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Abstract This paper presents the bifurcation behav-
iors of a modified railway wheelset model to explore
its instability mechanisms of hunting motion. Equiv-
alent conicity data measured from China high-speed
railway vehicle are used to modify the wheelset model.
Firstly, the relationships between longitudinal stiffness,
lateral stiffness, equivalent conicity and critical speed
are taken into account by calculating the real parts of
the eigenvalues of the Jacobian matrix and Hurwitz
criterion for the corresponding linear model. Secondly,
measured equivalent conicity data are fitted by a nonlin-
ear function of the lateral displacement rather than are
considered as a constant as usual. Nonlinear wheel–
rail force function is used to describe the wheel–rail
contact force. Based on these modifications, a mod-
ified railway wheelset model with nonlinear equiva-
lent conicity and wheel–rail force is set up, and then,
some instability mechanisms of China high-speed train
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vehicle are investigated based onHopf bifurcation, fold
(limit point) bifurcation of cycles, cusp bifurcation of
cycles, Neimark–Sacker bifurcation of cycles and 1:1
resonance. In particular, fold bifurcation of cycles can
produce a vast effect on the hunting motion of the mod-
ified wheelset model. One of the main reasons leading
to hunting motion is due to the fold bifurcation struc-
ture of cycles, in which stable limit cycles and unstable
limit cycles may coincide, and multiple nested limit
cycles appear on a side of fold bifurcation curve of
cycles. Unstable hunting motion mainly depends on
the coexistence of equilibria and limit cycles and their
positions; if the most outward limit cycle is stable, then
the motion of high-speed vehicle should be safe in a
reasonable range. Otherwise, if the initial values are
chosen near the most outward unstable limit cycle or
the system is perturbed by noises, the high-speed vehi-
cle will take place unstable hunting motion and even
lead to serious train derailment events. Therefore, in
order to control hunting motions, it may be the easiest
way in theory to guarantee the coexistence of the inner
stable equilibrium and the most outward stable limit
cycle in a wheelset system.

Keywords Hunting motion · Wheelset · Hopf
bifurcation · Fold bifurcation of cycles · Cusp
bifurcation of cycles
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1 Introduction

Hunting motion is a kind of self-excited vibration of
wheelset, bogie or carbody, and it is a dynamic combi-
nation of lateral movement and yaw rotation [1,2]. The
occurrence of hunting motion often depends on multi-
ple factors such as speed, stiffness and damping of the
spring, wheel tread slope, creepage and other param-
eters [2–6]. Among them, the critical speed is defined
by a critical point, where the real parts of a pair of
eigenvalues of ordinary differential equations (ODEs)
are zero; meanwhile, the real parts of the other eigen-
values are negative. In other words, this critical thresh-
old of hunting motion is defined by Hopf bifurcation
of nonlinear ODEs [1,7]. Above those thresholds, the
motion can increase the load of vehicle components,
damage tracks and wheels and potentially cause derail-
ment [8,9]. Analyzing the bifurcations about hunting
motion of a modified railway wheelset system based
on varying lateral parameters helps ones to understand
the complex dynamical behaviors of wheelset when it
is in the process of high-speed running.

Over the past decades, some numerical simulation
software, such as SIMPACK, has been applied to calcu-
late critical speed, vibration frequency, amplitude and
stable/unstable limit cycles of a bogie frame under dif-
ferent conditions [10]. The equivalent relation between
limit cycles and safety limits is mainly discussed by
numerical simulations in [11].

Bogoliubov averaging method is used to deal with
the hunting oscillatory problem [12,13]. Ahmadian et
al. studiesHopf bifurcations and concludes that the crit-
ical hunting speed from the nonlinear analysis is less
than the linear critical speed [12]. The nonlinearities
in the primary suspension and flange contact may con-
tribute significantly to the hunting behaviors. In [13],
Hopf bifurcation is studied in a bogie model, in which
nonlinear yaw damper and lateral wheel/rail contact
are considered. Their research shows that yaw stiff-
ness has a major effect on hunting velocity, and more
gauge clearance and increasing the rail lateral stiffness
can reduce the hunting amplitude. In addition, averag-
ing method is used to obtain the amplitude of the limit
cycle.

Stability analyses of nonconservative mechanical
systems are developed in engineering [14,15]. The
center manifold theorem and the normal form theory
are the bases of analyzing stability and bifurcation of
high-dimensional discrete and continuous-time nonlin-

ear systems [16,17]. The Hopf bifurcations of a semi-
carbody and a bogie system are discussed in [18]. The
supercritical and subcritical Hopf bifurcations are dis-
tinguished by the first Lyapunov coefficient Re(c1(0)),
and numerical shooting method is used to verify their
theoretical results. A lateral direction model of a rail-
waywheelset with two degrees of freedom is taken into
account in [19]. Therein, the center manifold theory is
used to simplify the dimensionality of the system, and
the normal form theory is used to derive a symbolic
expression of a parameter, which can also be used to
determine theHopf bifurcation type. Their results show
that the lateral linear stiffness has two effects on the
critical speed and the nonlinear stability against distur-
bance. In [20], a two-parameter bifurcation analysis of
limit cycles of a simplified railway wheelset model is
investigated. Some complex instability mechanisms of
wheelset are explored like the supercritical and subcrit-
ical Hopf bifurcation, general Hopf bifurcation, period-
doubling bifurcation and Neimark–Sacker bifurcation
of cycles.

For the conical tread, the wheelset tread can be
regarded as a cone before contacting the two sides of
rail. Thus, the tread slope is usually considered a con-
stant. But for the worn profile tread or the wheel–rail
contact point out of the straight line section of the tread,
the equivalent conicity of the wheelset, i.e., the slope
of the taper tread, is no longer a constant. It is cor-
related with the lateral displacement of the wheelset.
In view of these points, one of the main contributions
of this paper is to fit a nonlinear function to describe
the equivalent conicity varying with lateral displace-
ment based on the real data fromChina high-speed train
vehicle. Therefore, some newmore complex instability
mechanisms of wheelset system can be revealed com-
pared with the systemwith a constant equivalent conic-
ity of wheelset. The wheel–rail contact force is another
important effect related to lateral displacement between
flange and track. There exists a gap between them. The
wheel–rail contact force states that the rail will push
against thewheel by the rail lateral stiffness if the flange
contacts a side of track because of lateral displacement.

In particular, the novelty of this paper is to present
the instabilitymechanisms of thismodified systemwith
a nonlinear equivalent conicity function, that is, the
stable equilibrium loses its stability via a Hopf bifur-
cation. And then, Hopf bifurcation curve is divided
into a supercritical branch and a subcritical branch by
a generalized Hopf bifurcation point, and the stable
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Fig. 1 Sketch map of wheelset and part of parameters revised based on [22]

and the unstable limit cycles appear, respectively. The
detailed fold bifurcation of cycles and cusp bifurcation
of cycles, Neimark–Sacker bifurcation of cycles and
1:1 resonance points are detected by numerical simu-
lation on a two-parameter plane, respectively. These
results show that the instability mechanism of China
high-speed train vehicle is mainly due to the interac-
tion amongmultiple interwinded stable limit cycles and
unstable limit cycles. In order to control the hunting
motion, the easiest way in theory is to guarantee the
coexistence of stable equilibrium and stable limit cycle
in a wheelset system. The numerical simulations in this
paper are mainly carried out by the software package
MATCONT [20,21].

