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Abstract This paper deals with chaos synchroniza-
tionproblembetween twodifferent uncertain fractional-
order (FO) chaotic systems with disturbance based on
FO Lyapunov stability analysis method. A T–S fuzzy
neural network model as a universal approximator is
constructed to approximate those uncertain terms and
unknownparameters. An adaptive slidingmode control
scheme is established, and the adaptive sliding mode
control design procedure is proposed, which not only
guarantees the stability and robustness of the proposed
control method, but also guarantees that the external
disturbance on the synchronization error can be attenu-
ated. Finally, simulation results show applicability and
feasibility of the proposed control strategy.

Keywords Fractional-order system · Fuzzy neural
network · Chaos synchronization · Sliding mode
control

1 Introduction

In recent years, fractional-order systems (FOSs) have
been receiving intensive studies because the underly-
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ing facts about the fractional differentiation are sig-
nificantly different from those of the integer-order
counterparts. Also, numerous physical systems are
described more accurately by FO differential equa-
tions, for instance dielectric polarization, electromag-
netic waves and viscoelastic systems [1], heat and fluid
flow processes [2], flight control in uncrewed aerial
vehicles [3], and so on. Thus, several results related to
stability analysis and control design of FOsystemshave
been reported [4–8]. Many FO control methods includ-
ing FO sliding mode control [5], FO neural network
control [9], FO adaptive control [10,11], and so on,
have been derived by integrating some classic control
approaches and FO operators. Despite so, researchers
are still interested in the FO systems and FO control
design due to many interesting dynamical behaviors
such as existence of limit cycle and chaotic behaviors
have been observed in FO nonlinear systems [12,13],
which leads the researchers obviously to the investi-
gation of chaotic characteristic, chaos suppression and
synchronization of such systems [14,15]. It should be
pointed out that the control techniques for integer-order
systemsmaynot to be extendeddirectly to theFOcases.
As a result, the chaotic characteristic analysis and chaos
synchronization for FO systems is still an attractive and
challenging problem, which motivates the work.

A lots of efforts have been devoted to the study of
chaotic synchronization control for FO chaotic sys-
tems over past few decades due to its potential appli-
cations in secure communication and control process-
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ing [16–23]. To mention a few, in [16], for instance,
two FO hyperchaotic systems can be synchronized
based on Lyapunov stability theorem by using direct
adaptive interval type 2 fuzzy active sliding control
approach. In [20], the impulsive synchronization of
fractional-order discrete-time chaotic systems is dis-
cussed. In addition, the adaptive synchronization prob-
lem of fractional-order memristor-based neural net-
works with time delay is investigated in [24] by com-
bining the adaptive control, linear delay feedback con-
trol, with a fractional-order inequality. The problem
of synchronization of FO complex-valued neural net-
works with time delays is discussed in [25]. The inves-
tigation of FO chaos synchronization meets technical
obstacles due to the fact that the actual systems have
uncertain parameters or uncertain system structure, or it
is difficult to be described accurately. One of the most
efficient solutions to such problem is probably adap-
tive control scheme based on fuzzy neural network,
which is extensively used for approximating uncertain
terms or unknown parameters, which is just as done in
[16–18,23,26]. It should be noted that the considered
system structure in [16] is known and fuzzy network
is used only to approximate the upper bound of dis-
turbance. However, it is difficult to design a controller
with the above-mentioned technique when neither the
system structure nor the upper bound of disturbance is
known. A typical issue we have to face is the issue of
approximating the unknown parameters of the consid-
ered system. Therefore, how to overcome this obstacle
to design a controller for chaos synchronization of FO
systems is a open problem, which is another motivation
of this work.

To the best of our knowledge, chaos synchronization
problem between two different uncertain FO chaotic
systems with disturbance has still not been fully inves-
tigated in the existing studies. Inspired by the results in
[17], chaos synchronization problem between two dif-
ferent uncertain FO chaotic systems based on adaptive
fuzzy sliding mode control technique is investigated
in this paper. The main contributions of this work are
listed as follows.

