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Abstract This paper considers the distributed adap-
tive neural consensus tracking control problem for a
class of uncertain nonaffine nonlinear multi-agent sys-
tems. By making use of the Taylor expansion tech-
nique, the nonaffine nonlinear control input of each
subsystem is successfully separated under a weaker
decoupling condition, and then, the distributed adap-
tive control is developed via neural networks (NNs)
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technique. By introducing the compensation adaptive
laws with positive time-varying integrable functions to
effectively handle the disturbances and the NN approx-
imation errors in backstepping design process, a new
distributed adaptive neural controller is constructed by
means of the local output tracking error information of
neighborhood agents. It can be proved that all the sub-
system outputs asymptotically track to a desired refer-
ence trajectory.The efficiencyof the established control
strategy is demonstrated by the simulation experiment.

Keywords Consensus tracking · Multi-agent sys-
tems · Nonaffine nonlinear decoupling · Adaptive
backstepping control · Neural networks

1 Introduction

As we know, a large number of complicated mechani-
cal systems, such as the formation of space spacecraft,
underwater robots, multi-vehicle systems, networked
autonomous teams, and so on, can be described by
the nonlinear multi-agent structure using mathematical
modeling method. Correspondingly, many significant
control strategies have applied to several different types
of MASs [1–9]. In [10], a distributed robust adaptive
consensus tracking controller was designed for non-
linear multi-agent systems with bounded disturbances
and parameter vectors. The adaptive consensus reli-
able fault compensation control of a linear system sub-
ject to actuator failure and intermittent communication
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constraint was addressed in [11]. Based on a reliable
observer state feedback control method, a distributed
fault-tolerant control algorithm [12] was proposed for a
class ofMASs subject to input time-delays and stochas-
tic actuator faults. Recently, Wei and Xiao [13] solved
the consensus control problem of a multi-agent sys-
tem based on the nonlinear coupling. Furthermore, the
scheme of event-triggered using leader-following con-
sensus control approach was proposed in [14] for a
fractional-order multi-agent systems.

As universal approximation tools, fuzzy logic sys-
tems (FLSs) [15–21] or neural network strategies [22–
29] have been well investigated for handling dynamic
nonlinear systems. Typically, the developed finite-time
fuzzy adaptive controller [30] can be used for pure-
feedback nonlinear systems using the backstepping
technique. In [31], the authors studied a fuzzy adap-
tive tracking control for an uncertain nonlinear system
subject to input delays. The problem of the adaptive
cooperative control [32] was addressed for a nonlinear
MAS with dead-zone input via a fuzzy approximation
approach. Furthermore, by using the generalized fuzzy
hyperbolic approximation method, the proposed fuzzy
adaptive fault-tolerant controller with event-triggering
weight updated law [33] ensured the closed-loop faulty
system being the desired stability performance. Based
on the NN technique, the novel adaptive state con-
straints design scheme [34] and the effective prescribed
performance tracking control method [35] were suc-
cessfully applied for the vehicle active suspension sys-
tems (ASSs), respectively.

All the time, the consideration on decoupling con-
trol design and analysis of nonaffine nonlinear systems
is an interesting and challenging topic, and some sig-
nificant results have been obtained [21,23,30,32]. In
[36], the dynamic surface control (DSC) based on the
adaptive finite-time technique of nonaffine nonlinear
systems subject to dead-zone inputs was considered
using a fuzzy approximation method. The authors of
[37] considered an adaptive finite-time funnel control
for nonaffine nonlinear systems by employing FLSs
and backstepping procedure. Furthermore, Wu et al.
[38] presented an adaptive FTC algorithm for non-
affine stochastic nonlinear systems subject to full state
constraints and actuator faults. In [39], the consensus
tracking control was taken into account for nonaffine
nonlinear MASs subject to actuator faults. However, it
should be pointed out that a strict decoupling condi-
tion 0 < f ∗

l ≤ ∂ f (x,u)
∂u ≤ f ∗

u for all (x, u) ∈ R
n+1

is utilized by the above results about nonaffine nonlin-
ear systems. Under this condition, the controller design
can be realized for only a small number of practical
nonaffine nonlinear systems. For instance, consider a
nonaffine nonlinear function f (x, u) = 3u + 3(1 +
x2) + 2.5 sin(ux), and then, it is not hard to verify that
∂ f (x,u)

∂u = 3 + 2.5x cos(ux) do not satisfy this strict
decoupling condition.

In this paper, a novel framework of adaptive consen-
sus tracking control-based distributed fuzzy approxi-
mation for nonaffine nonlinear MASs is provided. In
contrast with the existing work, the distinct features
of our results are as follows: (1) the approximation
tracking scheme of adaptive fuzzy control is gener-
alized to a class of nonaffine nonlinear MASs with
unknown parameter uncertainties and external distur-
bances; (2) different from our previous work [32,38]
and the relevant literature [21,23,36,37,39] using the
strict decoupling condition, a weak decoupling con-
dition 0 < f ∗

il ≤ ∂ fi,n(Xi ,0)
∂ui

≤ f ∗
iu within a suit-

able compact set ΩXi is given, and thus, the Taylor
expansion technique can be effectively applied to mul-
tiple input decoupling. Clearly, the considered strict-
feedback nonlinear MASs in [10] can be reviewed as
a special case of the nonaffine nonlinear MASs here;
(3) by constructing the proper compensation adaptive
lawswith positive time-varying integrable function, the
effects of the disturbances and the NN approximation
errors in the backstepping procedure can be restrained
effectively.Also, the designed distributed adaptive con-
troller can ensure all the subsystem outputs asymptot-
ically tracking to a preset reference trajectory.

