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Abstract The most distinctive difference between a

space robot and a base-fixed robot is its free-flying/

floating base, which results in the dynamic coupling

effect. The mounted manipulator motion will disturb

the position and attitude of the base, thereby deteri-

orating the operational accuracy of the end effector.

This paper focuses on decoupling or counteracting the

coupling between the manipulator and the base. The

dynamics model of multi-arm space robots is

established using the composite rigid dynamics mod-

eling approach to analyze the dynamic coupling

force/torque. An adaptive robust controller that is

based on time-delay estimation (TDE) and sliding

mode control (SMC) is designed to decouple the

multi-arm space robot. In contrast to the online

computation method, the proposed controller com-

pensates for the dynamic coupling via the TDE

technique and the SMC can complement and reinforce

the robustness of the TDE. The global asymptotic

stability of the proposed decoupling controller is

mathematically proven. Several contrastive simula-

tion studies on a dual-arm space robot system are

conducted to evaluate the performance of the TDE-

based SMC controller. The results of qualitative and

quantitative analysis illustrate that the proposed con-

troller is simpler and yet more effective.

Keywords Multi-arm space robots � Composite

rigid dynamics modeling � Decoupling controller �
Time-delay estimation � Sliding mode control

1 Introduction

Space robots are typical vehicle–manipulator systems

[1] that have both the maneuverability of satellites and

the operational ability of manipulators to accomplish

various on-orbit servicing (OOS) tasks [2, 3]. As the
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difficulty of OOS tasks has increased, multi-arm space

robots have developed to be the mainstream direction.

Typical examples include the Robotic Servicing of

Geosynchronous Satellites and the Restore-L pro-

grams [4]. Due to the dynamic coupling effect

between the robotic arms and the base, the reaction

force/torque induced by the arm motion will produce

translation/rotation disturbances at the base [5], which

severely affects the motion accuracy [6] of space

robots in some operational tasks, such as on-orbit

assembly [7] and on-orbit refueling [8]. Thus, decou-

pling or minimizing the dynamic coupling has become

a hot spot in this field [9, 10]. Researchers have

proposed various creative motion planning and control

methods to address this issue.

From the aspect of motion planning, Dubowsky and

Torres [11] proposed a pioneering work method

concerning disturbance maps and enhanced distur-

bance maps, which aimed to find a feasible trajectory

in the joint space that resulted in a relatively low base

disturbance. Nakamura and Mukherjee [12] investi-

gated the nonholonomic redundancy of free-floating

space robots and proposed a bidirectional method to

plan the manipulator with a guaranteed base attitude.

Nenchevl et al. [13] utilized the reaction null-space

(RNS) strategy to map the base motion in the null-

space of the generalized Jacobian matrix of free-

floating space robots; however, the dynamic singular-

ity problem restricts the performance of this method.

Based on the RNS planning, Abdul Hafez et al. [14]

extended this method with the task function approach

to realize the reactionless motion planning of multi-

arm space robots. Chu et al. [15] proposed a control

strategy using the particle swarm optimization

extreme learning machine (PSO-ELM) algorithm to

track the dynamic changes in the planned path. Xu

et al. [16] proposed a coordinated motion planning

strategy for planning dual-arm space robot systems, in

which one arm is called the mission arm and the other

is called the auxiliary arm, where the essential

principle is based on the concept of the dynamic

balance [17], i.e., using the auxiliary arm to balance

the mission arm. Similarly, Wang et al. [18] used the

constrained PSO to plan a dual-arm space robot that

can avoid dynamic singularities. Moreover, Zhang and

Liu [19] proposed a motion planning strategy that

considers the base berth position and the grasping area

to improve the efficiency of trajectory planning. Most

motion planning methods focus on the joint trajectory

planning of amounted manipulators with a free-

floating base. For the free-floating mode, the base is

not controlled, so the system will save fuel. However,

in various situations, such as on-orbit capture or on-

orbit assembly, two or three arms must coordinately

manipulate together in real time [20, 21] and the base

needs to keep stable for communication with the earth.

Free-flying space robots can actively control their

bases to solve this problem. For the active compen-

sation control strategies of free-flying space robots,

Longman et al. [22] divided the entire control system

into two subsystems, namely the manipulator control

system and the base control system, and the coupling

force and torque can be compensated by the Newton–

Euler recursive equations. This model-based compen-

sation strategy is also used in Refs. [9, 10]. In fact, the

active compensation method using the Newton–Euler

equations can be regarded as a typical torque feedfor-

ward method and is also referred to as the computed

torque control (CTC) method, which is a conventional

and classical decoupling control method for robotic

arm systems [23]. Similarly, Oda and Ohkami [24]

utilized the angular momentum conservation to esti-

mate the coupling torque and proposed a feedforward

control to compensate for the base attitude distur-

bance. In fact, space robots are multiple-input multi-

ple-output (MIMO) systems, and researchers have

designed monolithic controllers to coordinately con-

trol the entire system. Papadopoulos and Dubowsky

[25] proposed a Jacobian transpose controller for

coordinately controlling the manipulator and the

satellite base, which can realize point-to-point motion

but is not suitable for continuous trajectory tracking in

operational space. Kumar et al. [26] used feedforward

neural networks to learn the nonlinear dynamics of a

space robot and developed an adaptive controller for

coordinating the manipulator and the base attitude. Shi

et al. [27] utilized the diagonalization technique to

transform a MIMO system into multiple single-input

single-output systems and developed three types of

controllers including the CTC, SMC, and model

predictive control approaches to control the entire

system, respectively. Jayakody et al. [28] utilized a

virtual control input vector to decouple the MIMO

system and proposed an adaptive SMC for controlling

the space robot system. Wang et al. [29] proposed a

coordination controller for capturing a tumbling target

and regulating the base attitude concurrently. Zong

et al. [30] proposed a concurrent learning algorithm to
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identify unknown parameters for minimizing the base

disturbance.

In summary, the motion planning approaches

[11–19] mainly focus on free-floating space robots,

and the kinematic redundancy of the manipulator is the

prerequisite condition for eliminating the coupling.