(1) A adaptive sliding mode control technique is estab-
lished for chaos synchronization of uncertain FO
chaotic systems.

(2) A T–S fuzzy neural network model as a univer-
sal approximator is constructed to approximate the
unknown functions and disturbances, and FO adap-

tive laws are designed to update the neuro-fuzzy
parameters.

This paper is organized as follows: In Sect. 2, an
introduction to fractional derivative and its relation
to the approximation solution and some lemmas are
addressed. Problem formulation and a brief introduc-
tion of the fuzzy neural networks are presented in Sect.
3, and in this section, a controller is designed by slid-
ing mode method with fuzzy neural network model
used as an approximator. In Sect. 4, the synchroniza-
tion error and system stability are analyzed by a FO
Lyapunov approach. In Sect. 5, application of the pro-
posed method on FO expression of chaotic system is
investigated and the results of numerical simulation are
shown. The conclusion is given in Sect. 6.

2 Basic definition and preliminaries for
fractional-order systems

Fractional calculus can describe andmodel real objects
more accurately than classical “integer-order” meth-
ods. Fractional calculus is denoted by aD

q
t , which is

a notation for taking both the fractional integral and
derivative in an expression defined as

aD
q
t =

⎧
⎪⎪⎨

⎪⎪⎩

dq
dtq , q > 0

1, q = 0
∫ t
a (dτ)q , q < 0.

(1)

There are three most common definitions of frac-
tional differential integral in the literature. One of them
is Caputo’s derivative, which is used in this paper,
defined as:

aD
q
t f (t) = 1

Γ (m − q)

∫ t

a

f m (τ )

(t − τ)1−(m−q)
dτ, (2)

where m − 1 < q < m and Γ is the Gamma function.
The numerical simulation of a fractional differential

equation is not simple as that of an ordinary differential
equation. In our case, the fractionalAdams–Bashforth–
Moulton method is chosen as a representative numeri-
cal scheme [27]. To explain this method, the following
differential equation is considered
{
Dq
t y (t) = r (t, y (t)) , 0 ≤ t ≤ T,

y(k) (0) = y(k)
0 , k = 0, 1, . . . ,m − 1.

(3)
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The solution of Eq. (3) is equivalent to Eq. (4)

y (t) =
�q�−1∑

k=0

y(k)
0

tk

k!

+ 1

Γ (q)

∫ t

0
(t − s)q−1 r (s, y (s)) ds. (4)

Setting h = T/N , tn = nh, n = 0, 1, . . . , N , Eq. (4)
can be discretized as follows:

yh (tn+1) =
�q�−1∑

k=0

y(k)
0

tk

k! + hq

Γ (q + 2)
r
(
tn+1, y

p
h (tn+1)

)

+ hq

Γ (q + 2)

n∑

j=0

a j,n+1r(t j , yh(t j )),

(5)

where

y ph (tn+1) =
�q�−1∑

k=0

y(k)
0

tk

k! + 1

Γ (q)

n∑

j=0

b j,n+1r(t j , yh(t j )),

a j,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nq+1 − (n − q) (n + 1)q , j = 0
(n − j + 2)q+1 + (n − j)q+1

−2 (n − j + 1)q+1 , 1 ≤ j ≤ n
1, j = n + 1

(6)

and

b j,n+1 = hq

q
((n + 1 − j)q − (n − j)q).

The approximation error is described as

max
j=0,1,...,N

∣
∣y

(
t j

) − yh
(
t j

)∣
∣ = 0(h p),

where p = min(2, 1 + q).
In the rest of this paper, the operator Dq denotes the

Caputo’s fractional differential operator of order q. The
following lemmas will be used later.

Lemma 1 [28] For the FO system (7)

Dqx(t) = f (x(t)), (7)

with q ∈ (0, 1), x ∈ R
n is the state vector and x = 0

is the equilibrium point of (7), the equilibrium point of
system (7) is stable if

x(t) f (x(t)) ≤ 0, ∀x �= 0.

