
Nonlinear Dyn (2020) 100:2483–2503
https://doi.org/10.1007/s11071-020-05638-y

ORIGINAL PAPER

Nonlinear extended state observer-based output feedback
stabilization control for uncertain nonlinear half-car active
suspension systems

Miaomiao Du · Dingxuan Zhao ·
Mengke Yang · Hao Chen

Received: 25 May 2019 / Accepted: 9 April 2020 / Published online: 28 April 2020
© Springer Nature B.V. 2020

Abstract This paper proposes a nonlinear extended
state observer-based output feedback stabilization con-
troller for a half-car active suspension system, to over-
come factors leading to performance deterioration,
such as nonlinearities, parameter uncertainties, unmod-
eled dynamics, and uncertain external disturbances.
Nonlinear extended state observers are first devel-
oped to estimate the unmeasurable states and unknown
dynamics of heave and pitchmotions. Then, finite-time
stabilization control laws are synthesized to improve
the vehicle body attitude and ride comfort. The pro-
posed control scheme is an improvement over the exist-
ing linear extended state observer-based techniques,
given its high observation quality and finite-time con-
vergence. From the perspective of practical implemen-
tation, the controller is independent of an accurate
mathematical model and only requires the measurable
output signals. By constructingweighted error and aux-
iliary state systems, and employing geometric homo-
geneity theory, the finite-time stability of estimation
errors and suspension states is systematically proven
within the Lyapunov framework. Furthermore, the zero
dynamics stability is analyzed to guarantee the suspen-
sion space constraint and road holding. Finally, numer-
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ical simulations are conducted on some representative
road excitations and the results are compared to the
existing solution and passive suspension. The analysis
has confirmed the effectiveness and robustness of the
proposed control method.
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1 Introduction

Suspension systems play a crucial role in vehicle chas-
sis since they are responsible for ride comfort, road
holding, and maneuverability [1–3]. In contrast to pas-
sive and semi-active suspension systems, active sus-
pensions possess greater potential to attenuate vehi-
cle vibrations when traversing rough roads, as addi-
tional force actuators can add and dissipate energy from
the system. Therefore, numerous academic and indus-
trial researchers have paid much attention to the study
of active suspension systems. In particular, the devel-
opment of appropriate control strategies has been an
important topic in recent decades, as such strategies
exert significant influence on the performance of active
suspension systems [4–8].

The control objectives of active suspension systems
are multiple. Specifically, the vehicle body should be
isolated from vibration and shock as much as possi-
ble to provide ride comfort; the uninterrupted contact
between wheels and road should be guaranteed for
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good road holding and ride safety; and the suspension
working space should be preserved due to the mechan-
ical structure limitations. However, these performance
requirements are inherently in conflict. In order to real-
ize a good compromise among these requirements, sev-
eral multi-objective control approaches have been pro-
posed [9–13]. For example, Chen and Guo [14] consid-
ered ride comfort as the main performance target, and
converted the active suspension control issue to a dis-
turbance attenuation problem with time-domain hard
constraints that were solved using a constrained H∞
control scheme. A robust L2 gain state-derivative feed-
back controller was proposed by Yazici and Sever [15],
which was able to improve ride comfort while provid-
ing satisfactory suspension deflection and tire dynamic
load responses. In this work, the parametric uncertain-
ties in sprung mass and suspension components are
taken into account. Du et al. [16] minimized the control
objectives of active suspension system using a suitable
formulation and then constructed a non-fragile static
output feedback H∞ controller based on linear matrix
inequalities and genetic algorithms.

However, in most of the aforementioned studies,
active suspension system dynamics are assumed to
be linear and precisely known, which is not the case
for real physical systems. It is well recognized that
practical suspension systems involve some inevitable
nonlinearities and complicated uncertainties, which
may deteriorate the suspension performance and even
result in control system instability if they are not
addressed appropriately. Accordingly, several feasible
approaches have been proposed for active suspension
systems [17–21]. For example, the adaptive control
technique has been used as the primary method to deal
with nonlinear and uncertain behaviors in suspension
systems [22–24]. In addition, fuzzy control logic, inte-
grating the Takagi–Sugeno fuzzy model, interval type-
2 fuzzy reasoning, and the Wu–Mendel uncertainty
bound method, was employed by Cao et al. [25]. Desh-
pande et al. [26] utilized a slidingmode control strategy
based on a disturbance observer. Furthermore, a hybrid
control strategy that combined sliding mode and fuzzy
control methods was employed by Yagiz et al. [27]
and Li et al. [28]. In these works, suspension spring
and damper were modeled with determinate nonlinear
functions, and only partial uncertain parameters were
considered. However, such strong prerequisite condi-
tions extremely restrict the applicability of these con-
trol schemes. As a matter of fact, it is impossible to

capture the whole model characteristics and accurately
identify the total suspension parameters, such that the
established model always deviates from reality. There-
fore, a fewmodel-independent control approacheswere
developed to overcome this issue. Huang et al. [29]
used a neural network scheme to compensate for the
unknown dynamics in nonlinear active suspension sys-
tems. In [30], an adaptive sliding fault-tolerant con-
troller was designed without the need of an accurate
mathematical model. And in [31], a general nonlin-
ear suspension dynamic model was linearized via feed-
forward and feedback linearization methods; then, an
improved optimal sliding mode controller was con-
structed using all of the structural information avail-
able.

Theoretically, the above full-state feedback-based
control strategies can realize significant performance
improvements for nonlinear uncertain active suspen-
sion systems; however, they ignore the fact that some
state information is unmeasurable. On the other hand,
additional sensorswill introduce unavoidablemeasure-
ment noise, which may deteriorate the practical perfor-
mance of a full-state feedback controller. Hence, an
actually applicable output feedback control approach
for nonlinear uncertain active suspension systems is
urgently needed. Reviewing the latest related stud-
ies, several scholars have attached their attention to
the extended state observer (ESO)-based control tech-
nique. The linear ESO (LESO) was employed to esti-
mate the unmeasurable suspension states and gener-
alized disturbance using only system output signals
[32–35]. Based on the estimated information obtained,
some robust control laws were further developed to
accurately track the ideal trajectory, thence to enhance
the suspension effects. Nevertheless, a nonlinear ESO
(NLESO)-based controller would yield better perfor-
mance for nonlinear system than the LESO-based one,
for example, better robustness and faster response (i.e.,
finite-time convergence rather than asymptotic stabil-
ity), as demonstrated by several theoretical and practi-
cal studies [36–40]. However, to the best of our knowl-
edge, few attempts have been made in this direction.
Wang et al. [41] synthesized a novel output feed-
back control law via intelligent proportional–integral–
derivative and fractional-order terminal sliding mode
control framework, in which the NLESO was selected
to estimate not only the unknown structure of the sys-
tem, but also any disturbances. The results showed
that the proposed controller could achieve excellent
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trajectory tracking performance and fast convergence.
An output feedback disturbance compensator with
finite-time convergence was investigated by Pan and
Sun [42], where a state differentiator and a NLESO
were employed to acquire exact derivative signal and
unknown uncertainty in perturbed active suspension
systems. However, in their works, the proofs of close-
loop system stability associated with the NLESO are
considerably ambiguous. For active suspension sys-
tems, further study on NLESO is still required both
in theory and in implementation.

Therefore, it is necessary to develop aNLESO-based
control approach that uses only measurable suspen-
sion output signals and considers system nonlinear-
ities, model uncertainties, and mutative road distur-
banceswhile satisfyingmultiple control objectives; this
is the focus of the present study. Here, we first estab-
lish a general dynamic model for nonlinear perturbed
active suspension systems. The unknowndynamics and
disturbances are regarded as an extended state; then,
the unmeasurable states and model uncertainties are
estimated in real time using a NLESO. By employing
these estimated states, the finite-time stabilization con-
trol laws are further synthesized for heave and pitch
motions. The finite-time stability of the observer esti-
mation errors and suspension states, and the close-
loop system stability, are proven systematically within
the Lyapunov framework by constructing weighted
error and auxiliary state systems. In addition, the zero
dynamics stability and suspension constraints are guar-
anteed. Finally, numerical simulations are conducted
on various road profiles, and the results are compared
to the existing method and passive system, to demon-
strate the effectiveness and robustness of the developed
control strategy.

