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Abstract Dynamics of general line solitons and
breathers on a periodic line waves (PLWs) background
in the nonlocal Mel’nikov (MK) equation are investi-
gated via the KP hierarchy reduction method. By con-
straining different parametric conditions for a general
type of tau functions of the KP hierarchy, two fami-
lies of mixed solutions to the nonlocal MK equation
are derived. The first family of mixed solutions illus-
trates general line solitons on a PLWs background.
The simplest case of such mixed solutions shows the
two-line solitons on a PLWs background, and the two-
line solitons possess five different patterns: a mix-
ture of one-dark-soliton and one-antidark-soliton, two-
antidark-soliton, two-dark-soliton, degenerated two-
dark-soliton, and degenerated two-anti-dark-soliton.
The high-order mixed solutions display superposi-
tion of several individual simplest solutions. The sec-
ond family of mixed solutions demonstrates general
breathers on a PLWs background or on a nonzero con-
stant background. The breathers are periodic in time
and do notmove in the (x, y)-plane as time propagates.

Y. Liu (B) · B. Li
Ningbo City College of Vocational Technology, Ningbo
315211, People’s Republic of China
e-mail: liuyunkai@nbcc.cn

B. Li
School ofMathematics andStatistics,NingboUniversity,Ningbo
315211, People’s Republic of China

Keywords Nonlocal Mel’nikov equation · Soliton
solution · Breather solution · Periodic line waves
background · KP hierarchy reduction method

1 Introduction

The existence of various soliton solutions, such as
breathers, solitons and rogue waves, is one of the most
important characters in most of the integrable systems
[1–5]. These soliton solutions can be well used to illus-
trate elastic or inelastic interaction between various
types of nonlinear waves. Very recently, a new kind
of integrable systems termed as nonlocal systems was
proposed due to their potential application in nonlin-
ear optics [6,7]. The first one example of such inte-
grable systems is the parity-time (PT)–symmetric non-
local nonlinear schödinger (NLS) equation [8]:

iqt (x, t) = qxx (x, t) + 2δq(x, t)q∗(−x, t)q(x, t).(1)

This newly proposed nonlocal NLS equation was
derived from the coupled NSL equations

iqt (x, t) = qxx (x, t) + 2q(x, t)2r(x, t),

−irt (x, t) = rxx (x, t) + 2r(x, t)2q(x, t),
(2)

under the following reductions

r(x, t) = δq∗(−x, t). (3)

Similar to the classicalNLSequation, the nonlocalNLS
equation (1) also admits solitons, breathers and rogue
waves, and some other mixed solutions [9–32]. Con-
sidering other types of reductions for the coupled NSL

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05623-5&domain=pdf


3718 Y. Liu, B. Li

equations (2), some other nonlocal NLS equations pos-
sessing different PT-symmetries have also been intro-
duced and discussed [10]. Taking the following reduc-
tion

r(x, t) = δq(x,−t) (4)

the coupled system (2) leads to the reverse time nonlo-
cal NLS:

iqt (x, t) = qxx (x, t) + 2δq(x, t)2q(x,−t). (5)

Considering another reduction, namely

r(x, t) = δq(−x,−t) (6)

the coupled system (2) leads to the following reverse
space-time nonlocal NLS:

iqt (x, t) = qxx (x, t) + 2δq(x, t)2q(−x,−t). (7)

In addition to these nonlocal NLS equations given
by (1), (5) and (7), families of other integrable sys-
tems possessing different kinds of PT-symmetries have
been proposed [33–52]; examples of these newly pro-
posed evolution equations include the nonlocal mod-
ified Kortweg-de Vries equation, the nonlocal sine-
Gordon equation, the nonlocal derivative NLS equa-
tion.Usually, compared to the (1+1)-dimensional non-
local systems, the (2+ 1)-dimensional integrable non-
local systems correspond to more PT-symmetric ver-
sions. For example, the local Davey–Stewartson (DS)
equation:

i At = Axx + δAyy + (εAA∗ − 2Q)A,

Qxx − δQyy = (εAA∗)xx , ε = ±1, δ = ±1,
(8)

corresponds to the following nonlocal DS equations:

– The fully PT-symmetric nonlocal DS equations

i At = Axx + δAyy + (εAA∗(−x,−y, t) − 2Q)A,

Qxx − δQyy = (εAA∗(−x,−y, t))xx , (9)

– The partially PT-symmetric nonlocal DS equations

i At = Axx + δAyy + (εAA∗(−x,−y, t) − 2Q)A,

Qxx − δQyy = (εAA∗(−x,−y, t))xx , (10)

– The reverse space-time nonlocal DS:

i At = Axx+δAyy+(εAA(−x, −y, −t) − 2Q)A,

Qxx − δQyy = (εAA(−x,−y, −t))xx , (11)

– The partial reverse space-time nonlocal DS:

i At = Axx + δAyy + (εAA(−x, y,−t) − 2Q)A,

Qxx − δQyy = (εAA(−x, y, −t))xx , (12)

– The reverse time nonlocal DS:
i At = Axx + δAyy + (εAA(x, y,−t) − 2Q)A,

Qxx − δQyy = (εAA(x, y,−t))xx . (13)

Families of soliton solutions, including line solitons,
breathers, lumps and rogue waves on a periodic line
waves (PLWs) or a nonzero constant background,
have been reported for these nonlocal DS equation
[30,39,40,53,54].

In this paper, we mainly investigate another (2 +
1)-dimensional nonlocal Mel’nikov (MK) equation
[51,52]

uxt + uxxxx + 3(u2)xx − 3uyy

+ κ(��∗(−x, y,−t))xx = 0,

i�y = u� + �xx .

(14)

The associated local equation of this nonlocal equation
is the MK equation [55–57]

uxt + uxxxx + 3(u2)xx − 3uyy

+ κ(��∗(x, y, t))xx = 0,

i�y = u� + �xx ,

(15)

where κ is a real constant and u and � are a real
long-wave (LW) field and a complex short-wave (SW)
one, respectively. The local MK equation (15) was
first proposed to describe the interaction of LW and
SW packets by Mel’nikov [55–57]. This equation is
integrable and admits solitons solutions [59–64] as
other (2 + 1)-dimensional integrable systems, such as
bright and dark soliton, breather and rational local-
ized solutions. Some soliton solutions in the nonlocal
MK equation (14) have been reported, including bright
solitons under zero boundary condition, dark solitons
under nonzero boundary condition [52], breathers on
a nonzero constant or PLWs background, lumps on a
nonzero constant background or a PLWs background,
and solutions showing the superposition of lumps and
breathers on a nonzero constant or PLWs background
[51]. However, there are some open issues about the
nonlocal MK equation (14) that have not been well
investigated. A typical example is that the solitons on
a PLWs background have not been reported. Besides,
Liu et.al. [52] derived breathers and semi-rational solu-
tions comprised of lumps and breathers on a constant or
PLWs background to the nonlocal MK equation (14);
these solutions are not expressed by determinants. In
the present work, we would investigate the following
arguments to the nonlocal MK system defined in (14):
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– The general line solitons on a PLWs background in
the nonlocal MK equation (14).