And the equilibrium point is asymptotically stable if

x(t) f (x(t)) < 0, ∀x �= 0.

Lemma 2 [28] Let x(t) ∈ R
n be continuous and dif-

ferentiable. Then, the following inequality holds for any
time instant t ≥ t0

1

2
Dqx2(t) ≤ x(t)Dqx(t), ∀q ∈ (0, 1).

Lemma 3 [29]For a given linear autonomous FO sys-
tem

Dqx(t) = Ax(t), (8)

the zero solution to system (8) is asymptotically stable if
all eigenvalues λi , (i = 1, 2, . . . , n) of matrix A satisfy

|arg(λi )| > q
π

2
,

where 0 < q ≤ 1.

Lemma 4 [30] The trivial solution of system (7) is
asymptotically stable if there exists a positive definite
Lyapunov function V (x(t)) such that DqV (x(t)) < 0
for all t > 0.

3 Problem formulation and controller design

Consider the synchronization of the following two N -
dimension FO chaotic systems, the master system:
{
Dqxi = xi+1, 1 ≤ i ≤ n − 1
Dqxn = g(x, t),

(9)

and the slave system:
{
Dq yi = yi+1, 1 ≤ i ≤ n − 1
Dq yn = f (y, t) + d(t) + u(t),

(10)

where xi , yi ∈ R, (i = 1, 2, . . . , n) are system states,
x = [x1, x2, . . . , xn]T, y = [y1, y2, . . . , yn]T, f (y, t)
and g(x, t) are unknown but bounded functions, d(t)
is unknown bounded disturbance, u(t) is the controller
to be designed.

Define the synchronization error as

ei = yi − xi , (i = 1, 2, . . . , n); (11)

then, the following error dynamic is obtained
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dqe1 = e2,
Dqe2 = e3,
...

Dqen = f (y, t) − g(x, t) + d(t) + u(t),

(12)

where e = [e1, e2, . . . , en]T is the error vector.
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Consider the following sliding mode function

s = −ce = −(c1e1 + c2e2 + · · · + cn−1en−1 + en),

(13)

where c = [c1, c2, . . . , cn−1, 1] is a constant vector to
be designed satisfying condition in Lemma 3 so that the
slidingmode surface vanishes quickly. The process can
be classified into two phases: One is the approaching
phase with s �= 0 and the other is the sliding phase with
s = 0. Our objective is to design the control effort such
that the sliding mode condition sDqs ≤ −ηΔ|s| (ηΔ is
a given positive constant) is satisfied which, by Lemma
1, can guarantee that the trajectory of the synchroniza-
tion error vector e moves from approaching phase to
sliding phase.

In view of (12) and (13), the following equation
holds

Dqs = −cDqe

= −[c1e2 + c2e3 + . . . + cn−1en + f (y, t)

− g(x, t) + d(t) + u(t)].
(14)

Consequently, the control effort can be designed, by
the idea of equivalent control, as
⎧
⎪⎨

⎪⎩

u = ueq + ud ,

ueq = −∑n−1
i=1 ci ei+1 − f (y, t) + g(x, t),

ud = ηsign(s),

(15)

where η ≥ ηΔ > 0, f (y, t), g(x, t) and η are all
unknown. These unknown functions and parameter
make the control effort (15) not implementable. In order
to identify these variables and parameters, a T–S fuzzy
neural networkmodelwhich includes a fuzzy logic sys-
tem and a neural network is introduced as shown in
Fig. 1.