2 Preliminaries and problem statement

2.1 Basic graph theory

In this paper,we consider an undirected graph G(V,E,

A) which consists of the set of N nodes V =
{v1, v2, . . . , vN }, a set of edges E = V × V and an
associated adjacency matrix A = [ai j ] ∈ RN×N .
An edge ei j between nodes vi and v j is defined by
(vi , v j ), which means that the information can flow
from vi to v j , and vice versa. Note that ei j ∈ E if
the weight of edge ai j = a ji = 1, otherwise ai j =
a ji = 0. The pair of nodes vi and v j are neighbors if
ei j ∈ E . The set of neighbors of node vi is denoted
by Ni = {vi ∈ V|ei j ∈ E, j �= i}. An in-degree
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matrix Δ and a Laplacian matrix L are both intro-
duced such that Δ = diag{Δ1,Δ2, . . . , ΔN } ∈ RN×N

with Δi = ∑
j∈Ni

ai j being the i th row sum of A and
L = Δ − A, respectively. In addition, ci = 1 implies
the case that the common desired reference signal xr
can be received from the subsystem i th directly; other-
wise, it is set as ci = 0.

2.2 Uncertain nonlinear multi-agent system

Consider the following MASs with N uncertain non-
affine nonlinear subsystems

ẋi,1 = xi,2 + fi,1(Xi,1) + di,1,

ẋi,2 = xi,3 + fi,2(Xi,2) + di,2,

...

ẋi,n−1 = xi,n + fi,n−1(Xi,n−1) + di,n−1,

ẋi,n = fi,n(Xi , ui ) + di,ni ,

yi = xi,1

(1)

where Xi, j = [xi,1, xi,2, . . . , xi, j ]T ∈ R
j , Xi =

Xi,n = [xi,1, xi,2, . . . , xi,n]T ∈ R
n, ui ∈ R and yi ∈ R

for i = 1, 2, . . . , N ; j = 1, 2, . . . , n are the system
states, the control input and the control output, respec-
tively; and fi, j (·):R j → R and di, j , respectively,
are unknown smooth functions and the external dis-
turbances.

2.3 Basic assumptions and lemmas

The consensus tracking objective of this paper is to
design a distributed adaptive NN controller, which
can guarantee that all the closed-loop signals are uni-
formly bounded, and all the subsystem outputs yi for
i = 1, 2, . . . , N asymptotically track to a common
desired reference trajectory xr . For this, some neces-
sary assumptions and lemmas are introduced in the sub-
sequent developments.

Assumption 1 The graph G is undirected and con-
nected. Also, the common desired reference trajectory
xr can be obtained from at least one subsystem of G,
which means

∑N
i=1 ci > 0.

Assumption 2 For the external disturbance di, j , the
reference trajectory xr together with its j th-order
derivative x ( j)

r is continuous and bounded, i. e., there

exist positive constantsd∗
i j , x

∗
r and x

∗
r j such that |di, j | ≤

d∗
i j , |xr | ≤ x∗

r and |x ( j)
r | ≤ x∗

r j , j = 1, 2, . . . , n,
respectively.

Assumption 3 With a given compact set ΩXi ∈ R
n

and two positive constants f ∗
il and f ∗

iu , the following
condition holds

0 < f ∗
il ≤ ∂ fi,n(Xi , 0)

∂ui
≤ f ∗

iu (2)

for all Xi ∈ ΩXi and i = 1, 2, . . . , n.

Remark 1 Obviously, it follows from Assumption 1
that the outputs of all subsystems can achieve the
objective of consensus tracking. From Assumption 2,
it is easy to see that both the external disturbance di, j
and the reference signal xr together with its j th-order
derivative x ( j)

r are all bounded. Note that Assumption
3 is looser than the one such that

0 < f ∗
il ≤ ∂ fi,n(Xi , ui )

∂ui
≤ f ∗

iu (3)

for all (Xi , ui ) ∈ R
n+1 as in [21,23,32,36–39].

Lemma 1 [22] Given a compact set ΩX ⊂ R
m, if

f (X) is a continuous nonlinear function on ΩX , then
there exists a radial basis function neural network (RB-
FNN) g(X) = θTΨ (X) such that

sup
X∈ΩX

| f (X) − θTΨ (X)| < ε,∀ε > 0 (4)

where X = [X1, X2, . . . , Xm]T ∈ R
m and θ =

[θ1, θ2, . . . , θL ]T ∈ R
L are state input and weight vec-

tors. Ψ (X) = [Ψ1(X), Ψ2(X), . . . , ΨL(X)]T is basic
function vector with Ψi (X) being the form of Gaussian
function as follows:

Ψi (X) = e
− (X−Vi )

T (X−Vi )
vi , i = 1, 2, . . . , L (5)

where vi > 0 is the width of Gaussian function and
Vi = [Xi,1, Xi,2, . . . , Xi,m]T is the center vector.

From Lemma 1, there exists an optimal weight vec-
tor θ∗ satisfying

θ∗ = arg min
θ∈Ωθ

(

sup
X∈ΩX

| f (X) − θTΨ (X)|
)

,

∀X ∈ ΩX , θ∗ ∈ Ωθ

(6)
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for the compact setsΩX andΩθ . Accordingly, the non-
linear function f (X) can be expressed by

f (X) = θ∗TΨ (X) + ε(X),∀X ∈ ΩX , θ∗ ∈ Ωθ (7)

where |ε(X)| ≤ ε∗ and ε∗ > 0 is a approximation error
accuracy.