Although the RNS approach [13] can be used in real-

time scenarios, it requires that the dimensions of the

null-space are sufficiently large for generating reac-

tionless joint trajectories. Motion control approaches

[9, 10], [22–28] are mainly focused on the free-flying

space robot with single arm, which is relatively

simple. The CTC performance depends on the accu-

racy of the dynamics model, which will degrade when

disturbances or uncertainties exist. The SMC is a

robust control approach that outputs high control gains

to suppress disturbances or uncertainties; however, its

high-frequency switching action leads to the control

chattering effect. Some adaptive control methods can

reinforce the SMC, but they usually require a high

computing capacity to estimate the parameters of

uncertainties. Compared with the single-arm space

robot system, the dynamics model of the multi-arm

space robot systems is more complicated, and the

coupling effect of the multi-arm space robot system

occurs not only between the robotic arm and the base

but also among the robotic arms. Thus, for the multi-

arm space robot, the CTC-based decoupling method

will be not suitable due to the high computational

burden on calculating model parameters. However,

the TDE technique provides us an easy solution to

address this tough issue. The TDE is an effective

control method proposed by Hisa and Gao [31] for

controlling industrial manipulators, which uses the

previously observed information and control input to

estimate the current unknown dynamics of continuous

variable dynamic systems [32]. In this paper, we

propose a TDE-based SMC to realize the decoupling

control of the multi-arm space robot system. The main

contributions of this paper are listed as follows:

(1) To the best of our knowledge, we are the first to

use the TDE method to address the decoupling

control of the multi-arm space robot system.

The transient learning ability of the TDE is

suitable to estimate the coupling dynamics, and

the TDE-based SMC is intrinsically adaptive

and robust.

(2) Compared with the CTC and the CTC-based

SMC, the TDE-based SMC uses online estima-

tion rather than online computation to compen-

sate for the nonlinear term, so the proposed

controller is simpler and more efficient.

The remainder of this paper is organized as follows:

The dynamic equation of a multi-arm space robot is

introduced in Sect. 2. The dynamic coupling analysis

and the decoupling controller design are investigated

in Sect. 3. Four contrastive simulation studies are

conducted to verify the effectiveness of the proposed

method in Sect. 4. Finally, the conclusions are

concluded in Sect. 5.

2 Dynamics modeling of multi-arm space robots

2.1 Modeling assumptions

Before we introduce the dynamics model of the multi-

arm space robot system, the basic modeling assump-

tions are given as follows: (1) The entire system

consists of rigid bodies. (2) The multi-arm space robot

system is not affected by gravity, i.e., g ¼ 0. (3) If

some disturbances or uncertainties are impacting on

the system, their boundaries are limited and known.

2.2 Notation definitions

As shown in Fig. 1, the space robot system includes a

satellite base (denoted as body 0) and N serial robotic

arms with nA bodies, where the kth arm has nk

(k ¼ 1; 2; . . .;N) bodies and degrees of freedom

(DOFs), and n1 ? n2 ? … ? nN = nA. The related

symbols are defined in Table 1. If not otherwise

specified, all the vectors are defined in the inertial

frame
P

I.

2.3 Composite rigid body dynamics modeling

In this subsection, we will deduce the model using an

efficient algorithm, i.e., the composite rigid dynamics

algorithm [33], which combines the Lagrange method

and the Newton–Euler recursive method.

Based on assumptions (1) and (2), we know that the

energy of the space robot system is mainly embodied
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in its kinetic energy. Here, the kinetic energy of the

entire system can be calculated as

T ¼ 1

2
ðxT

0 I0x0 þ m0v
T
0v0Þ

þ 1

2

XN

k¼1

Xnk

i¼1

xkT
i Ikix

k
i þ mk

i v
kT
i vki

� �
 ! ð1Þ

xk
i ¼ x0 þ

Xi

j¼1

zkj
_hkj ð2Þ

vki ¼ v0 þ x0 � ðrki � r0Þ þ
Xi

j¼1

zkj � ðrki � Pk
j Þ

� �
_hkj

ð3Þ

where m0 and m
k
i are the masses of the base and body i

of arm-k, respectively; I0 and I
k
i are the inertial tensors

of the base and body i of arm-k, respectively; x0 and

xk
i are the angular velocities of the base and body i of

arm-k, respectively; and v0 and vki are the linear

velocities of the base and the CoM of body i of arm-k,

respectively. According to the Lagrange method, the

general dynamics model of the multi-arm space robot

can be expressed as

HB H1
BM . . . HN

BM

H1T
BM H1

M 0 0

..

.
0 . .

.
0

HNT
BM 0 0 HN

M

2

6
6
6
6
6
4

3

7
7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

€X0

€h
1

M

..

.

€hNM

2

6
6
6
6
6
4

3

7
7
7
7
7
5

|fflfflffl{zfflfflffl}
€q

þ

CB

C1
M

..

.

CN
M

2

6
6
6
6
4

3

7
7
7
7
5

|fflfflffl{zfflfflffl}
C

¼

FB

s1M

..

.

sNM

2

6
6
6
6
4

3

7
7
7
7
5

|fflfflffl{zfflfflffl}
F

ð4Þ

Table 1 Notation definitions

Symbol Definition

Jki Joint i of arm-k

Ck
i

Center of mass (CoM) of body i of arm-k
P

I;
Pk

i
Inertial frame and body i frame of arm-k

P
B;
Pk

E
Base frame and end effector frame of arm-k

x; y; z Coordinates in the corresponding frame
P

hki ; h
k Joint angle of Jki and joint angle vector of arm-k

zki Unit vector of Jki

aki ; b
k
i Position vectors from Jki to Ck

i and from Ck
i to Jkiþ1

rS Position vector of the entire space robot CoM

r0; r
k
i Position vectors of the base CoM and Ck

i

Pk
i ;P

k
E Position vectors of Jki and

Pk
E

Fig. 1 Schematic diagram

of a multi-arm space robot

system
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where H is the inertial matrix of the system; HB and

Hk
M are the inertia matrices of the base and arm-k,

respectively; Hk
BM is the coupling matrix between the

base and arm-k; C is the generalized Coriolis and

centrifugal force term of the system, which is also

called the nonlinear bias force term;CB andC
k
M are the

Coriolis and centrifugal force terms that correspond to

the base and arm-k, respectively; F is the generalized

driving force and torque term of the system; FB is the

driving force and torque term corresponding to the

base; skM is the driving torque term corresponding to

the arm-k; €q is the generalized acceleration term; and

€X0¼½ _vT0 ; _xT
0 �

T
is the generalized acceleration of the

base. In Eq. (4), the inertial matrixH and the nonlinear

bias force C are coefficients of the dynamics equation,

which are the functions of state variables.

