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Abstract An electromechanical coupled distributed
parameter model is derived for a broadband piezoelec-
tric energy harvester with nonlinear magnetic inter-
action and inductive–resistive interface circuit in the
framework of the Hamilton’s principle and Gauss law.
The approximate analytical solutions of the responses
are obtained based on the equivalent mechanical repre-
sentation and harmonic balance method. They are val-
idated by experiment data and numerical simulations.
The cubic-function discriminant of the analytical solu-
tion is introduced to determine the nonlinear bound-
aries of multiple solutions and the bandwidth with high
harvested power. The stability of the multiple solutions
is analyzed through Jacobi matrix of the modulation
equation. The upward and downward sweep experi-
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ments exhibit the bistable and jump phenomena in the
hardening range. The state plane of the modulation
equation is used to show and explain why different ini-
tial conditions yield different stable dynamic motions
and exhibit jump phenomenon. Multi-hardening and
multi-softening nonlinearities are noted due to themul-
tiply resonances by the inductance in the circuit and
nonlinear characteristics of magnetic interaction in the
structure. The analytical expression of the determi-
nant of the nonlinear magnetic coefficient with dou-
ble root of the response is derived to effectively char-
acterize the observed phenomena. Different nonlinear
types, e.g., typical nonlinear hardening and softening
with two stable and one unstable solutions, and special
nonlinear hardening and softening with one stable and
one unstable solutions, are noted and investigated. The
inductance and cubic magnetic coefficient affect the
number and type of the nonlinearities. Multi-hardening
or multi-softening nonlinearities enhance the perfor-
mance of the piezoelectric energy harvester since its
bandwidth is significantly broadened to cover up to
40Hz in the low-frequency range.

Keywords Broadband energy harvesting · Multi-
hardening · Multi-softening · Upward and downward
sweep · Basin boundary · Cubic-function discriminant
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1 Introduction

Energy harvesting technologies aim to convert unused
ambient energy into electrical energy. Particularly,
vibrational energy harvesting from mechanical vibra-
tions [1], structural oscillations [2] or biological con-
tractions [3] provides alternative power for structural
health monitoring, wildlife tracking and or pacemak-
ers among different applications. The direct piezoelec-
tric effect is usually exploited in vibrational energy
harvesting due to strong electromechanical coupling,
large energy density and high-voltage output [4]. Early
designs of the piezoelectric energy harvesters are based
on linear theory. The most significant shortcoming of
operating in the linear regime is the limitation of energy
harvesting over a narrow bandwidth. In contrast to har-
vesters based on the linear performance, harvesters
capable of exploiting nonlinear aspects increase the
mutual coupling between the structure and the vibra-
tion source, which can potentially lead to broadened
bandwidth and improved performance of piezoelectric
energy harvesters [5–7].

One common approach of introducing the nonlin-
earity is to utilize magnetic interactions. Stanton et al.
[8] designed a nonlinear energy harvester with both
hardening and softening responses through tuning the
position of the stationary magnets with respect to the
tip magnet of the cantilever beam. Erturk et al. [9] pro-
posed a similar piezomagnetoelastic device with two
fixed magnets interacting with a tip magnet. Tang et
al. [10] designed a nonlinear piezoelectric energy har-
vester with amagnetic oscillator interactingwith the tip
magnet of the cantilever beam.Zhouet al. [11] designed
a piezomagnetoelastic energy harvester with rotatable
external magnets. Fan et al. [12] presented a bidirec-
tional nonlinear piezoelectric energy harvester com-
posed of two magnetically coupled cantilever beams
that deflect in orthogonal directions. Su et al. [13]
designed a tridirectional piezomagnetoelastic energy
harvester for expanded broadband performance in three
orthogonal directions. Kim et al. [14] investigated the
nonlinear dynamics of an energyharvester composedof
a bimorph cantilever beam with three permanent mag-
nets using the methods of multiple scales and harmonic
balance. A multi-mode piezoelectric energy harvester
with nonlinear magnetic force and geometric nonlin-
earity was presented [15]. High-voltage output with
broad band performance was obtained. A piezoelec-
tric energy harvesting array was proposed with mag-

netically coupled effect [16]. It was demonstrated to
satisfy the power requirement of the wireless sensor
node. Chen et al. [17] proposed an L-shaped piezoelec-
tric energy harvester with magnetic interaction. Com-
pared to its counterpart without internal resonance,
the L-shaped 1:2 internally resonant vibration energy
harvester greatly broadened the bandwidth. Harmonic
balance method was used to analyze the nonlinear
response of the magnetoelectric energy harvester [18].
A semi-analytical approach based on harmonic balance
method was later proposed [19]. Energy harvesting
studies on L-shaped structures [20,21], autoparamet-
ric vibration absorber with internal resonance [22] and
cantilever-beam structure with liquid filled container as
the proof mass [23] were also performed for expand-
ing the bandwidth of the energy harvesting frequency
range.

In the recent decade, the nonlinear bistable charac-
teristic has been utilized to broaden the energy harvest-
ing bandwidth. A rotational bistable energy harvester
with frequency up-conversion capabilitywas proposed.
Kinetic energy with low frequency was reported to be
effectively harvested [24]. To improve the wave energy
conversion result, a bistable performance realized by
magnetic interactions was introduced [25]. The capture
ratio of the bistable wave energy harvester was about
twice its linear counterpart. For large-amplitude impul-
sive vibration energy scavenge, a bistable energy har-
vester with plucking effect was presented [26]. Com-
pared to the conventional bistable harvesters, a new
bistable energy harvester with the elastic magnifier
was observed to exhibit higher broadband electric out-
puts [27]. Moreover, a lever-based bistable energy har-
vester was proposed [28]. The nonlinear characteriza-
tions showed that the lever-based bistable energy har-
vester was superior than the bistable energy harvester
without the lever effect.

From the electric aspect, bandwidth improvement
was also achieved by using the inductive–resistive cir-
cuit. Such approach was called as the shunted piezo-
electric damping method in vibration control [29] and
then used for broadband piezoelectric energy harvest-
ing. The effects of the inductance on the band width
and power output were investigated [30]. Inductive–
resistive impedance matching was proposed with the
equivalent circuit method [31]. The optimal perfor-
mance was realized by adjusting the inductance and
resistance depending on the external frequency. Sim-
ilar broadband piezoelectric energy harvesters were
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designed based on gradient optimization method [32].
An electromechanical coupled distributed parameter
model was proposed for the piezoelectric energy har-
vester with the inductive–resistive circuit [33]. Double
resonance zones were found for broad band energy har-
vesting.