Lemma 2 Let ΩX be a given compact set of Rn, then
the uncertain nonlinear multi-agent systems (1) can be
transformed as

ẋi,1 = xi,2 + fi,1(Xi,1) + di,1,

ẋi,2 = xi,3 + fi,2(Xi,2) + di,2,

...

ẋi,n−1 = xi,n + fi,n−1(Xi,n−1) + di,n−1,

ẋi,n = gi,n(Xi , 0)ui + Gi,n(Xi ) + di,n,

yi = xi,1

(8)

where

Gi,n(Xi ) = fi,n(Xi , 0) + ∂gi,n(Xi , 0)

∂ui
u2i

+ 1

2!
∂2gi,n(Xi , 0)

∂u2i
u3i

+ · · · + 1

n!
∂ngi,n(Xi , 0)

∂unii
un+1
i

+ Rn+1(Xi , ui )ui

(9)

with

gi,n(Xi , ui ) = ∂ fi,n(Xi , uλi )

∂ui
,

uλi = λi ui , λi ∈ (0, 1)
(10)

and

Rn+1(Xi , ui ) = 1

(n + 1)!
∂n+1gi,n(Xi , uμi )

∂un+1
i

un+1
i ,

uμi = μi ui , μi ∈ (0, 1).

(11)

Proof Using (2) and the mean-value theorem, it is
true that the nonlinear term fi,n(Xi , ui ) of (1) can be
decomposed into

fi,n(Xi , ui ) = fi,n(Xi , 0) + gi,n(Xi , ui )ui (12)

where

gi,n(Xi , ui ) = ∂ fi,n(Xi , ui )

∂ui
|ui=uλi

(13)

with uλi = λi ui , λi ∈ (0, 1). 	


Clearly, we also see that gi,n(·) is a smooth function
for the variables ui and Xi , respectively. Further, to
separate ui from gi,ni (·) and thus effectively design
controller, the Taylor’s theorem in [40] can be applied
to decoupling analysis

gi,n(Xi , ui ) = gi,n(Xi , 0) + ∂gi,n(Xi , 0)

∂ui
ui

+ 1

2!
∂2gi,n(Xi , 0)

∂u2i
u2i

+ · · · + 1

n!
∂ngi,n(Xi , 0)

∂uni
uni

+ Rn+1(Xi , ui )

(14)

where

Rn+1(Xi , ui ) = 1

(n + 1)!
∂n+1gi,n(Xi , uμi )

∂un+1
i

un+1
i (15)

with uμi = μi ui , μi ∈ (0, 1). Therefore, it is seen that

fi,n(Xi , ui ) = gi,n(Xi , 0)ui + Gi,n(Xi ) (16)

whereGi,n(Xi ) is defined as in (9), this also shows that
(8) holds.

Lemma 3 [1] If a undirected graph G with the cor-
responding associated adjacency matrix A ∈ R

N×N

is connective, then we can conclude that the matrix
L+C with C = diag{c1, c2, . . . , cN } being at least one
ci > 0 is positive definite for i = 1, 2, . . . , N.

Lemma 4 [42]With σ > 0, the inequality

0 ≤ |x | − x2√
x2 + σ 2

≤ σ (17)

holds for any x ∈ R.

Lemma 5 For a given positive function δ(t) > 0,∀t ≥
0 and x ∈ R, the following result is true

0 ≤ |x | − x tanh

(
x

δ(t)

)

≤ κδ(t),∀t ≥ 0 (18)

where κ = supt>0{ t
1+et } = 0.2785.

Proof This conclusion can be straightforward obtained
from [41], and we omit the details here for brevity.

Lemma 6 [43] If a continuous function q(t) such that
q ∈ L2[0,+∞) and q̇ ∈ L∞, then it holds

lim
t→∞ q(t) = 0. (19)
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3 Distributed adaptive neural network control

This section will develop a distributed NN adaptive
control scheme of nonlinear MASs (1) by using the
backstepping method.
Step 1 The following two error variables are first intro-
duced

ei,1 =
N∑

j=1

ai j (yi − y j ) + ci (yi − xr ),

ei,2 = xi,2 − vi,1

(20)

with vi,1 being the corresponding virtual control. Set-
ting e1 = [e1,1, e2,1, . . . , eN ,1]T leads to

e1 = (L + C)ey (21)

where ey = y − x̄r = [ey1, ey2, . . . , eyN ]T with y =
[y1, y2, . . . , yN ]T and x̄r = [xr , xr , . . . , xr ]T ∈ R

N .
By using (1), (20) and (21), the derivative of e1 is

ė1 = (L + C)

⎡

⎢
⎢
⎢
⎣

v1,1 + e1,2 + f1,1 + d1,1 − ẋr
v2,1 + e2,2 + f2,1 + d2,1 − ẋr

...

vN ,1 + eN ,2 + fN ,1 + dN ,1 − ẋr

⎤

⎥
⎥
⎥
⎦

.