The layout of this paper is as follows: In Sect. 2,
the effects of lateral stiffness, longitudinal stiffness and
equivalent conicity on critical speed are discussed in
linear wheelset model. In Sect. 3, firstly, the nonlin-
ear equivalent conicity function associated with lateral
displacement is introduced. Secondly, on the parame-
ter plane of longitudinal stiffness and speed, the crit-
ical instability mechanism is discussed by using the
supercritical (subcritical) Hopf bifurcation, limit point
bifurcation of cycles and cusp bifurcation of cycles.
Thirdly, lateral stiffness is taken into account, and the
related Neimark–Sacker bifurcation of cycles and 1:1
resonance points are detected by numerical simulation.
And finally, Sect. 4 concludes this paper.

2 The stability of the linear wheelset model

Figure 1a, b shows the top view of the wheelset, the
springs and the steel rails. The origin O is located at
the geometrical center of the wheelset. The coordinate
x denotes the direction along the train running. The
direction of right movement of the wheelset is defined
as the positive direction of the y-axis. The z-axis that
is not drawn is perpendicular to the horizontal plane of
the track.

2.1 Linear wheelset model

By Newton’s the second law in translational motion
and rotation direction, respectively, the model can be
expressed as the following form [23]:
⎧
⎪⎪⎨

⎪⎪⎩

m d2 y
dt2

= − 2κy
v

dy
dt − Kx

(
l0
l1

− 1
)
y

−Ky y + 2κyψ,

I d
2ψ

dt2
= − 2d20κx

v
dψ
dt − 2d0κxλ

r0
y − Kxd21ψ,

(1)

where the variable y is the lateral displacement and ψ

is the yaw angle. The physical significance and values
of the parameters are listed in Table 1. All the values of
parameters are positive. The longitudinal (lateral) stiff-
ness Kx (Ky) includes the longitudinal (lateral) stiff-
ness of primary springs and the nodal point longitudinal
(lateral) stiffness of axle box rotary arm. Linear Carter
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theory is used to calculate the creep coefficient in order
to eliminate its nonlinear effect. The vertical springs
in this system are in a compression state because the
weights of the car body and the bogie are on them.

Equation (1) can be written in a matrix form:

Mÿ + Cẏ + Ky = 0, (2)

where

M =
(
m 0
0 I

)

,C =
(

2κy
v

0

0
2d20κx

v

)

,

K =
(
Kx

(
l0
l1

− 1
)

+ Ky −2κy
2d0κxλ

r0
Kxd21

)

, y =
(

y
ψ

)

.

Let x1 = y, x2 = ẏ, x3 = ψ , x4 = ψ̇ , then Eq. (1)
becomes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = − Kx
m

(
l0
l1

− 1
)
x1 − Ky

m x1

− 2κy
mv

x2 + 2κy
m x3,

ẋ3 = x4,

ẋ4 = − 2d0κxλ
I r0

x1 − Kxd21
I x3 − 2d20κx

Iv x4.

(3)

where x1 = y is the lateral displacement of the
wheelset, x2 = ẏ is the velocity of lateral motion, ẋ2 is
the acceleration of lateral motion, x3 = ψ is the yaw
angle of wheelset, x4 = ψ̇ is the angular velocity of
yaw motion, and ẋ4 is the angular acceleration. In this
paper, we use V (km/h) to show the speed in figures.

The Jacobian matrix of Eq. (3) at the unique equi-
librium origin O is given by

JO =

⎛

⎜
⎜
⎝

0 1 0 0
d21 d22 d23 0
0 0 0 1
d41 0 d43 d44

⎞

⎟
⎟
⎠ , (4)

where

d21 = − Kx

m

(
l0
l1

− 1

)

− Ky

m
, d22 = − 2κy

mv
, d23 = 2κy

m
,

d41 = − 2d0κxλ

I r0
, d43 = − Kxd21

I
, d44 = − 2d20κx

Iv
.

and d21, d22, d41, d43, d44 < 0, d23 > 0. The eigenval-
ues of Eq. (4) μi satisfy:

μ4
i − (d22 + d44)μ

3
i − (d21 + d43 − d22d44)μ

2
i

+ (d21d44 + d22d43)μi + d21d43 − d23d41 = 0,

(i = 1, 2, 3, 4). (5)

Then, the stability of the wheelset system can be
described by the following description [16,17]:

For a linear wheelset system Ẋ = F(X), X ∈ R4, if
the characteristic polynomial has two pairs of complex
roots μ1,2 = α1 ± iω1, μ3,4 = α2 ± iω2, and α1 < α2,
ωi �= 0, αi , ωi ∈ R (i = 1, 2),

Case 1: If α1, α2 < 0, then the system is exponen-
tially stable;

Case 2: If α1 < 0 and α2 = 0, then the system is at
a critical condition between stability and instability;

Case 3: If α2 > 0, then the system is strictly unsta-
ble.

Remark 1 A linear system is stable only when all the
real parts of eigenvalues are negative. The imaginary
parts of eigenvalues show the rates of rotation. If the
wheelset system is nonlinear, then Case 2 is a neces-
sary condition of Hopf bifurcation. Hopf bifurcation
and other codimension-one/two bifurcations show the
critical instability mechanisms of hunting motion form
the point of mathematical model.

2.2 Critical speeds calculated by linear wheelset
model

The critical speed of train operation is defined by the
boundary point between the positive and the negative
real parts of eigenvalues of linear ordinary differential
equation. Figure 2a, b shows critical speed curves under
seven stiffness conditions. The red curves in Fig. 2a, b
are the same. For Fig. 2a, we fix Ky = 8.96 MN/m
andmake Kx = 2.96, 4.96, 6.96, 8.96MN/m to judge
the effect of longitudinal stiffness on the critical speed.
For Fig. 2b, we fix Kx = 8.96 MN/m and make
Ky = 2.96, 8.96, 14.96, 20.96 MN/m to judge the
effect of lateral stiffness on the critical speed. For each
curve in Fig. 2a, b, the equilibria on the curve corre-
spond to closed curves, on which x1, x2, x3 and x4
oscillate at a constant amplitude and frequency. Take
(Kx , Ky, λ) = (8.96, 8.96, 0.1271) (a point on the red
curve in Fig. 2a) as an example, the phase diagrams in
x1 − x2 and x1 − x3 are in Fig. 3a1, a2. The phase dia-
gram in x3−x4 has the same closed curve as in x1−x2.
The waveforms are shown in Fig. 3c1–c4 when the ini-
tial point is chosen as x0 = (0.01, 0.05, 0.007, 0.5),
and the eigenvalues corresponding to the critical point
V0 = 536.634923 km/h (the green ∗ in Fig. 2a) are as
follows:
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Table 1 Values of the parameters in this paper

Parameter Comment Value

m Mass of wheelset 1869kg

I Yaw moment of wheelset 910 kg m2

W Axle load of a wheel 70kN

v(V ) Train speed – m/s (km/h)

κx Longitudinal creep coefficient 7.99 × 106 N

κy Lateral creep coefficient 7.99 × 106 N

Kx Longitudinal stiffness – MN/m

Ky Lateral stiffness – MN/m

Kz Vertical stiffness of spring 1197kN/m

l0 Natural length of the spring 0.225m

l1 Length of the spring in equilibrium state l1 = l0 − W
Kz

d0 Half of track gauge 0.7465m

d1 Half of spring spacing (lateral) 1m

r0 Centered wheel rolling radius 0.43m

λ(·) Equivalent conicity –

FT (·) Wheel–rail contact force –

α1 Nonlinear parameter of wheel–rail −1.6 × 1011 N/m3

α2 Nonlinear parameter of wheel–rail 1.6 × 1015 N/m5

μ(V0) =

⎛

⎜
⎜
⎝

μ1(V0)
μ2(V0)
μ3(V0)
μ4(V0)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

− 61.5026
− 61.5026

0
0

⎞

⎟
⎟
⎠

+ i

⎛

⎜
⎜
⎝

90.8747
− 90.8747
89.7127

− 89.7127

⎞

⎟
⎟
⎠ . (6)

The real parts of the third and the fourth eigenval-
ues increase to 0. The equilibria corresponding to the
parameters below a curve are stable, and it implies
that the wheelset can be stabilized to the origin in
a limited time if an initial lateral or yaw displace-
ment/angle, speed and acceleration are given in a rea-
sonable range. Stable equilibria are shown in Fig. 3b1–
b4 when V− = 520 km/h (the blue ∗ in Fig. 2a). And
for Fig. 3d1–d4 when V+ = 550 km/h (the red ∗ in
Fig. 2a), the equilibria of the upper curve are unstable.
In the above three cases, the vibration frequencies of
wheelset are all about 14 Hz.