As the composite rigid dynamics algorithm syn-

thesizes the forward dynamics and the inverse dynam-

ics, the inertial matrix H can be deduced according to

the kinetic energy equation, and the nonlinear bias

force term C can be deduced by the Newton–Euler

equations. Equation (1) can be transformed into

T ¼ 1

2
_qTH _q ð5Þ

Thus, we can deduce

H¼

ME �M~r0S J1Tx ; . . .; JNTx
M~r0S Hx H1

xu ; . . .; HN
xu

J1TTx H1T
xu H1

M 0 0

..

. ..
.

0 . .
.

0
JNTTx HNT

xu 0 0 HN
M

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð6Þ

HB ¼ ME �M~r0S
M~r0S Hx

� �

;Hk
BM ¼ JkTx

Hk
xu

� �

ð7Þ

whereE is the identity matrix; ~r is the skew-symmetric

matrix of r; and other parameters are expressed as

M ¼ m0 þ
XN

k¼1

Xnk

i¼1

mk
i

 !

ð8aÞ

r0S ¼ rS � r0 ð8bÞ

Hx ¼ I0 þ
XN

k¼1

Xnk

i¼1

ðIki þ mk
i ~r

kT
0i ~r

k
0iÞ

 !

ð8cÞ

JkTx ¼
Xnk

i¼1

mk
i J

k
Ti ð8dÞ

Hk
xu ¼

Xnk

i¼1

Iki J
k
Ri þ mk

i ~r
k
0iJ

k
Ti

� �
ð8eÞ

Hk
M ¼

Xnk

i¼1

JkTRi I
k
i J

k
Ri þ mk

i J
kT
Ti J

k
Ti

� �
ð8fÞ

while the intermediate parameters are expressed as

rS ¼
m0r0 þ

PN

k¼1

Pnk

i¼1

mk
i r

k
i

	 


M
ð9aÞ

rk0i ¼ rki � r0 ð9bÞ

JkTi ¼ zk1 � ðrki � Pk
1Þ ; . . .; zki � ðrki � Pk

i Þ; 0; . . .; 0
� �

ð9cÞ

JkRi ¼ zk1; . . .; z
k
i ; 0; . . .; 0

� �
ð9dÞ

The nonlinear bias force term C is independent

from the system acceleration term €q, and we can

calculate it under the Newton–Euler recursion frame-

work [33] by setting €q ¼ 0. Here, the recursive

computations include two steps: the outward recursion

of the velocity and acceleration terms and the inward

recursion of the force and torque terms. We can

rewrite Eqs. (2) and (3) to obtain the outward velocity

recursions (i ¼ 1; 2; . . .; nk) as

xk
i ¼ xk

i�1 þ zki
_hki ð10Þ

vki ¼ vki�1 þ xk
i�1 � bki�1 þ xk

i � aki ð11Þ

The acceleration recursions are obtained as

_xk
i ¼ _xk

i�1 þ xk
i�1 � zki

_hki þ zki
€hki ð12Þ

_vki ¼ _vki�1 þ _xk
i�1 � bki�1 þ xk

i�1 � ðxk
i�1 � bki�1Þ

þ _xk
i � aki þ xk

i � ðxk
i � aki Þ

ð13Þ

According to the Newton–Euler equations,

fR0 ¼ m0 _v0 ð14Þ

nR0 ¼ I0 _x0 þ x0 � I0x0 ð15Þ
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f kRi ¼ mk
i _v

k
i ð16Þ

nkRi ¼ Iki _x
k
i þ xk

i � Ikix
k
i ð17Þ

where fR0 and nR0 are the resulting force and torque of

the base, and f kRi and nkRi are the resulting force and

torque of body i of arm-k.

Meanwhile, the inward force and torque recursions

(i ¼ nk � 1; nk � 2; . . .; 1) are formulated as

f ki ¼ f kRi þ f kiþ1 ð18Þ

nki ¼ nkRi þ nkiþ1 � f ki � aki þ f kiþ1 � bki ð19Þ

f 0 ¼ fR0 þ
XN

k¼1

f k1 ð20Þ

n0 ¼ nR0 þ
XN

k¼1

nk1 ð21Þ

where f ki and nki are the force and torque of body i-1

acting on body i in arm-k. If i ¼ nk ,there exist the

relationships f knk ¼ f kRnk and nknk ¼ nkRnk þ f knk � aknk.

The driving torque of joint i of arm-k can be derived as

ski ¼ nki z
k
i ð22Þ

Furthermore, we rewrite the nonlinear bias force C in

the matrix form. According to Eqs. (10)–(22), we can

express

C =

CB

C1
M

..

.

CN
M

2

6
6
6
6
4

3

7
7
7
7
5
=

cB c1BM . . . cNBM
c1MB c1M 0 0

..

.
0 . .

.
0

cNMB 0 0 cNM

2

6
6
6
6
4

3

7
7
7
7
5

_X0

_h1M

..

.

_hNM

2

6
6
6
6
6
4

3

7
7
7
7
7
5

= fNEð€q = 0Þ
ð23Þ

where cB, c
k
M, and ckBM are the nonlinear Coriolis and

centrifugal force matrices that correspond to the base,

arm-k, and base and arm-k coupling term, respec-

tively, and fNEð�Þ represents the Newton–Euler recur-
sive function. Therefore, we have derived the nominal

dynamics equation of the multi-arm space robot

system, namely H€qþ C ¼ F.

3 Coupling analysis and decoupling control

strategy

In this section, we will analyze the dynamic coupling

effect on the multi-arm space robot system qualita-

tively. As the TDE has an intrinsic adaptability, we

aim to design a controller with a simple structure to

address this tough issue. Here, a simple TDE-based

SMC is proposed to realize the decoupling control, and

the classical boundary layer method is used to alleviate

the SMC chattering. Meanwhile, we want to evaluate

and demonstrate the merits of the TDE, so the

conventional CTC and the CTC-based SMC are

introduced for contrastive studies.