(22)

Based on Lemma 1, the following approximation
scheme of FLS can be applied within a compact set
ΩZi,1

Fi,1(Zi,1) = fi,1(Zi,1) = θ∗T
i,1 Ψi,1(Zi,1) + εi,1(Zi,1)

(23)

where Zi,1 = xi,1 ∈ ΩZi,1 and |εi,1| ≤ ε∗
i,1 with ε∗

i,1 >

0 being an error accuracy.
We can choose vi,1 as

vi,1 = −χi,1ei,1 − θ̂Ti,1Ψi,1 + ci ẋr − ei,1 D̂i,1
√
e2i,1 + σ 2

i

(24)

with χi,1 > 0 being a design parameter, and σi (t) > 0
being a positive function such that

∫ ∞
0 σi (t) ≤ σ̄i <

+∞. In addition, D̂i,1 is the estimate of D∗
i,1 = d∗

i,1 +
ε∗
i,1 + (1 − ci )x∗

r .
Invoking Assumption 1 and Lemma 3, the following

Lyapunov function is defined by

V1 = 1

2
eTy (L + C)ey + 1

2

N∑

i=1

(
θ̃Ti,1Γ

−1
i,1 θ̃i,1

+ γ −1
i,1 D̃2

i,1

)
(25)

where θ̃i,1 = θ∗
i,1 − θ̂i,1 and D̃i,1 = D∗

i,1 − D̂i,1 denote
the parameter estimation errors, respectively. Γi,1 =
Γ T
i,1 > 0 and γi,1 > 0 are some design parameters.
We take the time derivative of (25) and it holds

V̇1 =
N∑

i=1

ei,1
(
−χi,1ei,1 + ei,2 + θ̃Ti,1Ψi,1 + di,1

+ εi,1 − ẋr + ci ẋr − ei,1 D̂i,1
√
e2i,1 + σ 2

i

⎞

⎠

−
N∑

i=1

θ̃Ti,1Γ
−1
i,1 θ̇i,1 − γ −1

i,1 D̃i,1 Ḋi,1

≤
N∑

i=1

(
−χi,1e

2
i,1 + ei,1ei,2 + θ̃Ti,1Ψi,1ei,1

+ |ei,1|D∗
i,1 − e2i,1 D̂i,1

√
e2i,1 + σ 2

i

⎞

⎠

−
N∑

i=1

θ̃Ti,1Γ
−1
i,1 θ̇i,1 − γ −1

i,1 D̃i,1 Ḋi,1

≤
N∑

i=1

(
−χi,1e

2
i,1 + ei,1ei,2 + (|ei,1|

− e2i,1
√
e2i,1 + σ 2

i

⎞

⎠ D∗
i,1 + γ −1

i,1 D̃i,1

×
⎛

⎝γi,1
e2i,1

√
e2i,1 + σ 2

i

− ˙̂Di,1

⎞

⎠ + θ̃Ti,1Γ
−1
i,1

×
(
Γi,1Ψi,1ei,1 − ˙̂

θi,1

))
.

(26)

Introduce the adaptive control laws as

˙̂Di,1 = −γi,1σi D̂i,1 + γi,1
e2i,1

√
e2i,1 + σ 2

i

˙̂
θi,1 = −σiΓi,1θ̂i,1 + Γi,1Ψi,1ei,1.

(27)

Substituting (27) into (26) and applying Lemma 4,
it can be verify that

V̇1 ≤
N∑

i=1

(
−χi,1e

2
i,1 + ei,1ei,2 + σi

(
D∗
i,1

+ D̃i,1 D̂i,1 + θ̃Ti,1θ̂i,1

))
.

(28)

Step 2 By introducing a new transformation ei,3 =
xi,3 − vi,2 and taking the derivative of ei,2 in (20), we
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have

ėi,2 = ei,3 + vi,2 + fi,2(Xi,2) + di,2

− ∂vi,1

∂xi,1
(xi,2 + fi,1 + di,1) − ∂vi,1

∂θ̂i,1

˙̂
θi,1

− ∂vi,1

∂σi
σ̇i − ∂vi,1

∂ D̂i,1

˙̂Di,1 − ci

1∑

j=0

∂vi,1

∂x ( j)
r

x ( j+1)
r

−
N∑

j=1

ai j
∂vi,1

∂x j,1
(x j,2 + f j,1 + d j,1). (29)

Invoking Lemma 1, we choose the following FLS
to approximate the nonlinear compound function Fi,2
within a compact set ΩZi,2

Fi,2(Zi,2) = ei,1 + fi,2 − ∂vi,1

∂xi,1
(xi,2 + fi,1)

− ∂vi,1

∂θ̂i,1

˙̂
θi,1 − ∂vi,1

∂σi
σ̇i − ∂vi,1

∂ D̂i,1

˙̂Di,1

− ci

1∑

j=0

∂vi,1

∂x ( j)
r

x ( j+1)
r −

N∑

j=1

ai j
∂vi,1

∂x j,1

×(x j,2 + f j,1)

= θ∗T
i,2 Ψi,2(Zi,2) + εi,2(Zi,2)

(30)

where Zi,2 = [Xi,2, θ̂i,1, σi , σ̇i , D̂i,1, x j,1, x j,2, xr ,
ẋr , ẍr ]T ∈ ΩZi,2 and |εi,2| ≤ ε∗

i,2 with ε∗
i,2 > 0 being

an error accuracy.
The virtual controller vi,2 can be chosen as

vi,2 = −χi,2ei,2 − θ̂Ti,2Ψi,2 − (Ai + 2) ei,2B2
i,1 D̂i,2

√
e2i,2B

2
i,1 + σ 2

i

(31)

with χi,2 > 0 being a design parameter, and Ai=
∑N

j=1 ai j ,Bi,1=
√

4+
(

∂vi,1
∂xi,1

)2 + ∑N
j=1 ai j

(
∂vi,1
∂x j,1

)2
.

θ̂i,2 and D̂i,2 are the estimates of θ∗
i,2 and D∗

i,2 =
max{d∗

i,1, d
∗
i,2, d

∗
j,1, ε

∗
i,2}, respectively.