– The mixed solutions describing breathers on a
nonzero constant or PLWs background in the non-
local MK equation defined in (14) expressed by
determinants.

The structure of the paper is organized as follows.
In Sect. 2, dynamics of line solitons on a PLWs back-
ground in the nonlocal MK equation (14) are analyzed
in detail. In Sect. 3, dynamical features of general
periodic solutions expressed via Gram-type determi-
nants, which contain PLWs background, breathers on
a nonzero constant or PLWs background, are investi-
gated. The conclusions for this paper are discussed in
Sect. 4.

2 General line solitons on a PLWs background

In this section, we would comprehensively analyze the
dynamics of general line solitons on a PLWs back-
ground for the nonlocal MK equation (14). To this end,
we combine the general line solitons on a nonzero con-
stant background with the PLWs, and the correspond-
ing solutions are expressed by (2N + 1) × (2N + 1)
determinants. We note that Liu et al. constructed gen-
eral line solitons on a constant background [52], and the
corresponding soliton solutions are given by 2N × 2N
determinants. Below, we present the general line soli-
tons on a background of PLWs to the nonlocal MK
equation (14) by the following theorem, whose proof
procedure would be given in the Appendix in detail.

Theorem 1 The nonlocal MK equation (14) has the
following solitons sitting on a PLWs background

� = √
2
g

f
, u = (2 log f )xx (16)

with functions f and g given by the following (2N +
1) × (2N + 1) determinants

f (x, t) =

∣
∣
∣
∣
∣
∣
∣
∣

bsδs j e−ζs + 1
ps+p∗

j

1
ps−p∗

j

1
ps−p∗

2N+1

− 1
ps−p∗

j
−b∗

s δs j e
−ζ ∗

s (−x,y,−t) − 1
ps+p∗

j
− 1

ps+p∗
2N+1

1
p2N+1+p∗

j

1
p2N+1−p∗

j
ib2N+1e−ζ2N+1 + 1

p2N+1−p∗
2N+1

∣
∣
∣
∣
∣
∣
∣
∣
0≤s, j≤N

,

g(x, t) =

∣
∣
∣
∣
∣
∣
∣
∣

bsδs j e−ζs − ps
p∗
j

1
ps+p∗

j

ps
p j∗

1
ps−p∗

j

ps
p∗
j

1
ps−p∗

2N+1

− ps
p∗
j

1
ps−p∗

j
−b∗

s δs j e
−ζ ∗

s (−x,y,−t) + ps
q∗
j

1
ps+p∗

j

ps
p∗
2N+1

1
ps+p∗

2N+1

− p2N+1
p∗
j

1
p2N+1+p∗

j

p2N+1
p∗
j

1
p2N+1−p∗

j
ib2N+1e−ζ2N+1 + p2N+1

p∗
2N+1

1
p2N+1−p∗

2N+1

∣
∣
∣
∣
∣
∣
∣
∣
0≤s, j≤N

,

(17)

and

ζs =2psRx + 4psR ps I y − 2psR

[

4(p2sR − 3p2s I )

+ κ

p2sR + p2s I

]

t + ζ0,s,

ζ2N+1 =2i p2N+1,I x + 2p2N+1,R p2N+1,I y

+ 2i p2N+1,I

[

4
(

3p22N+1,R − p22N+1,I

)

+ κ

p22N+1,R + p22N+1,I

]

t + ζ0,2N+1,

(18)

where bs, ps are complex and ζ0,s are real for s =
0, 1, . . . N, the real part of p2N+1 are zero (i.e.,
p2N+1,R = 0), and b2N+1 is real.

To examine dynamics of the two line solitons on a
PLWs background in the nonlocal MK equation (14),
we have to consider a periodic solution,which can illus-
trate a PLWs background. By taking N = 0 in formula
(17), a PLW solution could be yielded, and functions
f and g read as

f = ib1e
−2i p1I x−2p1R p1I y−2i p1I [4(3p21R−p21I )+ κ

p21R+p21I
]t−ζ0,1

+ 1

2i p1I

= −b1 sin χe−2p1R p1I y−ζ0,1 − 1

2p1I

+ib1 cosχe−2p1R p1I y−ζ0,1 ,

g = ib1e
−2i p1I x−2p1R p1I y−2i p1I

[

4
(

3p21R−p21I
)+ κ

p21R+p21I

]

t−ζ0,1

− 1

2i p1I

p1R + i p1I
p1R − i p1I

, (19)

whereχ = −2p1I x−2p1I [4(3p21R−p21I )+ κ

p21R+p21I
]t ,

and b1, p1R, p1I , ζ0,1 are arbitrary real parameters.
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As discussed in earlier works of the literature [30],
this type of periodic solutions also exists in the nonlo-
cal DS equation, which provides a PLWs background.
It can be directly obtained that this solution always
possesses a series of singular points when p1R �= 0.
Hence,we take p1R = 0 to avoid the singular solutions,

and these corresponding solutions are independent of
y. Besides, the real part of the function f denoted as fr
satisfies fr �= 0 when | eζ01

2b1 p1I
| > 1. In this case, these

periodic solutions are regular, and this character also
holds for the mixed solutions demonstrating line soli-
tons on a PLWs background, which will be discussed
in the following context. The maximum amplitudes of
the PLWs solutions |�| and |u| are

|�|max = √
2

∣
∣
∣
∣

2b1 p1I e−ζ0,1 + 1

2b1 p1I e−ζ0,1 − 1

∣
∣
∣
∣
,

|u|max = 16b1 p31I e
−ζ0,1

(2b1 p1I e−ζ0,1 − 1)2
.

(20)

It is noteworthy that the shift parameter ζ0,1 can also
determine the maximum amplitudes of the PLWs,
which is different from the local MK equation. Fig-
ure 1 shows the PLWs background.

