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Abstract A robust fixed-time control framework is
presented to stabilize flexible spacecraft’s attitude sys-
tem with external disturbance, uncertain parameters
of inertia, and actuator uncertainty. As a stepping
stone, a nonlinear system having faster fixed-time
convergence property is preliminarily proposed by
introducing a time-varying gain into the conventional
fixed-time stability method. This gain improves the
convergence rate. Then, a fixed-time observer is pro-
posed to estimate the uncertain torque induced by dis-
turbance, uncertain parameters of inertia, and actuator
uncertainty. Fixed-time stability is ensured for the esti-
mation error. Using this estimated knowledge and the
full-states’ measurements, a nonsingular terminal slid-
ing controller is finally synthesized.This is achievedvia
a nonsingular and faster terminal sliding surface with
faster convergence rate. The closed-loop attitude stabi-
lization system is proved to be fixed-time stable with
the convergence time independent of initial states. The
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attitude stabilization performance is robust to distur-
bance and uncertainties in inertia and actuators. Sim-
ulation results are also shown to validate the attitude
stabilization performance of this control approach.
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1 Introduction

1.1 Motivation

Although many attitude controllers have been devel-
oped for flexible spacecraft with large flexible commu-
nication antenna and solar paddle [1,2], most of them
stabilized the states of the attitude system as the time
approaches infinity. Many missions demand fast atti-
tude maneuvering [3]. To meet this requirement, the
finite-time stability (FTS) concept is available. It pro-
vides system states with finite-time convergence. How-
ever, this finite-time convergence depends on initial
states [4]. A prior precise estimation of the settling time
cannot be obtained. Unlike the FTS [5], the fixed-time
stability [6] is efficient to guarantee a desired finite
convergence time despite any initial states. Only the
control gains determine the settling time. The system
states’ convergence rate can be predefined off-line [7].
However, the converging rate ensured by the current
fixed-time controllers is not fast enough.
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The current fixed-time attitude controllers for flexi-
ble spacecraft are developed by assuming that all actu-
ators do not have any uncertainty, i.e., there is no error
between actuator’s commanded input and its actual out-
put. This assumption may be not met. Actuator uncer-
tainty may exist in practice, and should be addressed
during attitude controller design. Otherwise, attitude
control performancemay be deteriorated and evenmis-
sion failure may be resulted [8]. However, this problem
is still open.

To achieve high-accuracy attitude control for space-
craft, external disturbance and uncertain inertia should
be accommodated further. For adaptive control-based
disturbance rejection approaches, the bound of distur-
bance and uncertain inertia is estimated and then com-
pensated [9]. This approach lets their controllers have
certain conservativeness. To avoid this drawback, the
observer-based control schemes are widely seen [10].
However, most of the observer-based controls ensure
zero estimation error after infinity time [11]. Besides
the estimation rate, a critical disadvantage of the exist-
ing observers is that the disturbance’s bound should be
known or the disturbance’s time derivative should be
zero [12]. The issue of relaxing such constraints should
be addressed.

1.2 Literature review

Recent years have witnessed a lot of attention to the
flexible spacecraft attitude control problem.Many con-
trol schemes have been presented, including the back-
stepping control [13], the proportional-derivative con-
trol [14], the H∞ control [15], the adaptive control
[16], the passivity-based control [17], the active distur-
bance rejection [18], the disturbance observer-based
control [19], and so forth [20,21]. To meet the vital
requirements including fast convergence rate and high
pointing accuracy, attitude control design via the slid-
ingmode control theory (SMC) has got significant con-
sideration [22]. Aiming to control the attitude within a
prescribed time, the terminal SMC (TSMC) was uti-
lized in [23]. However, the TSMC suffers from singu-
larity. To avoid this problem, many non-singular atti-
tude TSMC (NTSMC) approaches have been reported
[24]. In practice, actuator uncertainty may exist due to
aging or malfunction of actuator’s components. Con-
sidering this issue and applying the nonsingular TSMC
[25], the fast TSMC[26], the backstepping control [27],

and the integral backstepping [28], many attitude stabi-
lization controllers are seen to achieve finite-time con-
vergence.

Although the finite-time controllers for spacecraft
attitude system have certain advantages, the precise
estimation of the settling time cannot be obtained. To
solve this challenge, two relative position and attitude
stabilization controllers with fixed-time convergence
were presented to achieve the fly-around maneuver for
a non-cooperative target [29,30]. A fixed-time control
law was presented in [31] with the attitude tracking
errors stabilized after fixed time despite uncertainties.
In [32], the fixed-time attitude tracking issue without
singularity was investigated. The predefined settling
time of the tracking errors was achieved, but a slug-
gish response was seen when system states were near
the origin.

To achieve high-pointing attitude control with dis-
turbance rejected, one way would be to use observer-
based controller [33]. Considering disturbance as an
unknown input, employing the unknown input observer
(UIO) [34] to estimate disturbances has received more
and more attention. The development of UIO-based
attitude controller for spacecraft was discussed in [35].
By a combination of Lyapunov function and extended-
state observer, an attitude controller was presented in
[36] with actuator saturation constraint solved. Using
an adaptive extended-state observer, another attitude
controller having capability of handling actuator uncer-
tainty and achieving robustness aswell as precise track-
ing accuracy was proposed in [37]. By estimating the
unmeasurable modal variables, a distributed adaptive
attitude controller has been reported in [38].

1.3 Contributions

Motivated by solving above three challenges, this paper
presents an observer-based robust control approach for
flexible spacecraft’s attitude stabilization maneuvers
with fixed convergence time. The main features of this
study are highlighted as follows.

