)t,

K =
√

−(c2 + 4α1
2)(c2 − 4β1

2).

If K 2 > 0, the trajectory of this solution is defined
specifically by x = −[12α1

4 − 2α1
2(c2 + 20β1

2) −
c4
2 + 2c2β1

2 + 12β1
4]t from F1 = 0. If K 2 < 0 , the

trajectory of this solution is defined explicitly by t = 0

from F2 = 0. Then, the dynamics of
∣
∣q[2]∣∣2 in Eq. (16)

with different parameters is shown in Fig. 4a, b.

Remark 3.1 It is easy to find that for the same condi-
tions the propagation speeds and the trajectories of the
first-order breather solutions of the TOFKN equation
and of the DNLS equation [32] are different; see also
Remark 2.1 and Remark 2.2.

(2)When a = c2
2 , we can get two sets of eigenfunctions

from Eq. (14) without difficulty,
(


 1
1k(x, t, λk)


 1
2k(x, t, λk)

)

and

(

 2

1k
∗
(x, t,−λ∗

k)


 2
2k

∗
(x, t,−λ∗

k)

)

, (17)
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(

 2

1k(x, t, λk)

 2

2k(x, t, λk)

)

and

(

 1

1k
∗
(x, t,−λ∗

k)


 1
2k

∗
(x, t,−λ∗

k)

)

. (18)

Thus, in this case, the eigenfunction Ψk corresponding
to λk is obtained by
(
f (x, t, λk)
g(x, t, λk)

)

=
(


 1
1k(x, t, λk) + 
 1

1k
∗
(x, t,−λ∗

k )


 1
2k(x, t, λk) + 
 1

2k
∗
(x, t, −λ∗

k )

)

,

(19)

with

(

 1

1k(x, t, λk)

 1

2k(x, t, λk)

)

=
(
exp(i(λ2k x + 1

2c
2x + 4λ6k t + 1

8c
6t))

ic
2λk

exp(i(λ2k x + 4λ6k t))

)

.

After that, it is not difficult to generate another first-
order breather solution q[2] with λ1 = α1 + iβ1, λ2 =
−λ∗

1 by the formula (4). Its evolution is shown in
Fig. 4c.
Case 6 (n = 4). Let λ1 = α1 + iβ1, λ2 = −λ∗

1, λ3 =
α3 + iβ3, λ4 = −λ∗

3, then we obtain the new solution

q[4] using the above method, that is using the fourfold
DT and substituting Ψ1 and Ψ2 in Eq. (4). Here, the

analytical expression of q[4] is omitted, but
∣
∣q[4]∣∣2 is

plotted in Fig. 5: (a) let a = c2 + 2α2
i − 2β2

i , i = 1, 3,
so that Im(−a2 − 4λ4i − 4λ2i (c

2 − a)) = 0; (b) let

a = c2
2 . The elastic collision between the two breathers

can be clearly observed in Fig. 5.

3.2 The rogue wave solutions of the TOFKN equation

Here,we obtain the formula for generating roguewaves
of the TOFKN equation by looking at the generating
mechanism of the higher-order roguewaves of theNLS
equation [67] and the DNLS equation [33], as follows:

Lemma 3 [33] Supposing λ1 = 1
2

√−c2 + 2a −
ic
2 , λ2 = −λ∗

1, then the kth-order rogue wave solution
q[n](n = 2k) can generated by the following formula:

q[n] = δ211

δ221
q + 2i

δ11δ12

δ221
, (20)

with

δ11 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g[1, n − 1, 1] f [1, n − 2, 1] · · · g[1, 1, 1] f [1, 0, 1]
g[2, n − 1, 1] f [2, n − 2, 1] · · · g[2, 1, 1] f [2, 0, 1]
g[1, n − 1, 2] f [1, n − 2, 2] · · · g[1, 1, 2] f [1, 0, 2]
g[2, n − 1, 2] f [2, n − 2, 2] · · · g[2, 1, 2] f [2, 0, 2]

...
...

. . .
...