Inwhat follows,we show the line solitons on aPLWs
background, which are demonstrated by the solutions
(16) in Theorem 1 with N ≥ 1. We first examine
N = 1 in Theorem 1, i.e., the simplest solutions in

Fig. 1 The first-order periodic linewave solution (16)with func-
tions f and g given by (19) with parameters κ = 1, b1 =
1
4 , p1R = 0, p1I = 1, ζ 0

1 = π . The right panel is a section
diagram along y = 0 of the left panel (Colour online)

Theorem 1. The solutions � and u to the nonlocal MK
equation (14) are generated from formula (16):

� = √
2
g1
f1

, u = (2 log f1)xx (21)

where f1 and g1 are given by the following 3 × 3
determinants

f1(x, t) =

∣
∣
∣
∣
∣
∣
∣

b1e−ζ1 + 1
p1+p∗

1

1
p1−p∗

1

1
p1−p∗

3

− 1
p1−p∗

1
−b∗

1e
−ζ ∗

1 (−x,y,−t) − 1
p1+p∗

1
− 1

p1+p∗
3

1
p3+p∗

1

1
p3−p∗

1
ib3e−ζ3 + 1

p3−p∗
3

∣
∣
∣
∣
∣
∣
∣

,

g1(x, t) =

∣
∣
∣
∣
∣
∣
∣

b1e−ζ1 − p1
p∗
1

1
p1+p∗

1

p1
p1∗

1
p1−p∗

1

p1
p∗
3

1
p1−p∗

3

− p1
p∗
1

1
p1−p∗

1
−b∗

1e
−ζ ∗

1 (−x,y,−t) + p1
q∗
1

1
p1+p∗

1

p1
p∗
3

1
p1+p∗

3− p3
p∗
1

1
p3+p∗

1

p3
p∗
1

1
p3−p∗

1
ib3e−ζ3 + p3

p∗
3

1
p3−p∗

3

∣
∣
∣
∣
∣
∣
∣

,

(22)

and

ζ1 =2p1Rx + 4p1R p1I y − 2p1R
[

4
(

p21R − 3p21I
)

+ κ

p21R + p21I

]

t + ζ0,1,

ζ3 =2i p3I x + 2i p3I

[

−4p23I + κ

p23I

]

t + ζ0,3,

(23)

where p1 = p1R + i p1I , p3 = i p3I , b1 is a freely
complex parameter, and ζ0,1, ζ0,3, b3 are real.

This solution demonstrates two line solitons mov-
ing on a PLWs background; the line orientations of
the two line solitons are in the (p1I , 1) direction and
(p1I ,−1) direction. Hence, only the parameter p1I
controls the direction of the two line solitons. As dis-
cussed in Ref. [30], the patterns of the two line soli-
tons are the same in PLWs background and constant
background under same parametric condition. Below,
we analyze the asymptotic behaviors of the two line
soliton solutions on a constant background, which are
obtained by deleting the third column and the third row
of determinant expression of functions f and g (22):

f = −|b1|2e−(ζ1+ζ ∗
1 (−x,y,−t))

−b1e−ξ1 + b∗
1e

−ξ∗
1 (−x,y,−t)

2p1R
− p21R + p21I

4p21R p
2
1I

,

g = −|b1|2e−(ζ1+ζ ∗
1 (−x,y,−t))

−b1e−ξ1 + b∗
1e

−ξ∗
1 (−x,y,−t)

2p1R

(

− p1R + i p1I
p1R − i p1I

)

− p21R + p21I
4p21R p

2
1I

(
p1R + i p1I
p1R − i p1I

)2

. (24)
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We assume p1R > 0 and define the solitons along
lines 2p1Rx + 4p1R p1I y − 2p1R[4(p21R − 3p21I ) +

κ

p21R+p21I
]t+ζ0,1 and−2p1Rx+4p1R p1I y+2p1R[4(p21R

− 3p21I ) + κ

p21R+p21I
]t + ζ0,1 as soliton 1 and soliton 2,

respectively, which lead to the following asymptotic
forms:

(i) Before collision (x → −∞)
Soliton 1 (ζ1 ≈ 0, ζ ∗

1 (−x, y,−t) → +∞):

�−
1 
√

2
b1e−ζ1 + 1

2p1R
(− p1R+i p1I

p1R−i p1I
)

b1e−ζ1 + 1
2p1R

, (25)

Soliton 2 (ζ ∗
1 (−x, y,−t) ≈ 0, ζ1 → −∞):

�−
2 
√

2

(

− p1R + i p1I
p1R − i p1I

)

b∗
1e

−(ζ ∗
1 (−x,y,−t)+
) + 1

2p1R

(

− p1R+i p1I
p1R−i p1I

)

b∗
1e

−(ζ ∗
1 (−x,y,−t)+
) + 1

2p1R

,

(26)

where e−
 = p21I
p21R+p21I

.

(ii) After collision (x → +∞) Soliton 1 (ζ1 ≈
0, ζ ∗

1 (−x, y,−t) → −∞):

�−
1 
√

2

(

− p1R + i p1I
p1R − i p1I

)

b1e−(ζ1+
) + 1
2p1R

(

− p1R+i p1I
p1R−i p1I

)

b1e−(ζ1+
) + 1
2p1R

,

(27)

Soliton 2 (ζ ∗
1 (−x, y,−t) ≈ 0, ζ1 → +∞):

�+
2 
√

2
b∗
1e

−ζ ∗
1 (−x,y,−t) + 1

2p1R
(− p1R+i p1I

p1R−i p1I
)

b∗
1e

−ζ ∗
1 (−x,y,−t) + 1

2p1R

. (28)

Here �+
j and �−

j represent the asymptotic form of
the j th soliton before and after interaction for j = 1, 2.
Then, we obtain �+

1 (ζ1) = (− p1R+i p1I
p1R−i p1I

)�−
1 (ζ1 +


), �+
2 (ζ ∗

1 (−x, y,−t)) = (− p1R−i p1I
p1R+i p1I

)�+
2 (ζ ∗

1 (−x,

y,−t) − 
). Since | − p1R+i p1I
p1R−i p1I

| = 1, |�−
j | = |�+

j |.
These identities indicate the amplitude, shape and
velocities of the j th are consistent before and after
collision. Below, we classify the patterns of the two
line soliton. Along the two lines 2p1Rx +4p1R p1I y−
2p1R[4(p21R−3p21I )+ κ

p21R+p21I
]t+ζ0,1+ 1

2 ln(4(b
2
1R+

b21I )
2 p21R) and −2p1Rx + 4p1R p1I y+ 2p1R[4(p21R −

3p21I ) + κ

p21R+p21I
]t + ζ0,1 + 1

2 ln(4(b
2
1R + b21I )

2 p21R),

the asymptotic line solitons attain the max amplitudes
denoted as |�1|max and |�2|max:

|�1|max

= √
2

√
√
√
√

1 −
4 (b1R p1R − b1I p1I ) p21R

√
(

b21R + b21I
)

p21R

�
,

|�1|max

= √
2

√
√
√
√

1 −
4 (b1R p1R + b1I p1I ) p21R

√
(

b21R + b21I
)

p21R

�
,

(29)

where

� =
(

b1R p1R p1I+b1I p
2
1R+

√

(b21R + b21I )p
2
1R p1I

)2

+p21R

(

b1R p1R−b1I p1I−
√

(b21R + b21I )p
2
1R

)2

,

According the above analysis, the patterns of the two-
line soliton solution � are listed as follows:

– Two-dark soliton ifb1R p1R−b1I p1I > 0, b1R p1R+
b1I p1I > 0,;

– Two-antidark soliton if b1R p1R − b1I p1I < 0,
b1R p1R + b1I p1I < 0;

– One-antidark soliton and one-dark soliton if
(b1R p1R − b1I p1I )(b1R p1R + b1I p1I ) < 0;

– A degenerate two-line soliton if (b1R p1R−b1I p1I )
(b1R p1R + b1I p1I ) = 0;

It should be note that here we analysis the asymptotic
behaviors of the two-line soliton as x → ±∞, which
were analyzed as t → ±∞ in [52]. Besides,we classify
the patterns of the two-line soliton in the (x, y)-plane
under different parametric conditions according to the
asymptotic analysis that were not given in Ref. [52].

By doing similar analysis of the solution of the
long wave component u, solution u only possesses
two-antidark-soliton. Five different types of two-line-
soliton solution � on a background of PLWs are
shown in Fig. 2: two-antidark-soliton (Fig. 2a), one-
antidark-soliton and one-dark-soliton (Fig. 2b), two-
dark-soliton (Fig. 2c), a degenerate two-dark-soliton
(Fig. 2d) and a degenerate two-antidark-soliton
(Fig. 2e). Figure 2f illustrates the two-antidark-soliton
solution of the long wave component u. We note that
the classification of the patterns of two-line-soliton on
a constant background was not given in [52].

The higher-order line solitons on a PLWs back-
ground can be yielded from Theorem 1 with larger
N . In addition to the degenerated 2N -line soliton, the
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Fig. 2 Several different types of two line solitons on a PLWs
background given by (22) in the nonlocalMKequation (14) at the
time t = 0: a Two-antidark-soliton on a PLWs background in the
SW component |�| with parameters κ = 1, p1 = −1 − i, p3 =
−3i, b1 = 1 + i, b3 = − i

4 , ζ0,1 = 0, ζ0,3 = π ; b One-antidark-
soliton and one-dark-soliton on a PLWs background in the SW
component |�| with parameters κ = 1, p1 = −1 − i, p3 =
−3i, b1 = 1 + i

2 , b3 = − i
4 , ζ0,1 = 0, ζ0,3 = π ; c Two-dark-

soliton on a PLWs background in the SW component |�| with
parameters κ = 1, p1 = −1− i, p3 = −3i, b1 = −1−2i, b3 =

− i
4 , ζ0,1 = 0, ζ0,3 = π ; d A degenerated two-dark-soliton on

a PLWs background in the SW component |�| with parame-
ters κ = 1, p1 = −1 + i, p3 = −3i, b1 = 1 − i, b3 =
− i

4 , ζ0,1 = 0, ζ0,3 = π ; e A degenerated two-antidark-soliton
on a PLWs background in the SW component |�| with parame-
ters κ = 1, p1 = 1+ i, p3 = −3i, b1 = 1− i, b3 = − i

4 , ζ0,1 =
0, ζ0,3 = π ; and f Two-antidark-soliton in the LW component
|u| with parameters κ = 1, p1 = −1 − i, p3 = −3i, b1 =
1 + i

2 , b3 = − i
4 , ζ0,1 = 0, ζ0,3 = π (Colour online)

SW component |�| possesses 2N + 1 different pat-
terns: N

′
-antidark-soliton and 2N − N

′
-dark-soliton

(0 ≤ N
′ ≤ 2N ) on a PLWs background. The LW com-

ponent |u| only has one patterns: 2N -antidark-soliton
on thePLWsbackground. For instance,with N = 2 and
different parameters in Theorem 1, the corresponding
solutions illustrate four-line solitons on a PLWs back-
ground. Figure 3a–e shows five different patterns of
four-line-soliton solution on a background of PLWs in
the SW component |�|, namely four-antidark-soliton
(see Fig. 3a), three-antidark-soliton and one-dark-
soliton (see Fig. 3b), two-antidark-soliton and two-
dark-soliton (see Fig. 3c), one-antidark-soliton and
three-dark-soliton (see Fig. 3d) and four-dark-soliton
(see Fig. 3e). Figure 3f demonstrates the four-antidark-
soliton in the LW component |u|. For larger N , these
higher-order mixed solutions can be directly obtained.
However, these high-order mixed solution do not have
qualitatively different behaviors, but more line solitons

interactingwith each other on a PLWs background, and
the interactionmay give rise tomore linewave patterns.

3 General breathers
on a background of constant and PLWs

In this section, wewould comprehensively focus on the
features of the breathers on two types of background
in the nonlocal MK equation (14), namely the con-
stant background and the PLWs background. These
solutions are presented via determinant forms in the
present paper, which are different from the results in
Ref. [51], in which the solutions are given by compli-
cate algebraic formula. As discussed in earlier works
in the literature [51], breather solution is a type of peri-
odic solutions. Furthermore, the PLWs background is
also described by a periodic solution; thus, breathers on
a constant or PLWs background are a kind of periodic
solutions. Below, we would first give a general type of
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Dynamics of solitons and breathers on a periodic waves 3723

Fig. 3 Five different types of four-line-soliton solution on a
PLWs background in the SW component |�|, and one type
of four-line-soliton solution on a background of PLWs in the
LW component |u|, given by (22) to the nonlocal MK equa-
tion (14) at the time t = 0: a Four-antidark-soliton in the SW
component |�| with parameters κ = 1, p1 = − 1

2 − 1
2 i, p2 =

−1 − 4
5 i, p5 = −3i, b1 = 1 + i

2 , b2 = 1 + 2
5 i, b5 =

− 1
4 i, ζ0,1 = 0, ζ0,2 = 0, ζ0,5 = −π ; b Three-antidark-soliton

and one-dark-soliton in the SW component |�| with parameters
κ = 1, p1 = − 1

2 − i, p2 = −1− i, p5 = −i, b1 = 1+ 2i, b2 =
1 + 1

2 i, b5 = −i, ζ0,1 = 3π, ζ0,2 = −3π, ζ0,5 = − 1
2π ;

c Two-antidark-soliton and two-dark-soliton in the SW com-

ponent |�| with parameters κ = 1, p1 = −1 − i, p2 =
−1− 4

5 i, p5 = −3i,= −1− 4
5 i, b1 = 1+ 1

2 i, b2 = 1+ 2
5 i, b5 =

− 4
5 i, ζ0,1 = 0, ζ0,2 = 0, ζ0,5 = π ; d One-antidark-soliton and

three-dark-soliton in the SW component |�| with parameters
κ = 1, p1 = 1 − i, p2 = − 1