The original contributions of this paper are as fol-
lows:

• The proposed control scheme does not require an
accurate mathematical model, which is affected by
spring and damper nonlinearities, parameter uncer-
tainties, unknown dynamics, and external distur-
bances.

• Rather than ensuring asymptotic stability, the con-
troller can achieve finite-time stability along with
fast response. Besides, the controller can be imple-
mented practically, as only the measurable output
signals are used for deriving control laws.

• A NLESO, and not a LESO, is employed to esti-
mate the unmeasurable state information and over-
come the uncertain dynamics. The estimation error
finite-time stability of the NLESO is established
according to the theory of geometric homogeneity.

• Unlike previous methods utilizing the concepts of
tracking and suspension states to follow an ideal
trajectory, the proposed control scheme can real-
ize finite-time convergence of the suspension state
itself. Furthermore, the close-loop system stability
under the presentedNLESO-based output feedback
controller is established.

This paper is arranged as follows. Section 2 presents
the nonlinear uncertain half-car active suspension
model. Section 3 introduces the essential suspension
performance requirements. The NLESO-based output
feedback stabilization controller and the stability anal-
ysis are given in Sect. 4. Comparative numerical results
are provided in Sect. 5, and conclusions are drawn in
Sect. 6.

2 Nonlinear half-car model

Here, a half-car active suspension model that captures
the essential characteristics of the vertical and pitch
motions of a real vehicle is considered [17,20,22]. As
shown in Fig. 1,M and I represent the sprungmass and
the mass moment of inertia of pitch motions, respec-
tively. mu1 and mu2 denote the unsprung mass of the
front and rear suspensions, respectively. Fs1 , Fs2 and

Fig. 1 The structure of half-car active suspension
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Fd1 , Fd2 are the nonlinear forces produced by the sus-
pension springs and dampers, respectively. u1 and u2
represent the active forces exerted by the front and rear
actuators, respectively. Ft1 , Ft2 and Fb1 , Fb2 denote
the elastic and damping forces of the front and rear
tires, respectively. zc and φ represent the vertical dis-
placement and pitch angle at the vehicle body center of
gravity (CG), respectively. zu1 , zu2 and zr1 , zr2 denote
the unsprung mass displacements and road excitations
corresponding to the front and rear suspensions, respec-
tively. a and b represent the distance from CG to the
front and rear axles, respectively.

According to Newton’s second law, the dynamic
model of a half-car active suspension system is derived
by the following differential equations:

Mz̈c = −Fs1(zc, φ, zu1) − Fd1(żc, φ̇, żu1)

−Fs2(zc, φ, zu2) − Fd2(żc, φ̇, żu2) + uz

+ΔFz(t)

I φ̈ = a[−Fs1(zc, φ, zu1) − Fd1(żc, φ̇, żu1)]
+ b[Fs2(zc, φ, zu2) + Fd2(żc, φ̇, żu2)] + uφ

+ΔMφ(t)

mu1 z̈u1 = Fs1(zc, φ, zu1) + Fd1(żc, φ̇, żu1)

−Ft1(zu1, zr1) − Fb1(żu1 , żr1) − u1

mu2 z̈u2 = Fs2(zc, φ, zu2) + Fd2(żc, φ̇, żu2)

−Ft2(zu2 , zr2) − Fb2(żu2 , żr2) − u2 (1)

where ΔFz and ΔMφ denote the integrated uncertain
dynamics in suspension system. uz and uφ are given by

uz = u1 + u2 uφ = au1 − bu2 (2)

The spring forces Fs1 , Fs2 and damping forces Fd1 ,
Fd2 are modeled with a linear term and a unknown
nonlinear function, which are given by

Fs1 = ks1Δy1 + Fsn1(zc, φ, zu1)
Fs2 = ks2Δy2 + Fsn2(zc, φ, zu2)
Fd1 = bs1Δẏ1 + Fdn1(żc, φ̇, żu1)
Fd2 = bs2Δẏ2 + Fdn2(żc, φ̇, żu2)

(3)

where ks1 , ks2 and bs1 , bs2 denote the linear stiffness
coefficients and linear damping coefficients of sus-
pension components. Note the fact that it is difficult
to obtain exact properties of suspension spring and
damper; thus, the nonlinear terms in Eq. (3) are not
described with specific expressions so that it can cover
more realistic situations. AndΔy1 andΔy2 are suspen-
sion spaces, which obey the following relationships:

Δy1=zc + a sin φ − zu1
Δy2=zc − b sin φ − zu2

(4)

Besides, the forces generated by the front and rear
tires are modeled as follows:

Ft1 = kt1(zu1 − zr1) Fb1 = cb1(żu1 − żr1)
Ft2 = kt2(zu2 − zr2) Fb2 = cb2(żu2 − żr2)

(5)

in which kt1 , kt2 and cb1 , cb2 stand for the stiffness and
damping coefficients of the tires, respectively.

Defining the state variable as x1 = zc, x2 = żc,
x4 = φ, x5 = φ̇, x7 = zu1 , x8 = żu1 , x9 = zu2 ,
x10 = żu2 , Eq. (1) is rewritten in the following state-
space form:

ẋ1 = x2
ẋ2 = 1

M [−Fz + uz] + dz
ẋ4 = x5
ẋ5 = 1

I [−Mφ + uφ] + dφ
ẋ7 = x8
ẋ8 = 1

mu1
[Fs1 + Fd1 − Ft1 − Fb1 − u1]

ẋ9 = x10
ẋ10 = 1

mu2
[Fs2 + Fd2 − Ft2 − Fb2 − u2]

(6)

where Fz = Fs1 + Fd1 + Fs2 + Fd2 and Mφ = a(Fs1 +
Fd1) − b(Fs2 + Fd2).

In practical scenarios, the vertical displacement z
and pitch angle φ can be easily measured by inertial
measurement component, e.g., a gyroscope. Thus, the
system output y is given as:

y = [y1, y2]T = [x1, x4]T (7)

Remark 1 It should be noted that the suspension
springs and dampers do not follow simple linear behav-
ior. Meanwhile, the suspension spaces associated with
the linear spring and damper forces are apparently non-
linear as shown in Eqs. (3) and (4). In addition to the
nonlinear characteristics, active suspension systems are
subjected to severe uncertainties, such as parameter
uncertainties, unmodeled dynamics, as well as exter-
nal disturbances. Specifically, M and I may vary with
the number of passengers and the payload, and ks1 ,
ks2 , bs1 , and bs2 will gradually change with real phys-
ical circumstance due to wear, fatigue, and aging. The
unmodeled dynamics primarily include the model dis-
crepancies, uncertain nonlinearities, and other hard-to-
model terms such as the unmodeled friction force, cou-
pling dynamics of steering and braking systems, and
so on. Additionally, external disturbances caused by
exogenous road input and measurement noise are the
major sources of performance degradation. Hence, it is
impossible to establish a truly accurate mathematical
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model for an active suspension system, and the uncer-
tain nonlinear dynamics presented in Eq. (1) are fairly
reasonable.

3 System performance requirements

For active suspension systems, the following perfor-
mance objectives need to be considered.

• Stabilize vehicle attitude The controller should
ensure a stable body posture when the vehicle is
running, which means that the vertical displace-
ment and pitch angle displacement of the sprung
mass are as small as possible.