There are two pairs of eigenvalues μ1,2 = α1 ±
iω1, μ3,4 = α2 ± iω2 (α1 < α2, ωi �= 0) in
this wheelset system. We show evolving eigenvalues

μ3,4 = α2 ± iω2 in Fig. 2c, d when the param-
eter V varies near the critical points, λ = 0.1271
and the stiffness parameters are the same as those
in Fig. 2a, b. Once Re(μ3,4) = 0, the critical
speeds are obtained, accordingly: V0 = 536.634923
(red), 476.872437 (blue),428.155705 (magenta) and
384.701298 km/h (green) in Fig. 2c; V0 = 554.296633
(dark blue), 536.634923 (red), 565.303816 (cyan) and
635.487135 km/h (purple) in Fig. 2d, respectively.

Figure 2a, b also implies that: (1) For each curve at
its condition, the critical speed decreases with a ratio
inversely proportional to the equivalent conicity. (2)
Under the same equivalent conicity, the critical speed
increases evenly with the increase in longitudinal stiff-
ness at a fixed lateral stiffness as in Fig. 2a. (3) If the
longitudinal stiffness is fixed as shown in Fig. 2b, the
critical speed increases with the increase in the lateral
stiffness for λ > 0.17. When λ < 0.17, four curves
intersect as the following laws: 1© Among the four
curves, the curve with the minimum critical speed (i.e.,
the curve on the bottom of the four curves) is cyan, red
and blue curves, respectively, as the equivalent conicity
increases. It shows that the larger the equivalent conic-
ity, the smaller the critical speed and the smaller the

123



84 P. Ge et al.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

200

300

400

500

600

700

Equivalent conicity λ

S
pe

ed
 V

/(
km

/h
)

V
−V

0
V

+

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
200

300

400

500

600

700

800

900

1000

Equivalent conicity λ

S
pe

ed
 V

(k
m

/h
)

(b)

−10 −5 0 5 10
40

50

60

70

80

90

100

Re(μ
3,4

)

Im
(μ

3)=
−

Im
(μ

4)

(c)

−15 −10 −5 0 5 10 15

60

70

80

90

100

110

Re(μ
3,4

)

Im
(μ

3)=
−

Im
(μ

4)
(d)

K
x
=2.96, K

y
=8.96

K
x
=4.96, K

y
=8.96

K
x
=6.96, K

y
=8.96

K
x
=8.96, K

y
=8.96

K
x
=8.96,K

y
=2.96

K
x
=8.96, K

y
=8.96

K
x
=8.96, K

y
=14.96

K
x
=8.96, K

y
=20.96

K
x
=2.96,K

y
=8.96

K
x
=4.96,K

y
=8.96

K
x
=6.96,K

y
=8.96

K
x
=8.96,K

y
=8.96

K
x
=8.96,K

y
=2.96

K
x
=8.96,K

y
=8.96

K
x
=8.96,K

y
=14.96

K
x
=8.96,K

y
=20.96

Fig. 2 The λ − V parameter planes when we fix a Ky =
8.96 MN/m, and Kx = 2.96, 4.96, 6.96, 8.96 MN/m; and b
Kx = 8.96 MN/m, Ky = 2.96, 8.96, 14.96, 20.96 MN/m,
respectively. c, d show evolving eigenvalues μ3,4 = α2 ± iω2

when the parameter V varies near the critical points, λ = 0.1271
and the stiffness parameters are the same as those in a,b (the other
pair of eigenvalues that have smaller real parts are not shown in
this paper). (Color figure online)

lateral stiffness required for instability. 2© Taking the
dark blue curve (Ky = 2.96 MN/m) as a reference,
the intersection points of the dark blue one and the red
(Ky = 8.96 MN/m), the cyan (Ky = 14.96 MN/m),
the purple (Ky = 20.96 MN/m) ones turn left sequen-
tially. It demonstrates that theminimum lateral stiffness
Ky = 2.96 MN/m will gradually turn from the worst
to the best stiffness condition as the equivalent conicity
decreases. In other words, the wheelsets have the low-
est critical speed when λ > 0.16, and the wheelsets
have the highest critical speed when λ < 0.08.

Proposition At the critical curves, the relationship
between λ and other parameters is:

λ =
(
r0 I

2K 2
x d

2
0κxκyl

2
0v

2 − 2r0 I
2K 2

x d
2
0κxκyl0l1v

2

+ r0 I
2K 2

x d
2
0κxκyl

2
1v

2 + 2r0 I
2Kx Kyd

2
0κxκyl0l1v

2

− 2r0 I
2Kx Kyd

2
0κxκyl

2
1v

2 + r0 I
2K 2

y d
2
0κxκyl

2
1v

2

− 2r0 I K
2
x d

2
0d

2
1κxκyl0l1mv2

+ 2r0 I K
2
x d

2
0d

2
1κxκyl

2
1mv2

− 2r0 I Kx Kyd
2
0d

2
1κxκyl

2
1mv2 + 4r0 I Kxd

4
0κ2

x κ
2
y l0l1

− 4r0 I Kxd
4
0κ2

x κ
2
y l

2
1 + 4r0 I Kxd

2
0d

2
1κxκ

3
y l

2
1
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Fig. 3 a1, a2 Phase diagrams of the limit cycle when x0 =
(0.01, 0.05, 0.007, 0.5), Kx = 8.96 MN/m, Ky = 8.96 MN/m,
V0 = 536.634923 km/h; b1–b4 show the stable equilibrium
when Kx = 8.96 MN/m, Ky = 8.96 MN/m, V− = 520 km/h;

c1–c4 Waveforms corresponding to a1, a2, d1–d4 describe
the unstable equilibrium when Kx = 8.96 MN/m, Ky =
8.96 MN/m, V+ = 550 km/h. (Color figure online)
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+ 4r0 I Kyd
4
0κ2

x κ
2
y l

2
1 + r0K

2
x d

2
0d

4
1κxκyl

2
1m

2v2

+ 4r0Kxd
6
0κ

3
x κyl0l1m − 4r0Kxd

6
0κ

3
x κyl

2
1m

+ 4r0Kxd
4
0d

2
1κ2

x κ
2
y l

2
1m

+ 4r0Kyd
6
0κ

3
x κyl

2
1m

)
/
(
4I 2d0κxκ

3
y l

2
1v

2

+ 8I d30κ
2
x κ

2
y l

2
1mv2 + 4d50κ

3
x κyl

2
1m

2v2
)

. (7)

Proof Let a0 = 1, a1 = −(d22 + d44), a2 = −(d21 +
d43 − d22d44), a3 = d21d44 + d22d43, a4 = d21d43 −
d23d41 in Eq. (5). Then,

�1 = a1 = −(d22 + d44),

�2 =
∣
∣
∣
∣
a1 a0
a3 a2

∣
∣
∣
∣ =

∣
∣
∣
∣

−(d22 + d44) 1
d21d44 + d22d43 −(d21 + d43 − d22d44)