3.1 Qualitative analysis of the dynamic coupling

Early research [22, 24] focused on the satellite with a

single arm. The traditional approach is very intuitive,

which divides the entire system into two subsystems,

namely the base control system and the manipulator

control system, as illustrated in Fig. 2. Also, two

independent controllers are designed to control the

two subsystems, respectively. However, for a multi-

arm space robot system, the dynamic coupling occurs

not only between arms and the base but also between

arms [14]. Thus, the traditional decoupling strategy

will be difficult to use in this occasion.

According to Eqs. (4) and (23), we obtain the

dynamics equation for a dual-arm space robot, which

can be divided into three subsystems as follows:

H1
M
€h
1

Mþc1M
_h1M þH1T

BM
€X0 þ c1MB

_X0 ¼ s1M ð24aÞ

H2
M
€h
2

Mþc2M
_h2M þH2T

BM
€X0þc2MB

_X0 ¼ s2M ð24bÞ

HB
€X0þcB _X0þH1

BM
€h
1

Mþc1BM
_h1MþH2

BM
€h
2

Mþc2BM
_h2M¼FB

ð24cÞ

where H1T
BM

€X0 þ c1MB
_X0 is the coupling term that

corresponds to the base disturbance impacting on

Arm-1. According to Eqs. (24c) and (24b), we know

Fig. 2 Traditional subsystem decoupling strategy [22]
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that this dynamic coupling will affect Arm-2; namely,

the coupling occurs between two arms. Therefore, the

strategy of the subsystem decoupling control is not

suitable for multi-arm space robots. In fact, throughout

the entire dynamics equation, namely Eq. (4), the term

H€q is a linear term, but the bias force term C is a

nonlinear term. Thus, we will directly design a

decoupling strategy based on the entire MIMO system,

and the online computation and online estimation

methods will be adopted to compensate the nonlinear

term.

3.2 Conventional CTC

The conventional CTC is equivalent to using the

Newton–Euler equations to calculate the coupling

force/torque. As illustrated in Fig. 3, the conventional

CTC incorporates the computation of the nonlinear

bias force term C and the PD control into the

controller, which can realize the decoupling and

linearization of the system.

The control law of the CTC is expressed as

F ¼ Huþ C ð25aÞ

u ¼ €qd þ KD _eþ KPe ð25bÞ

where qd, _qd, and €qd are the desired position, velocity,

and acceleration signals, respectively; u is the PD

control with a bias term €qd; e ¼ qd � q is the position

error vector; _e and €e are the velocity and acceleration

error vectors, respectively; and KP and KD are the

proportional and derivative gain matrices, respec-

tively, which are diagonal and positive definite.

Substituting Eq. (25) into Eq. (4) yields

€q ¼ u , €eþ KD _eþ KPe ¼ 0 ð26Þ

Its stability can be easily proven by differentiating

the following positive-definite quadratic Lyapunov

function:

V ¼ 1

2
_eT _eþ 1

2
eTKPe ) _V ¼ � _eTKD _e� 0 ð27Þ

3.3 CTC-based SMC

For the conventional CTC, its control performance

mainly depends on the accuracy of the system model,

and it is difficult to deal with disturbances and

uncertainties. If we consider disturbances and uncer-

tainties, the nominal model can be modified to

H€qþ C þ fD þ fU ¼ F ð28Þ

where fD ¼ fD1; . . .; fDi; . . .; fDn½ �T denotes the distur-

bance force/torque vector with the ith element

restricted by its bound, i.e., fDij j �Di, and fU ¼
½fU1; . . .; fUi; . . .; fUn�T denotes the uncertain dynamics,

i.e., fU ¼ DH€qþ DC, with the ith element restricted

by its bound, i.e., fUij j �Ui.

SMC is a well-known robust method that maintains

the robustness of the system against disturbances and

model uncertainties with a fast response and satisfac-

tory transient performance. Thus, based on the

decoupling principle of the CTC, we design a CTC-

based SMC controller, as illustrated in Fig. 4.

First, we design a sliding surface vector as follows:

s ¼ _eþ Ke ð29Þ

where K is the sliding surface matrix which is a

diagonal and positive-definite matrix. Differentiating

Eq. (29) with respect to time yields

_s ¼ €eþ K _e ¼ €qd � €qþ K _e ð30Þ

According to Eq. (4), we can obtain

€q ¼ H�1ðF� CÞ. By setting _s to be zero, we can

obtain an equivalent control law

Fig. 3 Conventional CTC decoupling strategy

Fig. 4 CTC-based SMC decoupling strategy
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FCTCeq ¼ Hð€qd þ K _eÞ þ C ð31Þ

where FCTCeq is the equivalent control law based on

the nominal model, which keeps the system trajectory

moving on the sliding surface without considering

disturbances or uncertainties. Thus, the control law of

the CTC-based SMC is expressed as

F ¼ FCTCeq þ GsgnðsÞ ð32Þ

where G ¼ diagðG1; . . .;Gi; . . .;GnÞ is the switching

gain matrix, which is diagonal and positive definite,

and its ith diagonal element is set to meet the condition

Gi [Di þ Ui; sgnð�Þ is the sign function, and

sgnðsÞ ¼ ½sgnðs1Þ; . . .; sgnðsiÞ; . . .; sgnðsnÞ�T; and

GsgnðsÞ is the robust switching term against distur-

bances and uncertainties. Its stability can be evaluated

by selecting the following Lyapunov function:

V ¼ 1

2
sTs ð33Þ

Differentiating Eq. (33) with respect to time and

substituting Eq. (28) and Eq. (32) into it yield

_V ¼ sT _s

¼ sTð€qd � €qþ K _eÞ
¼ sTð€qd �H�1ðF� C � fD � fUÞ þ K _eÞ
¼ sTð€qd �H�1ðFCTCeq þ GsgnðsÞ
� C � fD � fUÞ þ K _eÞ

¼ sTðH�1ÞðfDþfU � GsgnðsÞÞ
¼ sTðH�1ÞðfD þ fUÞ � sT




ðH�1ÞG0

ð34Þ

where G0 ¼ ½G1; . . .;Gi; . . .;Gn�T is the corresponding

switching gain vector and its ith element is equal to the

ith diagonal element of the switching gain matrix G.