• Ride comfort As one of the main tasks of suspen-
sion systems, the controller should has an ability
to isolate passengers from the undesired forces and
provide satisfactory comfort. The ride comfort is
achieved by the reductions in vertical acceleration
and pitch angle acceleration.

• Good road holding To ensure ride safety, a firm
uninterrupted contact between wheels and road is
fundamental. In other words, the tires dynamic
loads must be less than the static ones, which is
described as:
∣
∣Ft1 + Fb1

∣
∣ < Fh1

∣
∣Ft2 + Fb2

∣
∣ < Fh2 (8)

where Fh1 and Fh2 are calculated by

Fh1 + Fh2=
(

M+mu1+mu2

)

g
Fh1 (a + b) = Mgb + mu1g (a + b)

(9)

in which g stands for the gravitational acceleration.
• Suspension space limit Once exceeding the allow-
able maximum, the suspension will hit its limit
block. This behavior will accordingly deteriorate
ride comfort and even damage the suspension struc-
ture. Thus, it should meet that

|Δy1| ≤ y1max |Δy2| ≤ y2max (10)

In terms of the above statements, the proposed con-
troller should be capable tominimize the displacements
and accelerations of vehicle body while guaranteeing
the essential constraints in Eqs. (8)–(10).

4 Controller design and stability analysis

In this section, we first develop a NLESO-based sta-
bilization controller for half-car active suspension sys-
tems without the demand of accurate model informa-
tion. The control laws are synthesized by considering

only the vertical displacement and pitch angle of the
vehicle body as system outputs, which can be easily
measured in practice. Next, weighted error and auxil-
iary state systems are constructed to verify the finite-
time convergence of the observer estimation errors and
suspension states, and the close-loop system stability
under the proposed control scheme. Finally, the zero
dynamics are proven to be stable and the suspension
constraint requirements are guaranteed.

4.1 NLESO-based control law synthesis

As indicated in Sect. 2, current mathematical models
of active suspension systems are not precisely known.
Here, we will design two NLESOs for the heave and
pitch motions of a half-car active suspension system
using only the system output signals, so that the unmea-
surable states and unknown nonlinear disturbances are
estimated. Based on the information acquired from
observers, output feedback stabilization control laws,
uz and uφ , are synthesized to realize fast finite-time
convergence not only for observation errors, but also
for suspension states.

The heave dynamics and pitch dynamics are recon-
structed in the following forms, respectively:
{
ẋ1 = x2
ẋ2 = ϕz (y1, x2) + 1

M0
uz + fz (x, t)

(11)

{
ẋ4 = x5
ẋ5 = ϕφ (y2, x5) + 1

I0
uφ + fφ (x, t)

(12)

where ϕz(y1, x2) = 1
M0

[−(ks10 + ks20)y1 − (bs10 +
bs20)x2] and ϕφ(y2, x5) = 1

I0
[−(a2ks10 + b2ks20)

sin(y2) − (a2bs10 + b2bs20)x5 cos(y2)]. Here, M0, I0,
ks10 , ks20 , bs10 , bs20 are the nominal values of M , I , ks1 ,
ks2 , bs1 , bs2 , and these parameters will fluctuate around
their nominal values in actual operation. Besides,
fz(x, t) = − 1

M Fz − ϕz(y1, x2) + ( 1
M − 1

M0
)uz + dz ,

fφ(x, t) = − 1
I Mφ − ϕφ(y2, x5) + ( 1I − 1

I0
)uφ + dφ .

fz and fφ are regarded as total disturbances in heave
and pitch dynamics, which contain unknown nonlin-
ear term, uncertain disturbances, perturbations caused
by parameter variation and other model error terms.
Let hz(x, t) and hφ(x, t) denote the time derivative of
fz(x, t) and fφ(x, t), respectively.
Before the procedures of observers and control laws

design, we need to give the following assumptions.
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Assumption 1 The integrated disturbances fz , fφ and
their derivative hz , hφ are bounded, and there exist con-
stants M̄1 and M̄2 such that

|hz(x, t)| ≤ M̄1 |hφ(x, t)| ≤ M̄2 (13)

Assumption 2 The function ϕz(y1, x2) is Lipschitz
with respect to x2, and the function ϕφ(y2, x5) is Lips-
chitz with respect to x5, while there exist a set of posi-
tive constants c̄1, c̄2, c̃1 and c̃2 such that

|ϕz (y1, 0) | ≤ c̄1|x1|
|ϕz (y1, x2) − ϕz

(

y1, x̂2
) | ≤ c̄2|x2 − x̂2|

|ϕφ (y2, 0) | ≤ c̃1|x4|
|ϕφ (y2, x5) − ϕφ

(

y2, x̂5
) | ≤ c̃2|x5 − x̂5|

(14)

Considering fz and fφ as extended states x3 and
x6, then the NLESOs for heave and pitch motions are
constructed as:
⎧

⎪⎪⎨

⎪⎪⎩

˙̂x1 = x̂2 + α1
ρ3

⌈

ρ5
(

y1 − x̂1
)⌉θ1z

˙̂x2 = x̂3 + ϕz
(

y1, x̂2
)+ 1

M0
uz + α2

ρ

⌈

ρ5
(

y1 − x̂1
)⌉θ2z

˙̂x3 = α3ρ
⌈

ρ5
(

y1 − x̂1
)⌉θ3z

(15)
⎧

⎪⎨

⎪⎩

˙̂x4 = x̂5 + β1
r3
⌈

r5
(

y2 − x̂4
)⌉θ1φ

˙̂x5 = x̂6 + ϕφ
(

y2, x̂5
)+ 1

I0
uφ + β2

r

⌈

r5
(

y2 − x̂4
)⌉θ2φ

˙̂x6 = β3r
⌈

r5
(

y2 − x̂4
)⌉θ3φ

(16)

where ρ and r are constant tunable parameters, the
function �•�θ = | • |θ sign(•), θ j z = jθz − ( j − 1)
and θ jφ = jθφ − ( j − 1), j = 1, 2, 3, 0 < θz, θφ < 1.
And the design parameters α j and β j are chosen such
that the following matrices are Hurwitz:

Ξz =
⎡

⎣

−α1 1 0
−α2 0 1
−α3 0 0

⎤

⎦ Ξφ =
⎡

⎣

−β1 1 0
−β2 0 1
−β3 0 0

⎤

⎦ (17)

Then, the output feedback stabilization control laws
are synthesized based on the NLESOs (15) and (16):

uz = M0

[

ρ2a1y1 + ρa2 x̂2 − x̂3
]

(18)

uφ = I0
[

r2b1y2 + rb2 x̂5 − x̂6
]

(19)

in which−x̂3 and−x̂6 are used to actively compensate
for the total disturbances fz and fφ defined in Eqs. (11)
and (12), respectively. ai and bi (i = 1, 2) are selected
to make the eigenvalues of the following matrices in
the left-half plane.

Λz =
[

0 1
a1 a2

]

Λφ =
[

0 1
b1 b2

]

(20)

Theorem 1 Suppose that the matrices defined in (17)
and (20) are Hurwitz, while Assumptions 1 and 2
are satisfied. With the NLESOs (15) and (16) and
the NLESO-based output feedback stabilization con-
trol laws (18) and (19) for half-car active suspension
systems, there exist θ∗ ∈ ( 23 , 1), ρ

∗ > 1 and r∗ > 1, so
that for any θz, θφ ∈ (θ∗, 1), ρ > ρ∗ and r > r∗, the
observer estimation errors and the system states satisfy

x j (t) − x̂ j (t) = 0, ∀ t > tpz j = 1, 2, 3
x j (t) − x̂ j (t) = 0, ∀ t > tpφ j = 4, 5, 6

(21)

and

|xi (t)| ≤ �i = ϒz

(
1
ρ

)3−i
, ∀ t > t̄ pz i = 1, 2

|xi (t)| ≤ ςi = ϒφ

( 1
r

)6−i
, ∀ t > t̄ pφ i = 4, 5

(22)

where tpz, t̄pz and tpφ , t̄ pφ are positive constants
depending on the tunable parameters ρ and r, ϒz, ϒφ

> 0, and ρ∗ and r∗ will be discussed later.