(1) The conventional fixed-time stability theorem
[39] is extended in this paper to decrease the set-
tling time. A new stable system, based on which
the main result of the paper is presented, is devel-
oped with its settling time shorter than [39].

(2) Inspired by [33], a fixed-time nonlinear observer
to reconstruct the lumped uncertainties is devel-
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oped. Any prior knowledge of the total uncertain-
ties is not required.Unlike the existing disturbance
observers [12], the restrictions on the uncertain-
ties is relaxed. Moreover, another feature of this
observer is that the estimation error is finite-time
stable regardless of initial estimation errors.

(3) By designing a novel fixed-time terminal sliding
surface, a robust attitude control law is proposed
for flexible spacecraft with external disturbance,
uncertainties in inertia parameters, and actuators
accommodated.

1.4 Paper organization

The rest of this paper is organized as follows. Sec-
tion 2 introduces the attitude systemmodel of a flexible
spacecraft and formulates its attitude control problem.
Section 3 presents an estimation-based control frame-
work to ensure superior attitude stabilization perfor-
mance after a fixed time. Simulation results are shown
in Sect. 4 followed by conclusion in Sect. 5 to end the
paper.

2 System model and problem formulation

LetR (respectively,R+) denote the set of real (respec-
tively, positive real) numbers.Rm×n represents the set
ofm by n real matrices. AT is the transpose of a matrix
A ∈ Rm×n , and A−1 is its left inverse if A has full col-
umn rank. ||·|| denotes the vector ormatrix’s Euclidean
norm. In is the identity matrix of n × n. 0 is a zero
vector or matrix with appropriate dimension. For any
scalar γ ∈ R and any vector z = [z1, z2, z3]T ∈ R3,

one defines z× =
⎡
⎣

0 −z3 z2
z3 0 −z1

−z2 z1 0

⎤
⎦ and sig(z)γ =

[|z1|γ sgn(z1), |z2|γ sgn(z2), |z3|γ sgn(z3)
]T, where

sgn(·) is the sign function. For any vector v =
[v1, v2, . . . , vn]T ∈ Rn , diag(v) ∈ Rn×n represents a

diagonal matrix given by diag(v) =

⎡
⎢⎢⎢⎣

v1 0 · · · 0
0 v2 · · · 0
...

...
...

...

0 0 · · · vn

⎤
⎥⎥⎥⎦.

exp(·) denotes the exponential function.

Fig. 1 The coordinate reference frame system

2.1 Modeling of flexible spacecraft attitude system

Three coordinate reference frames are usually involved
when establishing spacecraft’s attitude control system,
as shown in Fig. 1. There are the inertial frame FI ,
the orbit reference frameFO , and the body-fixed frame
FB . In this work,FI is chosen to be the Earth-Centered
Inertial frameFI (XI ,YI , ZI )with its origin at the cen-
ter of the Earth. FO(XO ,YO , ZO) rotating about the
YO axis with respect to the frame FI at the orbital rate
ω0 ∈ R+, has its origin located in the mass center of
the satellite. The axis of that reference frame are chosen
such that the roll axis XO is in the flight direction, the
pitch axis YO is perpendicular to the orbital plane, and
the yaw axis ZO points toward the center of the Earth.
The frame FB(XB,YB, ZB) has the same origin as the
orbit frame, and its axes fixed in the spacecraft’s body
and coincide with the principal axis of inertia.

Let θ = [θ, φ,ψ]T ∈ R3 denote the attitude Euler
angles of the spacecraft with respect to FO . ω ∈ R3

is the inertial angular velocity vector with respect to
FI and expressed in FB . J ∈ R3×3 is the spacecraft’s
inertia expressed in the FB , i.e., J = J0 +�J , where
J0 ∈ R3×3 and �J ∈ R3×3 represents the nominal
and the uncertain inertia, respectively. Then, for a flex-
ible spacecraft, its attitude system can be modeled as
[40].

ω = R (θ) θ̇

−ωc (θ) (1)

Jω̇ + ω×(Jω + δTχ̇)

+ δTχ̈ = τ + τ d (2)

χ̈ + Cχ̇ + Kχ + δω̇ = 0 (3)

where τ ∈ R3 is the actual control torque, and
τ d ∈ R3 is the external disturbance. χ ∈ RN

is the modal coordinate vector with respect to the
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rigid part of the spacecraft, where N ∈ R is the
considered number of the elastic modes. The matrix
δ ∈ RN×3 refers to the coupling between the
flexible structures and the main body. The matrices
K = diag([�2

1,�
2
2, . . . , �

2
N ]T) ∈ RN×N and C =

diag([2ξ1�1, 2ξ2�2, . . . , 2ξN�N ]T) ∈ RN×N are the
stiffness and damping, respectively;�i ∈ R is the nat-
ural frequencies, and ξi ∈ R is the damping ratios,
i = 1, 2, . . . , N . Moreover, the matrix R(θ) ∈ R3×3

and the vector ωc(θ) ∈ R3 are given by

R(θ) =
⎡
⎣
1 0 − sin φ

0 cos θ sin θ cosφ

0 − sin θ cos θ cosφ

⎤
⎦ (4)

ωc(θ) = ω0

⎡
⎣

cosφ sinψ

cos θ cosψ + sin θ sin φ sinψ

− sin θ cosψ + cos θ sin φ sinψ

⎤
⎦ (5)