∣
∣
∣
∣

= d21d22 + d43d44 − d222d44 − d22d244,

�3 =
∣
∣
∣
∣
∣
∣

a1 a0 0
a3 a2 a1
G0 a4 a3

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

−(d22 + d44) 1 0
d21d44 + d22d43 −(d21 + d43 − d22d44) −(d22 + d44)

0 d21d43 − d23d41 d21d44 + d22d43

∣
∣
∣
∣
∣
∣

= d221d22d44 − d21d222d
2
44 − 2d21d22d43d44 − d21d22d344 − d322d43d44 − d222d43d

2
44

+ d23d41d222 + d22d243d44 + 2d23d41d22d44 + d23d41d244,

�4 =

∣
∣
∣
∣
∣
∣
∣
∣

a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

−(d22 + d44) 1 0 0
d21d44 + d22d43 −(d21 + d43 − d22d44) −(d22 + d44) 1

0 d21d43 − d23d41 d21d44 + d22d43 −(d21 + d43 − d22d44)
0 0 0 d21d43 − d23d41

∣
∣
∣
∣
∣
∣
∣
∣

= (d21d43 − d23d41)�3 = a4�3.

(8)

According to Hurwitz criterion, due to �1 > 0,�2 >

0, a4 > 0,�4 = a4�3, if �3 > 0, then Re(μi ) <

0 (i = 1, 2, 3, 4), the system is asymptotically stable.
Themathematical expression formula of critical curves
Eq. (7) can be calculated by �3 = 0. ��

The red curve in Fig. 2a, b is

λ(v) = 13923463053770920541266236145664v2 + 3320207897823869867491786743980490752

1285167037943443173173456808181760v2
(9)

under its parameter conditions. Other critical curves
can be obtained similarly by substituting parameters
into Eq. (7).

3 Bifurcation mechanism based on nonlinear
equivalent conicity and wheel–rail contact force

3.1 Measured equivalent conicity function and
nonlinear wheelset model

In general, the equivalent conicity is regarded as a con-
stant. In reality, the parameter of equivalent conicity
λ is related to the lateral displacement y of wheelset,
which is a state variable in differential equations. We

choose the equivalent conicity data measured from the
high-speed train CRH380 on Beijing–Shanghai rail-
way after 100,900 km’ wearing. The software package
Curve Fitting Tool (cftool) in MATLAB is used to fit
the function relation between the equivalent conicity
and the lateral displacement. We obtain that

λ = λ0(y)
= 0.7099 exp

[−((y − 0.009884)/0.001472)2
]

+ 0.6979 exp
[−((y + 0.009873)/0.001444)2

]

+ 2.319 × 1014 exp
[−((y + 18.3)/3.095)2

]
.

(10)
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Fig. 4 Raw data, Gaussian
fitting curve Eq. (10) and its
simplification form Eq. (11)
about the equivalent
conicity λ and the lateral
displacement y. (Color
figure online)
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Then, its simplification form is as follows:

λ(y) = 0.7 exp

[

−
(
y − 0.01

0.00145

)2
]

+0.7 exp

[

−
(
y + 0.01

0.00145

)2
]

+ 0.1358. (11)

The raw data and the fitting curve are shown in
Fig. 4. The reason for selecting exponential function
to fit the data is based on the following facts: (1)
The function Eq. (10) fits very well with the origi-
nal data: The sum of squares due to error is SSE =
0.02767, coefficient of determination is R-square =
0.9948, adjusted R-square = 0.9945, and root mean
squared error is RMSE = 0.01572; (2) the trend of
function is consistent with the data. There is no oppo-
site fluctuation in y ∈ [−0.010, 0.010] m; (3) polyno-
mial function and sine function can fit it a little better
(because the SSE and RMSE will be smaller, and the
R-square and adjusted R-square will be closer to (1)).
λ(y) fitted by polynomial function or sine function can
obtain the same bifurcations and parameter planes as
those obtained by exponential function fitting. Variable
step size method in MATCONT can reduce the con-
cern about discrete method. But the polynomial and
sine functions make the structure of ODE unsuitable to
make numerical calculation, which will be terminated
since the step size is too small whatever the discrete
methods and maximum step sizes are chosen; (4) it
is reasonable to consider the variation regularity clos-
ing to the origin and to neglect the equivalent conicity
for |y| > 0.010 m. In order to obtain accurate radius of
limit cycles,we directly substituteEq. (11) intoEq. (13)
rather than truncate the higher-order term of the Tay-
lor’s expanded formula of Eq. (11); (5) furthermore, the
constant term of λ(y) can be considered as a value of λ

in model (3). Equations (10) and (11) are close to each
other. They cause the same bifurcation phenomena in
the present wheelset model by our test.

The wheel–rail contact force is considered as a sim-
plified piecewise linear function, as the black dashed
lines in Fig. 5, the rail will push against the wheel if
|y| ≥ 0.008 m while no affect between them if |y| <

0.008m [12,24–26]. It is usually expressed by a nonlin-
ear wheel–rail force function as FT (y) = α1y3 +α2y5

[18,27] for the sake of smoothing, so that the wheel–
rail contact force is described by a nonlinear function
as the red curve shown in Fig. 5.

Therefore, thewheelsetmodelwith nonlinear equiv-
alent conicity and wheel–rail contact force can be
described by a nonlinear ordinary differential equations
as follows:
⎧
⎪⎪⎨

⎪⎪⎩

m d2y
dt2

= − 2κy
v

dy
dt − Kx

(
l0
l1

− 1
)
y

−Ky y + 2κyψ − FT (y),

I d
2ψ

dt2
= − 2d20κx

v
dψ
dt − 2d0κxλ(y)

r0
y − Kxd21ψ.

(12)

Similarly to the linear equation, let x1 = y, x2 = ẏ,
x3 = ψ , x4 = ψ̇ , then
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = − Kx
m

(
l0
l1

− 1
)
x1 − Ky

m x1

− 2κy
mv

x2 + 2κy
m x3 − FT (x1)

m ,

ẋ3 = x4,

ẋ4 = − 2d0κxλ(x1)
I r0

x1 − Kxd21
I x3 − 2d20κx

Iv x4.

(13)

The stability and the bifurcations of the trivial equilib-
rium O of this system are discussed in the following.

3.2 Bifurcation of the cycles about the longitudinal
stiffness Kx and the speed V
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Fig. 5 Wheel–rail contact
force. (Color figure online)
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Fig. 6 Hopf bifurcation curve and limit point bifurcation of
cycles about the longitudinal stiffness Kx and the speed V when
Ky = 10.96 MN/m. (Color figure online)

The longitudinal stiffness Kx and the operating
speed V are considered as two parameters, in order
to explore their effects on the stability of train oper-
ation. In Fig. 6, Hopf bifurcation, limit point bifurca-
tion of cycles and cusp bifurcation of cycles happen
when Ky = 10.96 MN/m in the region (Kx , V ) =
[9.0, 10.7] × [520, 580].

3.2.1 The supercritical/subcritical Hopf bifurcation

The blue curve in Fig. 6 is a Hopf bifurcation curve, on
which the point GH: (Kx , V )=(10.413634, 566.5220)
implies a generalized Hopf bifurcation point. The sub-
critical and supercritical Hopf bifurcation curves are,

respectively, on the left and the right sides of the point
GH, and the second Lyapunov coefficient of GH is
l2 = − 37.5146. Below the subcritical Hopf bifurca-
tion curve H−, the equilibria are stable and surrounded
by unstable limit cycles, and unstable equilibria appear
up to the curve H−. Below the supercritical Hopf
bifurcation curve H+, the equilibria are also stable.
Unstable equilibria appear up to the supercritical Hopf
bifurcation curve H+ and surrounded by stable limit
cycles. The red curve shows the fold/limit point bifur-
cation of cycles, on which a cusp bifurcation point of
cycles CPC: (Kx , V ) = (9.416860, 532.4951) exists
as a boundary of limit point bifurcation of cycles with
normal form coefficient c(0) = 854.4763. Subcritical
Hopf bifurcation curve H− and the upper half of limit
point bifurcation curve of cycles intersect at point P1.
Then, we divide the values of Kx into four parts by
point CPC, P1 and GH.

