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Abstract The energy efficiency of neural signal
transmission is thought to be an important constraint
in the nervous system. It is generally measured as
the energy consumed per unit of information. Most
of the previous studies have demonstrated this effi-
ciency by focusing on single action potentials. How-
ever, neural information is more likely to be encoded
by a spike train rather than by a single spike. To
date, how the energy efficiency is dependent on pat-
terns of spike trains is still unclear. In this study, we
examined the energy efficiency of various firing pat-
terns simulated by the Chay neuron model, includ-
ing relatively high-frequency activities with massive
spikes, medium-frequency activities with a moderate
number of spikes, and low-frequency activities with
rare spikes.Our results indicate thatmedium-frequency
patterns are more energy efficient than both the high-
frequency and low-frequency patterns. The most effi-
cient medium-frequency pattern is a sparse burst firing
(SBF) pattern because it consumesminimal energy and
transmits an amount of neural information compara-
ble to that of high-frequency patterns which consume
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muchmore energy. SBF patterns minimize energy con-
sumption not only by producing fewer spikes than high-
frequency patterns, but more importantly, also by con-
suming available energy sources, namely the potential
energy stored in ionic concentration gradients, in a bal-
anced way. Furthermore, with fewer spikes, the irreg-
ular spike trains of SBF patterns with short bursts and
single spikesmaximize the neural information that they
carry, leading to higher energy efficiency. Thus, the sen-
sory system may give priority to limiting energy costs
over maximizing information to achieve greater energy
efficiency.

Keywords Sparse burst firing · Chay neuron model ·
Neural energy consumption · Coefficient of variation ·
Na/K-ATPase pump

1 Introduction

Neurons in many sensory systems generate action
potentials (APs or spikes) in distinct temporal pat-
terns to transmit information to connected neurons.
Sparse burst firing (SBF), a combination of single
spikes and much less numerous short bursts of 2–8
spikes, is one of the most common patterns observed
in visual, auditory, and motor sensory systems [1–
6]. High-frequency firing and low-frequency tonic fir-
ing patterns also occur in sensory information pro-
cessing [7–10]. Neuronal coding theory hypothesizes
that information is coded in the structure of the spike

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05593-8&domain=pdf
http://orcid.org/0000-0003-4110-2022


2658 F. Zhu et al.

train of these firing patterns [11–15]. Generating these
information-carrying action potential sequences con-
sumes considerable energy [16–18]. In this process,
ionic concentration gradients of Na+ and K+ are par-
tially dissipated and must be restored and maintained
with Na/K-ATPase pumps by hydrolyzing adenosine
triphosphate (ATP) [16,19].

Sensory information processing is thought to have
evolved within a restricted energy budget, resulting
in a trend toward energy efficiency [20–23]. Energy
efficiency can be measured as the energy consumed
per unit of transmitted information [23,24]. Most of
the previous theoretical and experimental studies have
demonstrated this efficiency by focusing on how the
underlying ionic currents, such as Na+ and K+ cur-
rents, influence the energy efficiency of single APs
of different neurons [19,21,22]. For instance, Alle et
al. [21] showed that in rat hippocampus mossy fiber
axons, the smaller temporal overlap of the inward Na+
current and the outward K+ current during APs leads
to fewer energy costs and greater energy efficiency,
assuming that each AP transmits equivalent infor-
mation. However, the energy efficiency of a neuron
depends not only on its single APs but also on its firing
pattern. In fact, some essential properties of the firing
pattern, such as the firing frequency, the firing modes
(i.e., single spikes and bursts), the shape of spikes,
and the extent of hyperpolarization after spikes, signif-
icantly affect energy consumption and/or information
transmission [10,22], and thus the energy efficiency.
These properties are mainly modulated by underly-
ing K+ currents, including calcium-dependent K+ cur-
rents and voltage-dependent K+ currents [10,22,25–
27]. For example, Goldberg et al. [10] demonstrated
that the reduction of a specific calcium-dependent K+
current can generate a transition from irregular low-
frequency single spiking to rhythmic high-frequency
bursting with distinct hyperpolarization, and Carter et
al. [22] showed that the width of APs is mainly deter-
mined by the K+ channels in nerve membranes. In
auditory brainstem neurons, the voltage-dependent K+
channels responsible for repolarization are also known
to influence their firing modes [25]. However, how the
underlying K+ currents affect all these properties of
a firing pattern to promote energy efficiency remains
unclear. In other words, since a neuron can fire in dif-
ferent firing patterns by modulating the K+ currents, a
particular firing pattern may be more energy efficient
than others. Exploring this hypothesis is essential for

a better understanding of the mechanisms underlying
information encoding [28–31] in the nervous system.

In this study, we modified the K+ currents in the
Chay neuron model [32] to simulate diverse firing pat-
terns similar to those observed in electrophysiological
experiments [10] and assessed the energy efficiency
of these patterns. Our findings indicate that medium-
frequency firing patterns consume roughly as little
energy as low-frequency patterns do, but can carry
nearly as much information as high-frequency pat-
terns that consume much more energy, suggesting that
medium-frequency firing patterns are more energy effi-
cient than other patterns. Specifically, themost efficient
pattern is a medium-frequency SBF, which minimizes
energy costs by consuming energy sources (the poten-
tial energy stored in ionic concentration gradients) in
a balanced way, and maximizes neural information by
producing more informative spikes with the combina-
tion of short bursts and single spikes. This study sug-
gests that the prevalence of these SBF patterns is an
important way for the sensory system to achieve energy
efficiency in information transmission.