2.2 Modeling of actuator uncertainty

In practice, actuator may have uncertainty. Nonnomi-
nal behavior may be seen in actuator. This uncertainty
would yield performance deterioration or system insta-
bility. Let the commanded/nominal torque of actuator
be denoted as τ A ∈ R3. τ F ∈ R3 represents the uncer-
tainty torque. Then, the relationship between τ A and τ

can be mathematically modeled as

τ = τ A + τ F (6)

2.3 Problem formulation

Suppose that the considered flexible spacecraft have
attitude sensor and gyros to measure the attitude θ and
the angular velocityω. Then, the control problemof this
paper can be formulated as: Applying the feedback of
states’ measurement θ and ω, design a controller for
τ A to ensure that the attitude angles θ is stabilized to
0 after a fixed-time tF ∈ R+ despite the external dis-
turbance τ d , the uncertain inertia �J , and the actuator
uncertainty τ F , i.e., θ(t) ≡ 0 for t ≥ tF . Moreover, tF
should be independent of the initial attitude and angular
velocity.

Actually, the attitude control system (1)–(4) with
actuator uncertainty (6) can be combined as

M(θ)θ̈ + C1(θ, θ̇)θ̇ + C2(θ , θ̇)

= ū(θ) + d̄(θ ,χ) (7)

where d̄(θ ,χ ,ω) = RT(θ)(τ d + τ F − �Jω̇ −
ω×�Jω − ω×δTχ̇ − δTχ̈), M(θ) = RT(θ)J0R(θ),

C1(θ, θ̇) = RT(θ)
(
J0

dR(θ)
dt − ω× J0)R(θ)

)
, ū(θ) =

RT(θ)τ A, and C2(θ , θ̇) = −RT(θ)(
J0

dωc(θ)
dt − ω× J0ωc(θ)

)
.

Defining x1 � [x11, x12, x13]T = θ and x2 �
[x21, x22, x23]T = θ̇ , the system (7) can be transformed
into

⎧⎪⎨
⎪⎩

ẋ1 = x2
ẋ2 = u(x1) + d(x1,χ ,ω)

− M−1(x1)(C1 (x1, x2)x2 + C2(x1, x2))

(8)

where x1 and x2 are the system states, d(x1,χ ,ω) =
M−1(θ)d̄(θ ,χ ,ω) denotes the lumped uncertainty,
and u(x1) = M−1(θ)ū(θ) is the transformed control
input.

Remark 1 Because the attitude θ and the angular veloc-
ity ω are measurable, it can be obtained from (1) that
the states x1 and x2 of the transformed system (8) are
measurable.

3 Main results

In this section, an observer-based fixed-time control
framework is presented for flexible spacecraft attitude
system to improve the convergence rate and the point-
ing accuracy. This control framework is developed by
using the measurements of the attitude θ and the angu-
lar velocityω or θ̇ . Moreover, it consists of a fixed-time
observer and a robust fixed-time attitude stabilization
controller. The fixed-time observer is to estimate the
lumped uncertainty d. The states measurements and
the estimated information dest are feedback to develop
the robust fixed-time attitude stabilization controller to
achieve the closed-loop system’s fixed-time stability.
The closed-loop attitude stabilization system resulted
from this control framework is shown in Fig. 2.
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Fig. 2 The closed-loop
attitude stabilization system
resulted from the presented
control framework

3.1 Development of a stable system with faster
fixed-time convergence

Before the observer-based attitude control design, a
fixed-time stable system is developed as

ẏ = −ξ (y)
(
αy p + βyλ

)k
, y ∈ R, y0 = y(0) (9)

where a > 1, b ∈ R+, c ∈ R+, α ∈ R+, β ∈ R+,
p ∈ R+, q ∈ R+, and k ∈ R+ are scalars. pk < 1,
qk > 1, ξ(y) = a + (1 − a) exp

(−b ‖y‖c), and λ =
1
2k + 1

2q + ( 1
2q − 1

2k

)
sgn (‖y‖ − 1).

Lemma 1 For any initial value y0, the system (9) is
fixed-time stable, and its settling time is T1 ∈ R+, i.e.,
y(t) ≡ 0 for t ≥ T1, where T1 is bounded as

T1 <
1

βk (qk − 1)
+ 1

βk (1 − pk)
ln

(
1 +

(
β

α

)k
)

(10)

Moreover, the convergence rate is faster than the fixed-
time stable system proposed in [39].

Proof Please refer to “Appendix A”. ��

Lemma 1 is fundamental to the development of the
subsequent observer and controller. The subsequent
fixed-time observer, sliding surface, and attitude con-
troller are developed based on it; moreover, the system
stability will be analyzed by using Lemma 1. Indeed,
this fixed-time stable system introduces a time-varying
gain to significantly improve convergence speed near
and even far away from the origin. Thus, it is expected
that the observer-based attitude control possesses fast
and fixed-time convergence property.

3.2 Fixed-time observer design for uncertainty

The transformed system (8) can be rewritten as

ẋ2 = −l1x2 + dl + u (11)

where dl = −M−1(x1)(C1(x1, x2)x2+C2(x1, x2))+
l1x2 + d and l1 ∈ R+ is a positive gain.

For (11), an auxiliary system is introduced as

ẋa = −l1xa + u (12)

where xa ∈ R3 represents the state of this auxiliary
system.

Let the error between x2 and xa be defined as z =
x2 − xa , it leaves the dynamics of the error be the
following linear system.

{
ż = −l1z + dl
y = l2z

(13)

where l2 ∈ R+ is a positive constant, z is the system’s
state, y ∈ R3 is the system’s output, and dl is the
unknown input of this system.