3.2.2 Fold/limit point bifurcation structure of cycles

Limit point bifurcationof cycles for Ky = 10.96MN/m
is shown inFig. 7a–d,which explain the bifurcationdia-
gram in Fig. 6 by four specific bifurcation structures.
We fix Kx = 9.1, 9.7, 9.9, 10.413634 (GH)MN/m,
respectively. The z-axis represents the speed range near
the bifurcation curves, and abscissa x1 and ordinate x2
are used to display the limit cycles on the 2D subspace.
The blue closed curves denote stable limit cycles, and
the magenta and the pink curves indicate unstable limit
cycles. The equilibria below the point H are stable, and
the upper equilibria are unstable.
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Fig. 7 Limit point bifurcation of cycles when Ky = 10.96 MN/m, Kx = 9.1, 9.7, 9.9, 10.413634 (GH)MN/m, respectively. The blue
curves denote stable limit cycles, and the magenta and the pink curves indicate unstable limit cycles. (Color figure online)

Figure 7a is a bifurcation diagram for Kx =
9.1 MN/m that on the left of point CPC. Speed V is
considered as a single parameter, and Hopf bifurca-
tion happens at point H : V = 527.4349 km/h with
the first Lyapunov coefficient l1 = 7.4072. Stable
equilibria are bounded by unstable limit cycles when
V < 527.4349 km/h. If the initial point is inside the
unstable limit cycle, the wheelset is balanced to the ori-
gin in finite time. The radius of limit cycle decreases

with the increasing speed.Once the speed exceeds point
H , no initial point can make the wheelset stable.

For Fig. 7b, supercritical Hopf bifurcation point H :
V = 544.3795 km/h has the first Lyapunov coefficient
l1 = 3.8482 when Kx = 9.7 MN/m. Besides unstable
limit cycles appearing at V < 544.3795 km/h, two
limit point bifurcations of cycles are detected at LPC1:
V = 542.4787 km/h with the normal form coefficient
c(0) = −5.7258, and LPC2: V = 543.2090 km/hwith
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the normal form coefficient c(0) = 49.7624. These
results illustrate that a stable limit cycle and an unstable
limit cycle coincide at a critical state. In other words,
an unstable limit cycle, a stable limit cycle and another
unstable limit cycle are outside the stable equilibrium
one by one when the speed is fixed between LPC1 and
LPC2.

Different initial values near each equilibrium/limit
cycle are given, and the waveform diagrams are drawn
in Fig. 8 accordingly. When Kx = 9.7 MN/m, Ky =
10.96 MN/m and V = 522.5 km/h, and the initial
variables are taken as x1 = 0.001 m, x2 = 0.001 m/s:

(1) For x3 = 0.001 rad, x4 = 0.01 s−1 which is near
the origin O , it takes about 70 s to stop the hunting
vibration. This is much longer than that used to
stabilize the linear system.

(2) The initial point with x3 = 0.003 rad, x4 =
0.06 s−1 is close to the small unstable limit cycle.
In this situation, the lateral displacement and the
yaw angle increase gradually to a stable limit cycle
after more than 30s′ staying on the unstable limit
cycle.

(3) In Fig. 8c, the wheelset converges to a hunting
vibration at a fixed displacement/angle when x3 =
0.006 rad, x4 = 0.06 s−1. This stable limit cycle is
the one in Fig. 7b.

(4) And for the unstable limit cycle in the outermost,
the initial values x3 = 0.007 rad, x4 = 0.07 s−1

tend to the unstable limit cycle firstly, but expand
outward rapidly to another bigger cycle, whichmay
be produced by a bifurcation that is not within a
reasonable parameter range.

Figure 7c for Kx = 9.9 MN/m has a higher
critical speed at Hopf bifurcation point H : V =
550.3513 km/h with the first Lyapunov coefficient
l1 = 2.7316; one limit point bifurcation of cycles is
below to the point H : LPC1: V = 549.3634 km/h with
normal form coefficient c(0) = −4.4459, and the other
is up to H : LPC2: V = 551.1587 km/h, normal form
coefficient c(0) = 7.8777. Comparing with Fig. 7b, c
has a new range V ∈ [550.3513, 551.1587) between
H and LPC2, where there is a stable limit cycle and an
unstable limit cycle outside the unstable equilibrium.

When Kx ≥ 10.413634 MN/m (GH), the curve
LPC1 coincides with the supercritical Hopf bifurcation
curve H+. The supercritical Hopf bifurcation and the
limit point bifurcation of cycles are shown in Fig. 7d if
we fix Kx = 10.413634 MN/m. The Hopf bifurcation

point appears at H : V = 566.5219 km/h with the first
Lyapunov coefficient l1 = 8.8580×10−7 which can be
regarded as zero. At parameter V = 566.5219 km/h,
the normal form coefficient c(0) = −3.4385 × 10−4

of LPC1 is also almost zero. Therefore, a stable and
an unstable limit cycles are outside the unstable equi-
librium for 566.5219 km/h < V < 573.0105 km/h.
LPC2 has the normal form coefficient c(0) = 154.9663
which is not closed to zero.

From the actual train operation point of view, stable
equilibria are the most desirable, such that the train can
still gradually tend to the direction parallel to the tracks
once the track irregularities occur in the neighborhood
of the equilibria. However, for the differential equa-
tions with nonlinear factors, there is usually an unsta-
ble limit cycle outside the stable equilibrium. It implies
that a larger external disturbancewillmake the train run
beyond the unstable limit cycle and even derail. Never-
theless, if there is another stable limit cycle outside the
unstable one, then the former can restrict the region of
hunting motion, such as the cases between LPC1 and
LPC2 in Fig. 7b, or the cases between LPC1 and H in
Fig. 7c. It will greatly increase the safety of train opera-
tion. Conversely, even if a stable limit cycle arises from
the supercritical Hopf bifurcation, the unstable equi-
librium is still not desirable; otherwise, the train will
always be in a state of hunting and cannot proceed par-
alleling along the tracks. Consequently, the existence
of both a stable equilibrium and a stable limit cycle
is the most desirable critical condition to restrict the
region of hunting motion that beyond the limits of safe
operation. The corresponding instability region is the
triangle inside the points P1, CPC and GH in Fig. 6,
i.e., a longitudinal stiffness between CPC and GH.