...

g[1, n − 1, k] f [1, n − 2, k] · · · g[1, 1, k] f [1, 0, k]
g[2, n − 1, k] f [2, n − 2, k] · · · g[2, 1, k] f [2, 0, k]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

δ12 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f [1, n, 1] f [1, n − 2, 1] g[1, n − 3, 1] · · · g[1, 1, 1] f [1, 0, 1]
f [2, n, 1] f [2, n − 2, 1] g[2, n − 3, 1] · · · g[2, 1, 1] f [2, 0, 1]
f [1, n, 2] f [1, n − 2, 2] g[1, n − 3, 2] · · · g[1, 1, 2] f [1, 0, 1]
f [2, n, 2] f [2, n − 2, 2] g[2, n − 3, 2] · · · g[2, 1, 2] f [2, 0, 2]

...
...

...
. . .

...
...

f [1, n, k] f [1, n − 2, k] g[1, n − 3, k] · · · g[1, 1, k] f [1, 0, k]
f [2, n, k] f [2, n − 2, k] g[2, n − 3, k] · · · g[2, 1, k] f [2, 0, k]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

δ21 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f [1, n − 1, 1] g[1, n − 2, 1] · · · f [1, 1, 1] g[1, 0, 1]
f [2, n − 1, 1] g[2, n − 2, 1] · · · f [2, 1, 1] g[2, 0, 1]
f [1, n − 1, 2] g[1, n − 2, 2] · · · f [1, 1, 2] g[1, 0, 2]
f [2, n − 1, 2] g[2, n − 2, 2] · · · f [2, 1, 2] g[2, 0, 2]

...
...

. . .
...

...

f [1, n − 1, k] g[1, n − 2, k] · · · f [1, 1, k] g[1, 0, k]
f [2, n − 1, k] g[2, n − 2, k] · · · f [2, 1, k] g[2, 0, k]

.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Fig. 4 a The first-order breather solution
∣
∣q[2]∣∣2 with α1 =

β1, α1 = 0.3, c = 0.5. b The first-order breather solution
∣
∣q[2]∣∣2 with α1 = 0.6, β1 = 0.2, c = 0.6. Its trajectory is

the line t = 0. c The first-order breather solution
∣
∣q[2]∣∣2 with

α1 = 0.5, β1 = 0.6, c = 1.2

Fig. 5 a The second-order

breather solution
∣
∣q[4]∣∣2

with
c = 0.6, α1 = 0.6, β1 =
0.35, α3 = 0.5, β3 =

√
125
100 .

b The second-order breather
solution

∣
∣q[4]∣∣2 with

c = 1.2, α1 = 0.8, β1 =
0.4, α3 = 0.5, β3 = 0.75

Thus, the higher-order rogue wave solutions of the
TOFKN equation are given by the above formula (20).
Case 7 (n = 2). We easily get the first-order rogue
wave solution via substituting the eigenfunctions (14)
in the above formula (20):

q[2]
RW = R∗

1 R2

R2
1

c exp

(

ia

(

x +
(
3

2
c4 − 3c2a + a2

)

t

))

, (21)

where

R1 = u1 + iu2, R2 = u3 + iu4,

u1 = 24c2a
√

−c2 + 2a

(
5

2
c4t − 4ac2t + a2t + 1

3
x

)

,

u2 = 2a
√

−c2 + 2a(45ac10t2 − 180a2c8t2

+ 252c6a3t2 − 144c4a4t2 + 36c2a5t2

+ 36c6atx − 72c4a2t x + 24c2a3t x

+ 4c2ax2 + 2),

u3 = 2a
√

−c2 + 2a(−30c6t

+ 96ac4t − 60a2c2t − 4c2x),

u4 = 2a
√

−c2 + 2a(45ac10t2 − 180a2c8t2

+ 252c6t2a3 − 144c4a4t2 + 36c2a5t2

+ 36c6atx − 72c4a2t x + 24c2a3t x + 4c2ax2 − 6).

A simple analysis shows that the first-order rogue

wave solution
∣
∣
∣q[2]

RW

∣
∣
∣
2 → c2 when x → ∞, t → ∞,

and the maximum amplitude of
∣
∣
∣q[2]

RW

∣
∣
∣
2
equals 9c2 and

appears at the origin of the (x−t) plane. The first-order
rogue wave solution is plotted in Fig. 6.