Remark 2 Theorem 1 suggests that through select-
ing appropriate design parameters, the unmeasurable
velocity signals x2, x5 and the modeling uncertainties
x3, x6 can be well estimated by NLESOs (15) and (16)
in real time. Meanwhile, the control laws (18) and (19)
are able to make the active suspension system states
converge in a finite time; thereby, the vehicle body atti-
tude stability and ride comfort can be guaranteed.

The proofs of Theorem 1 and close-loop system sta-
bility are given in the next section.

4.2 Stability analysis

For the sake of stability analysis,we need someprelimi-
nary lemmas concerning homogeneity. First, the homo-
geneity definitions are given in the following [43,44].

Definition 1 A function V : Rn → R is homogeneous
of degree d with respect to the weights {si > 0}ni=1, if

V
(

λs1 z1, λ
s2 z2, · · · , λsn zn

) = λdV (z1, z2, . . . , zn)

(23)

for all λ > 0 and all (z1, z2, . . . , zn) ∈ Rn .

Definition 2 A vector field F : Rn → Rn is homo-
geneous of degree d with respect to the weights
{si > 0}ni=1, if for any i = 1, 2, . . . , n,
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Fi
(

λs1 z1, λ
s2 z2, · · · , λsn zn

) = λd+si Fi (z1, z2, . . . , zn)

(24)

for all λ > 0 and all (z1, z2, . . . , zn) ∈ Rn , where Fi
is the i th component of F .

Then, define the following vectors:

Fθz (ω) =
⎡

⎣

ω2 − α1�ω1�θ1z
ω3 − α2�ω1�θ2z

−α3�ω1�θ3z

⎤

⎦

Fθφ (υ) =
⎡

⎣

υ2 − β1�υ1�θ1φ
υ3 − β2�υ1�θ2φ

−β3�υ1�θ3φ

⎤

⎦

(25)

From [45], we can obtain that Fθz (ω) are homoge-
neous of degree χz = θz−1 with respect to the weights
{μ j = ( j − 1)θz − ( j − 2)}3j=1, and Fθφ (υ) are homo-
geneous of degree χφ = θφ − 1 with respect to the
weights {ν j = ( j − 1)θφ − ( j − 2)}3j=1, j = 1, 2, 3.
Then, they are split into several lemmas for vectors
Fθz (ω) and Fθφ (υ).

Lemma 1 If Ξz and Ξφ are Hurwitz, there exist θ∗ ∈
( 23 , 1), such that for any θz, θφ ∈ (θ∗, 1), the systems
ω̇ = Fθz (ω) and υ̇ = Fθφ (υ) are finite-time stable [43].
Meanwhile, it follows from [37,46] that there exist pos-
itive definite and radially unbounded Lyapunov func-
tions Vθz (ω) and Vθφ (υ), which are homogeneous of
degree γz > 1 and γφ > 1 with respect to the weights
{μ j }3j=1 and {ν j }3j=1, respectively. Besides, the Lie
derivative of Vθz (ω) along with the vector Fθz (ω)
and the Lie derivative of Vθφ (υ) along with the vec-
tor Fθφ (υ) are both negative definite.

Lemma 2 If Lemma 1 is satisfied, it can conclude from

[39,45,47] that
∂Vθz (ω)
∂ω j

and LFθz Vθz (ω) are homoge-

neous of degree γz − μ j and γz + χz with respect to

the weights {μ j }3j=1, and
∂Vθφ (υ)

∂υ j
and LFθφ

Vθφ (υ) are

homogeneousof degreeγφ−ν j andγφ+χφ with respect
to the weights {ν j }3j=1. Furthermore, we can get that
∣
∣
∣
∂Vθz (ω)
∂ω j

∣
∣
∣ ≤ B̄1Vθz (ω)

γz−μ j
γz

∣
∣
∣

∂Vθφ (υ)

∂υ j

∣
∣
∣ ≤ B̃1Vθφ (υ)

γφ−ν j
γφ

LFθz
Vθz (ω) ≤ −B̄2Vθz (ω)

γz+χz
γz

L Fθφ
Vθφ (υ) ≤ −B̃2Vθφ (υ)

γφ+χφ
γφ

∣
∣ω j
∣
∣ ≤ B̄3Vθz (ω)

μ j
γz

∣
∣υ j
∣
∣ ≤ B̃3Vθφ (υ)

ν j
γφ

(26)

where B̄ j and B̃ j are positive constants.

In view of the heave dynamics (11) and its NLESO
(15), we establish a weighted error system by letting

η j = ρ7−2 j (x j − x̂ j
)

, j = 1, 2, 3 (27)

Then, the estimate error dynamics can be written as

η̇(t) = ρ2

⎡

⎣

η2 − α1�η1�θ1z
η3 − α2�η1�θ2z

−α3�η1�θ3z

⎤

⎦

+ρ3Ψz(x̃2, t) + ρΘz(x, t) (28)

where Ψz(x̃2, t) = [ 0 ϕ̃z 0 ]T , Θz(x, t) = [ 0 0 hz ]T ,
ϕ̃z = ϕz(y1, x2) − ϕz(y1, x̂2).

Choose a Lyapunov function Vθz (η(t)) satisfying
Lemma 1, and the form of Vθz (η(t)) can refer to the
literature [39]. Based on Eqs. (26) and (28), we can
obtain

V̇θz (η (t)) = ρ2LFθz
Vθz (η (t)) + ∂Vθz (η (t))

∂η3
ρhz (x, t)

+ ∂Vθz (η (t))

∂η2
ρ3
[

ϕz (y1, x2) − ϕz
(

y1, x̂2
)]

≤ −ρ2 B̄2Vθz (η (t))
γz+χz
γz + ρ B̄1M̄1Vθz (η (t))

γz−μ3
γz

+ B̄1Vθz (η (t))
γz−μ2
γz · c̄2 |η2|

(29)

According to Lemma 2, it is easy to obtain that for

any ρ ≥
(

4B̄1 B̄3c̄2
B̄2

Vθz (η (t))
−χz
γz

) 1
2

, then

B̄1Vθz (η (t))
γz−μ2
γz · c̄2 |η2| ≤ 1

4
ρ2 B̄2Vθz (η (t))

γz+χz
γz

(30)

And if ρ ≥ 4B̄1 M̄1
B̄2

Vθz (η (t))
−μ3−χz

γz , we have

B̄1M̄1Vθz (η (t))
γz−μ3
γz ≤ 1

4
ρ B̄2Vθz (η (t))

γz+χz
γz (31)

Let Hz = {

η (t)| Vθz (η (t)) ≤ Vθz (η (0))
}

, it is
obvious that η(0) ∈ Hz . If η(t) leave from Hz , for
any ρ > ρ∗

1 ,

ρ∗
1 = max

{

1,

(

4B̄1 B̄3c̄2
B̄2

Vθz (η (0))
1−θz
γz

) 1
2

4B̄1 M̄1
B̄2

Vθz (η (0))
2−3θz
γz

}

(32)

the inequalities (30) and (31) apparently hold. Then,
we can get

V̇θz (η (t)) ≤ −1

2
ρ2 B̄2Vθz (η (t))

γz+χz
γz < 0 (33)
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Integrating both sides of inequality (33) from 0 to t
gives

Vθz (η (t)) ≤
∫ t

0
V̇θz (η (t))dt + Vθz (η (0))

≤ Vθz (η (0))

(34)

so η(t) will stay in set Hz all the time. Meanwhile,
from inequality (33) we can see that Vθz (η(t)) strictly
decreases as t increases, so the trajectory of η(t) is
asymptotically stable.