Fuzzy logic systems address the imprecision of input
and output variables directly by defining them with
fuzzy numbers (and fuzzy sets) that can be expressed
in linguistic terms. The basic configuration of the T–S
fuzzy neural network (FNN) system includes a fuzzy
rule base, which consists of a collection of fuzzy if–
then rules in the following form:

R(i) : i f xi is Ai
1 and . . . and xn is A

i
n then y is Bi ,

where Ai
1, A

i
2, . . . A

i
n and Bi are fuzzy sets. The output

of the fuzzy logic system with central average defuzzi-
fier, product inference and singleton fuzzifier can be
expressed as

Fig. 1 Configuration of the T–S fuzzy neural networks

y(X) =
∑h

i=1 ȳ
i
(∏n

j=1 μAi
j (x j )

)

∑h
i=1

(∏n
j=1 μAi

j (x j )

) = θT ξ(X), (16)

where h is the number of fuzzy rules, μAi
j (x j )

is

the membership function value of the fuzzy variable
which is commonly selected as Gaussian function and
θT = [ȳT1 , ȳT2 , . . . , ȳTh ] is an adjustable parameter vec-
tor. Fuzzy basis function vector is defined as

ξ i (X) =
∏n

j=1 μAi
j (x j )

∑h
i=1

(∏n
j=1 μAi

j (x j )

) . (17)

The layer 1 and layer 2 of this network are used
for input and membership function, respectively, and
layer 3 is used for product fuzzy basis function vector.
Network output with adjustable parameter vector can
be obtained in layer 4, namely

y(X) = θT ξ(X). (18)

The above fuzzy logic system can uniformly approxi-
mate any well-defined nonlinear function over a com-
pact set to any degree of accuracy by the universal
approximation theorem [31]. Also it is straightforward
to show that a multi-output system can always be
approximated by a group of single-output approxima-
tion systems.

Hence, the approximation values of f (y, t), g(x, t)
and η via the T–S fuzzy neural network can be
expressed as:

f̂
(
y, θy

) = θ̂Ty ξy (y) ,

ĝ (x, θx ) = θ̂Tx ξx (x) ,
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η̂ (e, θe) = θ̂Te ξe (e) . (19)

Substituting (19) into (15), the control effort can be
rewritten as

u = −
n−1∑

i=1

ci ei+1 − f̂ (y, t) + ĝ (x, t) + η̂sign (s) .

(20)

Define optimal parameter estimations of f (y, t),
g(x, t) and η as

θ∗
f = argmin

θ f
−

∈Ω f

[

sup
y∈Ωy

| f̂ (y | θ f ) − f (y, t)|
]

,

θ∗
g = argmin

θg
−

∈Ωg

[

sup
x∈Ωx

|ĝ(x | θg) − g(x, t)|
]

,

θ∗
η = argmin

θe−
∈Ωη

[

sup
e∈Ωe

|η̂(e | θη) − η|
]

,

(21)

and some constraint sets of suitable bounds as

Ω f = { f | | f | ≤ M f }, Ωg = {g | |g| ≤ Mg},
Ωη = {η | η ≤ Mη}, Ωy = {y | |y| ≤ My},
Ωx = {x | |x | ≤ Mx }, Ωe = {e | |e| ≤ Me}, (22)

separately,whereM f , Mg, Mη, My, Mx , Me are uncer-
tain positive constants. The block diagram of the con-
trolled system is illustrated in Fig. 2.

4 Synchronization error and system stability
analysis

Consider the Lyapunov function candidate

V = 1

2
s2 + 1

2r f
θ̃Tf θ̃ f + 1

2rg
θ̃Tg θ̃g + 1

2rη
θ̃Tη θ̃η, (23)

where r f , rg and rη are positive constants and θ̃ f , θ̃g ,
and θ̃η are defined as

θ̃ f = θ̂ f − θ∗
f ,

θ̃g = θ̂g − θ∗
g ,

θ̃η = θ̂η − θ∗
η .