As Gi [Di þ Ui and H�1 is a diagonal and positive-

definite matrix, we can deduce that _V � 0. Thus, its

stability is proven.

As the discontinuous sign function sgnð�Þ is used for
generating the high frequently switching action in the

control input, which usually causes the control chat-

tering effect, many effective methods are proposed to

regulate the switching term for alleviating the chat-

tering effect, such as the supervising control [35], the

super-twisting algorithm [36], and the fuzzy logic

method [37]. In consideration of the simplicity and

effectiveness of the controller design, the classical

boundary layer method [38, 39] is adopted in this

study. Here, satðs;wÞ ¼ ½satðs1;w1Þ; . . .; satðsi;wiÞ;

. . .; satðsn;wnÞ�
T
is used to replace sgnðsÞ, and the ith

boundary layer function satðsi;wiÞ is defined as

sat(si, wi) ¼

si
sij j ; if sij j[wi

si
wi

; if sij j �wi

8
><

>:
ð35Þ

where w ¼ ½w1; . . .;wi; . . .;wn�
T
is the boundary layer

width vector, and wi is the ith boundary layer width.

As shown in Fig. 5, it is obvious that if the

boundary layer width wi approaches to zero,

satðsi;wiÞ will become the real sign function sgnðsiÞ.
For alleviating the chattering problem, the boundary

layer creates a buffer area, which can attenuate the

high-frequency switching control around the sliding

surface, so wi works as a threshold for entering the

buffer area. If wi increases, the control input will be

smooth, but the robustness of the controller will

degrade, which may cause a steady-state error. Thus,

the selection of the boundary layer width is a crucial

problem for the trade-off between the control accuracy

and the chattering. Generally, if no chattering occurs,

we will set the width of the boundary layer as small as

possible, and the dynamics within the strip can be

called the ‘‘quasi-sliding mode.’’ Sometimes, the

system should be controlled in the presence of

disturbances or unknown uncertainties. If the distur-

bance and uncertainty cause the state variable to be far

away from the steady state, i.e., ej j has a large value,
we can increase the switching gain G to reduce the

steady-state error. If the disturbances and uncertainties

cause a high-frequency oscillation of the state variable

around the boundary layer, we can increase the width

of the boundary layer to alleviate it.

Fig. 5 Boundary layer function
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3.4 TDE-based SMC

Compared with the first two controllers, the TDE [31]

does not require the online computation of the model

parameters H and C. The main strategy of the TDE

controller is to incorporate a new constant diagonal

gain matrix to reformat the dynamics equation and to

use the time-delay information to estimate the new

unknown nonlinear term. Thus, the TDE-based con-

troller is an intrinsically adaptive controller, and the

SMC can increase the robustness of the controller. The

block scheme of the TDE-based SMC is illustrated in

Fig. 6.

First, by introducing a constant diagonal matrix �H

and combining it with Eq. (28), we can obtain a new

form of the dynamics equation as follows:

�H €qþ N ¼ F ð36aÞ

N ¼ ðH � �HÞ€q + C þ fD þ fU ð36bÞ

where N is a new nonlinear term that includes the

Coriolis which is unknown but bounded. According to

Eq. (36a), which is unknown but bounded. According

to Eq. (36a), �H is a diagonal matrix, and if we can

estimate the term N with a certain degree of accuracy

and compensate for it in real time, we will decouple

and linearize Eq. (36a). As the space robot is a

continuous variable dynamic system, N can be esti-

mated by the TDE, and the dynamics model, namely

Eq. (36a), is modified to be

�H €qþ N̂ ¼ F ð37aÞ

N̂ � N(t � d) ð37bÞ

where N̂ is the estimation of N; N(t � d) is the TDE

term that representsN at the previous time; and d is the
sampling period of the control system, which directly

affects the online estimation accuracy of the TDE and

is usually set to be sufficiently small. According to

Eq. (36a), we know that

N(t � d) = F(t � d)� �H €q(t � d) ð38Þ

As illustrated in Fig. 6, the TDE-based SMC is

similar to the CTC-based SMC, wherein the sliding

surface vector is designed to be the same as Eq. (29),

namely s ¼ _eþ Ke. Differentiating s with respect to

time and setting _s to be zero, we can obtain an

equivalent control based on Eq. (37a):

FTDEeq ¼ �Hð€qd þ K _eÞ þ N̂ ð39Þ

where FTDEeq is the equivalent control law based on

the modified model. The control law of the TDE-based

SMC is

F ¼ FTDEeq þ GsgnðsÞ ð40Þ

where GsgnðsÞ is the same as in Eq. (32), which is the

robustness term against disturbances and

uncertainties.

For its stability, we select the same Lyapunov

function candidate as used in Eq. (33) and differen-

tiate it with respect to time. Furthermore, according to

Eq. (36a), we obtain

_V ¼ sTð€qd � �H�1ðF� NÞ þ K _eÞ
¼ sTð€qd � �H�1ðFTDEeq þ GsgnðsÞ � NÞ þ K _eÞ
¼ sT �H�1ðN � N̂ � GsgnðsÞÞ
¼ sT �H�1ðN � N̂Þ � sT




ð �H�1ÞG0

ð41Þ

where e¼N � N̂ denotes the TDE error vector.

According to Ref. [31], we know that e is bounded,

i.e., the ith element of e satisfies eij j �Ei, and we can

deduce _V\0 by setting Gi [Ei; hence, its stability is

proven. Likewise, the boundary layer function

satðs;wÞ is used to replace sgnðsÞ in Eq. (41). A

detailed proof of the boundedness of e is provided in

Appendix.

In summary, the conventional CTC and the CTC-

based SMC are model-based decoupling control

methods, because the online parameter computation

is needed to compensate the nonlinear bias force term.