In addition, the boundary between stable equilibria
and unstable equilibria in Fig. 6 is almost a straight
line and two branches of limit point bifurcation curve
of cycles are near the Hopf bifurcation curve. They
imply that the effect of longitudinal stiffness on critical
is essentially linear in both linear and nonlinear sys-
tem. Only when the longitudinal stiffness Kx is greater
than 9.4 MN/m (CPC), the bifurcation of cycles will
occur. Otherwise, it will go through the critical speed
and directly destabilize.
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Fig. 8 Waveforms for
different initial values in
Fig. 6b. Fix
Kx = 9.7 MN/m,
Ky = 10.96 MN/m,
V = 543 km/h, which is
between LPC1 and LPC2.
There are two unstable limit
cycles, a stable limit cycle
and a stable equilibrium.
The initial values are
x1 = 0.001 m,
x2 = 0.001 m/s. a A stable
equilibrium for
x3 = 0.001 rad,
x4 = 0.01 s−1; b an
unstable limit cycle for
x3 = 0.003 rad,
x4 = 0.06 s−1; c a stable
limit cycle for
x3 = 0.006 rad,
x4 = 0.06 s−1; d an
unstable limit cycle for
x3 = 0.007 rad,
x4 = 0.07 s−1, respectively.
(Color figure online)
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3.3 Stability determined by Lyapunov exponents

In order to calculate the stability of systems and to
describe the rates that every variables tend to be con-
vergent or divergent, we calculate Lyapunov exponents
in several cases. Lyapunov numbers measure the aver-
age per step rates of separation from the current orbit
along each orthogonal direction. A Lyapunov expo-
nent is the natural logarithm of a Lyapunov number.
Thus, stable equilibria have negative Lyapunov expo-
nents; the Lyapunov exponents of asymptotically peri-

odic orbits are zero; unstable equilibria for linear sys-
tem and chaotic orbits for nonlinear system have pos-
itive Lyapunov exponents [28]. In this section, Euler
method with implicit midpoint scheme is used to dis-
crete systems Eqs. (3) and (13), since it is a symmetric
method and basically makes the discrete system main-
tain the same structure with the original system [29].

Figure 9a shows a Lyapunov exponent diagram
for linear reduced system Eq. (3). The red and the
blue curves (the upper) are almost overlapped, and
the orange and the purple curves (the lower) are also
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Fig. 9 Lyapunov exponents correspond to linear wheelset sys-
tem in a and nonlinear wheelset system in b; c different λ(y)
determined by parameter a; d Lyapunov exponents about param-

eter a corresponding to nonlinear wheelset system. All the three
initial points are (x1, x2, x3, x4) = (1.0, 0.1, 0.1, 0.1), which is
not near the origin O . (Color figure online)

overlapped. This phenomenon indicates that the stabi-
lized/destabilized rates of lateral displacement y and
lateral speed ẏ are the same. The same phenomenon
also happens in yaw angle ψ and yaw angular veloc-
ity ψ̇ . It may imply that the characteristic roots of the
Jacobian matrix of the system Eq. (3) are two pairs of
complex numbers. When the running speed is fixed at
V = 400 km/h, linear systemEq. (3) becomes unstable
at about λ = 0.22 with positive Lyapunov exponents.

Figure 9b takes the same parameter values as Fig. 7b.
The maximum Lyapunov exponents are all almost zero
when V ∈ [540, 545]. The system is absolutely unsta-
ble when V ∈ [545, 600]. From the orange and the
purple curves, they show that the convergence rates
of x1 and x2 are fluctuant. Symmetry phenomenon is

caused by two pairs of conjugate complex eigenvalues
of Jacobian matrix.

To analyzeEq. (11),we introduce a parametera such
that

λ(y, a) = 0.7 exp

{

−
(
y − 0.01

a

)2
}

+ 0.7 exp

{

−
(
y − 0.01

a

)2
}

+ 0.1358

(14)

for the convenience of understanding the effect of func-
tion λ(y, a) on the system (13). For example, Fig. 9c
shows the blue curve for a = 0.00145 and the red curve
for a = 0.004. If a is taken from a ∈ [0.00145, 0.004],
then function curves of λ(y, a) are taken in the yel-
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Fig. 10 a Hopf bifurcation curve and limit point bifurcation
curve of cycles about the lateral stiffness Ky and the speed V
when Kx = 10.0 MN/m; b–f bifurcation structures for Ky =
9.0, 9.914016(GH), 11.2, 11.8, 13.5 MN/m, respectively. The

blue curves denote stable equilibria and limit cycles, the red
dashed line denotes unstable equilibria, and the magenta and the
pink curves indicate unstable limit cycles. (Color figure online)
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Table 2 Bifurcation values corresponding to Fig. 10b–f

Figure Ky V l1 LPC1(V ) LPC2(V ) c1(0) c2(0)

Figure 10b 9.0 553.2797 −2.2083 – – – –

Figure 10c 9.9 552.7460 −1.0502 × 10−6 552.7460 559.2026 − 3.6418 × 10−4 150.5615

Figure 10d 11.2 553.7325 2.6422 552.7679 554.6111 − 4.4283 80.3677

Figure 10e 11.8 554.8357 3.7225 552.7894 553.4321 − 5.9972 47.7399

Figure 10f 13.5 560.0346 6.3702 – – – –
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Fig. 11 a Hopf bifurcation curve and limit point bifurcation curve of cycles about the longitudinal stiffness Kx and the lateral stiffness
Ky . Fix V = 500 km/h. b The limit point bifurcation surface of cycles. (Color figure online)

low region. The maximum Lyapunov exponents shown
in Fig. 9d are almost zero. It demonstrably indicates
that the system almost converges to limit cycles when
V = 543 km/h if a initial point far away from ori-
gin is chosen. The initial points in Fig. 9a, c, d are all
(x1, x2, x3, x4) = (1.0, 0.1, 0.1, 0.1), which are not
very close to the origin O , so that the Lyapunov expo-
nents can describe the global stability of the system.
We discuss the effect of parameter a by computing the
maximum Lyapunov exponents rather than the critical
speed of system, because different parameters a cannot
change critical speed at equilibrium O , and the maxi-
mum Lyapunov exponents give the average orbit states
in phase space.

3.4 Similar bifurcations about the lateral stiffness Ky

and the speed V

In this section, a two-parameter bifurcation plane about
lateral stiffness and speed is shown in Fig. 10a when
Kx = 10 MN/m. The blue and the red curves repre-
sent Hopf bifurcation curve and fold bifurcation curve
of cycles, respectively. The general Hopf bifurcation
point GH: (Ky, V ) = (9.914016, 552.7460) with l2 =
−43.4422 has the minimum critical speed on the Hopf
bifurcation curve. A value of Ky on the left side of
point GH and one on the right side can cause the same
critical speed.

Taking the point GH as a dividing point, the super-
critical Hopf bifurcations happen on the left of point
GH and the subcritical Hopf bifurcations happen on
the right side. The coordinate of cusp bifurcation point
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Fig. 13 Bifurcation structures of cycles for V = 500 km/h,
Kx = 8.555 MN/m, the maximum step size is 1.0 correspond-
ing to Fig. 12a. Views from different angles are shown in this

figure: a limit cycles in variable space (x1, x2, x3); b limit cycles
in variable space (x1, x2, x4). (Color figure online)

of cycles is CPC: (Ky, V ) = (12.499200, 552.8033)
and c(0) = 987.2905. The bifurcation structures cor-
responding to different Ky are shown in Fig. 10b–f,
and their bifurcation values are listed in Table 2. l1,
c1(0) and c2(0) denote the first Lyapunov coefficient
of Hopf bifurcation point, normal form coefficients of

LPC1 and LPC2, respectively. The normal form coef-
ficient less than 0 indicates that the cycle representing
fold bifurcation is the minimum value of a paraboloid
goingupward.Conversely, a positive normal formcoef-
ficient indicates that fold bifurcation cycle is the max-
imum value of a paraboloid going downward. If the
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Fig. 14 Bifurcation structures of cycles for V = 500 km/h,
Kx = 8.553385 (CPC)MN/m, themaximum step size is 1.0 cor-
responding to Fig. 12b. Views from different angles are shown
in this figure: a–f limit cycles in variable space (x1, x2, x3); g–p

limit cycles in variable space (x1, x2, x4). The red and the green
rings express the limit point bifurcation of cycles and the NS
bifurcation of cycles, respectively. (Color figure online)

curve LPC coincides with the point GH, the normal
form coefficient is equal to 0.