(24)

Taking the q-order derivative of (23) with respect to
time and utilizing Lemma 2 and (24), we get

DqV ≤ sDqs + 1

r f
θ̃Tf D

q θ̃ f

+ 1

rg
θ̃Tg Dq θ̃g + 1

rη
θ̃Tη Dq θ̃η

≤ sDqs + 1

r f
θ̃Tf D

q(θ̂ f − θ∗
f )

+ 1

rg
θ̃Tg Dq(θ̂g − θ∗

g )

+ 1

rη
θ̃Tη Dq(θ̂η − θ∗

η )

≤ sDqs + 1

r f
θ̃Tf D

q θ̂ f + 1

rg
θ̃Tg Dq θ̂g

+ 1

rη
θ̃Tη Dq θ̂η.

(25)

In view of (13), (15) and (20), (14) can be further
expressed as

Dqs = −
(
f (y, t) − f ∗(y, t) + f ∗(y, t) − f̂ (y, t)

)

+ g(x, t) − g∗(x, t) + g∗(x, t)
− ĝ(x, t) − d(t) − η̂sign(s),

(26)

where

f ∗ (
y, θ f

) = θ∗T
y ξy (y) ,

g∗ (
x, θg

) = θ∗T
x ξx (x) ,

η∗ (
e, θη

) = θ∗T
η ξe (e) ,

(27)

are optimal estimations of functions f , g and η.
Define the optimal approximation error as

dd (t) = − (
f (y, t) − f ∗ (y, t)

)

+ (
g (x, t) − g∗ (x, t)

)
.

With (19) and (27), (26) is rewritten as

Dqs = −
(
θ∗T

y − θ̂Ty

)
ξy (y) +

(
θ∗T

x − θ̂Tx

)
ξx (x)

+ dd (t) − d (t) −
(
θ̂Te ξe (e)

)
sign(s).

(28)

123



1280 R. Wang et al.

Fig. 2 Block diagram of the controlled system

Substituting (28) into (25), the following inequality
holds

DqV ≤ s
(
θ̃Tf ξy (y) − θ̃Tg ξx (x) + dd (t) − d (t)

)

− s
(
θ̃Tη ξe (e) signs + θ∗T

η ξe (e) signs
)

+ 1

r f
θ̃Tf D

q θ̂ f + 1

rg
θ̃Tg Dq θ̂g + 1

rη
θ̃Tη Dq θ̂η

≤ θ̃Tf

(
1

r f
Dq θ̂ f + sξy (y)

)

+ θ̃Tg

(
1

rg
Dq θ̂g − sξx (x)

)

+ θ̃Tη

(
1

rη
Dq θ̂η − |s| ξe (e)

)

+ s (dd (t) − d (t)) −
(
θ∗T

η ξe (e)
)

|s| .

(29)

Now, defining the adaptive laws of adjustable parame-
ter vectors as
Dq θ̂ f = −r f sξy (y) ,

Dq θ̂g = rgsξx (x) ,

Dq θ̂η = rη |s| ξe (e) ,
(30)

and substituting (30) into (29), we have

DqV = s (dd (t) − d (t)) − |s| θ∗T
η ξe (e)

= |s| |dd (t) − d (t)| − |s| η∗.
(31)

It is the fact, by the assumptions in (22) that dd is
bounded which together with the assumption that dis-
turbance d(t) is bounded, one can obtain the following
inequalities with some positive constant η∗

|dd (t) − d (t)| − η∗ < 0,

DqV ≤ |s| (|dd (t) − d (t)| − η∗) < 0.
(32)

Therefore, DqV < 0 holds, which means that, by
Lemma 4, asymptotical stability of system (12) is guar-
anteed and synchronization of systems (9) and (10) can
be achieved with controller (20) and the adaptive law
(30). Hence, the following result is obtained.

Theorem 1 Consider two N-dimension FO chaotic
systems, master system (9) and slave system (10), and
the control effort of the slave system is given in (15)with
the fuzzy adaptive laws in (30). Then, under the effect
of controller (20), the resulting closed-loop system is
global asymptotically stable and the synchronization
error will converge to zero asymptotically.