The Lyapunov function can be chosen as

V2 = V1 + 1

2

N∑

i=1

(
e2i,2 + γ −1

i,2 (Ai + 2) D̃2
i,2

+ θ̃Ti,2Γ
−1
i,2 θ̃i,2

)
(32)

where θ̃i,2 = θ∗
i,2 − θ̂i,2 and D̃i,2 = D∗

i,2 − D̂i,2 are

the parameter estimation errors. Γi,2 = Γ T
i,2 > 0 and

γi,2 > 0 are some design parameters.
Combining (28)–(31) and the following inequality

n∑

k=1

λk ≤ n

√
√
√
√

n∑

k=1

λ2k (33)

for λk ≥ 0, k = 1, 2, . . . , n, the derivative of (32) is
computed as

V̇2 ≤
N∑

i=1

(

−
2∑

l=1

χi,l e
2
i,l + ei,2ei,3 + θ̃Ti,2Ψi,2ei,2

+ σi

(
D∗
i,1 + D̃i,1 D̂i,1 + θ̃Ti,1θ̂i,1

)

+ (Ai+2)

⎛

⎝|ei,2|Bi,1−
e2i,1B

2
i,1

√
e2i,1B

2
i,1+σ 2

i

⎞

⎠ D∗
i,2

+ γ −1
i,2 (Ai+2)

⎛

⎝γi,2
e2i,2B

2
i,1

√
e2i,2B

2
i,1+σ 2

i

− ˙̂Di,2

⎞

⎠

× D̃i,2 −
N∑

i=1

θ̃Ti,2Γ
−1
i,2

˙̂
θi,2

)

. (34)

Choose the following adaptive control laws

˙̂Di,2 = −γi,2σi D̂i,2 + γi,2
e2i,2B

2
i,1

√
e2i,2B

2
i,1 + σ 2

i

,

˙̂
θi,2 = −σiΓi,2θ̂i,2 + Γi,2Ψi,2ei,2.

(35)

Based on Lemma 4 and (35), (34) becomes

V̇2 ≤
N∑

i=1

(

−
2∑

l=1

χi,l e
2
i,l + ei,2ei,3 + σi

((
D∗
i,1

+ (Ai + 2) D∗
i,2

) +
(
D̃i,1D

∗
i,1 + (Ai + 2)

× D̃i,2D
∗
i,2

)
+

2∑

l=1

θ̃Ti,l θ̂i,l

))

.

(36)
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Step k(3 ≤ k ≤ n− 1) Similarly, by using the trans-
formation ei,k+1 = xi,k+1 − vi,k , its derivative is
ėi,k = ei,k+1 + vi,k + fi,k(Xi,k) + di,k

−
k−1∑

l=1

∂vi,k−1

∂xi,l

(
xi,l+1 + fi,l + di,l

)

−
k−1∑

l=1

∂vi,k−1

∂θ̂i,l

˙̂
θi,l −

k−1∑

l=1

∂vi,k−1

∂σ
(l−1)
i

σ
(l)
i

−
k−1∑

l=1

∂vi,k−1

∂ D̂i,l

˙̂Di,l − ci

k−1∑

l=0

∂vi,k−1

∂x (l)
r

x (l+1)
r

−
N∑

j=1

ai j

k−1∑

l=1

∂vi,k−1

∂x j,l

(
x j,l+1 + f j,l + d j,l

)

(37)

Furthermore, by repeating the same process as in
Steps 1 and 2, it is recursive to compute that

V̇k−1 ≤
N∑

i=1

(

−
k−1∑

l=1

χi,l e
2
i,l + ei,k−1ei,k

+ σi

((

D∗
i,1 +

k−1∑

l=2

((l − 1)Ai + l)D∗
i,l

)

+
(

D̃i,1D
∗
i,1 +

k−1∑

l=2

((l − 1)Ai + l)D̃i,l

× D∗
i,l

) +
k−1∑

l=1

θ̃Ti,l θ̂i,l

))

(38)

where χi,l > 0 are the design parameters for l =
1, 2, . . . , k − 1.

As in (30), we choose the following FLS to approx-
imate the nonlinear compound function Fi,k within a
compact set ΩZi,k

Fi,k(Zi,k) = ei,k−1 + fi,k −
k−1∑

l=1

∂vi,k−1

∂xi,l

× (
xi,l+1 + fi,l

) −
k−1∑

l=1

∂vi,k−1

∂θ̂i,l

˙̂
θi,l

−
k−1∑

l=1

∂vi,k−1

∂σ
(l−1)
i

σ
(l)
i −

k−1∑

l=1

∂vi,k−1

∂ D̂i,l

˙̂Di,l

− ci

k−1∑

l=0

∂vi,k−1

∂x (l)
r

x (l+1)
r −

N∑

j=1

ai j

×
k−1∑

l=1

∂vi,k−1

∂x j,l

(
x j,l+1 + f j,l + d j,l

)

= θ∗T
i,k Ψi,k(Zi,k) + εi,k(Zi,k)

(39)

where Zi,k=[Xi,k,θ̂i,1, . . . , θ̂i,k−1,σi , σ̇i , . . . , σ̇
(k−1)
i ,

D̂i,1, . . . , D̂i,k−1, x j,1, . . . , x j,k, xr , ẋr , . . . , x
(k)
r ]T ∈

ΩZi,k and |εi,k | ≤ ε∗
i,k with ε∗

i,k > 0 being an error
accuracy.