Then, we will prove the finite-time stability of the
observer estimation errors. Let Φ(t) be a nonnegative
function satisfying the following conditions:
{

Φ̇ (t) = − 1
2ρ

2 B̄2(Φ (t))
γz+χz
γz , t > 0

Φ (0) = Vθz (η(0))
(35)

Solving the abovedifferential equation gives [39,45]

Φ (t) =
{

Φ̄ (t) , t ∈ [0, tpz(ρ)
)

0, t ∈ [ tpz(ρ), ∞) (36)

where

Φ̄ (t) =
(

−ρ2 B̄2

2γz
(1 − θz) t + (Vθz (η(0))

) 1−θz
γz

) γz
1−θz

(37)

and

tpz(ρ) = 2γz
ρ2 B̄2 (1 − θz)

(

Vθz (η(0))
) 1−θz

γz (38)

From Eqs. (33), (35), and (36), by using the com-
parison principle [48], we have

Vθz (η(t)) = 0, ∀ρ > ρ∗
1 , t ∈ [tpz, ∞) (39)

Combiningwith thepositive definiteness ofVθz (η(t))
and Eq. (27), we can conclude that for any ρ > ρ∗

1

x j (t) − x̂ j (t) = 0, t ∈ [tpz, ∞) j = 1, 2, 3 (40)

which means that the observer estimation errors can
converge to zero in finite time (for any t > tpz). The
stability proof of Eq. (21) in Theorem 1 with respect to
the heave motion NLESO is complete.

Furthermore, in order to certify the finite-time con-
vergenceof suspension states and the close-loop system
stability under the proposed controller, we construct
another auxiliary system. Let

ξi = ρ2−i xi , i = 1, 2 (41)

Taking a direct calculation for ξi based on Eqs. (11)
and (18), we can get

ξ̇ = ρΛzξ + Bξ

(

− 1

ρ2
a2η2 + 1

ρ
η3

)

+ Bξ ϕz (y1, x2)

(42)

where Λz is defined in Eq. (20), and Bξ = [ 0 1
]T
.

Select a Lyapunov function Vz (η (t) , ξ (t)) in terms
of the weighted estimation error η(t) and the interme-
diate state variable ξ(t)

Vz (η (t) , ξ (t)) = Vθz (η (t)) + VLz (ξ (t)) (43)

with VLz (ξ (t)) = ξ(t)T Pzξ (t), and Pz is the positive
definite matrix solution to the Lyapunov equation

ΛT
z Pz + PzΛz = −I (44)

Taking the time derivative of Vz (η (t) , ξ (t)) gives

V̇z (η (t) , ξ (t)) ≤ −1

2
ρ2 B̄2Vθz (η (t))

γz+χz
γz − ρξ T ξ

+ 2ξ T Pz Bξ

(

− 1

ρ2
a2η2 + 1

ρ
η3

)

+ 2ξ T Pz Bξ ϕz (y1, x2)

≤ −1

2
ρ2 B̄2Vθz (η (t))

γz+χz
γz − ρ‖ξ‖2

+ 2

ρ2
|a2| λmax (Pz) |η2| ‖ξ‖

+ 2

ρ
λmax (Pz) |η3| ‖ξ‖ + 4c̄λmax (Pz) ‖ξ‖2

(45)

where c̄ = max{c̄1, c̄2}. In this brief, λmax(•) and
λmin(•) denote themaximum andminimum eigenvalue
of matrix •. According to Eq. (26) in Lemma 2, the
derivative of Vz (η (t) , ξ (t)) can be further deduced
into

V̇z (η (t) , ξ (t)) ≤ −1

2
ρ2 B̄2Vθz (η (t))

γz+χz
γz − ρ‖ξ‖2

+ 2

ρ2
|a2| λmax (Pz) B̄3 ‖ξ‖ Vθz (η (t))

μ2
γz

+ 2

ρ
λmax (Pz) B̄3 ‖ξ‖ Vθz (η (t))

μ3
γz

+ 4c̄λmax (Pz)‖ξ‖2

≤ −1

2
ρ2 B̄2Vθz (η (t))

γz+χz
γz

− (ρ − 4c̄λmax (Pz) − 2) ‖ξ‖2

+ 1

ρ4
λmax

2 (Pz) |a2|2 B̄2
3 Vθz (η (t))

2μ2
γz

+ 1

ρ2
λmax

2 (Pz) B̄
2
3 Vθz (η (t))

2μ3
γz

(46)

Making a simple computation, we can obtain that for

any ρ ≥
(

8λmax
2(Pz)|a2|2 B̄2

3
B̄2

Vθz (η (0))
θz+1−γz

γz

) 1
6

, there

is
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λmax
2 (Pz) |a2|2 B̄2

3Vθz (η (t))
2μ2
γz

≤ ρ6

8
B̄2Vθz (η (t))

γz+χz
γz (47)

Besides, for anyρ ≥
(

8λmax
2(Pz)B̄2

3
B̄2

Vθz (η (0))
3θz−1−γz

γz

) 1
4

,

we have

λmax
2 (Pz) B̄

2
3Vθz (η (t))

2μ3
γz ≤ ρ4

8
B̄2Vθz (η (t))

γz+χz
γz (48)

Accordingly, fromEqs. (46)–(48), we obtain that for
any ρ > ρ∗

2 ,

ρ∗
2 = max

{(

8λmax
2(Pz)|a2|2 B̄2

3
B̄2

Vθz (η (0))
θz+1−γz

γz

) 1
6

,

(

8λmax
2(Pz)B̄2

3
B̄2

Vθz (η (0))
3θz−1−γz

γz

) 1
4

, 4c̄λmax (Pz) + 2

}
(49)

we have the following

V̇z (η (t) , ξ (t)) ≤ −1

4
ρ2 B̄2Vθz (η (t))

γz+χz
γz − κ‖ξ‖2

< 0, κ = ρ − 4c̄λmax (Pz) − 2

(50)

As seen, V̇z (η (t) , ξ (t)) is negative definite, while
Vθz (η (t)) and VLz (ξ (t)) are both positive definite.
Then, it can conclude that for any initial value (η(0),
ξ(0)), η(t) → 0, ξ(t) → 0 as t → ∞ by using
LaSalle’s invariance theorem [42,49]. In view of Eqs.
(27) and (41), x j − x̂ j and xi will also asymptotically
tend to zero as t → ∞. Thence, the close loop of ver-
tical dynamics is asymptotically stable.

In what follows, we will prove the finite-time stabil-
ity of suspension states x1 and x2.

By Eq. (33), we assume that there exist positive con-
stants Γz , tr z and a ρ satisfying ρ > ρ∗

1 , such that

‖η(t)‖ ≤ Γz, ∀ t > tr z (51)

Then, the derivative of VLz (ξ(t)) can be evolved
into

V̇Lz (ξ (t)) ≤ − (ρ − 4c̄λmax (Pz)) ‖ξ‖2

+ 2

ρ
(|a2| + 1) λmax (Pz) Γz ‖ξ‖

≤ −ρ − 4c̄λmax (Pz)

λmax (Pz)
VLz (ξ (t))

+ 2

ρ
(|a2| + 1) λmax (Pz) Γz

√

VLz (ξ (t))

λmin (Pz)

(52)

It follows that
d
√

VLz ξ (t)

dt
≤ −ε1

√

VLz ξ (t) + ε2
Γz

ρ
(53)

with

ε1 = ρ − 4c̄λmax (Pz)

2λmax (Pz)
, ε2 = (|a2| + 1) λmax (Pz)√

λmin (Pz)
(54)

Solving the above differential equation, there is

‖ξ (t)‖ ≤
√

VLz (ξ (t))

λmin (Pz)

≤
√

VLz (ξ (0))

λmin (Pz)
exp(−ε1t)

+ 1

ρ

ε2Γz√
λmin (Pz)

∫ t

0
exp(−ε1(t − τ))dτ

(55)

It together with Eq. (41) yields

|xi (t)| ≤ 1
ρ2−i

[√
VLz (ξ(0))
λmin(Pz)

exp(−ε1t)

+ 1
ρ

ε2Γz√
λmin(Pz)

∫ t
0 exp(−ε1(t − τ))dτ

] (56)

Thus, there exists a ρ-dependent constant t̄ pz ≥ tr z ,
such that xi will converge to a sufficiently small bound
for any t ∈ [t̄ pz,∞) as long as ρ is large, i = 1, 2.
Then, Eq. (22) in Theorem 1 with respect to the heave
motion states can be deduced from Eq. (56).