2 − 2i, p5 = −i, b1 = 1, b2 =
1 − 1

2 i, b5 = −i, ζ0,1 = 0, ζ0,1 = −4π, ζ0,2 = 4π, ζ0,5 = 0;
e Four-dark-soliton in the SW component |�| with parameters
κ = 1, p1 = 1 − i, p2 = −2 − i, p5 = −i, b1 = 1, b2 =
1, b5 = −i, ζ0,1 = 5π, ζ0,2 = −5π, ζ0,5 = − 3

2π ; and f
Four-antidark-soliton in the LW component |u| with parameters
κ = 1, p1 = 1−i, p2 = −2−i, p5 = −i, b1 = 1, b2 = 1, b5 =
−i, ζ0,1 = 5π, ζ0,2 = −5π, ζ0,5 = − 3

2π (Colour online)

periodic solutions to the nonlocal MK equation (14) in
the following theorem, whose proof procedure for the
theorem would be provided in Appendix in detail.

Theorem 2 The nonlocal MK equation (14) has peri-
odic solutions

� = √
2
g

f
, u = (2 log f )xx (30)

with functions f and g given by the following N × N
determinants

f (x, t) =�0

∣
∣
∣

δs j

ωs eζs + 1
1
2 (ωs+ω j )+i(λs−λ j )

∣
∣
∣
1≤s, j≤N

,

g(x, t) =�0

∣
∣
∣

δs j

ωs eζs − ωs+2iλs
ω j−2iλ j

1
1
2 (ωs+ω j )+i(λs−λ j )

∣
∣
∣
1≤s, j≤N

,

(31)

and

ζs = iωs x − 2λsωs y + iωs

[(

12λ2s − ω2
s

)

+ 4κ

4λ2s + ω2
s

]

t + ζ0,s,
(32)

where �0 = ∏N
s=1 ωseζs , and ωs, λs, ζ0,s are real

parameters.

Remark 1 With different parametric conditions, these
periodic solutions have the following three different
behaviors:

– Breathers on a nonzero constant background when
the parameters fulfill the following parametric con-
straints:

N = 2M, ωM+ j = −ω j , λM+ j

= −λ j , ζ0,M+s = ζ0,s, j = 1, 2, . . . .
(33)
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– Breathers on a PLWs background when the param-
eters fulfill the following parametric constraints:

N = 2M + 1, ωM+ j = −ω j , λM+ j

= −λ j , ζ0,M+s = ζ0,s , λ2M+1 = 0, j = 1, 2, . . . .
(34)

– Periodic line waves when the parameters do not
satisfy the parametric conditions given by (33) and
(34).

In what follows, we consider the dynamics of the
breathers on a background of constant and PLWs,
respectively.

3.1 Breathers on a constant background

The first-order breather on a constant background is
generated by taking the following parameters in Theo-
rem 2

N = 2, ω2 = −ω1, λ2 = −λ1, ζ0,2 = ζ0,1, (35)

and the functions f and g of solutions (30) read as

f =
∣
∣
∣
∣
∣

1
ω1eζ1

+ 1
ω1

1
2iλ1

1
−2iλ1

1

−ω1e
ζ∗
1

− 1
ω1

∣
∣
∣
∣
∣
,

g =
∣
∣
∣
∣
∣

1
ω1eζ1

− ω1+2iλ1
ω1−2iλ1

1
ω1

ω1+2iλ1
ω1−2iλ1

1
2iλ1

−ω1+2iλ1
ω1−2iλ1

1
2iλ1

− 1

ω1e
ζ∗
1

+ ω1+2iλ1
ω1−2iλ1

1
ω1

∣
∣
∣
∣
∣
,

(36)

After simple algebra, the final expression for the first-
order breather solution reads

� =√
2eδ1+iδ2 cos η̃ + √

δ0 cosh(̃ξ + 
̃ − δ1 − iδ2)

cos η̃ + √
δ0 cosh(̃ξ + 
̃)

u =2ω2
1

√
δ0(

√
δ0 + cos η̃ cosh(̃ξ + 
̃))

(cos η̃ + √
δ0 cosh(̃ξ + 
̃))2

(37)

with

η̃ = ω1x + ω1[(12λ21 − ω2
1) + 4κ

4λ21 + ω2
1

]t,

ξ̃ = −2λ1ω1y + ζ0,1,

(38)

Fig. 4 The one-breather solution for the nonlocal Mel’nikov
equation (14) at the time t = 0 with parameters λ1 = 1, ω1 =
1, κ = 1, ζ0,1 = 0 (Colour online)

where δ0 = 1+ ω2
1

4λ21
, 
̃ = ln( 1√

δ0
), δ1 = | 2iλ1+ω1

2iλ1−ω1
|, δ2 =

arg 2iλ1+ω1
2iλ1−ω1

. From the above expression, one can clearly

get that (|�|, u) → (
√
2, 0)when ξ̃ → ±∞. The peri-

odic feature of the one-breather is controlled by η̃, and
the localized feature of the one-breather is controlled
by η̃. Hence, it is clear that, in the (x, y)-plane, this one-
breather solution is only periodic along x and t , whose
corresponding periods are 2π

ω1
and 2π

ω[(12λ21−ω2
1)+ 4κ

4λ21+ω21
] ,

respectively. It should be emphasized that the one
breather does notmove along y direction as time t prop-
agates. Figure 4 shows an example of that one-breather
solution at t = 0.