2 Model and method

2.1 The Chay model and different firing properties

The Chay neuron model [32] provides a simple and
effective tool to simulate different firing patterns in the
biological nervous systemwith comprehensive dynam-
ical analyses [33–35]. The model is described as fol-
lows:

dV /dt = −Ii − Ikv − Ikc − Il , (1)

dn/dt = (n∞-n)
/
τn, (2)

dC/dt = ρ
(
m3∞h∞ (Vc − V ) − kcC

)
, (3)

where V , n, and C are the membrane potential, the
probability of opening voltage-dependent K+ chan-
nels, and the intracellular Ca2+ concentration, respec-
tively. In Eq. (1), Ii is the inward mixed Na+–Ca2+
ionic current; Ikv is the outward voltage-dependent K+
ionic current; Ikc is the outward calcium-dependent K+
ionic current; Il is the leakage current. Ii , Ikv, Ikc, and
Il are described as follows:

Ii = gim
3∞h∞ (V − Vi ) , (4)

Ikv = gkvn
4 (V − Vk) , (5)
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Ikc = gkc(C
/
(1 + C))(V − Vk), (6)

Il = gl (V − Vl) , (7)

where Vi , Vk , and Vl are the reversal potentials for
mixed Na+–Ca2+, K+, and leakage ions, respectively;
gi , gkv, gkc, and gl represent the maximal conduc-
tances, where the subscripts (i), (kv), (kc), and (l)
refer to the voltage-dependent mixed ionic channel, the
voltage-dependent K+ channel, the Ca2+-dependent
K+ channel, and leakage channels, respectively. m∞
and h∞ in Eq. (4) are the probabilities of activation and
inactivation of the mixed channel, respectively; n∞ in
Eq. (2) is the steady-state value of n. They are expressed
as follows: y∞ = αy(V )

/
(αy(V ) + βy(V )), y = m,

h, or n, with nonlinear functions αy(V ) and βy(V )

given by

αm (V ) = 0.1(25 + V )
/
(1−e−0.1V−2.5), (8)

βm (V ) = 4e−(V+50)/18, (9)

αh (V ) = 0.07e−0.05V−2.5, (10)

βh (V ) = 1/(1 + e−0.1V−2), (11)

αn (V ) = 0.01(20 + V )
/
(1 − e−0.1V−2), (12)

βn (V ) = 0.125e−(V+30)/80, (13)

In Eq. (2), the relaxation time of the voltage-dependent
K+ channel (τn) is described as follows:

τn = 1
/
(λn(αn + βn)), (14)

where λn , a scaling term of the relaxation time con-
stant, controls the shapes of APs as well as the extent
of hyperpolarization. In Eq. (3), kc is the rate constant
for the efflux of the intracellular Ca2+, ρ is a propor-
tionality constant, and Vc is the reversal potential for
Ca2+ ions. The values of the reversal potentials and the
fixed parameters used in this study are listed in Table 1.

Table 1 Parameter values used in the numerical simulations

Parameter Value Unit

Vi 100 mV

Vk −75 mV

Vl −40 mV

Vc 100 mV

gi 1800 μS

gkv 1700 μS

gl 7 μS

ρ 0.27

kc 3.3/18

In the Chay model, K+ currents, including the
calcium-dependent K+ current Ikc in Eq. (6) and the
voltage-dependent K+ current Ikv in Eq. (5), signifi-
cantly influence the dynamics of the system.Modifying
themaximal conductance gkc of Ikc inEq. (6) causes the
neuron model to discharge in different firing patterns,
fromburst firingwith different burst sizes to tonic firing
and irregular chaotic firing [32]; for a detailed bifurca-
tion analysis of gkc, please refer to [32]. Modifying
the scaling term λn for the relaxation time constant
of voltage-dependent K+ channels in Eq. (14) gener-
ates changes in APs with different extents of hyperpo-
larization and reshapes the firing pattern [33]. In con-
trast, modifying the maximal conductance of voltage-
dependent K+ channels gkv or the maximal conduc-
tance of Na+–Ca2+ mixed ionic channels gi , whose
dynamic functions in the Chay model are to determine
the peak amplitude of the AP or to produce stereo-
typed burst modes, results in little significant change
in firing patterns, especially the spike-timing patterns.
In other words, in the Chay model, gkc mainly controls
the firing frequency as well as the firing modes, and
the value of λn determines the width of spikes and the
degree of hyperpolarization of firing patterns. There-
fore, in this study, we examined the energy efficiency
of firing patterns generated by the changes of gkc and
λn while keeping gkv and gi constant. All firing pat-
terns were simulated with identical initial conditions of
V (0) = −48.25 mV, n (0) = 0.20, and C (0) = 0.40.