Let the fixed-time nonlinear observer for the lumped
uncertainty be designed as

˙̂z = ẏ
l2

+ l3 y − l2l3 ẑ + ξ (e)
1
k1

(
α1sig (e)

2p1k1−1
k1

− β1sig (e)
2λ1k1−1

k1

)k1

(14)

where l3 ∈ R+, α1 ∈ R+, β1 ∈ R+, p1 ∈ R+,
q1 ∈ R+,a1 ≥ 1,b1 ∈ R+, c1 ∈ R+, and k1 ∈ R+ are
observer gains. ξ(e) = a1 + (1− a1) exp

(−b1 ‖e‖c1),
λ1 = 1

2k1
+ 1

2q1 +
(
1
2q1 − 1

2k1

)
sgn (‖e‖ − 1), ẑ is the

estimation of z, and e = z − ẑ is the estimation error.
Moreover, ẏ is the time derivative of y.
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Theorem 1 The proposed observer (14) ensures the
estimation error e to be fixed-time stable, i.e., e(t) ≡ 0
for t ≥ Te, where Te satisfies

Te <
1

μ
k1
2 (q1k1 − 1)

+ 1

μ
k1
2 (1 − p1k1)

ln

(
1 +

(
μ2

μ1

)k1
)

(15)

where μ1 = 2p1α1 and μ2 = 2λ1β1.

Proof Please refer to “Appendix B”. ��
Theorem 2 Let an estimation law dest be designed as

dest =d̂l − l1x2

+ M−1 (x1) (C1(x1, x2)x2 + C2(x1, x2))

(16)

where

d̂l = l1l2 ẑ + ẏ
l2

(17)

Then, the lumped uncertainty d is precisely estimated
by dest within a fixed time Te. The estimation error
de = d − dest is such that de(t) ≡ 0 for t ≥ Te.

Proof Please refer to “Appendix C”. ��
Remark 2 It is seen in Theorem 1 and Theorem 2 that ẏ
is required to implement the proposed control approach
in practice. To satisfy this requirement, the high-order
sliding-mode differentiators (HOSMDs) [41] can be
applied to obtain ẏ. That is because the HOSMDs
can achieve an exact and finite-time estimation of the
required ẏ by inputting the signal value y into the differ-
entiator. It is seen in [41] that a K th-order sliding-mode
differentiator (K > 2) has a form of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇0 = v0, v0 = χ1 − κ0||χ0 − h|| K
K+1 sig(χ0 − h)0

χ̇ j = v j , v j = χ j+1 − κ j ||χ j − v j−1||
K− j

K+1− j sig(χ j − v j−1)
0

.

.

.

j = 1, 2, . . . , K − 1

χ̇K = −κK sig(χK − vK−1)
0

(18)

where κ j ∈ R+ is positive gains, χ j ∈ Rr is the state
of this differentiator, j = 1, 2, . . . , K , h ∈ Rr is the

input signal. Following Theorem 5 in [41], ḣ = v0 is
achieved after a finite time. Hence, when applying the
differentiator (18) to calculate ẏ, y should be chosen
as the input signal h, i.e., h = y, and χ j ∈ R3, j =
1, 2, . . . , K . Then, it follows that ẏ = v0.

Remark 3 It is seen in Remark 1 and the first paragraph
in Sect. 2.3 that θ , ω, θ̇ , x1, and x2 are measurable via
the sensors fixed in the considered spacecraft. More-
over, xa can be obtained by solving (12) for any u.
Then, z can be numerically obtained, and ẑ is available
from (14). Therefore, the observer (14) is available for
practical implementation. In addition, it is known from
the paragraph below (7) and the nominal inertia J0
that M−1(x1), C1(x1, x2), and C2(x1, x2) are avail-
able. Consequently, it can be obtained from Remark 2
and (17) that the estimation dest is also available.

3.3 Development of a fixed-time sliding manifold

The following fixed-time sliding manifold S (FTSM)
is synthesized to circumvent the singularity issue and
provide the system states with fast fixed-time conver-
gence.

S = H (x1) x1 + sigγ (x2) (19)

with H(x1) = diag([h(x11), h(x12), h(x13)]T) and

h(x1i ) =
(

ξ (x1)
1
k2 α2 |x1i |p2−

1
k2γ

+ ξ (x1)
1
k2 β2 |x1i |λ2−

1
k2γ

)k2γ

, i = 1, 2, 3

(20)

where α2 ≥ 1, α2 ∈ R+, β2 ∈ R+, p2 ∈ R+, q2 ∈
R+, k2 ∈ R+, γ > 1, b2 ∈ R+, and c2 ∈ R+ are
constants. 1/γ < p2k2 < 1, q2k2 > 1, λ2 = 1

2k2
+

1
2q2 +

(
1
2q2 − 1

2k2

)
sgn (‖x1‖ − 1), and ξ(x1) = a2 +

(1 − a2) exp
(−b2 ‖x1‖c2

)
.

Theorem 3 If a control law can be presented to govern
the states of the attitude system to reach S = 0 and stay
in thereafter, then the system states converge to 0 after
a fixed time Ts ∈ R+, which does not depend on the
initial states. Moreover, Ts is bounded as

Ts <
1

β
k2
2 (q2k2 − 1)
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+ 1

β
k2
2 (1 − p2k2)

ln

(
1 +

(
β2

α2

)k2
)

(21)

Proof Please refer to “Appendix D”. ��
Remark 4 In [29,42], a fixed-time slidingmanifold has
been presented as (19) in which h(x1i ) is expressed as

h(x1i ) =
(

α2 |x1i |p2−
1

k2γ + β2 |x1i |q2−
1

k2γ

)k2γ

(22)

The fixed time ensured by [29,42] is bounded by T̄x ≤
1

β
k2
2 (q2k2−1)

+ 1

α
k2
2 (1−p2k2)

. Since ln
(
1 + (β2/α2)

k2
) ≤

(β2/α2)
k2 always holds, the proposed FTSM of this

paper obtains faster convergence rate than the FTSM
presented by [42].