3.5 Bifurcations of cycles about the longitudinal and
the lateral stiffness

If the longitudinal and the lateral stiffness are con-
sidered as parameters, while speed is fixed at V =
500 km/h, and Hopf bifurcation curve and limit point
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Fig. 15 a The NS bifurcation curve of cycles is almost
coincident with the limit point bifurcation curve of cycles.
There are some 1:1 resonance points on the NS bifur-
cation curve. b The orbits when the initial point is
(x1, x2, x3, x4) = (− 0.005, 0.05, 0.01, 0.2) and parameters

Kx = 8.555762MN/m, Ky = 5.915434MN/m(the blue curve)
and Kx = 8.551702 MN/m, Ky = 8.298495 MN/m (the red
curve), respectively. The maximum step size is 1.0. (Color figure
online)

bifurcation of cycles are shown in Fig. 11a. The right
upper part of the blue Hopf bifurcation curve in Fig.
11a corresponds to stable equilibria.

3.5.1 Cusp bifurcation of cycles

The information of generalized Hopf bifurcation and
cusp bifurcation is as follows: GH: (Kx , Ky) =
(8.555763, 5.875175) with l2 = −81.59077, CPC:
(Kx , Ky) = (8.553385, 8.475153) with c(0) =
660.4899. Figure 11b shows the cusp bifurcation of
cycles on a three-dimension space (Kx , Ky, x1). The
magenta and the blue lines denote the diameters of
cycles. They are the boundaries where the stable and
the unstable limit cycles encounter. In otherwords, they
are the projections of curve LPC on one-dimensional
phase space x1. Starting from point GH, their radius
gradually increases.

A phenomenon related to numerical simulation is
observed: When numerical calculation is used to show
the bifurcation of cycles, the limit cycles will be drawn
repeatedly between two Hopf bifurcation points. For
example, when the longitudinal stiffness is fixed at
Kx = 8.555 MN/m which is between points CPC

and GH, two Hopf bifurcation points in Fig. 12a are
as follows: 1© H1: Ky = 5.648453 MN/m, the first
Lyapunov coefficient l1 = −0.7389; 2© H2: Ky =
6.099804 MN/m, the first Lyapunov coefficient l1 =
0.7163. Unstable equilibria (the red dashed line) exist
between the two Hopf bifurcation points. Two limit
point bifurcation points of cycles are found through
the forward/backward numerical calculation starting
from any Hopf bifurcation point as an initial point.
LPC1: Ky = 7.109678 MN/m, normal form coeffi-
cient c(0) = −3.6837; LPC2: Ky = 6.099806MN/m,
normal form coefficient c(0) = 1.0825. Both the for-
ward and the backward numerical calculations can
cause a loop between two Hopf bifurcation points:

H1
ULC−→ LPC

SLC−→ H2
SLC−→ LPC

ULC−→ H1
ULC−→

LPC
SLC−→ H2... (Here, ULC denotes magenta unstable

limit cycles, andSLCdenotes green stable limit cycles).
It is caused by the overlap of the inferior branch of
curve LPC and the Hopf bifurcation curve. The green
stable limit cycles are the largest range of stable hunt-
ing motion. The bifurcation structures are drawn in the
three-dimensional phase space in Fig. 13. The limit
cycles are all in a plane.

123



98 P. Ge et al.

3.5.2 NS (Neimark–Sacker) bifurcation of cycles and
1:1 resonance

Figure 12b shows the bifurcation structure of cycles
when parameters are fixed at V = 500 km/h, Kx =
8.553385MN/m (CPC), and the maximum step size is
1.0.

The structures of limit point bifurcation of cycles
and NS bifurcation of cycles are drawn in the three-
dimensional phase space in Fig. 14. Trajectories of
limit cycles from different angles are shown in Fig.
14a–p. The red and the green rings express the limit
point bifurcation and the NS bifurcation of cycles,
respectively. The cycles inside the green cycle NS
(Ky = 8.372094 MN/m) are all on a plane. But the
cycles outside NS warp in 3D-space. The warped limit
cycles demonstrate that there exist complex spatial
relations between the lateral and the yaw movements
during one period of hunting motion. NS bifurcation
of cycles only appears when the maximum step size
h>0.99. Therefore, NS bifurcation of cycles may be
not the nature behavior of the system itself, but some
complex dynamic behavior may appear when the con-
tinuous system is inappropriately discretized.

In addition, the NS bifurcation curve and some 1:1
resonance points are drawn in Fig. 15a if the maximum
step size is 1.0. The phase diagrams of 1:1 resonance
points are shown in Fig. 15b.

4 Conclusions

In this paper, firstly, the effects of longitudinal stiffness,
the lateral stiffness and the equivalent conicity on the
critical speed are discussed by calculating the real parts
of the eigenvalues of the Jacobian matrix and Hurwitz
criterion of a linear wheelset model.

Secondly, our research shows that the critical speed
decreases with a ratio inversely proportional to the
equivalent conicity. Furthermore, for the same equiv-
alent conicity, the critical speed increases with the
increase in longitudinal stiffness at a fixed lateral stiff-
ness. In addition, if the longitudinal stiffness is fixed,
then the critical speed increases with the increase in
lateral stiffness when λ > 0.17. When λ < 0.17, the
smaller the equivalent conicity is, the lesser the lateral
stiffness Ky = 2.96MN/mwill gradually change from
the worst condition into the best condition compared
with the other lateral stiffness.

Thirdly, nonlinear equivalent conicity related to the
lateral displacement has been introduced into the sys-
tem according to actual test data measured from the
high-speed train CRH380 on Beijing–Shanghai rail-
way after 100,900 km′ wearing. Nonlinear wheel–rail
force function is used to describe thewheel–rail contact
force. On the parameter plane of longitudinal/lateral
stiffness and velocity, the Hopf bifurcation curve is the
boundary between the stable and the unstable equi-
libria. The supercritical/subcritical Hopf bifurcation
implies the existence of stable/unstable limit cycles.
On the basis of generalized Hopf bifurcation, the fold
bifurcation of cycles indicates the existence of multiple
limit cycles. Thus, disturbances will make the move-
ment of trains to converge or diverge at different limit
cycles. Neimark–Sacker bifurcations of cycles and 1:1
resonances are detected by numerical simulation when
the maximum step size h > 0.99.

Fourthly, fold bifurcation of cycles is an important
bifurcation, which can explain the complex behaviors
in the hunting motion of the wheelset model with non-
linear equivalent conicity and wheel–rail contact force.
Our research demonstrates that one of the main reasons
leading to huntingmotion is the fold (limit point) bifur-
cation structure of cycles, and this is because there may
exist multiple limit cycles on a side of fold bifurcation
curve of cycles, at which stable limit cycles and unsta-
ble limit cycles may coincide. If the most outward limit
cycle is stable, then the motion of high-speed vehicle
should be safe in a reasonable range. Otherwise, if the
initial values are chosen near the most outward unsta-
ble limit cycle or the system is perturbed by stronger
noises, the high-speed vehicle will take place unstable
hunting motion and even lead to serious train derail-
ment events. Therefore, in order to control a hunting
motion, it may be the easiest way in theory to guar-
antee the coexistence of stable equilibrium and stable
limit cycle in a wheelset system.

Fifthly, the corresponding parameter value at LPC
can be regarded as a critical threshold concerning on the
existence and disappearance of limit cycles as shown
in Figs. 7 and 11. The cusp bifurcation point as shown
in Fig. 11b is also a critical value at which the LPCwill
appear or disappear.