Remark 3.2 We also plot the first-order rogue wave
solution of the DNLS equation [33] to compare it with
the first-order roguewave solution of theTOFKNequa-
tion under the same conditions. From Fig. 6b, c, we
see that their directions and lengths are different under
the same parameter conditions. We point out that these
dissimilarities between the first-order rogue wave solu-
tions of theTOFKNequation andof theDNLSequation
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Fig. 6 a, b The first-order rogue wave solution
∣
∣
∣q[2]

RW

∣
∣
∣
2
of the TOFKN equation with a = 1, c = 1√

3
. c The first-order rogue wave

solution
∣
∣
∣q[2]

RW

∣
∣
∣
2
of the DNLS equation with a = 1, c = 1√

3

were also discussed in Ref. [66], by using the contour-
ing method.

Case 8 (n = 4). Assume a = 1 and c = 1√
3
in order to

simplify the analytical expressions. Then, the second-
order rogue wave solution is given by the formula (20):

q[4]
RW = R∗

1 R2

R2
1

1√
3
exp(i(x + 1

6
t)), (22)

where

R1 = u1 + iu2, R2 = u3 + iu4,

u1 = 704969t6 + 855468t5x + 1201500x2t4

+ 738720x3t3 + 486000x4t2

+ 139968t x5 + 46656x6 + 6514614t4

− 9954576t3x − 1854576t2x2

+ 1446336x3t + 69984x4

+ 36137988t2 − 4094064t x + 3464208x2

+ 1417176,

u2 = 142578t5 − 740124t4x − 553392x2t3

− 785376t2x3 − 256608t x4

− 139968x5 + 10546848t3 − 46656t2x

− 3079296x2t − 559872x3

+ 6351048t − 2834352x,

u3 = 704969t6 + 855468t5x + 1201500x2t4

+ 738720x3t3 + 486000x4t2

+ 139968t x5 + 46656x6 − 19841490t4

− 28228176t3x − 17670960t2x2

− 2472768x3t − 769824x4 − 1093500t2

+ 19420560t x − 6613488x2

+ 7085880,

u4 = 6701166t5 + 6276636t4x + 7209648x2t3

+ 3024864t2x3 + 1376352t x4

+ 139968x5 − 10912320t3 − 49362048t2x

− 9517824x2t − 1119744x3

− 32805000t − 4723920x .

Furthermore, the higher-order rogue wave solutions
are also calculated by the same method as above.
However, their analytic expressions are omitted here
because of their very complicated forms. But they
are plotted in Fig. 7. The plots show that the higher-
order rogue wave solutions are all equal to c2 when
x → ∞, t → ∞, and the maximum amplitude of

the kth-order rogue wave is (2k+1)2

c2
in the origin of the

(x − t) plane, for the value a = 1 of the parameter
a. By comparing to Ref. [33], we find that the result
is consistent with the maximum amplitude of the kth-
order rogue wave of the DNLS equation with respect
to variables a and c. Therefore, we make a guess that
the energy of the central peak of the rogue wave of the
TOFKN equation is the same with that corresponding
to the DNLS equation, but is larger than that corre-
sponding to the NLS equation. But like in Remark 3.2,
the directions of propagation of the higher-order rogue
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waves of the TOFKN equation and of the DNLS equa-
tion are different.

4 The different types of rogue wave solutions by
changing the parameters

In Ref. [33], the different waveforms of the higher-
order rogue wave solutions of the DNLS equation were
obtained. Next, we investigate how the waveforms of
the solutions of the TOFKN equation will modify with
the change of the parameters as compared to the corre-
sponding solutions of the DNLS equation. In this sec-
tion, we will discuss the dynamics of the rogue wave
solutions of the TOFKN equation for different choices
of the parameters. First, let the coefficients D1 and D2

of the eigenfunction (14) as follows:
⎧
⎨

⎩

D1 = exp(−is(S0 + S1ε + S2ε
2 + S3ε

3 + · · · + Sk−1ε
k−1)),

D2 = exp(is(S0 + S1ε + S2ε
2 + S3ε

3 + · · · + Sk−1ε
k−1)).

(23)

Here, S0, S1, S2, S3, . . . , Sk−1 ∈ C, which have a cru-
cial influence on the structure of the rogue wave solu-
tions. Generally, we set (k − 1) free parameters for the
kth-order rogue wave solution, and we obtain various
structures of the solutions by setting different values of
the parameters Si .