The virtual control vi,k is then designed as

vi,k = −χi,kei,k − θ̂Ti,kΨi,k

− ((k − 1)Ai + k) ei,k B2
i,k−1 D̂i,k

√
e2i,k B

2
i,k−1 + σ 2

i

(40)

where χi,k > 0 is a design parameter, and Ai =∑N
j=1 ai j ,

Bi,k−1 =
(

4 +
k−1∑

l=1

(
∂vi,k−1

∂xi,l

)2

+
N∑

j=1

ai j

k−1∑

l=1

(
∂vi,k−l

∂x j,l

)2
⎞

⎠

1
2

θ̂i,k and D̂i,k are the estimates of θ∗
i,k and D∗

i,k=
max{d∗

i,1, . . . ,d
∗
i,k,d

∗
j,1, . . . ,d

∗
j,k−1,ε

∗
i,k}, respectively.

As in (32), we set

Vk = Vk−1 + 1

2

N∑

i=1

(
e2i,k + γ −1

i,k ((k − 1) Ai + k)

× D̃2
i,k + θ̃Ti,kΓ

−1
i,k θ̃i,k

)
(41)

where θ̃i,k = θ∗
i,k − θ̂i,k and D̃i,k = D∗

i,k − D̂i,k denote

the parameter estimation errors. Γi,k = Γ T
i,k > 0 and

γi,k > 0 are some design constants.

From (37)–(40), the derivative of (41) is

V̇k ≤
N∑

i=1

⎛

⎝−
k∑

l=1

χi,l e
2
i,l + ei,kei,k+1 + σi

((
D∗
i,1 + ((k

− 2)Ai + (k − 1))
k−1∑

l=2

D∗
i,l

⎞

⎠ +
(
D̃i,1D

∗
i,1 + ((k

− 2)Ai + (k − 1))
k−1∑

l=2

D̃i,l D
∗
i,l

⎞

⎠ +
k−1∑

l=1

θ̃Ti,l θ̂i,l

⎞

⎠

⎞

⎠

+
N∑

i=1

(
((k − 1) Ai + k)

(|ei,k |Bi,k−1

− e2i,k B
2
i,k−1

√
e2i,k B

2
i,k−1 + σ 2

i

⎞

⎠ D∗
i,k + ((k − 1) Ai + k)

×
⎛

⎝γi,k
e2i,k B

2
i,k−1

√
e2i,k B

2
i,k−1 + σ 2

i

− ˙̂Di,k

⎞

⎠ D̃i,k + θ̃Ti,k

× Γ −1
i,k ×

(
Γi,kΨi,k (Zi,k )ei,k − ˙̂

θi,k

))
. (42)
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We choose the following adaptive control laws

˙̂Di,k = −γi,kσi D̂i,k + γi,k
e2i,k B

2
i,k−1

√
e2i,k B

2
i,k−1 + σ 2

i

˙̂
θi,k = −σiΓi,k θ̂i,k + Γi,kΨi,kei,k . (43)

By using Lemma 4 and substituting (43) into (42),
it follows that

V̇k ≤
N∑

i=1

(

−
k∑

l=1

χi,l e
2
i,l + ei,kei,k+1 + σi

((
D∗
i,1

+ ((k − 1)Ai + k)
k−1∑

l=2

D∗
i,l

)

+
(
D̃i,1D

∗
i,1

+ ((k − 1)Ai + k)
k∑

l=2

D̃i,l D
∗
i,l

)

+
k∑

l=1

θ̃Ti,l θ̂i,l

))

. (44)

Step n: Combining the transformation ei,n = xi,n −
vi,n−1 and Lemma 2, we can obtain

ėi,n = gi,n(Xi , 0)ui + Gi,n(Xi ) + di,n

−
n−1∑

l=1

∂vi,n−1

∂θ̂i,l

˙̂
θi,l −

n−1∑

l=1

∂vi,n−1

∂xi,l

(
xi,l+1

+ fi,l + di,l
) −

n−1∑

l=1

∂vi,n−1

∂σ
(l−1)
i

σ
(l)
i

−
n−1∑

l=1

∂vi,n−1

∂ D̂i,l

˙̂Di,l − ci

n−1∑

l=0

∂vi,n−1

∂x (l)
r

x (l+1)
r

−
N∑

j=1

ai j

n−1∑

l=1

∂vi,n−1

∂x j,l

(
x j,l+1 + f j,l + d j,l

)
.

(45)

Also, the nonlinear compound function Fi,n can be
approximated by the following FLS within a compact

set ΩZi,n

Fi,n(Zi,n) = ei,n−1 + Gi,n −
n−1∑

l=1

∂vi,n−1

∂xi,l

× (
xi,l+1 + fi,l

) −
n−1∑

l=1

∂vi,n−1

∂θ̂i,l

˙̂
θi,l

−
n−1∑

l=1

∂vi,n−1

∂σ
(l−1)
i

σ
(l)
i −

n−1∑

l=1

∂vi,n−1

∂ D̂i,l

˙̂Di,l

− ci

n−1∑

l=0

∂vi,n−1

∂x (l)
r

x (l+1)
r −

N∑

j=1

ai j

×
n−1∑

l=1

∂vi,n−1

∂x j,l

(
x j,l+1 + f j,l + d j,l

)

= θ∗T
i,n Ψi,n(Zi,n) + εi,n(Zi,n)

(46)

where Zi,n=[Xi,n, θ̂i,1, . . . , θ̂i,n−1,σi , σ̇i , . . . , σ̇
(n−1)
i ,

D̂i,1, . . . , D̂i,n−1, x j,1, . . . , x j,n, xr , ẋr , . . . , x
(n)
r ]T ∈

ΩZi,n and |εi,n| ≤ ε∗
i,n with ε∗

i,n > 0 being an error
accuracy.