Nonlinear dynamic studies are crucial for broad-
band ambient energy harvesting [34]. Successful appli-
cations include powering pacemakers from heartbeat
[35], powering wearable devices from human motion
[36] and powering wireless sensor nodes from ship
and bridge vibration [37]. To the authors’ knowledge,
the combined effects of the mechanical and electri-
cal nonlinearities with the magnetic interaction and
inductive–resistive circuit have not been investigated
for broadband bistable energy harvesting. The com-
plex electromechanical coupled nonlinear phenomena
of such a system have not been revealed. To cover this
gap, an electromechanical coupled distributed parame-
termodel of a piezoelectric energyharvesterwith a non-
linearmagnetic force and a series-connected inductive–
resistive circuit is proposed. The nonlinear boundaries
for multiple solutions are then determined based on the
discriminant of the cubic function. The Jacobimatrix of
themodulation equations is then proposed to determine
the stability of the multiple solutions. The upward and
downward sweep experiments are performed. Effects
of the inductance and cubic magnetic coefficients on
the performance of the bistable energy harvester are
discussed.

2 Mathematical modeling

As shown in Fig. 1, the proposed piezoelectric energy
harvester consists of a partially covered piezoelectric
cantilever beam that is fixed to a base structure under-
going the harmonic excitation in the y direction. The tip
mass of the cantilever beam is a magnet that interacts
repulsively with two other magnets of the system. The
relative positions of the three magnets can be adjusted
by the rotation, lifting and shifting of the two mag-
nets. The piezoelectric sheet bonded on the surface
of the beam substrate layer is connected to a resis-
tor and an inductor. To establish the electromechanical
coupled distributed parameter model for the proposed
energy harvester, the extended Hamilton principle [38]
is employed which yields

∫ t2

t1

[δ(T − V + Wnc)]dt = 0 (1)

where T , V and Wnc are, respectively, the kinetic
energy, potential energy and virtual work due to the
nonconservative forces. The kinetic energy T and
potential energy V are expressed as

T = 1

2

∫ l

0
m(x)

(
∂urel(x, t)

∂t
+ dub(t)

dt

)2

dx

+1

2
Mt

(
∂urel(l, t)

∂t
+ lc

∂2urel(l, t)

∂x∂t

+dub(t)

dt

)2

+ 1

2
Ic

(
∂2urel(l, t)

∂x∂t

)2

(2)

V = 1

2

∫ l

0
E I (x)

(
∂2urel(x, t)

∂x2

)2

dx (3)

wherem(x) is the mass of the beam per unit length and
expressed as m(x) = bρshs + 2bρphp(H(x) − H(x −
lp)), b is thewidth of the substrate and piezoelectric lay-
ers, ρs and ρp are, respectively, the density of the sub-
strate material and piezoelectric sheet, hs and hp are,
respectively, the thicknesses of the substrate layer and
piezoelectric layer, lp is the length of the piezoelectric
layer, H(x) is the Heaviside step function, urel(x, t)
represents the displacement of the piezoelectric can-
tilever beam in the y direction and is a function of the
coordinate x and time t , ub(t) denotes the displacement
of the base frame in the y direction, Mt is the mass of
the tipmagnet, l is the total length of the beam structure,
lc denotes the half length of the tip magnet, Ic repre-
sents the rotational inertia of the tip magnet relative
to the center of the tip magnet, E I (x) is the stiffness
relative to the center of the cross section of the beam
and given by E I (x)= 1

12bEshs3 + 2
3bEp[(hp + hs

2 )
3 −

hs3

8 ](H(x) − H(x − lp)), where Es and Ep are the
Young’sModulus of the substrate and piezoelectric lay-
ers, respectively.

The virtual work due to the nonconservative forces
is given by

Wnc = Wele + Wdamp + Wmag (4)

whereWele,Wdamp andWmag are the virtual works due
to the electric, damping and magnetic forces, respec-
tively. The virtual work due to the electric force Wele

is expressed as

Wele= −
∫ l

0
Mele

(
∂2urel(x, t)

∂x2

)2

dx (5)
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Fig. 1 Schematic of the
broadband piezoelectric
energy harvester

where Mele is the moment due to the electric effect. For
parallelly connecting the upper and lower piezoelectric
layers, its expression is calculated as

Mele = b2

(∫ −hs/2

−hs/2−hp
e31

V(t)

hp
ydy

+
∫ hp+hs/2

hs/2
−e31

V(t)

hp
ydy

)

(
H(x) − H(x − lp)

)
(6)

where V (t) is the voltage of the piezoelectric layer,
e31 = Epd31 is the piezoelectric stress coefficient
where d31 is piezoelectric strain coefficient. The virtual
work due to the damping force Wdamp is presented as

δWdamp =
∫ l

0
Fd(x, t)δurel(x, t)dx (7)

where Fd(x, t) is the damping force of the cantilever
beam and expressed as Fd(x, t) = −ca

∂urel(x,t)
∂t −

cs I
∂5urel(x,t)

∂x4∂t
. In this expression, cs and ca are, respec-

tively, the viscous strain and air damping coefficients
of the cantilever beam. The virtual work due to the
magnetic force Wmag is given by

δWmag = Fmagδurel(l, t) (8)

where Fm is the magnetic force and modeled as Fm =
μvrel(l, t) + λvrel(l, t)3, where μ and λ are, respec-
tively, the linear and cubic magnetic empirical coeffi-
cients [11].

Substituting Eq. (2–4) into the extended Hamilton
equation (1) and collecting all termswith the virtual dis-
placement δurel(x, t), the electromechanical coupled
distributed parameter model for such an energy har-
vester is then derived as:

E I (x)
∂4urel(x, t)

∂x4
+ cs I (x)

∂5urel(x, t)

∂x4∂t

+ca
∂urel(x, t)

∂t

+m(x)
∂2urel(x, t)

∂t2

+
(
dδ(x)

dx
− dδ(x − lp)

dx
)ϑp(L İ (t) + RI (t)

)

= [μurel(l, t) + λurel(l, t)
3]δ(x − l) + [m(x)

+Mtδ(x − l)]ab cos(ωbt) (9)

The first term on the left hand side of Eq. (9) represents
the resistance to the bending stiffness of the beam. The
second term is due to strain rate dampingwith cs denot-
ing the viscous strain damping effect of the cantilever
beam. The third term is due to the air damping effect
around the beam structure. The fourth term is the inertia
term of the cantilever beam. The last term on the left of
the Eq. (9) is the electromechanical coupled term of the
resistive–inductive interface circuit, where δ(x) is the
Dirac delta function andϑp is the piezoelectric coupling
termgiven byϑp = −e31b(hp+hs)where e31 = Epd31
is the piezoelectric stress coefficient, d31 is piezoelec-
tric strain coefficient, R is the load resistance, L is the
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inductance and I (t) is the generated current through
the interface circuit. The first term on the right hand
side of Eq. (9) is the magnetic force. The second term
is the excitation force, where ab is the base acceleration
amplitude,ωb is the base excitation frequency. Besides,
four boundary conditions are obtained from the terms
of the solved extended Hamilton equation at x = 0 and
x = l as

urel(x+, t) = 0, ∂urel(x+,t)
∂x = 0; for x = 0

EI(x−)
∂2urel(x−,t)

∂x2
+ (Mtlc

∂2urel(x−,t)
∂t2

+ It
∂3urel(x−,t)

∂x∂t2
) = 0,

∂
∂x

(
EI(x−)

∂2urel(x−,t)
∂x2

)
− Mt (

∂2urel(x−,t)
∂t2

+ lc
∂3urel(x−,t)

∂x∂t2
) = 0. for x = l

(10)

where the superscripts − and + denote, respectively,
the left and right parts close to the separation points, It
represents the rotational inertia of the tip magnet rel-
ative to the end of the beam structure. Inspecting the
above equation, the inertia of the tip mass has been
considered in the boundary condition at x = l.