Figure 1 shows some representative examples of sin-
gle spikes, bursts, and hyperpolarization in different fir-
ing patterns simulated by modifying the K+ currents in
the Chay model. Bursts are defined as a set of spikes
whose interspike intervals (ISI) are shorter than .52 s
according to thefiring characteristics of theChaymodel
neuron and its timescale [2,32]. The burst size Nb of
a firing pattern is calculated as the average number of
spikes per burst. In sensory systems, a firing pattern is
called SBF if its burst size satisfies 2 � Nb � 8 and its
burst probability is in the range of 1–35% [4–6]. One
spike preceded and followed by a time interval greater
than 0.52 s is called a single spike, and Ns is the total
number of single spikes in a firing pattern. The width
and amplitude of spikes may differ from one firing
pattern to another (Fig. 1b–e). Hyperpolarization after
spikes also exhibits different durations and intensities
in different firing patterns (Fig. 1b–e). These diverse
firing properties have been observed in different neu-
rons in electrophysiological experiments when phar-
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Fig. 1 Examples of various single spikes, bursts, and hyper-
polarization simulated with different values of gkc and λn in the
Chaymodel. aA chaotic firing pattern in which single spikes and
bursts are interrupted by hyperpolarization of different degrees,
simulated with gkc = 11μS and λn = 230. b Single spikes
with the membrane returning to resting potential without hyper-
polarization, enlarged from a firing pattern with gkc = 10μS
and λn = 230. c Singe spikes with larger width and amplitude

followed by a short phase of hyperpolarization, enlarged from a
firing pattern with gkc = 11.5μS and λn = 180. d A burst pro-
ceeded by slow, long-lasting hyperpolarization, enlarged from a
firing pattern with gkc = 11.5μS and λn = 230. e A burst fol-
lowedby intense hyperpolarization, enlarged fromafiringpattern
with gkc = 13μS and λn = 280. In the Chaymodel, hyperpolar-
ization is characterized by the membrane potential repolarizing
below the threshold potential of −46 mV

macologicallymanipulating calcium-dependent and/or
voltage-dependent K+ channels [10,25,27].

It should be noted that the firing frequency is very
low in the Chay model compared with real biologi-
cal systems because of the time scale used. Neverthe-
less, the Chay model is very effective in simulating
the essential properties of distinctive firing patterns,
including the number and frequency of spikes, burst
and single spike modes, shapes of spikes, and extent
of hyperpolarization. Therefore, the firing frequencies
used in this study are relative to those frequencies that
the Chay model can generate.

2.2 Estimation of energy consumption

Previous experimental studies suggest that the exten-
sive overlap of inward Na+ currents and outward K+
currents during APs wastes Na+ and K+ and accord-
ingly wastes energy [19,21]. This wasted energy does
not contribute to the change of membrane potential and

the transmission of information. Therefore, we esti-
mated only the energy effectively used to generate neu-
ronal signals, i.e., membrane voltage changes during a
firing pattern. To do so, we used the energy estima-
tion method proposed in our previous studies [36,37],
which is based on the equivalent circuit of the Chay
model [38], as shown inFig. 2a.Asdomost neuralmod-
els, the Chaymodel has a default assumption that rever-
sal potentials are supported by Na/K-ATPase pumps
by consuming ATP to create and maintain the concen-
tration gradients of ions across the membrane [38]. In
other words, the electrical potential energy stored in the
reversal potentials Vy (y = i, k, l), i.e., the batteries in
the circuit, is ultimately derived from the biological
energy ATP consumed by Na/K-ATPase pumps.

These batteries provide currents Iy (y = i, k, l)
to change the voltage across the capacitor Cm , and
neuronal activity is generated accordingly. The rate
of electrical energy (power) transferred to the capaci-
tor by each battery is its electrical current multiplied
by its electromotive force, i.e., |I yVy |(y = i, k, l)
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Fig. 2 The net power P of membrane potential changes dur-
ing an AP and its following hyperpolarization. a The equivalent
circuit of the Chay neuron model with three batteries providing
charges to the capacitor Cm (i.e., membrane voltage). Ik repre-
sents the sum of the K+ currents Ikv and Ikc in the Chay model.
The other two currents (mixed Na+–Ca2+ current Ii and leakage
current Il ) and the reversal potentials Vy (y = i, k, l) are the
same as in the model. bAn AP with its rising and falling phases,
as well as its following hyperpolarization, is divided by the blue
dashed lines. c Corresponding electric power provided by three
batteries to the capacitor. During the rising phase, the electric
power |Ii Vi | (the red line) provided by battery Vi is mostly big-
ger than the electric power |IkV k | + |Il Vl | (the green and blue

lines) provided by batteries Vk and Vl to depolarize the mem-
brane. During the falling phase and hyperpolarization, the latter
is bigger than the former to repolarize and further hyperpolar-
ize the membrane. d The corresponding net power P during the
AP and its following hyperpolarization. When P is negative, the
energy consumed to change the membrane potential comes from
the net electric power of |Ii Vi |, which is not counterbalanced
by the electric power of |IkV k | + |Il Vl |. Conversely, when P is
positive, the energy consumed to change the membrane potential
comes from the net electric power of |IkV k | + |Il Vl |, which is
not counterbalanced by the electric power of |Ii Vi |. (Color figure
online)

[36,37,39–41], as shown in Fig. 2c. Thus, the rate of
energy change of the potential difference across the
membrane should be the sum of the electric power pro-
vided by each battery. However, the electric power pro-
vided by each battery has different effects on the trans-
membrane potential. The electric power provided by
battery Vi makes the membrane potential less nega-
tive (depolarization), while the electric power provided
by batteries Vk and Vl generally makes the membrane
potentialmore negative (repolarization).Consequently,
the net power P that contributes to membrane voltage
changes in the Chay model is estimated as follows:

P(t) = |Ik ∗ V k | + |Il ∗ Vl | − |Ii ∗ Vi | . (15)

where Ik is the sum of the K+ currents Ikv and Ikc.
(Note that, in the Chay model, whether or not each
power is calculated in absolute value terms has no sig-
nificant effect on the results, because IyVy (y = i, k, l)
is almost always negative.) Thus, depending on which
of the voltage sources (Vk , Vl ) or (Vi ) provides more
electric power, the value of the net power P in Eq. (15)
can be positive or negative. As shown in Fig. 2b, d,
during the rising phase of an AP, the net power P is
negative, immediately turns positive during the falling
phase, and remains positive during hyperpolarization.