Sixthly, the computation of Lyapunov exponents
shows that the variation of steepness of equivalent
conicity function may produce little effect on the bifur-
cation type of thewheelsetmodel with nonlinear equiv-
alent conicity and wheel–rail contact force.
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Finally, it is noted that much attention should be
paid on the step size in discretizing a continuous-time
ordinary differential equation. This is because if a rela-
tively small step size is used to discretize a continuous-
time system, the numerical results as shown in Fig. 13
demonstrate that all limit cycles appear on the same
plane, which is a kind of hunting motion coupled by
evenly lateral and yaw movement in two directions,
while if the step size is relatively larger, then the cor-
responding numerical simulations as shown in Fig.
14 present another feature, in which the interwinded
limit cycles show that this is a kind of more complex
unevenly hunting motion than the regular vibration in
two directions, and at the same time, there will appear
numerous 1:1 resonance points. In addition, it is still
a tough task to investigate the instability mechanisms
of this modified system using the approximate analyti-
cal method, especially for more bifurcations of nested
limit cycles. It will be our future research direction to
give a complete picture of rich dynamic behavior using
some approximate analytical method that stays behind
the hunting motion rather than only using numerical
simulations.

Acknowledgements This work is supported by the State Key
Laboratory of Rail Traffic Control and Safety (No. RCS2017
K002), Beijing JiaotongUniversity and the Infrastructure Inspec-
tion Research Institute, China Academy of Railway Science
under Project (No. S18L00250).

Compliance with ethical standards

Conflict of interest The authors declare that there are no con-
flicts of interests regarding the publication of this manuscript.

References

1. Wang, F.T.: Vehicle System Dynamics. China Railway Pub-
lishing House, Beijing (1994)

2. Park, J.H., Kim,N.P.: Parametric study of lateral stability for
a railway vehicle. J. Mech. Sci. Technol. 25(7), 1657–1666
(2011)

3. Cheng, Y.C., Lee, S.Y., Chen, H.H.: Modeling and nonlin-
ear hunting stability analysis of high-speed railway vehicle
moving on curved tracks. J. Sound Vib. 324(1–2), 139–160
(2003)

4. Lee, S.Y., Cheng, Y.C.: Hunting stability analysis of high-
speed railway vehicle trucks on tangent tracks. J. Sound Vib.
282(3), 881–898 (2005)

5. Dinh, V.N., Kim, K.D., Warnitchai, P.: Dynamic analysis
of three-dimensional bridge-high-speed train interactions
using a wheel-rail contact model. Eng. Struct. 31(12), 3090–
3106 (2009)

6. Yan, Y., Zeng, J.: Hopf bifurcation analysis of railway bogie.
Nonlinear Dyn. 1, 1–11 (2017)

7. Ren, Z.S.: Vehicle System Dynamics. China Railway Pub-
lishing House, Beijing (2007)

8. True,H.:Asymmetric hunting and chaoticmotion of railroad
vehicles. In: Proceedings of the ASME/IEEE Spring Joint
Railroad Conference. IEEE (1992)

9. Luo, G.W., Shi, Y.Q., Zhu, X.F., et al.: Hunting patterns and
bifurcation characteristics of a three-axle locomotive bogie
system in the presence of the flange contact nonlinearity. Int.
J. Mech. Sci. 136, 321–338 (2018)

10. Polach, O.: On non-linear methods of bogie stability assess-
ment using computer simulations. Proc. Inst. Mech. Eng.
Part F J. Rail Rapid Transit 220(1), 13–27 (2006)

11. Polach,O.:Characteristic parameters of nonlinearwheel/rail
contact geometry. Veh. Syst. Dyn. 48(sup1), 19–36 (2010)

12. Ahmadian, M., Yang, S.: Hopf bifurcation and hunting
behavior in a rail wheelset with flange contact. Nonlinear
Dyn. 15(1), 15–30 (1997)

13. Sedighi,H.M., Shirazi,K.H.:Bifurcation analysis in hunting
dynamical behavior in a railway bogie: using novel exact
equivalent functions for discontinuous nonlinearities. Sci.
Iran. 19(6), 1493–1501 (2012)

14. Kirillov, O.N.: Nonconservative Stability Problems ofMod-
ern Physics, vol. 14. Walter de Gruyter, Berlin (2013)

15. Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability
Theory with Mechanical Applications, vol. 13. World Sci-
entific, Singapore (2003)

16. Wiggins, S.: Introduction to Applied Nonlinear Dynamical
Systems and Chaos. Springer, Berlin (1990)

17. Kuznetsov, Y.A.: Elements of applied bifurcation theory.
Appl. Math. Sci. 288(2), 715–730 (2004)

18. Dong, H., Zeng, J., Xie, J.H., et al.: Bifurcation\instability
forms of high speed railway vehicles. Sci. China Technol.
Sci. 56(7), 1685–1696 (2013)

19. Zhang, T.T., Dai, H.Y.: Bifurcation analysis of high-speed
railway wheelset. Nonlinear Dyn. 83(3), 1511–1528 (2016)

20. Cheng, L.F., Wei, X.K., Cao, H.J.: Two-parameter bifurca-
tion analysis of limit cycles of a simplified railway wheelset
model. Nonlinear Dyn. 93, 2415–2431 (2018)

21. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT:
a MATLAB package for numerical bifurcation analysis of
ODEs. ACM Trans. Math. Softw. 9(2), 141–164 (2003)

22. Yabuno, H., Okamoto, T., Aoshima, N.: Effect of lateral lin-
ear stiffness on nonlinear characteristics of hunting motion
of a railway wheelset. Maccanica 37, 555–568 (2002)

23. Yabuno,H., Okamoto, T., Aoshima,N.: Stabilization control
for the huntingmotion of a railwaywheelset. Veh. Syst. Dyn.
35, 41–55 (2001)

24. True, H., Kaaspetersen, C.: A bifurcation analysis of nonlin-
ear oscillations in railway vehicles. Veh. Syst. Dyn. 12(1–3),
5–6 (1983)

25. Ahmadian, M., Yang, S.: Effect of system nonlinearities on
locomotive bogie hunting stability. Veh. Syst. Dyn. 29(6),
365–384 (1998)

26. Gao, X.J., Li, Y.H., Yue, Y.: The resultant bifurcation dia-
gram method and its application to bifurcation behaviors of
a symmetric railway bogie system. Nonlinear Dyn. 70(70),
363–380 (2012)

27. von Wagner, U.: Nonlinear dynamic behaviour of a railway
wheelset. Veh. Syst. Dyn. 47(5), 627–640 (2009)

123



100 P. Ge et al.

28. Alligood, K.T., Sauer, T.D., Yorke, J.A., et al.: Chaos: an
introduction to dynamical systems. Phys. Today 50(11), 67–
68 (1997)

29. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical
Integration. Springer, Berlin (2006)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Bifurcation of a modified railway wheelset model with nonlinear equivalent conicity and wheel–rail force
	Abstract
	1 Introduction
	2 The stability of the linear wheelset model
	2.1 Linear wheelset model
	2.2 Critical speeds calculated by linear wheelset model 

	3 Bifurcation mechanism based on nonlinear equivalent conicity and wheel–rail contact force 
	3.1 Measured equivalent conicity function and nonlinear wheelset model 
	3.2 Bifurcation of the cycles about the longitudinal stiffness Kx and the speed V
	3.2.1 The supercritical/subcritical Hopf bifurcation 
	3.2.2 Fold/limit point bifurcation structure of cycles 

	3.3 Stability determined by Lyapunov exponents
	3.4 Similar bifurcations about the lateral stiffness Ky and the speed V
	3.5 Bifurcations of cycles about the longitudinal and the lateral stiffness 
	3.5.1 Cusp bifurcation of cycles 
	3.5.2 NS (Neimark–Sacker) bifurcation of cycles and 1:1 resonance 


	4 Conclusions
	Acknowledgements
	References