Since the two pieces of piezoelectric sheets are par-
allelly connected, Gauss law [39] is introduced to relate
the electrical variables with the mechanical deforma-
tion as following:

d

dt

∫
A
D · n dA = d

dt

∫
A
D3 dA = I (t)

2
(11)

whereD is the electric displacement vector and n is the
normal vector to the plane of the beam. The electric
displacement component D3 is given by

D3(x, t) = e31ε11(x, t) + εs33E3 (12)

where ε11(x, t) = − 1
hp

∫ hs/2+hp
hs/2

∂2urel(x,t)
∂x2

ydy =
− hs+hp

2
∂2urel(x,t)

∂x2
is the average strain component in the

piezoelectric layers, εs33 is the permittivity component
at constant strain and E3 is the electric field which is
expressed as E3 = −V (t)/hp. Substituting Eq. (12)
into Eq. (11), the coupling electrical equation is calcu-
lated as

−e31(hp + hs)b
∫ lp

0

∂3urel(x, t)

∂t∂x2
dx

−2εs33blp
hp

d(L İ (t) + RI (t))

dt
= I (t). (13)

The first term on the left hand side of Eq. (13) is the
electromechanical coupling term. The second term is
the current flow through the capacitor of the piezoelec-
tric material.

The Galerkin procedure is then employed to dis-
cretize the distributed parameter models [33]. The dis-
placement of the beam, urel(x, t), is then written as

urel(s, t) =
N∑
i=1

φi (s)qi (t) (14)

where qi (t) and φi (s) are the ith modal coordinate and
shape of the cantilever beam, respectively. The exact
mode shape of the beam is written as

φi j (x) = Ai j sin βi j x + Bi j cosβi j x

+Ci j sinh βi j x + Di j cosh βi j x, j = 1, 2 (15)

where i represents the ith mode, j = 1 is for
0 < x ≤ lp, j = 2 is for lp < x ≤ l, the
coefficients of βi1 and βi2 are related by βi1 =
4
√
E I (l)m(0)/(E I (0)m(l))βi2, the coefficients Ai j ,

Bi j , Ci j , Di j are determined from the boundary equa-
tions (10) and the equal displacement, rotational angle,
bending moment and shear force between two sides at
x = lp. After considering Eq. (14), these conditions are
simplified as below

φi1(0) = 0, φ′
i1(0) = 0, φi1(lp) = φi2(lp),

φ′
i1(lp) = φ′

i2(lp),
E I (lp−)φi1

′′(lp) = E I (lp+)φi2
′′(lp),

E I (lp−)φ′′′
i1(lp) = E I (lp+)φ′′′

i2(lp),
E I (l)φ′′

i2(l) − ω2
i Mt lcφi2(l) − ω2

i Itφ
′
i2(l) = 0,

E I (l)φ′′′
i2(l) + ω2

i Mt lcφ′
i2(l) + ω2

i Mtφi2(l) = 0.

(16)

where the prime indicates the derivative with respect to
x , ωi denotes the ith natural frequency of the cantilever
beam. To make the equivalent total mass of the govern-
ing equation to be equal to 1, the following normalized
orthogonality conditions are chosen as∫ lp

0
m(x)φq1(x)φr1(x)dx

+ ∫ l
lp
m(x)φq2(x)φr2(x)dx + Itφq2

′(l)φr2
′(l)

+Mtφq2(l)φr2(l) + Mtφq2
′(l)lcφr2(l)

+Mtφq2(l)lcφr2
′(l) = δqr∫ lp

0
E I (x)φq1

′′(x)φr1
′′(x)dx

+ ∫ l
lp
E I (x)φq2

′′(x)φr2
′′(x)dx = δqrω

2
r

(17)
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where q and r represent the modes, and δqr is the Kro-
necker delta, which is defined as unity when q is equal
to r and zero otherwise. With the experimental work
shown in Sect. 4, the first three natural frequencies
are determined as 16.35 rad/s, 271.14 rad/s and 583.57
rad/s. Therefore, the second or third natural frequency
is much larger than the first one. In the current research
work, the effects of the magnetic force and inductance
on the nonlinear properties of the system are focused
to be analyzed. These nonlinear performances mainly
appear near the natural frequency of the energy har-
vester. To simplify the nonlinear simulation, only the
first natural frequency is considered in the following
analysis. Substituting Eq. (14) into Eqs. (9) and (13)
and using Eqs. (15–17), the distributed parameter mod-
els of the first mode shape are reduced as

q̈(t) + 2ξωq̇(t) + ω2q(t) − θp(L İ (t) + RI (t))

= M̄ab cosωbt + αq(t) + βq3(t) (18)

Cp(L Ï (t) + R İ (t)) + I (t) + θpq̇(t) = 0 (19)

where q(t) is the first modal coordinate, ξ is the struc-
tural damping ratio, ω is the first natural frequency
of the cantilever beam, θp = φ′(lp)bpEpd31(hp +
hs) is the electromechanical coupling factor, M̄ =∫ l
0 m(x)φ(x)dx + Mtφ(l) is the equivalent mass of
the cantilever beam, φ(x) is the first mode shape of
the cantilever beam, α = μφ(l)2 is the equivalent lin-
ear magnetic coefficient, β = λφ(l)4 is the equivalent

cubic magnetic coefficient, and Cp = 2εs33bplp
hp

is the
capacitance of the piezoelectric sheets. For Eq. (18),
it is obtained through integrating Eq. (9) times φ(x)
along the beam length from x = 0 to x = l. Based on
the normalized orthogonality conditions shown in Eq.
(17), the coefficients of mass and stiffness are, respec-
tively, equal to 1 andω2. In other words, this distributed
parameter model has been normalized through the
mode shape φ(x) and thus every term of Eq. (18) seems
to be divided by the equivalent total mass of the system.