Although the CTC-based decoupling strategy is intu-

itive and explicit, it strongly depends on the accuracy

of the system model. Disturbances or uncertainties

may deteriorate its control performance. Moreover, ifFig. 6 TDE-based SMC decoupling strategy
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the model parameters of the multi-arm space robot

system are high dimensional, the online computation

burden for the CTC decoupling method will increase

accordingly. However, the TDE technique provides us

a new perspective, which incorporates a constant

diagonal gain matrix to reformulate the dynamics

equation and uses the control input and output

information from the previous sampling time to

estimate the new nonlinear term. Via its transient

learning nature and simple decoupling principle, the

TDE and SMC can complement and reinforce each

other.

4 Numerical simulation

In this section, the simulations in contrast to the

conventional CTC and the CTC-based SMC are made

to verify the advantages of the TDE-based SMC,

where we use a 2D dual-arm space robot (in Fig. 7)

through three case studies, namely the nominal model,

the model with disturbances, and the model with

disturbances and uncertainties. Additionally, to verify

the computational efficiency of the TDE-based SMC,

another case study on analyzing different delay

lengths is conducted after the three case studies above.

As shown in Fig. 7, the dual-arm space robot aims

at grasping a floating target, where the base is

controlled to perform the station-keeping maneuver

and Arm-1 and Arm-2 are controlled to grasp the

target. The initial base position is set as

r0 ¼ ½0:8; 1:5�TðmÞ, and the initial attitude angle is

set as h0 ¼ �15�. The position of the target’s Tip-1

and Tip-2 is set as PT1 ¼ ½3:2; 1:4�TðmÞ and

PT2 ¼ ½3:04471; 0:82044�TðmÞ, respectively. The atti-
tude angles for grasping Tip-1 and Tip-2 are set as

hT1 ¼ �60� and hT2 ¼ 30�, respectively. The fifth-

order polynomial curves [19] are used to plan joint

trajectories, and the terminal time is set as: tf ¼ 10 s.

As the base is kept still, we can easily obtain the

planned joint trajectories as shown in Fig. 8. The D-H

parameters of the dual-arm space robot are specified in

Table 2 and the initial parameters are given in

Table 3, where the presuperscript ið�Þk denotes that

the parameter is defined in body i frame of arm-k,

i.e.,
Pk

i . Meanwhile, the desired grasping process of

the dual-arm space robot is illustrated in Fig. 9.

4.1 Case A: The nominal model

In this case, we will evaluate the control performances

of the three controllers using the nominal model,

namely Eq. (4).

For the conventional CTC, the proportional and

derivative gain matrices KP and KD are diagonal and

positive definite, and the system can achieve the global

asymptotic stability. Since Eq. (26) is a decoupled

model, and the suitable KP and KD can be easily

obtained by the trial-and-error method. Usually, we

I Ix

IY

1
0b

0r

1
E

Σ

2
E

Σ

Tip-1

Tip-2

Σ

2
0b

1
1θ

1
3θ

1
2θ

45− o

45 o

Fig. 7 Dual-arm space robot system

Fig. 8 Planned joint trajectories

123

2458 X. Zhang et al.



first set the order of magnitude of KP, each element of

which can be roughly estimated according to the

inertial parameters of the system in Table 3. Then, we

set KD to improve the dynamic performance of the

system. Here, the proportional and derivative gain

matrices are set as KP ¼ diag(1,500,000, 1,600,000,

8,000,000, 80,000, 40,000, 10,000, 80,000, 40,000,

10,000) and KD ¼diag(500,000, 500,000, 150,000,

2500, 1000, 550, 2500, 1000, 550), respectively. In

addition, we can seek the optimal parameters of KP

and KD by some heuristic algorithms such as particle

swarm optimization [40, 41].

For the CTC-based SMC, we need to set the sliding

surface matrix K, the switching gain matrix G, and the

boundary layer width vector w. In general, K just

affects the sliding surface structure, so any diagonal

and positive-definite matrices can meet the require-

ment. In Section III, the settings of G and w have been

discussed before. Here, we setK ¼ diag(1, 1, 1, 1, 1, 1,

1, 1, 1), G ¼ diag(0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,

0.3), and w = [4, 4, 4, 4, 4, 4, 4, 4, 4]T 9 10-3.

For the TDE-based SMC, the sampling period

should be sufficiently small for guaranteeing the TDE

accuracy, and we choose d ¼ 1ms. The space robot

controller runs at a 1 ms rate, which is the same as the

research in [42]. The constant diagonal matrix of the

TDE-based SMC is set as �H ¼ diag(10, 10, 20, 1, 1, 1,

1, 1, 1). The sliding surface matrix, the switching gain

matrix, and the boundary layer width vector are set to

be the same with the parameters of the CTC-based

SMC. Figure 10 shows the state error and the driving

force and torque of three different controllers.

4.2 Case B: The model with disturbances

In this case, disturbances are considered in the model,

where the disturbance force/torque signals are

assumed as follows:

fDBx ¼ fDBy ¼ sDBz ¼ 0:2ðsinð0:5ptÞ þ sinð2ptÞÞ
s1D1 ¼ s1D2 ¼ s1D3 ¼ 0:05ðsinð2:5ptÞ þ sinð0:4ptÞÞ
s2D1 ¼ s2D2 ¼ s2D3 ¼ 0:05ðsinð2:5ptÞ þ sinð0:4ptÞÞ

8
<

:

ð42Þ

where fDBx and fDBy are the base disturbance forces in

the two axis directions of
P

B; sDBz is the base

disturbance torque; and skDi is the disturbance torque of
joint i in arm-k.

For the conventional CTC, the control parameters

are the same as the control parameters used in Case A.

For the CTC-based SMC, the switching gain matrix is

G ¼ diag (0.5, 0.5, 0.5, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3), and

the other parameters are the same as the control

parameters used in Case A. For the TDE-based SMC,

the switching gain matrix is G ¼ diag (0.5, 0.5, 0.5,

0.3, 0.3, 0.3, 0.3, 0.3, 0.3), and the other parameters are

the same as the control parameters used in Case A.

Their control performances are shown in Fig. 11.