We define the negative energy that is consumed dur-
ing a time period T of a firing pattern when P is nega-
tive using the following equation:
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Enegative =
{∫ T

0 −P(t)dt, P < 0
0, P ≥ 0

. (16)

Conversely, when P is positive, the positive energy
consumed during the time period T is defined as

Epositive =
{
0, P < 0∫ T
0 P (t) dt, P ≥ 0

. (17)

Therefore, the neural energy consumption E con-
tributing to the membrane potential changes during the
firing activity is defined as

E = Enegative + Epositive =
∫ T

0
|P (t) |dt. (18)

We set T = 30 s in the following simulation. In
Sect. 3.2, we will vary T from 5 to 60 s to examine
the relationship between time and energy efficiency. As
shown in Fig. 2d, APs consume both negative energy
(the red area) and positive energy (the green area), and
the former is usually greater than the latter. Hyperpo-
larization, by contrast, consumes only positive energy
(the green area), as does the resting potential.

For the sake of mathematical convenience, we
assume the ratio of the consumption of negative energy
to the consumption of positive energy to be δ, which is
defined as

δ =Enegative
/
Epositive. (19)

Hereafter, we call it the En−E p ratio. Thus, if a firing
pattern fires only APs without hyperpolarization, the
En−E p ratio will be much bigger than 1; if the firing
pattern is so hyperpolarized as to limit firing activity to
very few or no AP, this ratio will be closer to 0.

2.3 Information representation and energy efficiency

The amount of information carried by a firing pattern
is usually defined in Shannon’s terms as the relation
of neural response to a given stimulus [12,42,43]. In
this study, however, the firing patterns were simulated
by changing the conductance of ionic channels of the
Chaymodel in the absence of a stimulus.While it is still
under debate about how neural information is coded,
one popular hypothesis is that the precise timing of each
spike is significant, and the temporal variability of a
spike train provides a large capacity for carrying infor-
mation [44,45]. We adopt this hypothesis in this study
and thus use the variability of the spike train itself, i.e.,
its coefficient of variability (CV) [46,47], to represent
the amount of carried information.

Each firing pattern in this study is converted into a
sequence of ISIs {t1, t2, t3, . . . , tN } with a mean μ and
a standard deviation σ given by

μ = 1

N

N∑

n=1

tn, σ =
√√
√√ 1

N

N∑

n=1

(tn − μ)2. (20)

Then, the coefficient of variation (CV) of the spike train
variability is given as

CV = σ/μ. (21)

According to this definition and the above neural cod-
ing hypothesis [44,45], the more irregular the firing
pattern is, the larger the value of CV is and accordingly
the more information it carries.

We then examine the energy efficiency of a firing
pattern by measuring the energy consumption per unit
of information given as

η = E/CV. (22)

The smaller the value of η is, the lower the energy
consumption per unit of information is (i.e., the greater
the energy efficiency). Conversely, a higher η value
signifies less energy efficiency.

3 Results

3.1 Energy efficiency of firing patterns resulting from
changing the maximal conductance of the
Ca2+-dependent K+ channel gkc

We first examined the energy efficiency of firing pat-
terns resulting from modifying the parameter gkc in
Eq. (6). We varied gkc from 6 to 23.6μS in steps of 0.2
in generating firing patterns with the Chay model and
determined the burst size Nb (the red points in Fig. 3a),
the number of single spikes Ns (the green points in
Fig. 3a), the total number of spikes N (Fig. 3b), and
the probability of bursts (Fig. 3c) for each firing pat-
tern. These firing patterns can be broadly divided into
the following three categories: 1) High-frequency pat-
terns with massive spikes (gkc: 6–9). The neuron dis-
charges a large number of spikes (N : 61–135 spikes,
Fig. 3b), and these spikes come either in a very large
high-frequency burst (most Nb > 29) or in single spike
modes (Fig. 3a). 2) Medium-frequency patterns with
fewer spikes (gkc: 9.2–12). The neuron fires in both
burst and single spike modes with a moderate total
number of spikes (N : 24–57 spikes, the colored bars
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Fig. 3 Characteristics of various firing patterns resulting from
changing the maximal conductance of the Ca2+-dependent K+
channel gkc from 6 to 23.6μS in the Chay model. a Burst sizes,
i.e., the average number of spikes per burst (the red points) and
the number of single spikes (the green points).bThe total number
of spikes N as a function of gkc (the violet line). cThe probability
of bursts (the blue points), i.e., the ratio of the number of bursts
to the total number of bursts and single spikes in each firing

pattern. All three figures are divided into three regions: high-
frequency patterns (gkc: 6–9), medium-frequency patterns (gkc:
9.2–12), and low-frequency patterns (gkc: 12.2–23.6).Within the
medium-frequency category, we can further distinguish sparse
burst firing patterns (SBFs, the pink column) from other patterns
(non-SBFs, the light-blue column). All these firing patterns are
simulated with a fixed λn of 230. (Color figure online)

in Fig. 3b), a gradually decreasing burst size Nb (the
colored bars in Fig. 3a), and a rising trend in burst prob-
ability (the colored bars in Fig. 3c). In particular, when
gkc rises from 10.8 to 12, the firing pattern shifts to
SBFs (the pink-colored bar in Fig. 3), whose burst size
satisfies 2 �Nb � 8 andburst probability is in the range
of 1–35% [4–6]. For example, a gkc of 10.8 generates
an SBF with Nb = 8 spikes, Ns = 26 spikes, and a
burst probability of about 4%. 3) Low-frequency pat-
terns with rare spikes (gkc: 12.2–23.6). The total num-
ber of spikes dischargedby theneuron is small (N : 1–23
spikes). Some of these firing patterns do contain bursts
and single spikes, but their mode is nearly identical in
contrast to SBFs. When gkc ≥ 16.8, only a few single
spikes appear. The above frequency division is mapped
from the most commonly used division of frequencies
in the nervous system: a high-frequency gamma range
of 30–80Hz, a medium-frequency beta range of 13–