Based on the electromechanical decoupled method
[40], the relationships between the mode coordinate
q(t) and the electric current I (t) can be determined by
the linear electrical equation (19). After that, the elec-
tric coupled term−θp(L İŝ(t)+RIŝ(t)) in the mechan-
ical domain is treated as additional damping and elastic
forces. The equivalent structure representation for the
piezoelectric energy harvester with the R–L circuit is
then written as

q̈(t) + (2ξω + ce)q̇(t) + �2q(t) − βq(t)3

= M̄ab cosωbt (20)

where themodified frequency� and electrical damping
ce due to the electromechanical coupling are obtained
as

� =
√√√√ω2 + Cpω

2
bL

2 − L + CpR2

(Cpωb R)2 + (Cpω
2
bL − 1)2

θ2pω2
b − α, (21)

ce = Rθ2p

(Cpωb R)2 + (Cpω
2
bL − 1)2

. (22)

It is noted from Eq. (20) that the resonance happens
when � ≈ ωb. Inspecting Eq. (21), the modified fre-
quency � is dependent on the external frequency ωb

unless L = 0. For the case of L �= 0, there may exist
multiple solutions of ωb after substituting � = ωb into
Eq. (21). In other words, multiple resonant peaks will
appear in the energy harvesting system since the induc-
tance L is introduced to the electrical circuit. After
solving q(t) from Eq. (20), the tip displacement and
harvested power are obtained by the following rela-
tionships.

Atip = φ(l)q0, P = ce(ωbq0)
2 (23)

where q0 is the amplitudes of q(t).

3 Nonlinear analysis

The method of harmonic balance is implemented to
analytically determine the nonlinear response of the
energy harvester and their effects on the broadening of
the harvester’s response. Inspecting Eq. (20), the solu-
tion ofq(t) is assumed asq(t) = q0 cos(ωbt+ϕ)where
q0 and ϕ are the respective amplitude and phase angle
of q(t). Substituting the above expression into Eq. (20),
the implicit functions for q0 and ϕ are obtained as

(�2 − ω2
b)q0 − 3β

4 q30 = M̄ab cosϕ

−(2ξω + ce)ωbq0 = M̄ab sin ϕ.
(24)

Using x to replace q20 and eliminating the variable ϕ,
Eq. (24) is rewritten as a cubic function.

9β2

16
x3 − 3β

2

(
�2 − ω2

b

)
x2

+
[(

�2 − ω2
b

)2 + (2ξω + ce)
2ω2

b

]
x − (

M̄ab
)2 = 0. (25)

When β is zero, the coefficients of the cubic and
quadratic terms are zero. The solution of the above
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equation becomes unique. That is because the sys-
tem turns out to be linear as shown in Eq. (18). In
the practical cases, the cubic magnetic coefficient λ

is usually not equal to zero. As such, only the case of
β �= 0will be discussed in the followingwork. The dis-
criminant for the number and type of the real roots is
expressed as�cubic = 18abcd−4b3d+b2c2−4ac3−
27a2d2, where a, b, c and d are the coefficients of
the cubic, quadratic, linear and constant terms, respec-
tively. There are three distinct real roots of x when
�cubic > 0. If �cubic = 0, Eq. (25) has a real double
root and a real simple root. At this situation, the cor-
responding external frequency is denoted as ω0

b . When
�cubic < 0, only one real root exists. From the above
discussion, it is noted that the number of real solutions
will change at �cubic = 0. In other word, bifurcation
occurs at the point of �cubic = 0. As such, only the
case of �cubic = 0 is focused for the nonlinear theoret-
ical analysis in this section. �cubic is dependent on six
parameters: two electrical variables (R, L), two mag-
netic coefficients (α, β) and two excitation parameters
(ωb and ab). In thiswork, the cubicmagnetic coefficient
β and the electric inductance L are chosen to analyze
the nonlinear responses of the system at specific load
resistances and excitations.

3.1 Effect of cubic magnetic coefficient

It is noted from the distributed parameter model of the
system (Eqs. 18–19), the coefficient of the only non-
linear term is β. As such, β has the most important
effect on the nonlinear properties of the system and is
analyzed first in this subsection. The discriminant for
the real-root number and type is calculated as a quartic
polynomial of β as

�cubic = −2187

256
χ4β4 + 1

16

(
27ϑ2 + 243κ2

)
ϑχ2β3

−9

4
κ2

(
ϑ2 + κ2

)2
β2 (26)

where ϑ = �2 − ω2
b, κ = ωb (ce + 2ξω) and χ =

M̄ab.
For x or q20 havingmultiple solutions of a single root

and a double root, �cubic is required to be zero, which
yields the following quadratic polynomial equation of
β.

η1β
2 + η2β + η3 = 0 (27)

where the coefficients ofη1,η2 andη3 are givenbyη1 =
− 2187

256 χ4, η2 = 1
16χ

2ϑ
(
27ϑ2 + 243κ2

)
and η3 =

− 9
4κ

2
(
ϑ2 + κ2

)2
. β is then solved from Eq. (27) as

β1,2 = −η2 ± √
�β

2η1
. (28)

The corresponding nonlinear magnetic empirical coef-
ficient λ is obtained as

λ1,2 = −η2 ± √
�β

2η1φ(l)4
(29)

where �β = 729
256χ

4(ϑ + √
3κ)3(ϑ − √

3κ)3. Since
�cubic becomes zero as long as Eq. (28) or Eq. (29)
is satisfied, Eq. (28) or Eq. (29) is the sufficient and
necessary condition for the cyclic-fold bifurcations of
the energy harvester. For the existence of β to satisfy
�cubic = 0, �β must be greater than or equal to zero,
which renders

ϑ ≥ √
3ϕ or ϑ ≤ −√

3ϕ. (30)

3.2 Effect of inductance on �β

In this work, the inductance L is designed in the electri-
cal circuit to broadband the range of the high-efficient
energy harvesting with the magnetic force. In this sub-
section, the effect of L will be analyzed on the nonlinear
properties of the system through the parameter β. It is
noted form Eq. (28) that �β = 0 is the critical point
to determine the numbers of β for �cubic = 0. The
unique β for �cubic = 0 (�β = 0) yields the roots of
the inductance L representing the softening behavior

Ls1(+,−)
= −as2 ± √

�sL1

2as1
(31)

with

as1 = Cpω
4
b

[
−αCp + θ2p

+Cp

(
ω2 − ω2

b − 2
√
3ξωωb

)]

as2 = ω2
b

[
2αCp − θ2p

+2Cp

(
−ω2 + ω2

b + 2
√
3ξωωb

)]

as3 =
(
1 + C2

p R
2ω2

b

) (
−α + ω2 − 2

√
3ξωωb

)

− ω2
b − CpR

2ω2
b

(
−θ2p + Cpω

2
b

)
− √

3Rθ2pωb

�sL1 = a2s2 − 4as1as3

(32)

and for the hardening behavior

Ls2(+,−)
= −bs2 ± √

�sL2

2bs1
(33)
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with

bs1 = Cpω
4
b

[
−αCp + θ2p

+Cp

(
ω2 − ω2

b + 2
√
3ξωωb

)]

bs2 = ω2
b

[
2αCp − θ2p

+2Cp

(
−ω2 + ω2

b − 2
√
3ξωωb

)]

bs3 =
(
1 + C2

p R
2ω2

b

) (
−α + ω2 + 2

√
3ξωωb

)

− ω2
b + CpR

2ω2
b

(
θ2p − Cpω

2
b

)
+ √

3Rθ2pωb

�sL2 = b2s2 − 4bs1bs3.