Summarizing the above procedures, it can conclude
from Eqs. (32), (40), (49), and (56) that there exists a
constant ρ∗,
ρ∗ = max

{

ρ∗
1 , ρ2∗

} ; (57)

for any ρ > ρ∗, not only the observer estimation errors
but also the suspension states of heave dynamics are
finite-time convergent.

Following a similar procedure, we construct a
weighted error system and a auxiliary state system for
pitch dynamics of the half-car active suspension sys-
tem. Let

ε j−3 = r13−2 j (x j − x̂ j
)

, j = 4, 5, 6 (58)

ζi−3 = r5−i xi , i = 4, 5 (59)

Then, it is proved that there exist a constant t̄ pφ and
a constant r∗,
r∗ = max

{

r∗
1 , r

∗
2

}

(60)

with

r∗
1 = max

⎧

⎨

⎩
1,

(

4B̃1 B̃3c̃2
B̃2

Vθφ (ε (0))
1−θφ
γφ

) 1
2

4B̃1 M̄2

B̃2
Vθφ (ε (0))

2−3θφ
γφ

} (61)
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r∗
2 = max

⎧

⎨

⎩

(

8λmax
2(Pφ)|b2|2 B̃2

3

B̃2
Vθφ (ε (0))

θφ+1−γφ
γφ

) 1
6

,

(

8λmax
2(Pφ)B̃2

3

B̃2
Vθφ (ε (0))

3θφ−1−γφ
γφ

) 1
4

,

4c̃λmax
(

Pφ
)+ 2

⎫

⎬

⎭

(62)

where c̃ = max {c̃1, c̃2}, and Pφ is the positive defi-
nite matrix solution to the Lyapunov equationΛT

φ Pφ +
PφΛφ = −I , with Λφ defined in Eq. (20). Then, for
any r > r∗, the unmeasurable state and disturbance
estimation errors x j − x̂ j of NLESO (16), and the sus-
pension states xi of pitch dynamics (12) are finite-time
stable (with t > t̄ pφ).Until now, the proof ofTheorem1
is complete.

In terms of the output feedback stabilization control
laws uz and uφ in Eqs. (18) and (19), we can calculate
the real input u1 and u2 for the front and rear suspen-
sions according to Eq. (2)

u1 = buz + uφ
a + b

, u2 = auz − uφ
a + b

. (63)

4.3 Zero dynamics and performance constraints

It is worth mentioning that the half-car active suspen-
sion system in Eq. (6) is an eighth-order system, while
the controller design is aimed at a forth-order dynam-
ics only concerning sprungmass. So the zero dynamics
constituted by the remaining unsprung mass subsys-
tem need to be considered [33,42]. To explore it, we
set the system outputs y1 and y2 equal to zero, namely,
x1 = x4 = 0. Hence, we have

uz = Fz − ΔFz
uφ = Mφ − ΔMφ.

(64)

Then, we can solve u1 and u2 according to Eq. (2).
By substituting the control input u1 and u2 into the
unsprung mass subsystem in Eq. (6), we obtain the fol-
lowing zero dynamics:

˙̄x = Ax̄ + Br zr + Bdd (65)

where

x̄ =

⎡

⎢
⎢
⎣

x7
x8
x9
x10

⎤

⎥
⎥
⎦
, A =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0

− kt1
mu1

− cb1
mu1

0 0

0 0 0 1

0 0 − kt2
mu2

− cb2
mu2

⎤

⎥
⎥
⎥
⎥
⎦

,

Br =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0
kt1
mu1

cb1
mu1

0 0

0 0 0 0

0 0
kt 2
mu2

cb2
mu2

⎤

⎥
⎥
⎥
⎥
⎦

, zr =

⎡

⎢
⎢
⎣

zr1
żr1
zr2
żr2

⎤

⎥
⎥
⎦
,

Bd =

⎡

⎢
⎢
⎢
⎣

0
b

mu1 (a+b)

0
a

mu2 (a+b)

0
1

mu1 (a+b)

0
− 1

mu2 (a+b)

⎤

⎥
⎥
⎥
⎦
, d =

[

ΔFz
ΔMφ

]

.

Consider the Lyapunov candidate V = x̄ TP x̄ for
zero dynamics (65), where P > 0 is a positive sym-
metric matrix. The time derivative of V gives

V̇ = x̄ T
(

ATP + PA
)

x̄ + 2x̄ TPBr zr + 2x̄ TPBdd.

(66)

Furthermore, since the matrix A is Hurwitz, it can
obtain ATP + PA = −Q with a positive matrix Q.
According to Young’s inequality, one has

V̇ ≤ − x̄ TQx̄ + 1

τ1
x̄ TPBr Br

TP x̄ + τ1zr
T zr

+ 1

τ2
x̄ TPBd Bd

TP x̄ + τ2d
T d

≤
[

−λmin

(

P− 1
2QP− 1

2

)

+ 1

τ1
λmax

(

P 1
2 Br Br

TP 1
2

)

+ 1

τ2
λmax

(

P 1
2 Bd Bd

TP 1
2

)]

V + τ1zr
T zr + τ2d

T d

(67)

where τ1 and τ2 are positive tuning parameters. By
selecting proper tunable values τ1, τ2 and matrices P ,
Q, we can find a positive value σ1, such that

−λmin

(

P− 1
2QP− 1

2

)

+ 1
τ1
λmax

(

P 1
2 Br Br TP 1

2

)

+ 1
τ2
λmax

(

P 1
2 Bd Bd

TP 1
2

)

≤ −σ1.

(68)

Additionally, suppose τ1zr T zr + τ2dT d ≤ σ2 with
σ2 > 0. Then, Eq. (67) can be expressed as

V̇ ≤ −σ1V + σ2 (69)

It follows that

V (t) ≤
(

V(0) − σ2

σ1

)

e−σ1t + σ2

σ1
≤ q (70)
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where

q =
{

V(0) V(0) ≥ σ2
σ1

2σ2
σ1

− V(0) V(0) < σ2
σ1

which yields |xk | ≤
√

q
λmin(P)

, k = 7, 8, 9, 10. Hence,

the zero dynamics is stable.
In view of the previous stability proof, we can find

that all the system states defined in Sect. 2 are bounded.
So the bounds of tire dynamic load corresponding to
the front and rear suspensions can be estimated as

|Ft1 + Fb1 | = ∣∣kt1
(

x7 − zr1
)+ cb1

(

x8 − żr1
)∣
∣

≤ (kt1 + cb1
)√ q

λmin(P)
+ kt1

∥
∥zr1

∥
∥∞ + cb1

∥
∥żr1

∥
∥∞
(71)

|Ft2 + Fb2 | = ∣∣kt2
(

x9 − zr2
)+ cb2

(

x10 − żr2
)∣
∣

≤ (kt2 + cb2
)√ q

λmin(P)
+ kt2

∥
∥zr2

∥
∥∞ + cb2

∥
∥żr2

∥
∥∞.