4.1 The rogue wave solutions with one nonzero
parameter value

In this subsection, when just one of the parameters Si
has a nonzero value, we obtain five typical waveforms:
fundamental pattern, triangular, modified-triangular,
pentagram, and ring structures.

(1) Fundamental pattern

For n = 2, we can obtain different first-order rogue
waves with Si = 0 excepting S0 that has a nonzero
value.We show them inFig. 8.We can see that this solu-

tion is in fact that plotted in Fig. 6, but displaced about
the origin. Furthermore, the first-order rogue wave and
the higher-order rogue wave can all be displaced to any
position in the (x − t) plane, but this result is rather
trivial.

(2) Triangular structure

Let Si = 0, (i �= 1), and we show the evolution of
the rogue waves of orders k = 2, 3, 4, 5 in Fig. 9. We
explicitly observe from Fig. 9 that the structures of all
higher-order rogue wave are triangular ones. There are,
respectively, three peaks, six peaks, ten peaks, and fif-
teen peaks in Fig. 9, in which every peak constitutes a
first-order rogue wave. Thus, we conclude that the tri-
angular structure of the kth-order rogue wave is com-
posed of k(k+1)

2 peaks, which are arranged in k rows as
in an arithmetic progression.

(3) Modified-triangular structure

Moreover, by altering the coefficients of Eq. (14), the
inner part of the above triangular structure shown in
Fig. 9 can be converted into a higher-order peak that
constitutes a higher-order rogue wave.

For k = 5, let

(
f (x, t, λk)
g(x, t, λk)

)

=
(
D1


1
1k(x, t, λk) + D1


2
1k(x, t, λk) + D2


1
2k

∗
(x, t,−λ∗

k) + D2

2
2k

∗
(x, t,−λ∗

k)

D1

1
2k(x, t, λk) + D1


2
2k(x, t, λk) + D2


1
1k

∗
(x, t,−λ∗

k) + D2

2
1k

∗
(x, t,−λ∗

k)

)

, (24)

with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D1 = exp(−is2(S0 + S1ε + S2ε
2

+ S3ε
3 + · · · + Sk−1ε

k−1)),

D2 = exp(is2(S0 + S1ε + S2ε
2

+ S3ε
3 + · · · + Sk−1ε

k−1));

thus, a new pattern, themodified-triangular structure, is
generated in this way. This structure has at its periph-
ery the form of a triangle of twelve first-order rogue
waves and has a central peak in the interior of the tri-
angle, which is in fact a second-order rogue wave. This
modified-triangular structure is shown in Fig. 10 for a
special choice of the parameters.
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Fig. 7 The higher-order
rogue wave solutions
∣
∣
∣q[2]

RW

∣
∣
∣
2
with a = 1, c = 1√

3

Fig. 8 Different types of
first-order rogue wave
solutions with parameters
a = 1, c = 1√

3
, and for S0

different from zero. a The
first-order rogue wave with
S0 = 10. b The first-order
rogue wave with S0 = −10

123



Several categories of exact solutions of the third-order flow 2853

Fig. 9 The triangular
structures of higher-order
rogue waves with
parameters a = 1 and
c = 1√

3

Fig. 10 The
modified-triangular
structures of the fifth-order
rogue waves with
parameters a = 1, c = 1√

3
,

and S1 = 1000

(4) Pentagram structure

Let Si = 0, (i �= 2), then we get a new type of wave
structure, namely the pentagram waveform, which is
shown in Fig. 11. We point out that this type of wave

structure has not been discovered before, to the best
of our knowledge. From Fig. 11, we observe that the
fourth-order rogue wave and the fifth-order rogue wave
are divided into ten peaks and fifteen peaks, respec-
tively, when the parameter S2 has a nonzero value. We

123



2854 H. Lin et al.

Fig. 11 The pentagram
structures of higher-order
rogue waves with
parameters a = 1, c = 1√

3
,

and S2 = 20000

Fig. 12 The ring structures of the higher-order rogue waves with parameters a = 1 and c = 1√
3

also point out that every peak in Fig. 11 is a first-order
rogue wave. Thus, we obtain the general result that the
pentagramstructure of the kth-order roguewave is com-
posed of k(k+1)

2 peaks, and all of them are first-order
rogue waves.