Correspondingly, similar to (40)–(43), we construct
the following Lyapunov function

Vn = Vn−1 + 1

2

N∑

i=1

(
e2i,n + γ −1

i,n ((n − 1) Ai + n)

×D̃2
i,n + θ̃Ti,nΓ

−1
i,n θ̃i,n

)
(47)

and choose the continuous adaptive controller vi,n with

parameter updated laws ˙̂
θi,n and

˙̂Di,n as

vi,n = −χi,nei,n − θ̂Ti,nΨi,n

− ((n − 1)Ai + n) ei,n B2
i,n−1 D̂i,n

√
e2i,n B

2
i,n−1 + σ 2

i

(48)

where χi,n > 0 is a design parameter, and Ai =∑N
j=1 ai j ,

Bi,n−1 =
(

4 +
n−1∑

l=1

(
∂vi,n−1

∂xi,l

)2

+
N∑

j=1

ai j

n−1∑

l=1

(
∂vi,n−l

∂x j,l

)2
⎞

⎠

1
2

θ̃i,n=θ∗
i,n−θ̂i,n, D̃i,n = D∗

i,n − D̂i,n and D∗
i,n=

max{d∗
i,1, . . . ,d

∗
i,n,d

∗
j,1, . . . , d

∗
j,n−1,ε

∗
i,n}, respectively.
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Then, it leads to

V̇n ≤
N∑

i=1

⎛

⎝−
n−1∑

l=1

χi,l e
2
i,l + σi

⎛

⎝

⎛

⎝D∗
i,1 +

n−1∑

l=2

((l − 1)Ai

+ l)D∗
i,l

)
+

⎛

⎝D̃i,1D
∗
i,1 +

n−1∑

l=2

((l − 1)Ai + l)D̃i,l

×D∗
i,l

)
+

n−1∑

l=1

θ̃Ti,l θ̂i,l

⎞

⎠ + ei,ngi,n(Xi , 0)ui,n

+ ((n − 1)Ai + n)|ei,n |Bi,n−1 + θT∗
i,n Ψi,n(Zi,n)ei,n

− θ̃Ti,nΓ
−1
i,n

˙̂
θi,n

− γ −1
i,n ((n − 1) Ai + n) D̃i,n

˙̂Di,n

)
. (49)

Next, the following adaptive controller with param-
eter updated laws can be described by

ui = −ζ−1
i,0 vi,n tanh

(
vi,nei,n

σi

)

,

˙̂Di,n = −γi,nσi D̂i,n + γi,n
e2i,n B

2
i,n−1

√
e2i,n B

2
i,n−1 + σ 2

i

,

˙̂
θi,n = −σiΓi,n θ̂i,n + Γi,nΨi,nei,n

(50)

where ζi,0 > 0 is a positive design parameter such that
ζi,0 ≤ f ∗

i,l .
Therefore, by invoking (2), (48)–(50), together with

Lemma 5 and the fact D̃i,l D̂i,l = −D̃2
i,l + D∗

i,l D̃i,l ≤
1
4D

∗2
i,l and θ̃Ti,l θ̂i,l = −‖θ̃i,l‖2 + θ∗T

i,l θ̃i,l ≤ 1
4‖θ∗

i,l‖2 for
l = 1, 2, . . . , n, we conclude that

V̇n ≤
N∑

i=1

(

−
n∑

l=1

χi,l e
2
i,l + σi

((

D∗
i,1 +

n∑

l=2

((l

− 1)Ai + l)D∗
i,l

) + 1

4

(

D∗2
i,1 +

n∑

l=2

((l − 1)

× Ai + l)D∗2
i,l

)
+ 1

4

n∑

l=1

‖θ∗
i,l‖2

))

≤ −
n∑

l=1

χl‖el‖2 +
n∑

l=1

σi

((

D∗
i,1 +

n∑

l=2

((l

− 1)Ai + l)D∗
i,l

) + 1

4

(

D∗2
i,1 +

n∑

l=2

((l − 1)

×Ai + l)D∗2
i,l

)
+ 1

4

n∑

l=1

‖θ∗
i,l‖2

)

(51)

where el = [e1,l , e2,l , . . . , eN ,l ]T. Integrating (51)
yields

Vn(t)+
n∑

l=1

∫ t

0
χl‖el(s)‖2ds

≤ Vn(0)+
n∑

l=1

((

D∗
i,1+

n∑

l=2

((l−1)Ai+l)D∗
i,l

)

+ 1

4

(

D∗2
i,1 +

n∑

l=2

((l − 1)Ai+l)D∗2
i,l

)

+ 1

4

n∑

l=1

‖θ∗
i,l‖2

)

σ̄i .

(52)

Remark 2 It is not hard to see that the considered
nonlinear MASs in [10] are special cases of (1). In
this paper, the mean-value theorem and the Taylor
decoupling technique are applied to designing the dis-
tributed NN tracking controllers (24), (31), (40), (48)
and (50). Concomitantly, the result of asymptotic con-
sensus tracking of the outputs of all the subsystems can
be obtained by introducing the corresponding parame-
ter updated laws with positive time-varying integrable
functions.

So far, the main closed-loop theorem of nonlinear
multi-agent systems (1) for the consensus asymptotic
tracking is shown as follows.

Theorem 1 Consider uncertain nonlinear MASs (1)
satisfying Assumptions 1–3. If the initial state Xi (0)
is subject to Xi (0) ∈ ΩZi,n with Zi,n being defined
in (46). Then, the designed virtual controllers (24),
(31), (40), (48), the actual controller (50) together
with corresponding to adaptive control laws guar-
antees all the closed-loop signals being locally uni-
formly bounded, and all the subsystem outputs eyi (t)
for i = 1, 2, . . . , N asymptotically converging to zero,
i. e., limt→∞ eyi (t) = 0.