(72)

What’s more, the bounds of the front and rear sus-
pension spaces are obtained as

|Δy1| = |x1 + a sin x4 − x7|
≤ |x1| + a |x4| + |x7|
≤�1 + aς4 +

√
q

λmin (P) (73)

|Δy2| = |x1 − b sin x4 − x9|
≤ |x1| + b |x4| + |x9|
≤�1 + bς4 +

√
q

λmin (P) . (74)

By the hard constraints defined in Eqs. (8) and (10),
if we adjust the initial values and the control parame-
ters, then the following inequalities are satisfied:

(

kt1 + cb1
)√ q

λmin(P)
+ kt1

∥
∥zr1

∥
∥∞ + cb1

∥
∥żr1

∥
∥∞ < Fh1

(

kt2 + cb2
)√ q

λmin(P)
+ kt2

∥
∥zr2

∥
∥∞ + cb2

∥
∥żr2

∥
∥∞ < Fh2

(75)

|�1|∞ + a|ς4|∞ +
√

q
λmin(P)

≤ y1max

|�1|∞ + b|ς4|∞ +
√

q
λmin(P)

≤ y2max
(76)

so the tire dynamic loads and suspension spaces of front
and rear suspensions are limited within their allowable
ranges.

Table 1 Model parameters of half-car active suspensions

Parameter Value Parameter Value

M 1200 kg cb1 1500 N s m−1

mu1 ,mu2 100 kg cb2 2000 N s m−1

I 600 kg m2 be1 ,be2 1500 N s m−1

ks1 ,ks2 15,000 N m−1 bc1 ,bc2 1200 N s m−1

ksn1 ,ksn2 1000 N m−3 a 1.2 m

kt1 200,000 N m−1 b 1.5 m

kt2 150,000 N m−1 V 20 m/s

5 Simulation results

In this section, some numerical simulations are carried
out over different road profiles to verify the effective-
ness and robustness of the proposed controller. In the
simulations, the unknownnonlinear forces produced by
suspension springs and dampers are the same as those
used in [17]:

Fs1 = ks1Δy1 + ksn1Δy13

Fs2 = ks2Δy2 + ksn2Δy23
(77)

Fd1 =
{

be1Δẏ1 Δẏ1 ≥ 0

bc1Δẏ1 Δẏ1 < 0

Fd2 =
{

be2Δẏ2 Δẏ2 ≥ 0

bc2Δẏ2 Δẏ2 < 0

(78)

where ks1 , ks2 and ksn1 , ksn2 denote the linear and
nonlinear stiffness coefficients, respectively; be1 , be2
and bc1 , bc2 are the damping coefficients for exten-
sion and compression movements, respectively. The
half-car active suspension model parameters borrowed
from [17,20] are listed in Table 1. Moreover, compar-
isons among the following three suspension systems
are conducted for performance evaluation.

• Passive: Passive suspension systems.
• LESO: Active suspension systems with LESO-
based feedback linearization controller provided in
[33].

• NLESO: Active suspension systems with NLESO-
based output feedback stabilization controller pro-
posed in this paper.
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In order to assess the controller tolerance for
the uncertain parameters, the nominal values of sus-
pension parameters are taken as M0 = 1100 kg,
I0 = 550 Kg m−2, ks10 = 16,000 N m−1, ks20 =
14,000 N m−1, be10 = 1600 N s m−1, bc10 = bc20 =
1100 N s m−1. The design parameters for the pro-
posed controller are selected as ρ = 22, r = 28.5,
θz = θφ = 5/6, α1 = α2 = 3, α3 = 1, β1 = β2 = 3,
β3 = 1, a1 = a2 = −20, b1 = b2 = −20. Then,
three representative road conditions are employed and
the numerical results are presented in the following.

5.1 Bump road excitation

The bump road input is used to simulate the sudden
shock on smooth road [19,24], which is expressed as

zr1 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−0.01776t13 + 0.03996t12 + d(t) 3.5 ≤ t < 5

0.01776t23 + 0.03996t22 + d(t) 5 ≤ t < 6.5

0.01776t33 − 0.03996t32 + d(t) 8.5 ≤ t < 10

−0.01776t43 − 0.03996t42 + d(t) 10 ≤ t < 11.5

d(t) else

(79)

where d(t) = 0.0006 sin(2π t) + 0.0006 sin(7.5π t)
denote the sinusoidal disturbance and the time intervals
are defined as t1 = t − 3.5, t2 = t − 6.5, t3 = t − 8.5,
t4 = t − 11.5. The road excitation for rear wheel is
the same as the front ones but with a time delay of
(a + b)/V .

The observer performance of LESO and NLESO
on a bump road is presented in Fig. 2, which shows
the estimation errors of unmeasurable states x2, x5
and extended states x3, x6. As observed from these
figures, the errors of the four states estimated by the
NLESO are significantly lower than those estimated
by the LESO. Meanwhile, the transient performance
of the NLESO is also superior to that of the LESO
because of the smaller initial estimation errors. The
high-quality observation of the NLESO reveals that
its use will markedly improve the suspension perfor-
mance.

The time histories of vertical displacement and pitch
angle for the aforementioned three suspensions systems
are shown in Fig. 3, and the corresponding acceleration
curves are presented in Fig. 4. It can be seen that the
displacement and acceleration of the two controlled
active suspensions are less than those of the passive

(a)

(b)

(c)

(d)

Fig. 2 Estimation errors of x2, x3, x5, x6 under bump road
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(a)

(b)

Fig. 3 Displacement responses of vertical and pitch motions
under bump road

suspension despite the presence of parameter uncer-
tainties, whereas the NLESO has smaller peak values
of displacement and acceleration that are almost equal
to zero. This result indicates that the proposed NLESO
can stabilize the vehicle body attitude and improve ride
comfort better than the LESO.

It is widely recognized that suspension performance
can be quantified by reference to root-mean-square
(RMS) values [24,35,42]. TheRMSvalues of displace-
ment and acceleration for the vertical and pitchmotions
are given in Table 2, which reflect the percentage of
performance improvement achieved by the LESO and
NLESOwith respect to the passive system.As shown in
Table 2, the RMS values of zc, φ, z̈, and φ̈ for the LESO
decrease by 99.80%, 95.04%, 94.31%, and 77.94%
compared to the passive suspension,whereas the reduc-
tions for the NLESO exceed 99% in all cases. These
findings further confirm the efficiency of the proposed
active control method.

(a)

(b)

Fig. 4 Acceleration responses of vertical and pitch motions
under bump road

Table 2 RMS comparisons of displacement and acceleration for
bump road (×10−4)

Type Passive LESO NLESO

zc 124 0.2422(↓ 99.80%) 0.0010(↓ 99.99%)

φ 7.3873 0.3662(↓ 95.04%) 0.0028(↓ 99.96%)

z̈ 432 25 (↓ 94.31%) 0.8401(↓ 99.81%)

φ̈ 909 201 (↓ 77.94%) 3.3988(↓ 99.63%)

In active suspension control, the constraint require-
ments should be taken into account. So the suspension
spaces and relative tire forces (i.e., the ratio of the tire
dynamic and static loads) of the front and rear suspen-
sions are shown in Figs. 5 and 6. As shown in Fig. 5, the
three types of suspension spaces are all below the limi-
tations of y1max = y2max = 0.1m. Figure 6 shows that
the peak values of relative tire force of the three sus-
pension systems are far below 1, indicating that the tire
dynamic loads are smaller than the static loads, which
ensures good road holding capacity. Thus, the physical
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(a)

(b)

Fig. 5 Suspension spaces of front and rear wheels under bump
road

constraints of the suspension system are preserved in
the time domain.