(34)

Inspecting Eqs. (31–34), the critical values of Ls are
independent of the amplitude of the external base accel-
eration ab. In fact,�β = 0 becomes zero as long as Eq.
(31) or Eq. (33) is satisfied. Therefore, Eqs. (31) and
(33) are the sufficient and necessary conditions with
which the equality of Eq. (30) holds. These two equa-
tions determine the number of real values of β or λ as
shown in Eqs. (28) or (29). However, they are not the
sufficient conditions for the cyclic-fold bifurcations of
the energy harvester.

3.3 Stability

To determine the stability of the equilibrium solu-
tions of q0 and ϕ from Eq. (24), it is assumed that
γ = ωbt + ϕ. The expression of q(t) is rewritten as
q(t) = q0 cos γ . The time derivative of q(t) is given by

q̇ = −q0ωb sin γ. (35)

Away from the equilibrium points, q0 and ψ become
time-varying. At this situation, the time derivative of
q(t) is given by

q̇ = q̇0 cos γ − q0ωb sin γ − q0ψ̇ sin γ. (36)

Subtracting Eq. (35) from Eq. (36), one obtains one
relation between q̇0 and ψ̇

q̇0 cos γ − q0ψ̇ sin γ = 0. (37)

Taking the time derivative of Eq. (35), the acceleration
of q(t) near equilibrium points is calculated as

q̈ = −q̇0ωb sin γ − q0ψ̇ωb cos γ − q0ω
2
b cos γ. (38)

Substituting Eqs. (35) and (38) into Eq. (20), one
obtains a second relation between q̇0 and ψ̇

− q̇0 sin γ − q0ψ̇ cos γ = f + F

ωb
(39)

where f = (2ξω+ce)ωbq0 sin γ+(ω2
b−�2)q0 cos γ+

βq30 cos
3 γ and F = M̄ab cos(ωbt). Based onEqs. (37)

and (39), the time variation of the amplitude and phase
angle of q(t) near equilibrium points are calculated as

q̇0 = − f+F
ωb

sin γ

ψ̇ = − f +F
ωbq0

cos γ.
(40)

Near the equilibrium points, q0 and ψ are almost con-
stant with a period γ = ωbt + ψ . As such, the modu-
lation equations of q0 and ψ are obtained as

q̇0 = − Q(q0,ψ)
2ωb

ψ̇ = − P(q0,ψ)
2ωbq0

(41)

where Q(q0, ψ) and P(q0, ψ) are modulation coeffi-
cients for a period of γ and expressed as Q(q0, ψ) =
1
π

∫ 2π
0 ( f + F) sin γ dγ = (2ξω+ce)ωbq0+M̄ab sinψ

and P(q0, ψ) = 1
π

∫ 2π
0 ( f + F) cos γ dγ = (ω2

b −
�2)q0+ 3

4βq
3
0 + M̄ab cosψ , respectively. The stability

of fixed point q0 can be analyzed by the Jacobi matrix
of modulation equation (41) as following

− 1

2ωb

[
(2ξω + ce)ωb M̄ab cosψ

3
2βq0 − M̄abq

−2
0 cosψ −M̄abq

−1
0 sinψ

]

(42)

If the two eigenvalues λi have negative real parts, then
the fixed point is a sink (stable). Otherwise, the equi-
librium point will form a saddle or a source (unstable).

4 Experimental setup

The experimental setup is consisted of a vertical can-
tilever beam that is partially covered with a piezoelec-
tric sheet and forced at its base in the horizontal direc-
tion with a shaker (JZK-100). The tip mass of the can-
tilever beam is a magnet that repulsively interacts with
two other magnets. As shown in Fig. 2, the shaker was
excited with sinusoidal signal generated using a digi-
tal function generator (YE1311) and amplified using a
power amplifier (YE5878). The amplified signal finally
determined the motion of the shaker. The piezoelectric
energy harvester was connected to the shaker through
the base frame. An acceleration sensor (1A314E) was
placed on the base frame near the fixed end of the can-
tilever beam to measure the acceleration of the base
excitation. A NdFeB permanent magnet was attached
to the free end of the cantilever beam. TwootherNdFeB
permanent magnets were placed on the left and right of
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themagnet of the beamwith the same poles facing each
other. The relative positions between themagnets could
be adjusted via the slide slots on the base frames. The
positive and negative electrodes of the piezoelectric
material bonded on the cantilever beamwere connected
to the load resistance box and the inductance box. The
response of the cantilever beam was determined by the
simultaneous actions of the base excitation, nonlinear
magnetic forces and electromechanical coupling with
the inductance. The vibration displacement of the can-
tilever beam was measured using a laser displacement
sensor (IL-300). The acceleration of the base excita-
tion, output voltage of the energy harvester and vibra-
tion displacement of the cantilever beamwere collected
by a data acquisition system (DH8303). In the upward
sweep and downward sweep tests, the amplitude of the
acceleration was kept constant at 2.5m/s2. Based on
extensive testing for different values, the load resistance
R and inductance L were chosen as 103 ohm and 10H.

5 Results

5.1 Model validation

To validate the analytical model, the predicted ampli-
tudes of the tip displacement and harvested power
during upward and downward sweeps of external fre-
quency are compared with experimentally measured
values and plotted in Fig. 3. The analytical solutions
are determined from the frequency-response equations
(25) and (23). The stability of the solutions is deter-
mined by the matrix in Eq. (42). The solid lines repre-
sent the stable solutions while the dashed lines indicate
the unstable ones. The hardening nonlinearity due to
the inductance andmagnetic force bends the frequency-
response curve to the right. The plots show two stable
and one unstable solutions. To validate the predicted
jumps, experimental upward and downward sweeps
performed. During the upward sweep, the response
amplitudes of the tip displacement and harvested volt-
age increase along the curve ABC until C is reached.
After that, a slight increase in the value of the external
frequency leads to the observed jump fromC to D. Fur-
ther increase in the excitation frequency results in the
decrease in the response amplitude along the curve DE .
During downward sweep, the excitation frequency is
reducedwhilemaintaining the amplitude of the acceler-
ation constant. As the frequency is decreased from val-

ues larger than the natural frequency,�, the amplitudes
of the tip displacement and harvested voltage increase
slightly along the curve EDF . An abrupt upward
jump is noted at near frequency denoted by F . As the
frequency is decreased further, the amplitude of the
response is decreased along the curve BA. Both analyt-
ical and experimental results show the hysteresis in the
region between BC and FD. The dashed indicates an
unstable saddle point that underlines the dependence of
the response on initial conditions. These detailed non-
linear properties will be analyzed in Sect. 5.3. The dif-
ference in the power spectra of the harvested power and
phase portraits of the tip displacement and tip veloc-
ity obtained from the measurements during the upward
and downward sweeps, as shown in Fig. 4, denotes the
variation in the frequency of the response, which is
always equal to the excitation frequency in addition to
the variations in the amplitude of the response.