Table 2 D-H parameters of the dual-arm space robot

Arm-k Link no. aki�1ð
�Þ aki�1ðmÞ dki ðmÞ hki ð

�Þ

1/2 1 0.0 0.7071 0.0 30/0.0

2 0.0 0.8 0.0 - 120/120

3 0.0 0.8 0.0 45/- 75

EE 0.0 0.6 0.0 0.0/0.0

Table 3 Inertial parameters of the dual-arm space robot

Parameter Arm-1/2

Base Link 1 Link 2 Link 3 with EE

mðkgÞ 400 15 15 10

iIkz ðkg � m2Þ 40 1.5 1.5 1.0

iakxðmÞ – 0.4 0.4 0.3

iakyðmÞ – 0.0 0.0 0.0

ibkxðmÞ 0.5 0.4 0.4 0.3

ibkyðmÞ 0.5/-0.5 0.0 0.0 0.0

Fig. 9 Grasping process of the dual-arm space robot
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4.3 Case C: The model with disturbances

and uncertainties

In this case, disturbances and uncertainties are

considered in the simulation, where the disturbance

force/torque signals are identical to those in Case B,

namely as defined in Eq. (42). For the uncertainty, we

assume that each robotic arm carries an unknown

payload to track the planned trajectories and to keep

the base still. Thus, the uncertainty is caused by the

unknown payload, which leads to the inertial param-

eter changes of the end link of each arm. Here, we

assume that the inertial parameters of link 3 with EE of

each arm (Table 3) are changed to be m1
3 ¼ m2

3 ¼
13 kg and 3I1z ¼ 3I2z ¼ 1:3 kg � m2, and herein, the

model uncertainties are unknown to the controller.

For the conventional CTC, the CTC-based SMC,

and the TDE-based SMC, the control parameters are

the same as the control parameters used in Case B. The

corresponding control results are presented in Fig. 12.

4.4 Case D: The TDE-based SMC with different

time-delay lengths

In the above three cases, we test the control perfor-

mances of three different controllers with considera-

tion of disturbances and parameter uncertainties. For

the TDE-based SMC, its sampling period is set as

d ¼ 1ms. In fact, the time-delay length (i.e., the

sampling period) has a big impact on the control

accuracy of the TDE. Usually, the smaller the time-

delay length is, the better the control accuracy of the

TDE is. In this case, we will compare and analyze the

TDE-based SMC with different time-delay lengths

(d ¼ 0.5 ms, 1 ms, 2 ms, and 4 ms), in which the

model with disturbances and uncertainties is identical

to the model used in the Case C. The control

performance of the TDE-based SMC with d ¼ 1 ms

is presented in Fig. 12c, and the control results using

other delay lengths are shown in Fig. 13.

Fig. 10 Control results in Case A

Fig. 10 continued

123

2460 X. Zhang et al.



4.5 Comparison and discussion

For the comparison of three different controllers, we

will evaluate the control accuracy and input force/-

torque quantitatively using the following indicators:

ek kRMS¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NS

XNS

i¼1

eðiÞk k2
v
u
u
t ð43aÞ

Fk kRMS¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NS

XNS

i¼1

FðiÞk k2
v
u
u
t ð43bÞ

sk kRMS¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NS

XNS

i¼1

sðiÞk k2
v
u
u
t ð43cÞ

where ek kRMS is the root mean square of the control

accuracy error; Fk kRMS and sk kRMS are the root mean

squares of the control input force and torque, respec-

tively; eðiÞ is the control accuracy error at the ith

sampling; FðiÞ and sðiÞ are the control input force and
torque, respectively, at the ith sampling time; andNS is

the total number of sampling times.

The statistical results of the error indicators and the

control inputs of the three different controllers are

presented in Tables 4 and 5, respectively. In Case A,

the control accuracy of the CTC-based SMC and the

TDE-based SMC is 1–2 orders of magnitude higher

than the conventional CTC in nearly all the error

indicators; their control inputs are within the same

order of magnitude. In Case B and Case C, it is obvious

that the disturbances and uncertainties degrade the

control accuracy of the conventional CTC and the

CTC-based SMC, especially in terms of the base

attitude accuracy. However, the TDE-based SMC is

almost immune to disturbances and uncertainties, and

its control performance can be guaranteed at the same

order of magnitude.

In Case D, the TDE-based SMC with different

delay lengths shows different control performances.

Fig. 11 Control results in Case Bn

Fig. 11 continued
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As shown in Figs. 12c and.13, the controller with d ¼
0.5 ms and the controller with d ¼ 1 ms have the same

control accuracy in all the error indicators, and the

controller with d ¼ 2 ms just reduces 1 order of

magnitude in the base attitude accuracy. Thus, when

the delay length is set as d ¼ 1 ms, we can obtain a

relatively good performance. For the TDE-based

SMC, when the time-delay length is set as d ¼ 4 ms,

the corresponding error performance degrades

slightly, but it is still better than the CTC-based

SMC and the conventional CTC. The above analysis

illustrated that the TDE-based SMC with a reduced

time-delay length can also guarantee the control

performance within an acceptable range.

The TDE uses the time-delay information to

estimate the unknown nonlinear term, so the TDE-

based SMC is an adaptive and robust method.

Meanwhile, the case studies above prove its excellent

features in the decoupling control.

5 Conclusions and future work

The satellite–manipulator coupling is a significant

issue in coordinately controlling multiple-arm space

robots in the OOS missions. In this paper, we design

three decoupling controllers: the conventional CTC,

the CTC-based SMC, and the TDE-based SMC. The

results of the first three case studies demonstrate that

the TDE-based SMC can outperform the conventional

CTC and the CTC-based SMC in terms of control

when the model suffers from disturbances and uncer-

tainties. The fourth case study demonstrates that the

TDE-based SMC with a reduced time-delay length

still achieve a guaranteed control performance.

Thanks to the TDE technique, the proposed TDE-

based SMC has the following advantages:

(1) For the decoupling control of multi-arm space

robots, the conventional CTC and the CTC-

based SMC are model-based methods, which

use the online computation to compensate for

the nonlinear bias force term C and use the

inverse of the inertial matrix H to decouple the

system. The TDE-based SMC incorporates a

constant diagonal matrix �H to reformulate the

dynamics model and adopts the online estima-

tion of the new nonlinear bias force term N,

Fig. 12 Control results in Case C

Fig. 12 continued
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which is a simple and yet efficient decoupling

principle with low computational complexity.