30Hz, and a low-frequency delta/theta/alpha range of
0.5–12Hz [48,49]. Small shifts in the boundaries of
these divisions haveno effect on the results of this study.

Three typical firing patterns were selected from
each category to examine their positive and negative
energy consumption properties, as shown in Fig. 4. At
a small value of gkc = 6 (the blue line), spikes are
emitted in a very intensive and phasic firing pattern
without hyperpolarization because the small calcium-
dependent current Ikc is too weak to hyperpolarize
the membrane potential. The membrane potential of
this high-frequency pattern is almost always above the
threshold potential of −46 mV (the red dashed line,
Fig. 4b). This pattern consumes three times more neg-
ative energy than positive energy (Fig. 4e) because
discharging APs alone without hyperpolarization con-
sumes more negative energy than positive energy
(Fig. 2d). A gkc of 11.4 (the black line) produces a
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Fig. 4 Negative and positive energy consumption of firing pat-
terns with different firing frequencies and different degrees of
hyperpolarization.aThree typical firing patterns: high-frequency
firing with gkc = 6μS (the blue line); medium-frequency fir-
ing with gkc = 11.4μS (the black line); low-frequency firing
with gkc = 23.6μS (the green line). b, e Membrane poten-
tial distribution (b) and the proportion of negative and positive
energy consumption (e) in the high-frequency firing pattern with
gkc = 6μS. The red dotted line represents the threshold potential

of −46 mV. c, f The membrane potential distribution (c) and the
proportion of negative and positive energy consumption (f) in the
medium-frequency firing pattern with gkc = 11.4μS. d, g The
membrane potential distribution (d) and the proportion of neg-
ative and positive energy consumption (g) in the low-frequency
firing pattern with gkc = 23.6μS. h The ratio of negative energy
consumption to positive energy consumption as a function of gkc.
The three red stars represent the ratios of the three firing patterns
in a, respectively. (Color figure online)

regular burst firing pattern, within which each burst
is followed by prominent hyperpolarization (Fig. 4c).
This medium-frequency pattern consumes relatively
balanced negative energy and positive energy (Fig. 4f).
At a large value of gkc = 23.6 (the green line in Fig. 4a),
the membrane potential V is mostly hyperpolarized
(between −57 and −46 mV, Fig. 4d), and only two
spikes are discharged due to the strong hyperpolariza-
tion current Ikc. This low-frequency pattern consumes
almost exclusively positive energy (more than 97%,
Fig. 4g) because hyperpolarization consumes only pos-
itive energy (Fig. 2d).

These three patterns, with their contrasting fir-
ing properties in terms of the number of spikes and
the extent of hyperpolarization, exhibit contrasting
En−E p ratios, as marked with red stars in Fig. 4h.
The En−E p ratio of high-frequency patterns is much

greater than 1 (from 2.224 to 3.238), and that of low-
frequency patterns is far less than 1 (from .02599 to
0.6641); however, that of medium-frequency patterns
is relatively closer to 1 (non-SBFs: from1.416 to 2.118;
SBFs: from 0.6884 to 1.321). Thus, positive energy
and negative energy are consumed in a relatively bal-
anced ratio in producing spikes with hyperpolarization
in medium-frequency patterns compared with high-
and low-frequency patterns.

To evaluate the energy efficiency of different fir-
ing patterns produced by changing gkc, we calculated
the carried information CV from Eq. (21) and the
energy consumption E from Eq. (18) for each pat-
tern. Figure 5a shows that both high-frequency pat-
terns and medium-frequency patterns carry relatively
high amounts of information (the red dotted line), while
low-frequency patterns carry low amounts of infor-
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Fig. 5 Energy-efficient sparse burst firing patterns (SBFs) with
low energy consumption but a high level of irregularity of infor-
mation. a The carried information CV and neural energy con-
sumption E of all firing patterns arising from changing gkc. b
The corresponding energy consumption per unit of information

η. Both figures are divided into three regions: high-frequency pat-
terns, medium-frequency patterns (distinguished between SBFs
andnon-SBFs), and low-frequencypatterns. (Colorfigure online)

mation, precisely because the spikes are so rare. The
high levels of information carried by high-frequency
patterns mainly result from their high firing rates.
Both medium-frequency patterns and low-frequency
patterns consume relatively low levels of energy (the
black dotted line), while high-frequency patterns con-
sume much higher levels of energy due to the large
number of spikes. Thus, medium-frequency patterns
consume roughly as little energy as low-frequency pat-
terns do, but they can carry nearly as much informa-
tion as high-frequency patterns (the colored bars in
Fig. 5a). As a result, the value η in Eq. (22), i.e.,
the energy consumed per unit of transmitted informa-
tion, reaches its minimum in medium-frequency pat-
terns (Fig. 5b), indicating that the energy efficiency
of medium-frequency patterns is greater than that of
both high- and low-frequency patterns. The maximum
energy efficiency (minimum η) is attained by an SBF
pattern at gkc = 10.8. This optimal SBF pattern has a