The high-order breathers on the constant back-
ground could be yielded from Theorem 2 by taking
larger N = 2M , and other parameters meeting the
parametric condition defined in (33). The correspond-
ing solutions consist of M individual breathers, and
the M individual breathers interact with each other and
would generate interesting curvy wave patterns. For
example, with M = 2 (i.e., N = 4), the two-breather
solution could be derived from Theorem 2:

� = √
2
g2
f 2

, u = (2 log f 2)xx , (39)

where functions f and g are
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f2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
ω1eζ1

+ 1
1
2 (ω1+ω1)+i(λ1−λ1)

1
1
2 (ω1+ω2)+i(λ1−λ2)

1
1
2 (ω1+ω3)+i(λ1−λ3)

1
1
2 (ω1+ω4)+i(λ1−λ4)

1
1
2 (ω2+ω1)+i(λ2−λ1)

1
ω2eζ2

+ 1
ω2

1
1
2 (ω2+ω3)+i(λ2−λ3)

1
1
2 (ω2+ω4)+i(λ2−λ4)

1
1
2 (ω3+ω1)+i(λ3−λ1)

1
1
2 (ω3+ω2)+i(λ3−λ2)

1
ω3eζ3

+ 1
2ω3

1
1
2 (ω3+ω4)+i(λ3−λ4)

1
1
2 (ω4+ω1)+i(λ4−λ1)

1
1
2 (ω4+ω2)+i(λ4−λ2)

1
1
2 (ω4+ω3)+i(λ4−λ3)

1
ω4eζ4

+ 1
ω4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

g2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
ω1eζ1

+ ω11
1

1
2 (ω1+ω1)+i(λ1−λ1)

ω12
1

1
2 (ω1+ω2)+i(λ1−λ2)

ω13
1

1
2 (ω1+ω3)+i(λ1−λ3)

ω14
1

1
2 (ω1+ω4)+i(λ1−λ4)

ω21
1

1
2 (ω2+ω1)+i(λ2−λ1)

1
ω2eζ2

+ ω22
1
ω2

ω23
1

1
2 (ω2+ω3)+i(λ2−λ3)

ω24
1

1
2 (ω2+ω4)+i(λ2−λ4)

ω31
1

1
2 (ω3+ω1)+i(λ3−λ1)

ω32
1

1
2 (ω3+ω2)+i(λ3−λ2)

1
ω3eζ3

+ ω33
1

2ω3
ω34

1
1
2 (ω3+ω4)+i(λ3−λ4)

ω41
1

1
2 (ω4+ω1)+i(λ4−λ1)

ω42
1

1
2 (ω4+ω2)+i(λ4−λ2)

ω43
1

1
2 (ω4+ω3)+i(λ4−λ3)

1
ω4eζ4

+ ω44
1
ω4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

(40)

with

ζs =iωs x − 2λsωs y + iωs

[(

12λ2s − ω2
s

)

+ 4κ

4λ2s + ω2
s

]

t + ζ0,s,

ωs j = − ωs + 2iλs
ω j − 2iλ j

, (41)

for s, j = 1, 2, 3, 4, and parameters satisfy

λ3 = −λ1, λ4 = −λ2, ω3 = −ω1,

ω4 = −ω2, ζ0,3 = ζ0,1, ζ0,4 = ζ0,2.
(42)

According to the analysis for the one-breather solution
given by (47), these two breathers do not move along y
on the (x, y)-plane as time t alters. To observe the dif-
ferent wave patterns generated from the interaction of
the two breathers, we take a fixed value of the param-
eter ζ0,2 and different values of ζ0,1, which give rise
to the location of one breather is fixed, and the other
breather alters. Hence, one breather moves to the fixed
breather and then interacts with each other. In this evo-
lution, different wave patterns could be observed. To
clearly observe the interaction wave patterns, we take
the following parameter choices

λ1=1, λ2=1, λ3= − 1, λ4 = −1, ω1 = 1, ω2 = 1

2
,

ω3 = −1, ω4 = −1

2
, κ = 1, ζ0,2 = 0. (43)

We denote the breather determined by ζ1 as breather-
1 and the other one determined by ζ2 as breather-2.
Under parameter choices given by (43), the period of
breather-2 is two times of the breather-1. Evolution of
the interaction between of the two breathers is illus-
trated in Fig. 5 with different ζ0,1.When ζ0,1 >> 0, the
two breathers are far from each other and out of inter-
action. When ζ0,1 → 0, the two breathers are close to

each other and begin to interact with each other. Due
to the interaction, the period of the breather-2 changes,
and the wave structures become periodic triangle pat-
terns (see Fig. 5b). In the intermediate sate of the evo-
lution, the two breathers merge into one breather and
formperiodic fundamental patterns (see Fig. 5c). At the
final state of the evolution, the two breathers separate
with each other completely, and the two breathers are
out of interaction again (see Fig. 5d).

3.2 Breathers on a PLWs background

To consider the dynamical behaviors of breathers on
a PLWs background, we have to give the first-order
PLWs solution, which is used to provide the PLWs
background. By taking N = 1 in formula (31), the first-

Fig. 5 The two-breather on a constant background for the non-
local Me’nikov equation (14) with parameters given by (43) and
different choices of parameter ζ0,2: a ζ0,1 = − π

2 ; b ζ0,1 = 0; c
ζ0,1 = 0.0174π and d ζ0,1 = π (Colour online)
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order periodic line wave solution could be yielded, and
the functions f and g read as

f = 1 + e
iω1x−2λ1ω1 y+iω1[(12λ21−ω2

1)+ 4κ
4λ21+ω21

]t+ζ0,1

= 1 + eζ0,1−2λ1ω1 y cosχ − i sin χ,

g = 1 − ω1 + 2iλ1
ω1 − 2iλ1

e
iω1x−2λ1ω1 y+iω1

[
(

12λ21−ω2
1

)+ 4κ
4λ21+ω21

]

t+ζ0,1
,

(44)

where χ = ω1x + ω1[(12λ21 − ω2
1) + 4κ

4λ21+ω2
1
]t , and

c1, ω1, λ1, ζ0,1 are arbitrary real parameters. The peri-
odic solution given by (44) is equivalent to the peri-
odic solution defined in (19), and it is singular when
λ1 = 0, 1 > eζ1,0 or λ1 = 0, eζ1,0 < −1.

By taking N = 3 and the following parameter
choices in Theorem 2

ω2 = −ω1, λ2 = −λ1, λ3 = 0, ζ0,2 = ζ0,1, (45)

the one-breather on a PLWs background is obtained

� = √
2
g2
f2

, u = (2 log f2)xx , (46)

where functions f2 and g2 are

f2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

ω1eζ1
+ 1

ω1

1

2iλ1

1
1
2 (ω1 + ω3) + iλ1

1

−2iλ1

1

−ω1eζ ∗
1

− 1

ω1

1
1
2 (ω2 + ω3) + iλ2

1
1
2 (ω3 + ω1) − iλ1

1
1
2 (ω3 + ω2) − iλ2

1

ω3eζ3
+ 1

ω3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

g2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

ω1eζ1
− ω1 + 2iλ1

ω1 − 2iλ1

1

ω1

ω1 + 2iλ1
ω1 − 2iλ1

1

2iλ1
−ω1 + 2iλ1

ω3

1
1
2 (ω1 + ω3) + iλ1

−ω1 + 2iλ1
ω1 − 2iλ1

1

2iλ1
− 1

ω1eζ ∗
1

+ ω1 + 2iλ1
ω1 − 2iλ1

1

ω1
−ω2 + 2iλ2

ω3

1
1
2 (ω2 + ω3) + iλ2

− ω3

ω1 − 2iλ1

1
1
2 (ω3 + ω1) − iλ1

− ω3

ω2 − 2iλ2

1
1
2 (ω3 + ω2) − iλ2

1

ω3eζ3
− 1

ω3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

(47)

and

ζ1 =iω1x − 2λ1ω1y + iω1

[(

12λ21 − ω2
1

)

+ 4κ

4λ21 + ω2
1

]

t + ζ0,1,

ζ3 =iω3x + iω3

(

−ω2
3 + 4κ

ω2
3

)

t + ζ0,3.