3.4 Robust fixed-time attitude controller design

Let the robust fixed-time attitude stabilization con-
troller be synthesized as

τ A =(RT(θ))−1M(θ)(M−1(x1)(C1(x1, x2)x2

+ C2(x1, x2)) − 1

γ

(
H̃(x1) + H(x1)

)
sig(x1)2−γ

− dest − 1

ρ0γ
P(x2)

(
ξ(S)1/k3α3sig(S)(2p3k3−1)/k3

+ ξ(S)1/k3β3sig(S)(2λ3k3−1)/k3
)k3

)

(23)

where P(x2) = diag([μσ (|x21|γ−1)|x21|γ−1, μσ

(|x22|γ−1)×|x22|γ−1, μσ (|x23|γ−1)|x23|γ−1]T). k3>1,
α34 ∈ R+, β3 ∈ R+, and ρ0 = π/(2σ) are control
gains. p3k3 < 1, q3k3 > 1, and H̃(x1)=diag[h̃(x11),
h̃(x12), h̃(x13)]T, i = 1, 2, 3,

h̃(x1i ) = k1γ

(
ξ(x1)1/k2α2 |x1i |p2−

1
k2γ

+ ξ(x1)1/k2β2 |x1i |λ2−
1

k2γ

)k2γ−1

×
(

ξ(x1)1/k2α2

(
p2 − 1

k2γ

)
|x1i |p2−

1
k2γ

+ ξ(x1)1/k2β2

(
λ2 − 1

k2γ

)
|x1i |λ2−

1
k2γ

)

(24)

Moreover, the function μσ is

μσ (x) =
{
sin(0.5πx/σ), |x | ≤ σ

1, |x | > σ
(25)

Theorem 4 For the flexible spacecraft with the exter-
nal disturbance τ d , the uncertain inertia �J , and the
actuator uncertainty τ F , applying the estimation law
(14) and the fixed-time attitude controller (23), then
the attitude Euler angles and the rotation velocity are
fixed-time stable with the settling time Tc satisfying
Tc < Ts + T1, where T1 is bounded by

T1 <
1

μ
k3
4 (q3k3 − 1)

+ 1

μ
k3
4 (1 − p3k3)

ln
(
1 + (μ4/μ3)

k3
)

(26)

where μ3 = α3ρ
−1/k3
0 μ

1/k3
σ

(|x2i |γ−1) and μ4 =
β3ρ

−1/k3
0 ×μ

1/k3
σ

(|x2i |γ−1).
Proof Please refer to “Appendix E”. ��
Remark 5 In contrast to the existing observers, the pro-
posed observer (16) provides precise estimation for the
lumped uncertainty after a fixed time which does not
depend on the initial estimation error. The estimation
error is zero after that fixed time. Moreover, it relaxes
some assumptions such as the need for upper limit of
total uncertainties to be available in advance or the time
derivative of the disturbance to converge to zero. This
is one of the main contributions of this work.

Remark 6 When practically implement the proposed
approach to perform attitude maneuver, the controller
(23) and the observer (14) will be numerically com-
puted by the spacecraft’s onboard embedded computer.
The designed control scheme is hence implementable
for in-orbital spacecraft. Moreover, the procedures to
choose the control gains are listed in the following
Remark 7. Hence, the controller is practically imple-
mentable for spacecraft system. This is validated in
Sect. 4 with simulation results presented.

Remark 7 When implementing theproposed approach,
control gains αi , βi , pi , qi , ki , a j , and b j (i = 1, 2, 3,
j = 1, 2) should be carefully chosen and tuned to
achieve higher attitude accuracy and acceptable con-
trol power. Based on (21) and (26), the following pro-
cedures should be followed for choice of the control
gains.
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(a) Larger αi and βi lead to a faster convergence rate,
but large overshoot and more control energy con-
sumption will be resulted. Hence, a compromise
should be made between the converging rate and
the overshoot.

(b) According to (21) and (26), the gains pi , qi , and ki
are also important to determine the system’s con-
verging rate.

(c) The gains a j and b j have profound influence on
the convergence rate. If a j is selected near to 1, the
effect of ξ is reduced, and vice versa. By choosing
b j large enough, the impact of ξ is highlighted.

4 Simulation results

To validate the superior attitude control performance of
the presented approach, numerical simulation is con-
ducted on a flexible spacecraft with its structure shown
in Fig. 1. The details of this spacecraft is provided
in [43]. The task of this spacecraft is Earth observa-
tion. The spacecraft’s orbit is circular. Its altitude and
inclination are 638km and 95.4degrees, respectively,
i.e., ω0 =0.0011 rad/s. As shown in Fig. 1, there are
two solar paddles fixed in the +YB and the −YB axis,
respectively. They are called the north and the south
solar paddle, receptively. Each paddle has a dimen-
sion of 15×0.75m. The nominal designed inertia of

the spacecraft is J0 =
⎡
⎣

487 15 − 1.2
14.9 177 − 7.3
−1.2 − 7.3 404

⎤
⎦ kg · m2.