medium number of total spikes (N = 34), a short burst
(Nb = 8), a low burst probability of about 4%, and a
balanced ratio (δ = 1.321) of negative energy to pos-
itive energy (Figs. 3, 4h). A comparison between SBF
and non-SBFpatterns shows that they reach similar lev-
els of energy efficiency (the colored bars in Fig. 5b).
Although SBFs carry somewhat less information than
non-SBFs do, they clearly consume less energy (the
colored bars in Fig. 5a). These results suggest that
SBFs may offer advantages over non-SBFs (and all
other patterns) in sensory systems since information
processing is thought to be under strong selective pres-
sure not only to achieve energy efficiency but also to
save energy [20].

To further understand how medium-frequency SBF
patterns can carry as much information as high-
frequency patterns while consuming as little energy as
low-frequency patterns (Fig. 5a), we first examined the
relationship between the total energy consumption E

123



2666 F. Zhu et al.

and the En−E p ratio δ in Fig. 6a. The total energy
consumed in low-frequency patterns is mostly posi-
tive energy with 0.02599 � δ � 0.6641. This posi-
tive energy is consumed in maintaining the membrane
potential hyperpolarized (see Fig. 4). By contrast, the
SBFs, by making relatively balanced use of positive
and negative energy (0.6884 � δ � 1.321), are able
to produce more spikes while consuming as little total
energy as low-frequency patterns. Since the burst size
influences the spike-timing structure and carried infor-
mation, we next determined the information carried by
each spike in firing patterns with different burst sizes.
As shown in Fig. 6b, short bursts permit much higher
information capacity per spike than do long bursts, thus
allowing SBFs with short bursts (3 � Nb � 8) to
carry a high level of information even though the total
number of spikes is moderate. Although low-frequency
patterns with short bursts (Nb = 2) have high informa-
tion capacity per spike, they in fact carry very little
information because they fire so few spikes. In a recent
study, Naud et al. also found that short and sparse bursts
help to maximize the information transferred in multi-
plexed coding [4]. Therefore, medium-frequency SBFs
achieve high energy efficiency because they make bal-
anceduse of positive andnegative energy andmaximize
the coded information by combining short bursts and
single spikes.

3.2 Energy efficiency of firing patterns resulting from
changing the parameter λn of the relaxation time
constant of voltage-dependent K+ channels

Wenext examinedhow the scaling termλn for the relax-
ation time constant of voltage-dependent K+ channels
in Eq. (14) alone affects the energy efficiency of fir-
ing patterns. A change in λn (with a fixed gkc of 11)
produces different firing patterns (Fig. 7a) by altering
how the K+ current Ik affects the membrane potential
V (Fig. 7b). As λn increases, the firing patterns shift
from medium-frequency tonic firing (the blue line) to
sparse burst firing (the black line) and finally to the
burst mode of high-frequency spikes (the green line),
while the width and amplitude of the spikes progres-
sively decrease. For each firing pattern, we determined
the burst size Nb (the red points in Fig. 7c), the number
of single spikes Ns (the green points in Fig. 7c), the
total number of spikes N , and the probability of bursts.
SBFs are generated in a λn range from 205 to 240 (the

pink bar in Fig. 7c). As shown in Fig. 7d, changes in
λn alone clearly influence the energy efficiency of fir-
ing patterns, and medium-frequency SBF patterns are
more energy efficient than other patterns. The energy
efficiency of the most efficient SBF pattern resulting
from changing λn is almost as great as that of the opti-
mal SBF pattern resulting from changing gkc in Fig. 5b.

3.3 Energy efficiency of firing patterns resulting from
simultaneous changes in the two parameters gkc
and λn

We next investigated the energy efficiency of firing pat-
terns generated in an expanded two-dimensional para-
metric space (gkc, λn) to verify the result in Sects. 3.1
and 3.2 SBFs are energy efficient. The simultaneous
changes of gkc and λn generate SBF patterns in the
green area (Fig. 8a), which is outlined in the fol-
lowing figures to highlight various characteristics of
SBFs. These SBF patterns discharge a moderate num-
ber of spikes (roughly 25 to 50, Fig. 8b), use nega-
tive and positive energy in a balanced ratio close to 1
(Fig. 8c), and carry a relatively high level of informa-
tion (Fig. 8d) while consuming very low levels of total
energy (Fig. 8e). Consequently, most SBFs attain high
levels of energy efficiency (Fig. 8f). Notably, as shown
in Fig. 8f, as λn decreases below 220, the SBF patterns
become less energy efficient because the amplitude of
the APs increases, leading to higher energy consump-
tion (Fig. 8e) without any increase in the information
transmitted (Fig. 8d) due to the unchanged number of
spikes (Fig. 8b). As it turns out, the firing pattern with
the maximum energy efficiency is the same optimal
SBF in Sect. 3.1, namely gkc = 10.8 and λn = 230
(indicated by the white point in each figure).