(48)

This solution is a combination of the one-breather solu-
tion in (47) and the first-order PLWs solution in (44).
According to the analysis for these two solutions, the
solution given by (46) still keeps periodic along x

and t , and localized along y. Besides, since these two
periodic solutions are also periodic along time t , the
breather would be fixed on the PLWs background as
time changes in the (x, y)-plane. However, the loca-
tion of the breather can be controlled by the parameter
ζ0,3. Figure 6 shows the dynamics of the one-breather
on the PLWs background with different values of ζ0,3.
It is directly to obtain that the shape, velocity and ampli-
tude of the one breather do not alter when its location
changes; hence, the collision between the one-breather
and the PLWs is elastic collision.

Inwhat follows,weconsider the high-order breathers
on a PLWs background. The M-breather on a PLWs
background can be generated from Theorem 2 with
N = 2M + 1 and other parameters satisfying the
parameters condition (34). For instance, with N = 5
and

λ3 = −λ1, λ4 = −λ2, λ5 = 0, ω3 = −ω1, ω4

= −ω2, ζ0,3 = ζ0,1, ζ0,4 = ζ0,2,
(49)

the two breathers on a PLWs backgroundwould be gen-
erated, and Fig. 7 shows the dynamical features of that

mixed solutions. In order to compare the two-breather
on the PLWs background with the two-breather on the
constant background shown in Fig. 5, we take the same
parameter choices in Fig. 7 as the parameter choices
in Fig. 5 except the value of ζ0,1. Here, the parame-
ter ζ0,1 is used to control the distance between the two
breathers.As can be seen fromFig. 7,when the breather
moves toward to the fixed breather, the wave patterns
of the two breathers range from two usual breathers
(see Fig. 7a) to triangular patterns (see Fig. 7b, c), then
to fundamental patterns (see Fig. 7d), and to triangular
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Fig. 6 The one-breather on
a PLWs background in the
nonlocal MK equation (14)
at the time t = 0 with λ1 =
1, λ3 = 0, ω1 = 1, ω3 =
2, κ = 1, ζ0,3 = − π

2 : a
ζ0,1 = −π ; b ζ0,1 = 0; and
c ζ0,1 = π (Colour online)

Fig. 7 The two-breather on
a PLWs background for the
nonlocal Me’nikov equation
(14) at the time t = 0 with
parameters
λ1 = 1, λ2 = 1, λ3 =
−1, λ4 = −1, λ=0, ω1 =
1, ω2 = 1

2 , ω3 = −1, ω4 =
− 1

2 , ω5 = 1, κ = 1, ζ0,2 =
ζ0,1, ζ0,3 = 0, ζ0,4 =
0, ζ0,5 = − 4

5π , and
different values of
parameter ζ0,1: a
ζ0,1 = −5π ; b ζ0,1 = −3π ;
c ζ0,1 = −π ; d ζ0,1 = π

2 ; e
ζ0,1 = π and f ζ0,1 = 3π
(Colour online)

patterns again (see Fig. 7e), and finally to two usual
breathers (see Fig. 7f).

4 Summary and discussion

In this paper, wemainly consider dynamics of line soli-
tons and breathers on a PLWs background in the non-
local MK equation (14). These dynamical behaviors
are described by two families of mixed solutions: one
consists of line solitons and PLWs, and the other one
comprises breathers and PLWs. These two families of
mixed solutions are derived by constraining two dif-
ferent parametric conditions of tau functions of the KP
hierarchy. For the general line solitons on a PLWsback-
ground, the SW component |�| possesses five differ-
ent wave patterns in the simplest (first-order) solutions:
two-antidark-soliton on a PLWs background, one-
antidark-soliton and one-dark-soliton on a PLWs back-
ground, two-dark-soliton on the PLWs background,

a degenerated two-dark-soliton, a degenerated two-
antidark-soliton (see Fig. 2a–e), while the LW com-
ponent |u| only displays the two-antidark-soliton on a
PLWs background (see Fig. 2f). The high-order mixed
solutions demonstrate more line solitons on the PLWs
background, which shows the features of superposi-
tion of several individual first-order mixed solutions
(see Fig. 3). For the breathers on a PLWs background,
both of SW component |�| and LW component |u|
only display one type of breather on a PLWs back-
ground, namely bright breather on a PLWsbackground.
Besides, the breathers on a constant background can
also be reduced from the breathers on a PLWs back-
ground under particular parametric conditions.

By comparing with the solutions containing line
solitons and breathers to the nonlocalMKequation (14)
discussed in Refs. [51,52], the solutions investigated in
the present paper can be summarized as follows:
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• The line solitons on PLWs background to the non-
local MK equation (14) and their dynamical fea-
tures are investigated in detail in this paper, while
under investigation in Ref. [52] is the line solitons
on a constant background. Besides, the patterns of
the two-line-soliton are classified according to the
asymptotic analysis.

• The breathers on a constant or PLWs background
were also reported in Ref. [51]. However, we con-
struct these solutions by employing the KP hier-
archy reduction method in the present paper, and
these solutions are presented by Gram-type deter-
minants. In Ref. [51], these solutions were con-
structed by employing the Hirota’s direct method
with perturbation expansion, and these solutions
are expressed by complicated algebraic formulae.

• We have constructed more periodic solutions to
the nonlocal MK equation, which have not been
reported before.