After ground testing, the coupling matrix between the
rigid body and the solar paddles is calculated as δ =⎡
⎣

1 0.1 0.1
0.5 0.1 0.01
−1 0.3 0.01

⎤
⎦ kg · m2. Moreover, it is tested that

when choosing the elastic mode number N as N = 3,
the flexible vibration of solar paddles can be mainly
reflected. Hence, N = 3 is chosen to establish the
model of the attitude control system. Correspondingly,
the natural frequencies are measured as �1 = 1.8912
rad/sec, �2 = 2.884 rad/sec, �3 = 3.4181 rad/sec,
respectively. The damping ratios are measured on the
ground as ξ1 = ξ2 = ξ3 = 0.01.

For the considered spacecraft, the gravity-gradient
torque, the aerodynamic torque, and the Earthmagnetic
torque are the primary external disturbances for τ d in
(2), which will be considered in simulation. They will

be mathematically calculated according to [40] and put
into the system model. Moreover, the uncertain inertia
is assumed to be �J = 0.1J0. When carrying out
simulation, the initial attitude are ψ(0) = 15 degrees,
φ(0) = 25degrees, and θ(0) = − 5degrees. The initial
velocity is ω(0) = [0.01,−0.01,−0.02]T rad/s.

Besides the proposed observer-based fast fixed-time
attitude control (named as OBFFTAC), the fixed-time
attitude control presented in [29] (denoted by FTAC)
is also simulated under the same condition for perfor-
mance comparison. For fair comparison, the parame-
ters of OBFFTAC is taken the same as FTAC except
for the new parameters in the sliding manifold as well
as the controller. The OBFFTAC parameters are cho-
sen as γ = 1.5, p1 = 0.35, p2 = 0.3, p3 = 0.45,
q1 = 0.6, q2 = 0.75, q3 = 0.45, α1 = 0.2, α2 = 0.1,
α3 = 0.4, β1 = 0.08, β2 = 0.06, β3 = 0.1, k1 = 2,
k2 = 2, k3 = 2, l1 = 0.02, l2 = 14, l3 = 25,
σ = 0.01, a1 = 1.4, a2 = 1.35, b1 = 6, b2 = 4, and
c1 = c2 = 1. Moreover, the fifth-order sliding-mode
differentiator (18) is used to calculate ẏ with K = 5
and κ0 = κ1 = κ2 = κ3 = κ4 = κ5 = 1.5.

4.1 Comparison in the case of normal actuators

In the subsection, the case that all the actuators of the
flexible spacecraft do not have any uncertainty is con-
sidered. For this case, the resulted attitude stabilization
results from the OBFFTAC and the FTAC are illus-
trated in Figs. 3, 4, 5. It is found that the OBFFTAC
achieves faster converging rate and higher pointing
accuracy, while the maximum required control torques
are almost identical. To provide further insight into the
control performance in terms of pointing accuracy as
well as the convergence rate, the data analysis is given
inTable 1. It is found that theOBFFTACprovides faster
convergence rate and smaller steady-state error. The
improvement percentage confirms the superior perfor-
mance of OBFFTAC especially in terms of pointing
accuracy. Moreover, the norm of the attitude angles
and the rotation velocity are shown in Figs. 6 and 7,
respectively. That two controllers successfully accom-
plish the planned attitude maneuvering. However, the
OBFFTAC provides greatly preferable control perfor-
mance to the FTAC both in theory and simulation.
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Fig. 3 The attitude angles in the case of normal actuators
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Fig. 4 The angular velocity in the case of normal actuators
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Fig. 5 The control torque in the case of normal actuators

4.2 Comparison in the case of actuator uncertainty

To evaluate the robust control capability of the con-
trollers, actuator uncertainty is considered in this case.
In particular, the actuator uncertainty is assumed to be
the actuator fault:

τ F = (G(t) − I3)τ A + τ̄ (27)

where G(t) = diag([g1, g2, g3]T) refers to the actuator
effectiveness matrix in which gi represents fault indi-
cator of the i th actuator, τ̄ = [τ̄1, τ̄2, τ̄3]T denotes the
bias fault. For example, gi = 1 and τ̄i = 0 is associated
with the case that i th actuator is healthy. 0 < gi < 1
denotes that the i th actuator partially rather than totally
loses its control effectiveness.
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Fig. 6 Normof the attitude angles in the case of normal actuators
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Fig. 7 Norm of the angular velocity in the case of normal actu-
ators

In this subsection, the fault indicator and bias faulty
torque are given as τ̄1 = 0.6Nm, τ̄2 = −0.03Nm,

τ̄1 = 0.05Nm, g1 =
{
1, if t ≤ 20

0.5, otherwise
, g2 =

{
1, if t ≤ 35

0.6, otherwise
, and g3 =

{
1, if t ≤ 25

0.5, otherwise
, when

conducting simulation. Moreover, all the control gains
are chosen the same as given in the preceding case.

Figures 8 and 9 illustrate the attitude and the rotation
velocity revealing that the OBFFTAC obtains much
faster convergence rate for the case of having actua-
tor uncertainty. The control performance is consider-
ably degraded under the FTAC. The convergence time
obtained by the FTAC significantly increases because
of its longer rotation path.