5.2 Sinusoidal road excitation

Secondly, the sinusoidal periodic road surface is applied
to the half-car suspension model, and the expression is
formulated as [20]

zr1 = 0.0254 sin(2π t) + 0.005 sin(10.5π t)

+ 0.001 sin(21.5π t)
(80)

This road excitation is reasonable since it considers
low-frequency vibrations that are close to the vehi-
cle body’s natural frequency (1 HZ), as well as high-
frequency sensitive vibrations. In this scenario, apart
from the parameter uncertainties, the sensor measure-
ment noise is also taken into consideration and ±2%
deviation is added tomeasurable suspension output sig-
nals y1 and y2.

(a)

(b)

Fig. 6 Relative tire forces of front and rear wheels under bump
road

Figure 7 shows the state estimation error curves of
LESOandNLESOunder sinusoidal periodic road exci-
tation. It is easily seen from the figures that the NLESO
has better observation performance than the LESO, as
its smaller transient and steady-state errors. Figures 8
and 9 compare the vertical displacement and accel-
eration, pitch angle displacement and acceleration of
the three suspension systems over time. After carefully
observing the response curves, one can find that the
LESO is robust against the uncertain parameters and
sensor noise and performs better than the passive sus-
pension; however, its performance is not as good as that
ofNLESO.This indicates the superiority of theNLESO
in spite of the existence of parameter uncertainties and
external disturbances. The RMS values are compared
in Table 3. It is clear that the LESO and NLESO can
achieve satisfactory suspension performance, stabiliz-
ing the vehicle body attitude and improving ride com-
fort. In addition, for the proposed controller, the RMS
values of vertical and pitch displacements are reduced
by 99.95% and 99.80%, respectively, and the verti-

123



Nonlinear extended state observer-based output feedback stabilization control 2497

(a)

(b)

(c)

(d)

Fig. 7 Estimation errors of x2, x3, x5, x6 under sinusoidal road
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Fig. 8 Displacement responses of vertical and pitch motions
under sinusoidal road

cal and pitch accelerations are decreased by 98.59%
and 97.26%, respectively. These reductions are greater
than those seen for the LESO. The reason why the
NLESO has an advantage over the LESO is owing
to its excellent state observation capability. Moreover,
Fig. 10 shows the front and rear suspension deflections
for the LESO and NLESO. It is seen from the figures
that the two controlled suspension spaces both fall into
an acceptable range and be superior to the passive sus-
pension. From Fig. 11, we can conclude that the wheels
will maintain uninterrupted contact with the road sur-
face for all three suspension systems, as the relative tire
forces are always less than 1.

5.3 Random road excitation

In order to further evaluate the performance of the pro-
posed control approach, a random road input approach-
ing to the realistic road is employed. The road dis-
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Fig. 9 Acceleration responses of vertical and pitch motions
under sinusoidal road

placement is obtained by using white noise filtration
method based on the ISO 8608 [50], which is described
as [8,32]

żr1 = −2πn0zr1 + 2π
√
σqvxw0(t) (81)

where vx is the vehicle longitudinal velocity, n0 = 0.1
is the reference space frequency, σq is the road rough-
ness coefficient for different road classes, andw0(t) is a
Gaussian white noise with a zero mean value. Suppose
that the vehicle is driving at a speed of vx = 20 m/s on
C class road with σq = 256× 10−6. Herein, the uncer-
tain model dynamics are also added to the simulation
which is taken as dz = dφ = sin(4π t).

As in Sects. 5.1 and 5.2, a series of numerical
results are presented here for random road excitation.
Figure 12 shows that the NLESO produces smaller
state estimation errors than the LESO, even there are
complicated model uncertainties (uncertain parame-
ters, measurement noise, and model disturbances) and
severe road conditions. As indicated by the displace-

Table 3 RMS comparisons of displacement and acceleration for
sinusoidal road (×10−4)

Type Passive LESO NLESO

zc 222 3.7006 (↓ 98.33%) 0.1059 (↓ 99.95%)

φ 68 3.6580 (↓ 94.62%) 0.1368 (↓ 99.80%)

z̈ 8859 3527 (↓ 60.18%) 125 (↓ 98.59%)

φ̈ 8656 125 (↓ 54.86%) 237 (↓ 97.26%)
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Fig. 10 Suspension spaces of front and rear wheels under sinu-
soidal road

ment responses shown in Fig. 13, and the acceleration
responses presented in Fig. 14 for the heave and pitch
motions, we can conclude that both the NLESO and
LESO are able to effectively enhance the vehicle body
attitude stability and ride comfort. Nevertheless, the
proposed control method produces smoother displace-
ment and acceleration responses, which demonstrates
that the NLESO achieves better control performance
than the LESO. Table 4 shows the RMS value com-
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Fig. 11 Relative tire forces of front and rear wheels under sinu-
soidal road

parisons of zc, φ, z̈, and φ̈ under random road condi-
tion. It is obvious that the attitude stability (displace-
ment) is significantly improved under the active con-
trol cases, because the RMS values decrease by around
95%whenusing theLESOandbymore than 99%when
using the NLESO. It is clear that ride comfort (accel-
eration) with the LESO (∼ 60%) is inferior to that of
with the NLESO (> 90%). These results suggest that
the proposed controller can better account for sophisti-
cated model dynamics, which accords with the results
of bump and sinusoidal road simulations. Additionally,
Figs. 15 and 16 show that Δy1 and Δy2 are below
the maximum suspension deflection, and the ratio of
the tire dynamic and static loads is always less than 1.
Therefore, we can conclude that both active controllers
can guarantee the constraint performance of suspension
systems.
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Fig. 12 Estimation errors of x2, x3, x5, x6 under random road
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Fig. 13 Displacement responses of vertical and pitch motions
under random road

6 Conclusions

In this paper, a NLESO-based output feedback stabi-
lization controller has been proposed for a nonlinear
active suspension system with consideration of param-
eter uncertainties, unmodeled dynamics, uncertain
external disturbances, and performance constraints.
Given the practical characteristics of suspension sys-
tems, a general uncertain nonlinear half-car model was
derived. The NLESOs were designed for heave and
pitchdynamics, to estimate the unmeasurable states and
extended states (i.e., unknown model disturbances).
Then, finite-time stabilization control laws were syn-
thesized using the obtained state information and sys-
tem output signals. By constructing weighted error
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Fig. 14 Acceleration responses of vertical and pitch motions
under random road

Table 4 RMS comparisons of displacement and acceleration for
random road (×10−4)

Type Passive LESO NLESO

zc 160 5.4816 (↓ 96.57%) 0.2374 (↓ 99.85%)

φ 74 4.3636 (↓ 94.11%) 0.1639 (↓ 99.78%)

z̈ 9656 3964 (↓ 58.95%) 495 (↓ 94.87%)

φ̈ 13925 4208 (↓ 69.78%) 601 (↓ 95.68%)

and auxiliary state systems, and using geometric homo-
geneity theory, the observer estimation errors and sus-
pension states were proven to be finite-time stable.
Moreover, zero dynamics stability was exploited to

123



Nonlinear extended state observer-based output feedback stabilization control 2501

Time (s)
0 2 4 6

Fr
on

t  
Su

sp
en

si
on

  S
pa

ce

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Passive
LESO
NLESO

(a)

Time (s)
0 2 4 6

8 10

8 10

R
ea

r  
Su

sp
en

si
on

  S
pa

ce

-0.04

-0.02

0

0.02

0.04

0.06
Passive
LESO
NLESO

(b)

Fig. 15 Suspension spaces of front and rear wheels under ran-
dom road

ensure the safety constraints of suspension systems.
Finally, numerical simulations were conducted on dif-
ferent road profiles in the presence of uncertain param-
eters, sensor noise, and external disturbances. We con-
clude that the proposed NLESO-based controller is
much better than the LESO-based controller and pas-
sive system in improving both vehicle body attitude
and ride comfort. Furthermore, the proposed control
approach does not require an accurate mathematical
model and is easy to apply. Further research will focus
on issues relating to practical implementation.
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Fig. 16 Relative tire forces of front and rear wheels under ran-
dom road
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