Since rational and semi-rational solutions can be
derived from periodic solutions by using the long wave
limit technique, a natural extension of the present work
could be constructed rational and semi-rational solu-
tions for the nonlocal MK equation (14) by taking a
longwave limit of the periodic solutions given in Theo-
rem 2. The rational solutions would demonstrate lumps
on a background of PLWs or constant, and the semi-
rational solutions show a mixture of lumps, breathers
and line solitons on a PLWs or constant background.
We would continue to explore this interesting topic for
the MK equation (14).
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Appendix A

In this Appendix, we will present the proof procedure
for Theorems 1 and 2. Since the solutions given in
Theorems 1 and 2 are under nonzero boundary condi-
tions, we employ the employing the following depen-

dent variable transformations

� = √
2
g(x, y, t)

f (x, y, t)
, u = 2(log f (x, y, t))xx , (50)

to translate the nonlocal MK equation (14) into the fol-
lowing bilinear equation

(D2
x − i Dy)g · f =0,

(D4
x+Dx Dt−3D2

y) f · f =2κ[ f 2−gg∗(−x, y,−t)].
(51)

According to the Sato theory [65–70], the following
bilinear equations in the single component KP hierar-
chy
(

D2
x1 − Dx2

)

τn+1 · τn = 0,

Dx1Dx−1 − 2)τn · τn + 2τn+1τn−1 = 0,
(

D4
x1 − 3Dx1Dx3 + 4D2

x2

)

τn · τn = 0,

(52)

possess the following tau functions expressed via
Gramian determinant

τn = det
1≤i, j≤N

(m(n)
i j ), (53)

where the matrix elements are defined as

m(n)
s j = b̃sδs j + ps + rs

ps + q j

(

− ps
q j

)n

eξs+η j ,

ξs = 1

ps
x−1 + psx1 + p2s x2 + p3s x3 + ξ0,s,

η j = 1

q j
x−1 + q j x1 − q2j x2 + q3j x3 + η0, j ,

(54)

and ps, rs, q j , bs, ξi0 and η0, j are arbitrary complex
constants.

To construct periodic solutions given in Theorem 1,
we first take the variable transformations

x−1 = κt, x1 = x, x2 = −iy, x3 = −4t, (55)

and then the tau function defined in (53) can be rewrit-
ten as

τn(x, y, t) =
N

∏

s=1

(ps + rs)e
ζs det

1≤i, j≤N
(m̂(n)

i j ), (56)

where

m̂(n)
s j = b̃sδs j e

−ζs
1

ps + rs
+ 1

ps + q j

(

− ps
q j

)n

, (57)

with

ζs =ξs + ηs

=(ps + qs)x − i(p2s − q2s )y

+
(

κ

ps
+ κ

qs
− 4p3s − 4q3s

)

t + ζ0,s,

(58)
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In what follows, we consider (2M + 1) × (2M + 1)
matrix for τn (i.e., N = 2M + 1 in (53)) and take the
parameters satisfying the following constraint condi-
tions
r j = −p j + 1, pM+s = −ps, qM+s = −qs, qs

= p∗
s , q2M+1 = −p∗

2M+1, r j = −p j + 1,

b̃ j = b j , bM+s = −b∗
s ,

b̃2M+1 = ib2M+1, ζ0,M+s = ζ0,s,

(59)

for j = 1, 2, . . . 2M and s = 1, 2, . . . M . Since

ζs =ξs + ηs

=(ps + p∗
s )x − i(p2s − p∗2

s )y

+
(

κ

ps
+ κ

p∗
s

− 4p3s − 4p∗3
s

)

t + ζ0,s,

ζ2M+1 =ξ2M+1 + η2M+1

= (

p2M+1 − p∗
2M+1

)

x

− i
(

p22M+1 − p∗2
2M+1

)

y

+
(

κ

p2M+1
− κ

p∗
2M+1

−4p32M+1 + 4p∗3
2M+1

)

t + ζ0,2M+1,

(60)

thus
ζ ∗
M+s(−x, y,−t) = ζs(x, y, t), ζ

∗
2M+1(−x, y,−t)

= ζ2M+1(x, y, t),
(61)

and further obtain

m̂∗(n)
M+s, j (−x, y,−t) = −b∗

s δM+s, j e
−ζs

− 1

p∗
s + pM+ j

(

− pM+ j

p∗
s

)−n

= −m̂(−n)
s,M+ j (x, y, t),

(62)

similarly, the following conditions can also be derived

m̂∗(n)
s,M+ j (−x, y,−t) = − m̂(−n)

M+s, j (x, y, t),

m̂∗(n)
M+s,M+ j (−x, y,−t) = − m̂(−n)

j,s (x, y, t),

m̂∗(n)
2M+1,2M+1(−x, y,−t) = − m̂(−n)

2M+1,2M+1(x, y, t),

m̂∗(n)
2M+1, j (−x, y,−t) = − m̂(−n)

M+ j,2M+1(x, y, t),

m̂∗(n)
2M+1,M+ j (−x, y,−t) = − m̂(−n)

j,2M+1(x, y, t),

m̂∗(n)
s,2M+1(−x, y,−t) = − m̂(−n)

2M+1,M+s(x, y, t),

m̂∗(n)
M+s,2M+1(−x, y,−t) = − m̂(−n)

2M+1,s(x, y, t),

(63)

which results in the following nonlocal symmetry con-
dition:

τ ∗
n (−x, y,−t) = (−1)3N τ−n(x, y, t). (64)

By defining

f (x, y, t) = τ0(x, y, t), g(x, y, t) = τ1(x, y, t), (65)

then solutions to the nonlocal MK equation given in
Theorem 1 would be obtained that completes the proof
for Theorem 1.

Finally, we give the proof for Theorem 2. To
derive more general periodic solutions to the nonlocal
Mel’nikov equation (14), we choose different variable
transformations

x−1 = −iκt, x1 = i x, x2 = iy, x3 = 4i t. (66)

The tau function τn is rewritten as

τn =
N

∏

s=1

(ps + rs)e
ξs+ηs det

1≤s, j≤N
(m(n)

s, j ), (67)

where the matrix elements m(n)
s, j given by (67) become

the following formula

m(n)
s, j = b̃sδs j

(ps + rs)eξs+η j
+ 1

ps + q j

(

− ps
q j

)n

,

ξs = i ps x + i p2s y +
(

4i p3s − iκ

ps

)

t + ξ0,s,

η j = iq j x − iq2j y +
(

4iq3j − iκ

q j

)

t + η0, j .

(68)

Under the parameters satisfying the following con-
straint conditions

b̃s j = 1, r j = q j , q j = p∗
j , (69)

and ζ0,s are real for j = 1, 2, . . . N , then

ζs =ξs + ηs

=i(ps + p∗
s )x + i(p2s − p∗2

s )y

+ i

(

4p3s + 4p∗3
s − κ

ps
− κ

p∗
s

)

t + ζ0,s,

(70)

and one can derive the following condition

ζ ∗
s (−x, y,−t) = ζs(x, y, t), (71)

which can further yield

m∗(n)
s, j (−x, y,−t) = m(−n)

j,s (x, y, t), τ ∗
n (−x, y,−t)

= τ−n(x, y, t).
(72)

Again, defining f = τ0, g = τ1 and taking

ps = ωs

2
+ iλs, qs = ωs

2
− iλs, (73)

the periodic solutions for the nonlocal MK equation
given by Theorem 2 are obtained that completes The-
orem 2.
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