According to Figs. 10 and 11, it can concluded that
the OBFFTAC obtains the most accurate attitude con-
trol. This is due to the observer-based estimation law
(16). The comparison result is listed in Table 2. The
proposed strategy, in contrast to the FTAC, success-
fully deals with the actuator uncertainty. It is con-
firmed that the control performance of the FTAC was
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Table 1 Performance comparison in the case of normal actuators

Controller Euler angles Angular velocity Convergence time∗

OBFFTAC 5.5 × 10−6 4 × 10−7 44.6

FTAC 4 × 10−3 3 × 10−5 51.2

Improvement percentage, % 98.25 98.67 12.89

∗The convergence time is defined as the time after which ||θ || ≤ 6 × 10−3 (deg) and ||ω|| ≤ 4 × 10−5(deg/s) are satisfied
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Fig. 8 The attitude angles in the case of actuator uncertainty

significantly deteriorated while the actuators experi-
enced uncertainty. The attitude control results of the
OBFFTAC are roughly similar to that of the previous
case. However, the FTAC failed to drive the attitude
angles and the rotation velocity to the desired region.
The superiority of the OBFFTAC over the FTAC was
highlighted by this scenario.

The control power consumed is shown in Fig. 12.
Themaximum required control efforts for that two con-
trollers are almost identical showing the superior con-
trol performance of the OBFFTAC. The lumped uncer-
tainties along with their estimations are illustrated in
Fig. 13. It is observed from the estimation errors in
Fig. 14 that the total uncertainties are precisely recon-
structed in a finite time, which is independent of the
initial estimation errors. When a sudden actuator fail-
ure happened, the observer successfully estimated it
to preserve stability and control performance. Such
results confirm the claims presented in Theorem 3 that
the suggested estimation law can estimate the lumped
uncertainties in a fixed time. This is also the reason that
superiority can be obtained from the OBFFTAC.

5 Conclusion

Although there exist several approaches regarding flex-
ible spacecraft attitude control with accurate pointing,
few can achieve fixed-time convergence of the system
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Fig. 9 The angular velocity in the case of actuator uncertainty
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states in the face of actuator uncertainty. This work pre-
sented an estimation-based strategy for flexible space-
craft attitude stabilization maneuvering. In particular,
the control law incorporated a fast fixed-time observer
for reconstructing the uncertain dynamics, and a robust

123



Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty 2515

Table 2 Performance comparison in the case of actuator uncertainty

Controller Euler angles Angular velocity Convergence time∗

OBFFTAC 7 × 10−6 6 × 10−7 44.6

FTAC 0.2 4 × 10−4 ∞
Improvement percentage, % 99.99 99.85 100

∗The convergence time is defined as the time after which ||θ || ≤ 6 × 10−3 (deg) and ||ω|| ≤ 4 × 10−5(deg/s) are satisfied
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Fig. 12 The control torques in the case of actuator uncertainty
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Fig. 13 Uncertain dynamics and its estimation in the case of
actuator uncertainty

fixed-time controller. This was developed via a nonsin-
gular terminal sliding mode surface providing a faster
converging rate when compared to the existing fixed-
time surfaces.

It should be stressed that a faster convergence rate
leads to more control power. Actuator saturation may
occur. This issue should be explicitly addressed in the
future. Otherwise, system instability may be resulted.
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Fig. 14 The estimation error of the uncertainty in the case of
actuator uncertainty

Moreover, consideringmeasurement noise, robust con-
troller should also be designed.
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Appendix A (Proof of Lemma 1)

Defining a new variableW = y1−pk , it can be obtained
from (9) that

Ẇ = − (1 − pk) y−pk
(
ξ (y)

1
k αy p + ξ (y)

1
k βyλ

)k

= − (1 − pk)
(
ξ (y)

1
k α + ξ (y)

1
k βW η

)k

(28)

where η = λ−p
1−pk .

Since 1 − pk > 0 and ξ (y) > 1, it follows from
(28) that

Ẇ ≤ − (1 − pk)
(
α + βW η

)k (29)

123



2516 L. Cao et al.

Applying the result in [39] and the comparison prin-
ciple [44], it can be proved from (29) that W is fixed-
time stable. Moreover, solving (28), one can get the
settling time as

T1 = 1

(1 − pk)

∫ W0

0

1(
ξ (y)

1
k α + ξ (y)

1
k βW η

)k dW

= 1

(1 − pk)

(∫ W0

1

1

ξ (y)
(
α + βW η̄

)k dW

+
∫ 1

0

1

ξ (y)
(
α + βW

1
k

)k dW

⎞
⎟⎠

(30)

where η̄ = q−p
1−pk and W0 = (y(0))1−pk .

If ξ( y) = 1, then one has

T ′
1 = 1

(1 − pk)

(∫ W0

1

1(
α + βW η̄

)k dW

+
∫ 1

0

1(
α + βW 1/k

)k dW
) (31)

Since 1 ≤ ξ(y) ≤ a, then 1/a ≤ 1/ξ(y) ≤ 1. Hence,
for all W0, it is concluded that

T1 < T ′
1 (32)

On other hand, T ′
1 is also the settling time of the fixed-

time system given in [39]. To this end, one can prove
that the settling time provided by the proposed system
(9) is less than [39]. The convergence rate of the system
(9) is faster than [39].

From (30), it be proved that T ′
1 is bounded as

T ′
1 ≤ 1

(1 − pk)

(∫ W0

1

1

βkW η̄k
dW +

∫ 1

0

1

αk + βkW
dW

)

≤ 1

(1 − pk)

(
1 − W 1−η̄k

0

βk (η̄k − 1)
+ 1

βk
ln

(
1 + (β/α)k

))

(33)

Since η̄k > 1 and W0 > 0, one has

T ′
1 ≤ 1

βk (qk − 1)
+ 1

βk (1 − pk)
ln

(
1 + (β/α)k

)

(34)

which does not depend on the initial condition.