(2) The TDE-based SMC uses the time-delay

information to estimate the new nonlinear bias

force termN; hence, it has intrinsic adaptability,

robustness, and model-free traits.

Currently, we verify the TDE-based SMC by the

numerical simulation. In the future, we will develop a

hardware-in-loop simulation test system for the pro-

posed method.
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Appendix

A detailed proof of the boundedness of e is provided as

follows, which is the same as the proof in Refs.

[31, 32, 39].

Lemma 1 For the inertial matrix H, there exists a

constant diagonal matrix �H that satisfies the spectral

norm condition, namely H�1 �H � E
�
�

�
�\1 [34].

Lemma 2 For vectors a and b, if a ¼ Ab, A is a

symmetric matrix, and Amax is the maximum eigen-

value of A, there exists a conclusion, namely

ak k�Amax bk k; ðAk
max [ 0Þ.

According to Eqs. (39) and (40) , we reformulate

the control law of the TDE-based SMC as

Fig. 13 Control results of the TDE-based SMC with different

time-delay lengths

Fig. 13 continued
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F ¼ �Huþ N̂ ð44aÞ

u ¼ €qd þ K _eþ �H�1GsgnðsÞ ð44bÞ

Substituting Eqs. (44a) and (37b) into the dynamics

equation (Eq. (36a)) yields

NðtÞ � N(t � d) ¼ �HnðtÞ ð45aÞ

nðtÞ ¼ uðtÞ � €qðtÞ ð45bÞ

where eðtÞ ¼ NðtÞ � N(t � d). If we want to verify that
eðtÞ is bounded, it is equivalent to verify that nðtÞ ¼
uðtÞ � €qðtÞ is bounded. Furthermore, we can obtain

HðtÞnðtÞ ¼ HðtÞðuðtÞ � €qðtÞÞ
¼ HðtÞuðtÞ � ðFðtÞ � CðtÞ � fDðtÞ � fUðtÞÞ

ð46Þ

From Eqs. (28), (37b), and (38), we can deduce

N̂ðtÞ ¼ ðHðt � dÞ � �HÞ€qðt � dÞ þ Cðt � dÞ
þ fDðt � dÞ þ fUðt � dÞ

ð47Þ

Substituting Eq. (47) into Eq. (44a) yields

FðtÞ ¼ �Huþ ðHðt � dÞ � �HÞ€qðt � dÞ
þ Cðt � dÞ þ fDðt � dÞ þ fUðt � dÞ

ð48Þ

Substituting Eq. (48) into Eq. (46) yields

HðtÞnðtÞ ¼ ðHðtÞ � �HÞuðtÞ þ ð �H �Hðt � dÞÞ€qðt � dÞ
þ CðtÞ � Cðt � dÞ þ fDðtÞ � fDðt � dÞ
þ fUðtÞ � fUðt � dÞ

ð49Þ

We obtain €qðt � dÞ ¼ nðt � dÞ þ uðt � dÞ accord-
ing to Eq. (45b). Substituting it into Eq. (49) yields

HðtÞnðtÞ¼ð �H�HðtÞÞðnðt�dÞþuðt�dÞÞ
þðHðtÞ� �HÞuðtÞþðHðtÞ�Hðt�dÞÞ€qðt�dÞ
þCðtÞ�Cðt�dÞþfDðtÞ�fDðt�dÞ
þfUðtÞ�fUðt�dÞ

ð50Þ

Then, we can reformat Eq. (50) as

nðtÞ ¼ AðtÞnðt � dÞ þ v1ðt � dÞ � AðtÞv2ðt � dÞ
ð51aÞ

AðtÞ¼H�1ðtÞ �H � E ð51bÞ

v1ðt � dÞ ¼H�1ðtÞfðHðtÞ �Hðt � dÞÞ€qðt � dÞ
þ CðtÞ � Cðt � dÞ þ fDðtÞ � fDðt � dÞ
þ fUðtÞ � fUðt � dÞg

ð51cÞ

v2ðt � dÞ ¼ uðtÞ � uðt � dÞ ð51dÞ

Furthermore, we analyze Eq. (51a) in the discrete-

time domain. Substituting t ¼ kd into Eq. (51a) yields

nðkÞ ¼ AðkÞnðk � 1Þ þ v1ðk � 1Þ � AðkÞv2ðk � 1Þ
ð52Þ

Via induction and reasoning, we can obtain

nðkÞ ¼
Yk

m¼1

AðmÞnð0Þ þ
Xk�1

m¼1

Yk�1

p¼m

Aðpþ 1Þv1ðm� 1Þ

þv1ðk � 1Þ �
Xk

m¼1

Yk

p¼m

AðpÞv2ðm� 1Þ

ð53Þ

where nð0Þ is the initial value, and we can deduce

nðkÞk k�
Yk

m¼1

AðmÞnð0Þ
�
�
�
�
�

�
�
�
�
�
þ
Xk�1

m¼1

Yk�1

p¼m

Aðpþ 1Þv1ðm� 1Þ
�
�
�
�
�

�
�
�
�
�

+ v1ðk � 1Þk k þ
Xk

m¼1

Yk

p¼m

AðpÞv2ðm� 1Þ
�
�
�
�
�

�
�
�
�
�

ð54Þ

According to Lemma 2, we can deduce

nðkÞk k� ¼ Ak
max nð0Þk k þ

Xk�1

m¼1

Ak�m
max v1ðm� 1Þk k

þ v1ðk � 1Þk k þ
Xk

m¼1

Ak�mþ1
max v2ðm� 1Þk k

ð55Þ

According to Lemma 1, we know that 0\Amax\1.

Meanwhile, v1iðkÞj j\b1 and v2iðkÞj j\b2, where

v1iðkÞ and v2iðkÞ are, respectively, the ith elements

of v1ðkÞ and v2ðkÞ and b1 and b2 are positive

constants. When k ! 1, Ak
max ! 0, and we conclude

nðkÞk k� nðb1 þ Amaxb2Þ
1� Amax

ð56Þ

Thus, the boundedness of nðkÞ is proven, and the

stability of the TDE-based SMC is guaranteed.
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