Besides these SBFs, other firing patterns also exhibit
relatively high energy efficiency (the red, orange, and
yellow areas in Fig. 8f). Most of these patterns fire
spikes in medium frequencies (Fig. 8b), carry a rel-
atively high level of information (Fig. 8d), and con-
sume relatively low levels of the total energy (Fig. 8e).
The energy efficiency of the remaining firing patterns
is very low. Their efficiency is primarily determined
by gkc, while λn has little effect (Fig. 8f). For exam-
ple, when gkc is very small (6–7), the neuron fires in
high-frequency patterns, and its firing rate continuously
increases asλn increases (Fig. 8b left), resulting in great
energy consumption E (Fig. 8e left) and high En−E p
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Fig. 6 a Total energy consumption as a function of the En−E p ratio δ. b The information capacity per spike (CV/spike) decreases as
a function of burst size

Fig. 7 Energy efficiency of firing patterns arising from changing
the relaxation time constant of voltage-dependent K+ channels
λn with a fixed gkc of 11. a Three typical firing patterns with dif-
ferent λn . b The corresponding Ik–V curves of these three firing

patterns. c Burst sizes (the red points) and the number of single
spikes (the green points). d The energy consumption per unit of
information η of all firing patterns of λn . (Color figure online)

ratio δ (Fig. 8c left). While these high-frequency pat-
terns can carry nearly the highest levels of information
(Fig. 8d left), their energy efficiency is much worse
than that of medium-frequency patterns (Fig. 8f left)
because of the great energy consumption. When gkc
is large (16–23.6), the firing patterns have few spikes
(N < 20, Fig. 8b right) and consume low levels of
energy (Fig. 8e right),most ofwhich are positive energy
(Fig. 8c); however, since they carry so little informa-

tion (Fig. 8d right), their energy efficiency is also quite
low (Fig. 8f right).

Therefore, the results obtained by varying the two-
dimensional parameters (gkc, λn) are consistent with
those by changing gkc and λn separately. Medium-
frequency firing patterns are more energy efficient
than high- and low-frequency patterns. The most
energy-efficient patterns are predominantly medium-
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Fig. 8 Energy efficiencyof all firing patterns arising fromchang-
ing gkc and λn simultaneously. a The green area in which the
neuron fires in SBFs. The white point in each figure represents
the most efficient firing pattern, which happens to be an SBF.
This same area is outlined in the subsequent figures. b The total
number of spikes N . c The ratio δ of negative energy consump-
tion to positive energy consumption. d The amount of carried
information CV. e Neural energy consumption E . f Energy effi-
ciency. Note that the color spectrum represents 1/η for the better

exhibition of the figure. The red end (large values) and the blue
end (small values) of the spectrum represent greater and less
energy efficiency, respectively. In all figures, the horizontal and
vertical axes represent the maximal conductance of the Ca2+-
dependent K+ channel gkc and the relaxation time constant of
voltage-dependent K+ channel λn , respectively. The ranges of
gkc (6–23.6) and λn (175–295) are chosen to focus on firing pat-
terns commonly observed in the sensory system. (Color figure
online)

frequencySBFsgeneratedbymodulatingboth calcium-
dependent and voltage-dependent K+ currents.

Finally, we examined the effect of the duration T on
the energy efficiency of firing patterns. T , which was
previously set at 30 s, is now varied from 5 to 60 s at
intervals of 5 s. For each T , we calculated the most
energy-efficient pattern among all tested firing patterns
of gkc-λn pairs. At T>5 s, the most energy-efficient
patterns are all SBFs because their burst size Nb is
about 6–8 spikes and burst probability is less than 35%;
at T = 5 s, none of the gkc–λn pairs produce an SBF
pattern. In addition, the En−E p ratios of these most
energy-efficient firing patterns are around 1.3. These
results suggest that the variation of T has no significant
effect on the results in this study.

4 Discussion

Our findings indicate that SBF patterns in medium fre-
quencies are more energy efficient than high-frequency
patterns with massive spikes and low-frequency pat-
terns with rare spikes. This greater energy efficiency is
caused by two key factors. First, energy consumption
is reduced by limiting the number of spikes to medium
levels and by a balanced use of negative and positive
energy. Second, with fewer spikes, the combination of
burst and single-spike modes helps to increase the tem-
poral variability of spike trains and thus the informa-
tion carried by SBFs. Although high-frequency pat-
terns can carry somewhat more information by dis-
charging a large number of spikes, these spikes are very
costly in terms of energy consumption, therefore lead-
ing to less energy efficiency. Low-frequency patterns
conserve energy by keeping the membrane potential
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hyperpolarized, thus limiting the number of energy-
costly spikes. These few spikes, however, carry very
little information, resulting in even worse energy effi-
ciency.

The energy consumption that contributes to mem-
brane potential changes during a firing pattern is influ-
enced by both the number of spikes N and the ratio of
negative to positive energy consumption of this pat-
tern, but in different ways. For high-frequency pat-
terns, energy consumption is positively correlated to
N with a Pearson correlation coefficient of nearly 1.
Therefore, the energy consumption of high-frequency
patterns is basically determined by N . When a neu-
ron fires a moderate or small number of spikes, the
energy consumption remains low but does not decline
with the decreasing number of firing spikes. Instead,
the energy consumption is influenced by the En−E p

ratio of the firing pattern. In low-frequency patterns, the
neuron consumes energy to keep the membrane poten-
tial hyperpolarized so as to limit the number of energy-
costly spikes. In contrast, in medium-frequency SBFs,
a balanced use of negative energy and positive energy
helps to lower the total energy consumption below
that of low-frequency patterns while firing a moder-
ate number of spikes transmits more information and
thus improves the energy efficiency. From the view of
energy consumption, this may also explain why neu-
rons in sensory systems frequently fire spikes sponta-
neously rather than remain in resting or hyperpolarized
membrane potential [50], as both activities likely con-
sume similar amounts of energy. Based on our results,
the most efficient SBF consumes these two kinds of
energy in an optimal way, with an En−E p ratio of
1.321.