Appendix B (Proof of Theorem 1)

It is obtained from (13) and (14) that the estimation
error of the observer satisfies

ė = ż − ˙̂z = ż + l2l3 ẑ − 1

l2
ẏ − l3 y

−
(

ξ(e)1/k1α1sig(e)
2p1k1−1

k1

+ ξ(e)1/k1β1sig(e)
2λ1k1−1

k1

)k1

= −l2l3e −
(

ξ(e)1/k1α1sig(e)
2p1k1−1

k1

+ ξ(e)1/k1β1sig(e)
2λ1k1−1

k1

)k1

(35)

Define a Lyapunov candidate function as V1 =
0.5eTe, it leaves its time derivative as

V̇1 = eT ė ≤ −eT
(

ξ(e)1/k1α1sig(e)
2p1k1−1

k1

+ ξ(e)1/k1β1sig(e)
2λ1k1−1

k1

)k1

≤ −
3∑

i=1

(
ξ(e)1/k1α1 |ei |

2p1k1−1
k1

+ 1
k1

+ ξ(e)1/k1β1 |ei |
2λ1k1−1

k1
+ 1

k1

)k1

≤ −
(
ξ1/k1μ1V

p1
1 + ξ1/k1μ2V

λ1
1

)k1

(36)

Applying Lemma 1 and the comparison principle [44],
it is concluded that V (e) ≡ 0 is met for t ≥ Te, where
the settling time Te satisfies (15).
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Appendix C (Proof of Theorem 2)

From (16) and (17), it follows that

de = dl − l1x2 + M−1(x1) (C1(x1, x2)x2

+ C2(x1, x2)) − d̂l + l1x2

− M−1(x1) (C1(x1, x2)x2 + C2(x1, x2))

= dl − d̂l
(37)

Substituting (17) in (37) gives

de = dl − l1l2 ẑ + ẏ
l2

= dl − l1l2 ẑ − l1l2z + l2dl
l2

= l1e
(38)

Because e(t) ≡ 0 is achieved in Theorem 1 for t ≥ Te,
de(t) = 0 is achieved for t ≥ Te. It is inferred that d is
estimated utilizing dest after Te.

Appendix D (Proof of Theorem 3)

When S = 0 is reached, from (19), one has

ẋ1i = − (h(x1i ))
1/γ sig1/γ (x1i )

= −
(
ξ(x1)1/k2α1 |x1i |p2−1/k2γ

− ξ(x1)1/k2β2 |x1i |λ2−1/k2γ
)k2

sig1/γ (x1i )

= −
(
ξ(x1)1/k2α2 |x1i |p2

− ξ(x1)1/k2β2 |x1i |λ2
)k2

sgn (x1i )

(39)

Defining a new variable �i = |x1i |1−p2k2 , (39) is
expressed as

�̇i = − (1 − p2k2) ẋ1i |x1i |−p2k2 sgn(x1i )

= − (1 − p2k2) |x1i |−p2k2
(
ξ(x1)1/k2α2 |x1i |p2

+ ξ(x1)1/k2β2 |x1i |λ2
)k2

= − (1 − p2k2)

(
ξ(x1)

1
k2 α2 + ξ(x1)

1
k2 β2�

η2
i

)k2

(40)

where η2 = λ2−p2
1−p2k2

. Similar to Lemma 1, the system
state converges to zero after a fixed time given by (21).

Appendix E (Proof of Theorem 4)

Select another Lyapunov candidate function Vs =
STS. Applying (8), one can calculate the time deriva-
tive of Vs as

V̇s = 2ST
(
Ḣ(x1)x1 + H(x1)ẋ1

+ γ diag
(
|x2i |γ−1

)

×
(
−M−1(x1) (C1(x1, x2)x2

+C2(x1, x2))

+ u(x1) + d(x1,χ ,ω)))

(41)

Substituting the controller (23) into (41) yields

V̇s = 2

ρ0
STdiag

(
μσ

(
|x2i |γ−1

))

×
(
ξ1/k3α3sig(S)(2p3k3−1)/k3

+ ξ1/k3β3sig(S)(2λ3k3−1)/k3
)k3

+ γ STdiag
(
|x2i |γ−1

)
(d − dest)

(42)

Since de = d − dest = 0 for t > Te, (42) can be
simplified as

V̇s = 2

ρ0
STdiag

(
μσ

(
|x2i |γ−1

))

×
(

ξ
1
k3 α3sig(S)(2p3k3−1)/k3

+ ξ
1
k3 β3sig(S)(2λ3k3−1)/k3

)k3

≤−
3∑

i=1

(
ξ

1
k3 α3ρ

− 1
k3

0 μ

1
k3
σ

(
|x2i |γ−1

)
|Si |

2p3k3−1
k3

+ 1
k3

+ ξ
1
k3 β3ρ

− 1
k3

0 μ

1
k3
σ

(
|x2i |γ−1

)
|Si |

2λ3k3−1
k3

+ 1
k3

)k3

≤ −
(

ξ
1
k3 μ3V

p3 + ξ1/k3μ4V
λ3

)k3

(43)

where μ3 = α3ρ
−1/k3
0 μ

1/k3
σ

(|x2i |γ−1) and μ4 =
β3ρ

−1/k3
0 μ

1/k3
σ

(|x2i |γ−1). Applying the comparison
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principle [44] and the result in Lemma 1, it is ready to
conclude that Vs ≡ 0 after the settling time T1 satisfy-
ing (26).

After reaching the sliding surface S = 0, it can be
obtained from Theorem 2 that the states will be zero
after the settling time Ts . Then, one can prove that the
attitude Euler angles and the rotation velocity are fixed-
time stable with the settling time Tc satisfying Tc <

Ts + T1 regardless any initial states.
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