Remark 1 It is worth noting that the undesired chatter-
ing phenomenon is unavoidable when the sign function
is introduced to controller design in (15) to estimate the
effect caused by external disturbances and approxima-
tion errors. To solve the problem, the sigmoid function
with good smoothness is used to replace the sign func-
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tion, so that it can not only realize the function of sign
function but also restrain the chattering phenomenon.

5 Simulation examples

In this section, we will consider two examples to illus-
trate the effectiveness of our proposed design method.

Example 1 Consider the chaos synchronization of two
nonidentical FO uncertain chaotic systems with the
order q = 0.98, which is chosen from [32].

Master system: FO Duffing–Holmes system
{
Dqx1 = x2,
Dqx2 = x1 − ax2 − x31 + b cos(t) + dx (t).

(33)

Slave system: FO Gyros system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dq y1 = y2,

Dq y2 = −ε2
(1−cos y1)2

(sin y1)3−β sin y1 − ψ1y1 − ψ2y32
+(β + λ sin(ωt)) sin y1 + u + dy(t).

(34)

The parameters are chosen as

a = 0.25, b = 0.3, ε = 10, β = 1, ψ1 = 0.5,
ψ2 = 0.05, ω = 2, λ = 35, r f = rg = rη = 50.

(35)

Under the selected parameters, the equilibrium of
system (33) is unstable, which can be verified by using
the first Lyapunov method. In fact, there are two real
eigenvalues of the Jacobianmatrix, one ofwhich is pos-
itive, in the equilibrium point of system (33). Also, the
maximum Lyapunov exponent of system (33) is com-
puted as 0.0773, which shows the FO Duffing–Holmes
system is chaotic. The Lyapunov exponent spectrums
are shown in Fig. 3.

For the purpose of numerical simulations, it is
assumed that the external disturbances are dx (t) =
0.1 cos(3t) in themaster system and dy(t) = 0.2 cos(t)
in the slave system, respectively. The initial values
of the master and slave systems are set as x(0) =
[0.3,−0.2]T and y(0) = [−0.1, 0.2]T, respectively.

The phase portrait of the FO Duffing–Holmes mas-
ter system and FO Gyros slave system without control
effort is depicted in Fig. 4, which shows the dynamic
behaviors of the two systems are different. The mem-
bership functions for xi and yi , (i = 1, 2) are selected
as the following Gaussian functions:

μAi
1(xi ) = exp[−(xi + 4)2],

Fig. 3 Lyapunov exponent spectrums of system (33)

μAi
2(xi ) = exp[−(xi + 2)2],

μAi
3(xi ) = exp[−(xi )

2],
μAi

4(xi ) = exp[−(xi − 2)2],
μAi

5(xi ) = exp[−(xi − 4)2]. (36)

Refer to remark 1. By computing the adaptive laws in
(30) and the estimated values of variables and parame-
ters in (19),with slidingmode surface s = −150e1−e2,
the control effort of the slave system can be obtained
as

u(t) = −c1e2 − f̂ (y, t) + ĝ(x, t) + η̂simoid(−3s).

(37)

Under the control effort of (37), the phase portrait
of the synchronization performance of the master and
slave systems is shown in Fig. 5. Figures 6 and 7 show
the synchronization error dynamics e1 and e2, respec-
tively. Figures 8 and 9 show the trajectories of the states
x1, y1 and x2, y2, respectively. It is noticeable that the
tracking error (or synchronization error) converges to
zero asymptotically. The dynamic behavior of sliding
mode surface s(t) is shown in Fig. 10. Obviously, the
value of switching surface converges to zero speedily.
It is also noticeable that the chattering phenomenon,
which is usually considered as a drawback of conven-
tional sliding mode control, does not appear in our
design.

For the sake of comparison, systems (33) and (34)
are also simulated by using themethod proposed in [32]
with the same uncertainties and external disturbances.
The simulation results are shown inFig. 11. To compare
with our method, the better synchronization result can
be obtained from the perspective of the synchronization
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(a)

(b)

Fig. 4 Phase portrait of master and slave systems without con-
trol. a FO Duffing–Holmes system and b FO Gyros system

Fig. 5 Phase portrait of Duffing–Holmes master system and
Gyros slave system with control

time of states by utilizing our method, which further
highlights the validity and superiority of our control
method.