(5) Ring structure

We suppose Si = 0, excepting Sk−1. Then, when Sk−1

is sufficiently large with increasing the value of k, a
ring structure of the kth-order rogue wave is obtained,
which is plotted in Fig. 12. We can clearly observe that
(2k − 1) first-order rogue waves locate on the outer
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Fig. 13 The ring-triangular
structure of higher-order
rogue waves with
parameters a = 1, c = 1√

3

shell of the ring and one (k − 2)th-order peak, which
is in fact a (k − 2)th-order rogue wave, locates in the
center of the ring; see the three different ring structures
plotted in Fig. 12.

4.2 The rogue wave solutions with more than one
nonzero parameter

In the above subsection, five types of patterns depend-
ing on only one nonzero parameter are described. Next,
we will discuss the solutions with two or more nonzero
parameters.

(6) Ring-triangular structure

In the above subsection, a ring structure of the fourth-
order rogue wave solution has been generated with
S3 �= 0, whose outer shell is a ring that is compos-
ing of seven first-order rogue waves and the center of
the ring structure is a second-order rogue wave. Thus,
when we continue to set S1 �= 0, we obtain the result
that the outer shellmaintains as it is and the central peak
can be split into a triangular structure. This kind of pat-
tern is shown in Fig. 13. Furthermore, a similar ring-
triangular structure of more higher-order rogue wave
solutions of the TOFKN equation can be also obtained
if we proceed in the same way. Therefore, we conclude
that the central (k − 2)th-order rogue wave of the ring
structure of the kth-order rogue wave solution is able
to be divided up into a triangular structure when Sk−1

is sufficiently large with increasing k.

(7) Multi-ring structure

Moreover, the central higher-order peak of the ring
structure of the higher-order rogue wave can also be
divided up into a ring structure. For k = 5, the ring
structure of this solution is shown for S4 �= 0 in
Fig. 12c. Then, if we continue to assume S2 �= 0
and S4 � 0, the inner third-order rogue wave will
be divided up into a ring waveform. This structure is
plotted in Fig. 14.Obviously, the outer part of themulti-
ring structure is consistent with that of the ring struc-
ture shown in Fig. 12c, and a new ring composed of
five first-order rogue waves is added to the inner part.
Meanwhile, there is also a first-order peak in the center
of the new ring. Therefore, we can guess that the center
of the more higher-order solutions will continue to be
split into a multi-ring structure.

5 Summary and discussion

In this paper, we have studied the third-order flow of
theKN system (TOFKNequation)with third-order dis-
persion and quintic nonlinearity. By applying the DT
and theTaylor expansion, fromdifferent seed solutions,
i.e., zero seed solution and nonzero seed solution (plane
wave solution), we have explicitly generated the soli-
ton, rational, positon, breather, and rogue wave solu-
tions of the TOFKN equation. The detailed analytic
expressions of some of the obtained solutions and their
dynamics for some special choices of the parameters
have been also given. Our results prove again the use-
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Fig. 14 a The multi-ring
structure of fifth-order
rogue waves with parameter
a = 1, c = 1√

3
, S2 =

5× 105, and S4 = 1× 1012.
b The inside of the
multi-ring structure

fulness of the DTmethod for solving integrable nonlin-
ear partial differential equations. Moreover, we obtain
the rogue wave solutions with different waveforms by
properly choosing the coefficients D1 and D2 of the
eigenfunctions. Notably, we have obtained several dis-
tinct patterns of first-order and higher-order roguewave
solutions of the TOFKN equation via selecting differ-
ent parameter values: fundamental pattern, triangular,
modified-triangular, pentagram, ring, ring-triangular,
and multi-ring structures. The pentagram structure is
firstly discovered here, to the best of our knowledge.

In conclusion, the comparison made between the
solutions of the TOFKN equation and the DNLS equa-
tion shows that the third-order dispersion and quintic
nonlinear term of theKN system can affect both the tra-
jectory and the speed of the solutions. The exact analyt-
ical results obtained in this papermight have a reference
value for the study of the higher-order flows of other
integrable nonlinear dynamical systems and provide a
theoretical basis for possible experimental studies and
applications.
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