5.2 Multi-hardening
and multi-softening characterization

To enhance the performance of the harvester, the effects
of the inductance L and cubic magnetic coefficient λ

are analyzed next. The excitation frequency boundaries
where multiple solutions are observed are set by letting
�cubic = 0. The variations in the excitation frequency
with the inductance L when �β = 0 for a load resis-
tance R of 103 ohm and linear magnetic coefficient μ

of 0.2N/mmare presented in Fig. 5. This relationship is
determined throughusingEqs. (31) and (33). Six curves
ofωo

b−L are noted andmarked as two Ls1−, one Ls1+,
two Ls2− and one Ls2+ with different colors. The ‘+’
and ‘−’ subscripts, respectively, represent the plus and
minus determined from Eqs. (31) and (33). In fact, Ls1

denotes the softening behavior, while Ls2 denotes the
hardening behavior. The intersection of Ls1+ and Ls1−
occurs at �sL1 = 0, and the intersection of Ls2+ and
Ls2− takes place at �sL2 = 0. As the inductance L is
increased from 0 to 300 H, the number of the solutions
of ωo

b is successively 2, 3, 4, 5, 6, 5, 4.
Regions of hardening and softening responses as a

function of the nonlinear magnetic coefficients for dif-
ferent values of the inductance L = 10, 21.48, 50,
100, 200 H are shown in Fig. 6a–e and discussed in
below. At L = 10 H, the change in ωo

b with the cubic
magnetic coefficient, λ, is shown in Fig. 6a.Two solu-
tions of ωo

b at �β = 0 represented by the yellow circle
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Fig. 2 The experimental
setup of the broadband
piezoelectric energy
harvester

Fig. 3 Variations of a the tip displacement amplitude and b
harvested voltage amplitude with the excitation frequency (ab =
0.25g, L = 10H and R = 103 ohm). ‘Upward sweep’ or ‘Down-

ward sweep’ indicates that the excitation frequency, respectively,
increases or decreases monotonically when the amplitude of the
base acceleration is kept constant

(on Ls2−) and orange circle (on Ls1−) are noted in
Fig. 5. They, respectively, correspond to one hardening
and one softening. These two points are the bound-
ary for nonlinear hardening and softening. There is no

ωo
b appearing the range between these two points, in

which the system exhibits only linear phenomenon for
all nonlinear magnetic cubic coefficient. The nonlinear
hardening occurs at λ < 0. With the same λ, ωo

b of the
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Fig. 4 Variations of a, b power spectra of the harvested voltage
and c, d phase portraits of the tip displacement and tip velocity
with the excitation frequency (ab = 0.25g). ‘Upward sweep’ or

‘Downward sweep’ indicates the excitation frequency, respec-
tively, increases or decreases monotonically when the amplitude
of the base acceleration is kept constant

red line is higher than ωo
b of the blue line for the hard-

ening case. In contrast, the nonlinear softening appears
at λ > 0 with ωo

b of the blue line higher than ωo
b of the

red line or zero for the same λ. The intersection of the
blue and red curves is marked as the yellow and orange
circles in Fig. 6a, which corresponds to the same sym-
bol in Fig. 5. The line of ωo

b = �s shown in cerulean
separates the hardening and softening regions. �s is
the special modified frequency which satisfies both Eq.
(21) and � = ωb. The hardening occurs at ωo

b > �s,
while the softening appears atωo

b < �s. A plot for pos-
itive λ values is also shown in Fig. 6a. The plot reveals
a region of λwith three solutions ofωo

b (one in blue and
two in red). In this region, a special nonlinear softening
between zero and the lower ωo

b shown in red appears

with the typical nonlinear softening between the higher
ωo
b in red and ωo

b in blue.
At L = 21.48 H, one more solution represented by

the black circle is observed at �sL2 = 0 in addition to
the two solutions marked by the yellow and orange cir-
cles in Fig. 5. Unlike the yellow and orange circles, the
black circle appears at relatively large negative values
of λ, which is not shown in Fig. 6a. Typical nonlinear
hardening and typical nonlinear softening responses are
observed with a special nonlinear hardening between
the two higher ωo

b in red. The zoomed plot in Fig. 6b
reveals that nonlinear softening between zero and the
lowerωo

b also exists at L = 21.48H. Similar as the case
of L = 10 H, the system exhibits as linear one between
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Fig. 5 Variation in the excitation frequency for �cubic = 0, ωo
b ,

with the inductance L for �β = 0 when ab = 1g, R = 1000
ohm and μ = 0.2 N/mm

the hardening and softening points. These points rep-
resent softening and hardening boundaries.

At L = 50 H, four solutions forωo
b at�β = 0 repre-

sented by the pink, green, yellow and orange circles are
illustrated in Fig. 5. The pink, green and yellow circles
(on Lŝ2) correspond to nonlinear hardening, while the
orange circle (Lŝ1−) corresponds to nonlinear soften-
ing. Figure 6c shows the variations of ωo

b of this case
with the cubic magnetic coefficient λ. The intersec-
tions of the red and blue lines are represented by the
circles with the same colors as shown in Fig. 5 except
the green circle, which appears at very large negative λ

values. When the value of λ is changed from negative
to positive, the response successively exhibits double
hardening, single hardening, single softening, double
softening and single softening for L = 50 H. Three
lines ofωo

b = �s are shown in cerulean and purple. The
purple line separates the two typical nonlinear harden-
ing regions with a cerulean line. The rest cerulean line
separates the typical nonlinear hardening and softening
regions.

When L is increased to 100 H, there are six solu-
tions of ωo

b at �β = 0 shown as the circles in Figs. 5
and 6d. The three circles on Lŝ2 indicate double hard-
ening and the other three circles on Ls1 imply double
softening.As L is increased to 200H, the single harden-
ing (one circle on Ls2) appears with the double soften-
ing (three circles on Ls1) in Fig. 6e. The cerulean circles

that appear at relatively largeλ are not shown in Fig. 6d,
e. When λ is changed from negative to positive, the
response successively exhibits single hardening, dou-
ble hardening, single hardening, single softening, dou-
ble softening, single softening, double softening and
single softening for L = 100H. At L = 200H, the
response successively exhibits single hardening, sin-
gle softening, double softening, triple softening, dou-
ble softening and single softening. The purple line sep-
arates the two typical nonlinear hardening regions and
two typical nonlinear softening regions inFig. 6d,while
it only separates the two typical nonlinear softening
regions in Fig. 6e.