In fact, during a firing pattern in time period T ,
the actual energy amounts consumed from the Na+
concentration gradient and the K+ concentration gra-
dient are

∫ T
0 |Ii Vi | dt and

∫ T
0 |IkV k | dt , respectively;

the former is almost exclusively derived from the
Na+ concentration gradient because the concentra-
tion gradient of Ca2+ is indeed mostly maintained by
Na+–Ca2+ exchangers, which use the concentration
gradient of Na+ to transport Ca2+ out of the neu-
ron [38,51]. For the most energy-efficient SBF, this
ratio of

∫ T
0 |Ii Vi | dt

/∫ T
0 |IkV k | dt is 1.165, which is

close to the ratio 3:2 at which Na/K-ATPase pumps
work forNa+ andK+ ionic concentration gradients. As
we know, Na/K-ATPase pumps actively extrude three
Na+ and import two K+ for the hydrolysis of one ATP

to store potential energy in the form of ionic gradients
of both Na+ and K+ [38,51]. The fact that this ratio
of using the concentration gradients of Na+ and K+ is
lower than 3:2 can be explained by the followingmech-
anism. Unlike the stored K+ concentration gradient,
the stored Na+ concentration gradient is used not only
to provide energy for membrane potential changes but
also to move other ions or neurotransmitters, such as
H+ and GaBa dopamine, up their concentration gradi-
ents [38]. Thus, it is likely that themost energy-efficient
firing pattern makes full use of the concentration gra-
dients of Na+ and K+ in a ratio close to but some-
what less than 3:2. For SBF patterns in general, this
ratio is close to 1 (from 1.047 to 1.165). Therefore,
SBFs, which consume negative energy and positive
energy in a balancedway, are actuallymaking relatively
full use of the stored energy created by Na/K-ATPase
pumps. In fact, firing spikes alone without hyperpo-
larization consumes more of the Na+concentration
gradient, while hyperpolarization consumes only the
K+concentration gradient. Hence, the timing structure
of SBF patterns—the hyperpolarization process that
follows a short burst of spikes—helps to balance the
use of Na+ and K+concentration gradients.

In contrast, high-frequency patterns make excessive
use of the potential energy stored in the Na+ concen-
tration gradient without fully using the energy stored in
the K+ concentration gradient. This unbalanced usage
of ion concentration gradients may result in inefficient
use of energy stored in the neuron. The redundant K+
concentration gradient may be passively released at
rest through leakage K+ channels [38] without induc-
ing a change in the membrane potential, resulting in
a waste of energy. However, such high-frequency pat-
terns are commonly observed in fast-spiking interneu-
rons in sensory systems, suggesting that the evolution-
ary pressure for these neurons may be to propagate
spikes rapidly rather than give priority to save energy
to increase energy efficiency [22,24]. Low-frequency
patterns, on the other hand, under-consume energy
stored in the Na+ concentration gradient and over-
consume energy stored in the K+gradient. The redun-
dant Na+ concentration gradient may spontaneously
induce sparse spikes [51], also leading to a waste of
energy in terms of information transmission.

Our study measured carried information in terms of
the variability of spike trains. Information is weakly
correlated to the number of firing spikes in high-
frequency firing patterns. It is more efficient to pro-

123



2670 F. Zhu et al.

duce informative spikes through a mix of short bursts
and single spikes to augment the amount of transmitted
information. The findings are in line with those in the
study by Naud et al. [4], in which sparse bursts help to
maximize the information transferred in multiplexed
coding. In reality, however, the coding of informa-
tion is likely to be more complex [11–14,52]. Indeed,
a recent study argues that high-frequency bursts and
low-frequency single spikes in the same spike train
can encode different types of information, and burst
modes may carry much more information than previ-
ously thought [53]. Further study on the information
carried in bursts and single spikes is needed to evaluate
the efficiency of different firing patterns.

Nevertheless, our results do support the experimen-
tal findings of Laughlin et al., that “the minimization
of the metabolic cost promotes the distribution of sig-
nals over a population of weakly active cells” [16].
We extrapolate from the relationship between carried
information and energy consumption (Fig. 5a) that
in a multi-neuron system, two or more neurons fir-
ing in SBF patterns are able to transmit significantly
more information than does a single neuron firing high-
frequency spikes when they consume the same amount
of energy. Thus, in terms of energy efficiency, it is
preferable for the sensory system to use multiple neu-
rons to do the work of a single neuron operating at high
energy intensity. Indeed, in sensory systems, medium-
frequency SBF patterns are very common [1–6,54].
This prevalence of SBFs thus supports the view that
in the trade-off between maximizing carried informa-
tion and minimizing energy consumption, the sensory
system gives priority to limiting energy costs overmax-
imizing information in order to achieve greater energy
efficiency [16,20,55].

In this study, we examined the energy efficiency of
different neural firing patterns simulated with the Chay
neuron model. We concluded that medium-frequency
SBFs are more energy efficient than other firing pat-
terns.Although our findings are consistentwith those in
previous studies [4,16], we are aware that these results
can be based on the limited number of firing patterns
simulated by theChaymodel. Other firing patterns sim-
ulated by alternative neural models [56–58] should be
studied in order to substantiate our findings. It will
be also useful to explore the neural energy utilization
of different firing patterns at the level of the neural
network to gain a better understanding of the encod-

ing mechanism of neural information processing under
energy limitation [52,59–62].
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