Proof Noting the definition of Vn in (47) along with
(25), (32) and (41), it can be seen that ei,l , θ̂i and D̂i

for i = 1, 2, . . . , N ; l = 1, 2, . . . , n are bounded.
Also, we conclude ei,l ∈ L2 from (52). Based on (20)
and Lemma 3, xi,1 is bounded. From (5) and (24) with
(27), the boundedness of vi,1 can be obtained accord-
ingly within the compact set ΩZi,n . It follows from
ei,2 = xi,2 − vi,1 that xi,2 is also bounded on ΩZi,n .
Similarly, the boundedness of xi,l , vi, j and ui,n for
l = 3, 4, . . . , n; j = 2, 3, . . . , n can be verified on
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1252 L.-B. Wu et al.

Fig. 1 Communication topology of a group of the 4 subsystems

ΩZi,n . Therefore, the boundedness of all the closed-
loop signals is ensured and then ėi,l is bounded in
the compact set ΩZi,n . Using Lemma 6, it is straight-
forward to deduce that limt→∞ ei,l(t) = 0. By (22)
and the positive definitiveness of L + C, we can get
limt→∞ eyi (t) = 0 for i = 1, 2, . . . , N . This implies
asymptotic consensus tracking of all the subsystemout-
puts can be achieved, and this completes the proof. 	

Remark 3 From the above stability analysis, a novel
distributed NN adaptive consensus tracking control
design for nonaffine nonlinear MASs with nonlinear
functions and external disturbances can be obtained. In
particular, different from our previous work [32,38],
a looser decoupling condition (2) in Assumption 3
is introduced. Correspondingly, the control objective
of asymptotic output consensus tracking rather than
uniformly ultimate bounded (UUB) as in [39] can be
achieved by using the proposed adaptive neural con-
troller (50). Also, the proposed NN adaptive consensus
tracking control method here is more easily realized in
practical applications.

4 Simulation studies

The following numerical example is used to verify
the applicability of the presented NN consensus con-
trol scheme. Now a multi-agent system including four

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

4

5

Time (sec)

y1
y2
y3
y4
xr

Fig. 2 Subsystem outputs yi , i = 1, 2, 3, 4 and the reference
signal xr
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θ̂1,1,j, j = 1,2, · · · ,9

Fig. 3 Adaptive law θ̂1,1
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−0.5
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Fig. 4 Adaptive law θ̂2,1

agents by communicating is considered as in Fig. 1.
The nonaffine nonlinear dynamics of MAS is
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Fig. 5 Adaptive law θ̂3,1
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Fig. 6 Adaptive law θ̂4,1
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Fig. 7 Adaptive law D̂1,1

ẋ1 = x1 sin(0.2x1) + (1 + x21 )u1 + sin(x21u1) + d1,

ẋ2 = x22e
−0.5x2 + 3u2 − 2 sin(x2u2) + d2,

ẋ3 = x23 cos(0.5x3) + (3 + x3)u3 + d3,

ẋ4 = 1

1 + x24
+ (5 − 2x4)u4 + d4 (53)
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Fig. 8 Adaptive law D̂2,1
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Fig. 9 Adaptive law D̂3,1

where the state xi of each agent is confined in the com-
pact set Ωxi = {xi ||xi | ≤ 1} for i = 1, 2, 3, 4. The
disturbances are chosen as d1 = 0.2(1 − e−t ), d2 =
0.1 cos(t), d3 = −0.5 and d4 = sin(0.8t), respec-
tively, and the reference trajectory is taken as xr (t) =
2 sin(t). As before, using the adaptive controller (50)
with corresponding to parameter updated laws, the sim-
ulation parameters are chosen as χi,1 = 15, γ1,1 =
γ4,1 = 0.02, γ2,1 = γ3,1 = 0.01, Γi,1 = 0.2, ζ1,0 =
ζ2,0 = 0.5, ζ3,0 = 1, ζ4,0 = 0.8 and σi (t) =
2e−0.8t , i = 1, 2, 3, 4. Meanwhile, the initial values
are x1(0) = −1, x2(0) = 0.8, x3(0) = 0, x4(0) =
1, D̂1,1(0) = D̂4,1(0) = 8, D̂2,1(0) = D̂3,1(0) = 5
and θ̂i,1(0) = [1,2,−1,2,1,2,−1,2,1]T , i=1,2,3,4.
Accordingly, the simulation curves are demonstrated
by Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10. Figure 2 displays
all the subsystems’ outputs yi , i = 1, 2, 3, 4 and the
reference signal xr . Figures 3, 4, 5, 6, 7, 8, 9 and 10
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Fig. 10 Adaptive law D̂4,1

are given to demonstrate the adaptive estimation curves
θ̂i,1 and D̂i,1, i = 1, 2, 3, 4, respectively.

5 Conclusion

The distributed NN adaptive consensus control scheme
for nonaffine nonlinear MASs is developed in this
paper. By utilizing the Taylor expansion technique, the
control input in the nonaffine nonlinear term is suc-
cessfully decoupled. Then, the compensation adaptive
laws with positive time-varying integrable functions
are introduced to effectively handle the disturbances
and the NN approximation errors. Moreover, on the
basis of the local output tracking error information of
neighborhood agents, a novel distributed adaptive con-
trol strategy is proposed and it is also shown that the
output of each subsystem can asymptotically track to
the desired reference trajectory. Finally, the simulation
results verify the efficiency of the used approach.
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