5.3 Bistable analysis

Two approaches are taken to determine the responses
of the energy harvesting system. In the first approach,
we solve Eqs. (18) and (19) simultaneously using the
Runge–Kutta method, which is referred to the numer-
ical approach. In the second approach, we solve the
modal coordinate q0 from Eq. (24) and obtain the
responses with their relations expressed by Eq. (23),
which is called as the analytical approach. The varia-
tions of the tip displacement and harvested power with
the excitation frequency using both approaches are pre-
sented in Fig. 7 for the double hardening case. The fre-
quencybandoverwhich energy is harvested is observed
to be significantly extended by the multiple nonlin-
ear behavior. The excitation frequencies obtained from
�cubic = 0 (Eq. 26), ωo

b , and represented by the red
and blue vertical lines in Fig. 7. The red lines denote the
intersection of the unstable solution and the stable solu-
tion corresponding to a large initial condition, while
the blue line stands for the intersection of the unstable
solution and the stable solution corresponding to the
small initial condition. Between the blue (lower bound)
and red (higher bound) vertical lines, multiple solu-
tions of the responses exist. Since bistable solutions are
obtained,we use the pink diamonds to represent numer-
ical solutions obtained with the large initial conditions
and the green circles to denote solutions obtained using
the small initial conditions. Overlaid with the sym-
bols, the solid lines are stable analytical solutions deter-
mined by the stability analysis in Sect. 3.3. The dash
lines between the stable solutions are determined as
the unstable solutions. Inspecting Fig. 7, the numer-
ical solutions confirm the analytical stable solutions.
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Fig. 6 Regions of
hardening and softening
responses as a function of
the nonlinear magnetic
coefficients λ for a–e
different values of the
inductances L at ab = 1g,
R = 103 ohm and μ = 0.2
N/mm

As discussed in Sect. 2, the frequency � of the equiva-
lentmechanical system (Eq. 20) varieswith the external
frequency ωb when the inductance is introduced in the
electrical circuit. As such, L = 50H leads to the double
hardening phenomenon in the current case.

To characterize the bistable–monostable–bistable
dynamic change through increasing the excitation fre-

quency, the phase space as obtained from the mod-
ulation equation (41) for three representative exter-
nal excitation frequencies is presented in Fig. 8. The
slope field of ψ and q0 is plotted with gray dashed
lines. The blue trajectories and arrows present how the
responses with different initial conditions move toward
the steady-state solutions as time increases. When the
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Fig. 7 Variations of the amplitudes of a the tip displacement and b harvested power with the excitation frequency at ab = 1g,
R = 1000 ohm and μ = 0.2N/mm. In the legend, ‘AM’ and ‘NM’ indicate the analytical and numerical approaches, respectively

Fig. 8 The phase space determined from the modulation equation (41) for different external excitation frequencies: a ωb
2π = 49Hz, b

ωb
2π = 55Hz and c ωb

2π = 78Hz when ab = 1g, R = 1000 ohm, μ = 0.2N/mm, L = 50H and λ = −2.5N/mm3

external excitation frequency is set as ωb
2π =49 Hz, there

exist three steady-state solutions as shown in Fig. 8a.
Two sinks and a saddle are observed corresponding
to the bistable solutions and one unstable solution in
Fig. 7, respectively. Except two special red trajecto-
ries that approach the saddle point, all other manifold
move to one of the two sinks. These two special red
trajectories form a separatrix (basin boundary), which
separates two domains of attraction for the two sinks.

The basin boundary passes the saddle point. Besides,
the slope fields change their directions to different sink
points near the basin boundary. For the yellow domain
of the large q0, the initial condition is usually large
and thus only large initial conditions can excite it as
shown in Fig. 7. To better present the difference of dif-
ferent initial conditions, the time history, phase portrait
and power spectra of reduced governing equations (18)
and (19) are plotted inFig. 9. The larger initial condition
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leads to a larger stable amplitude of the cantilever beam
than the smaller one. However, the same frequency is
observed for both large and small initial conditions. As
shown in the range of BC or FD in Fig. 3, there are two
stable solutions: the sink corresponding to the smaller
amplitude on curve FD and the sink of the larger ampli-
tude on segment BC . For the case of upward sweep,
the initial condition will be near the sink of the larger
amplitude, and thus, it moves along the curve BC . Sim-
ilarly, the initial condition is closer to the sink of the
smaller amplitude and responseswill remain on the seg-
ment DF for the case of downward sweep. This can be
explained for the interval between BC and FD through
upward and downward sweep experimental results. At
the excitation frequency ωb

2π =55 Hz, only one sink is
observed as shown in Fig. 8b. This sink corresponds
to the monostable solution in Fig. 7. As expected, one
stable dynamic motion with different initial conditions
is obtained from the numerical method as shown in
Fig. 9. As the excitation frequency ωb

2π is increased to
78Hz (Fig. 8c), two sinks and a saddle are observed cor-
responding to the bistable solutions and one unstable
solution as observed in Fig. 7. There exist two differ-
ent types of stable motions with different initial con-
ditions using the numerical method in figure 9. The
smaller domain of attraction for the sink correspond-
ing to the large amplitude is noted in Fig. 8c than that
in Fig. 8a, suggesting more difficulty to excite the large
stable response.

As the magnetic cubic coefficient λ becomes posi-
tive, the impact of the double softening phenomenon
on the variations in the tip displacement and har-
vested powerwith the external excitation frequency can
be deduced from plots presented in Fig. 10. Specif-
ically, the frequency bandwidth over which energy
can be harvested is greatly enhanced. In contrast with
the response observed in the double hardening phe-
nomenon, the double softening starts from the zero
excitation frequencywhich is very beneficial for energy
harvesting from low-frequency excitations, which are
abundant in industrial and natural environment. The
numerical results with large and small initial condi-
tions agreewellwith the analytical solutions. The phase
space calculated from the modulation equation (41) for
the different excitation frequencies of ωb

2π = 10Hz,
ωb
2π = 28Hz and ωb

2π = 32Hz are plotted in Fig. 11.
Compared with the double hardening cases in Fig. 8,
the manifolds of the double softening spiral more cir-
cles until they reach the sinks. The time history, phase

portrait and power spectra of the numerical simulations
prove that different initial conditions lead to the differ-
ent stable dynamic motions as shown in Fig. 12. As
in the case of double hardening, the frequency of the
motion for double softening is the same for both sinks.

5.4 Ultra-broadband
by multi-hardening and multi-softening

The effects of the inductance and cubic magnetic
coefficients on broadband performance via the multi-
hardening and multi-softening are, respectively, pre-
sented in Figs. 13 and 14. At L = 10H and λ =
−2N/mm3, a single hardening behavior is noted in
Fig. 13. The nonlinear range for energy harvesting
extends from 52.61 to 73.95 Hz with harvested power
levels between 1.852 and 15.88 mW. At L = 21.48H
and λ = −15N/mm3, double nonlinear hardening is
realized. The nonlinear range extends from 60.25 to
75.24 Hz with harvested power levels between 1.758
and 22.70 mW and from 96.48 to 125.5 Hz with har-
vested power levels between 25.63 and 6.196 mW.
Under linear resonance, the peak harvested power is
1.906 mW at 85.95 Hz. For L = 50H and λ =
−2.5N/mm3, the double-hardening phenomenon is
observed. The nonlinear range in the lower frequency
is from 47.39 to 49.45 Hz with harvested power levels
between 11.02 and 21.49 mW. The higher frequency is
between 62.41 and 84.80 Hz with harvested power lev-
els between 17.24 and 5.067 mW. The decrease in the
harvested power with the excitation frequency in the
nonlinear region with the higher frequency is caused
mainly by the precipitous decline of the electric damp-
ing with the excitation frequency. At L = 100H and
λ = −4N/mm3, two nonlinear hardening regions are
found in addition to the linear resonance. The linear res-
onance results in a power peak of 13.17 mW at 36.55
Hz, which is near the frequency of the displacement
peak (purple line). The nonlinear region in the low fre-
quency is close to the linear resonance and very narrow.
The nonlinear range in the higher frequency is between
59.42 and 95.3Hzwith harvested power levels between
0.6004 and 0.4188 mW.

At L = 10 H and λ = 2N/mm3, a single soften-

ing phenomenon is observed between zero and
ωo
b

2π =
24.94Hz with harvested power levels between 0 and
0.311 mW as shown in Fig. 14. The two power peaks
of 0.427 mW and 0.315 mW are not in the nonlinear
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Fig. 9 The a, d, g time history, b, e, h phase portrait and c, f, i
power spectra of reduced governing equations (18) and (19) with
different external excitation frequencies: a, b, c ωb

2π = 49Hz, d,

e, f ωb
2π = 55Hz and g, h, i ωb

2π = 78Hz when ab = 1g, R =
1000 ohm, μ = 0.2N/mm, L = 50H and λ = −2.5N/mm3

response region and take place at the excitation fre-
quencies of 36.1 Hz and 123.8 Hz. At L = 21.48H and
λ = 0.01N/mm3, a different type of softening between

0 Hz and
ωo
b

2π = 9.018Hz with harvested power levels

between 0 and 8.646 mW is noted. Outside the nonlin-
ear region, there are twopeakswith values of 12.42mW
and1.87mWat 39.85Hz and85.95Hz, respectively.At
L = 50 H and λ = 0.0584N/mm3, a double-softening
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Fig. 10 Variations of the amplitudes of a the tip displacement and b harvested power with the excitation frequency at ab = 1g,
R = 1000 ohm and μ = 0.2N/mm. In the legend, ‘AM’ and ‘NM’ indicate the analytical and numerical approaches, respectively

Fig. 11 The phase space determined from the modulation equation (41) for different external excitation frequencies: a ωb
2π = 10Hz, b

ωb
2π = 28Hz and c ωb

2π = 32Hz when ab = 1g, R = 1000 ohm, μ = 0.2N/mm, L = 200H and λ = 1N/mm3

phenomenon and a linear resonance are noted. The
nonlinear energy harvesting over the low-frequency
band is extended further to values between 0 Hz and
ωo
b

2π = 28.58 Hz as denoted by the left red line with the
harvested power of 0−13.45mW. The second nonlin-
ear range is 29.69−35.46Hzwith harvested power lev-
els between 14.01 and 14.16mW.At the relatively high
frequency of 59.3Hz, the linear resonance occurs yield-
ing a harvested power level of 15.51 mW. Except for

a small region, all of the low frequency band between
10 and 62 Hz can almost be exploited for energy har-
vesting. At L = 100H and λ = 1.25N/mm3, a differ-
ent double-softening phenomenon is noted. The first
nonlinear range is between 0 and 25.09 Hz with har-
vested power levels between 0 and 1.131 mW. The sec-
ond nonlinear range between 43.16 and 44.09 Hz yield
harvested power levels between 22.43 and 14.76 mW.
The power peak between the two nonlinear regions
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Fig. 12 The a, d, g time history, b, e, h phase portrait and c, f, i
power spectra of reduced governing equations (18) and (19) with
different external excitation frequencies: a,b, c ωb

2π = 10Hz,d, e,

f ωb
2π = 28Hz and g, h, i ωb

2π = 32Hz when ab = 1g, R = 1000
ohm, μ = 0.2N/mm, L = 200H and λ = 1N/mm3

occurs at 34.55 Hz with a harvested power level of
3.69 mW. In comparison with the previous case, only
the medium frequency region between 25 and 50 Hz
can be exploited for energy harvesting.

6 Conclusion

Nonlinear magnetic interaction and inductive–resistive
interface circuit are exploited and integrated for the pur-
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Fig. 13 Variations of the a tip displacement and b harvested power with the excitation frequency for double hardening cases at ab = 1g,
R = 1000 ohm and μ = 0.2N/mm
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Fig. 14 Variations of the a tip displacement and b harvested power with the excitation frequency for double softening cases at ab = 1g,
R = 1000 ohm and μ = 0.2N/mm

pose of expanding the range of broadband piezoelectric
energy harvesting. Toward that objective, we presented
an electromechanical coupled distributed parameter

model for the broadband energy harvester. The implicit
analytical solution of the responses for such a system
was determined based on the equivalent mechanical
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representation and the method of harmonic balance.
The analytical expression of the modified natural fre-
quency indicates thatmultiple resonances caused by the
inductancemay occur. The cubic-function discriminant
of the implicit analytical expression was introduced to
determine the nonlinear boundaries for multiple solu-
tions. These nonlinear boundaries determine the band-
width of the energy harvester for effective energy har-
vesting. The Jacobi matrix of the modulation equation
was derived to determine the stability of the multiple
solutions. Upward and downward sweep experiments
were performed to validate the jump phenomenon due
to the effect of the inductance and magnetic force. The
analytical solutions were found to be in agreement with
the experimental results. To better analyze the bistable
phenomenon, plots of the phase space as determined
from the modulation equation were employed to deter-
mine the basin boundary of the stable solutions (sinks).
Over the nonlinear region, the initial condition showed
a great impact on the dynamic motion of the system
and lead to the jump phenomenon for both upward
and downward sweep experiments. The impacts of the
cubicmagnetic coefficient and electric inductancewere
then analytically analyzed over the range of the broad-
band energy harvesting. Plots for the analytical expres-
sion of �β = 0 varied by the electric inductance are
very effective to determine the types of the nonlin-
ear phenomena. Based on this expression, single, dou-
ble and triple nonlinear hardening and softening phe-
nomena were observed. Different nonlinear types were
found, including typical nonlinear hardening and soft-
ening with two stable and one unstable solutions, spe-
cial nonlinear hardening and softening with one stable
and one unstable solutions. Overall, the results show
that the cubic magnetic coefficient and inductance are
crucial parameters to design effective energy harvester
with a great potential to cover up to 40 Hz in the low-
frequency range when using the right parameters.
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