Example 2 Let us consider two different uncertain
fractional-order Jerk chaotic systems with the order
q = 0.95 as follows.

Master system:
⎧
⎨

⎩

Dqx1 = x2,
Dqx2 = x3,
Dqx3 = a21x3 − x2 + x1 + b21 sinh(x1)

(38)

Slave system:
⎧
⎪⎪⎨

⎪⎪⎩

Dq y1 = y2,
Dq y2 = y3,
Dq y3 = a22y3 − y2 + y1

+b22 sinh(y1) + u(t) + d(t)

(39)

Fig. 6 Error dynamics of the states x1 and y1

Fig. 7 Error dynamics of the states x2 and y2

Fig. 8 Synchronization behaviors of the states x1 and y1
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Fig. 9 Synchronization behaviors of the states x2 and y2

Fig. 10 Dynamic behavior of sliding surface
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Fig. 11 Errors dynamics of Duffing–Holmes master system and
Gyros slave system with the method in [32]

Choose the parameters as

a21 = 0.6, b21 = −0.5, c1 = 35, a22 = 0.68,

b22 = −0.54, c2 = 20, r f = rg = rη = 50.

Under these parameters, the maximum Lyapunov
exponent of system (38) is computed as 0.0601,
which shows this system is chaotic and surely unsta-
ble. In addition, the external disturbance is set as
d(t) = 0.05 sin(2t) and the initial conditions of
the master and slave systems are chosen as x(0) =
[−0.81,−1.02,−0.5]T and y(0) = [0.8, 1.2, 0.5]T,
respectively. The membership functions for xi and
yi , (i = 1, 2, 3) are selected as the following Gaus-
sian functions:

μAi
1(xi ) = exp[−(xi + 3)2],

μAi
2(xi ) = exp[−(xi + 1)2],

μAi
3(xi ) = exp[−(xi )

2],
μAi

4(xi ) = exp[−(xi − 1)2],
μAi

5(xi ) = exp[−(xi − 3)2]. (40)

The control effort of the slave systemcanbeobtained
as

u(t) = −c1e2 − c2e3 − f̂ (y, t) + ĝ(x, t) + η̂sign(s).

(41)

For free of control input, the phase portrait of the
master and slave systems is given in Fig. 12 and the 2-
D phase trajectories of different variables are shown in
Figs. 13, 14 and 15, respectively. Under the proposed
control effort, the 3-D phase portrait of synchroniza-
tion of the master and slave systems is shown in Fig.
16, and the 2-D phase portrait of synchronization of the
master and slave systems is shown in Figs. 17, 18 and
19, respectively. Figures 20, 21 and 22 show the error
dynamics. Figures 23, 24 and 25 show the synchroniza-
tion behaviors of state variables of the master and slave
systems. It is noticeable that tracking errors converge
to zero asymptotically, which verifies the effectiveness
of our proposed control design method.

6 Conclusion

In this paper, an FO adaptive sliding mode control is
proposed for chaos synchronization between two dif-
ferent uncertain FO chaotic systems with disturbance
based on FO Lyapunov approach. A adaptive slid-
ing mode control technique is established for chaos
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Fig. 12 3-D phase portrait of the Jerk chaotic master and slave
systems without control

Fig. 13 2-D projection of the master and slave systems on
(x1, x2)-plane and (y1, y2)-plane without control

Fig. 14 2-D projection of the master and slave systems on
(x1, x3)-plane and (y1, y3)-plane without control

Fig. 15 2-D projection of the master and slave systems on
(x2, x3)-plane and (y2, y3)-plane without control

Fig. 16 3-D phase portrait of the jerk chaotic master and slave
systems with control

Fig. 17 2-D projection of the master and slave systems on
(x1, x2)-plane and (y1, y2)-plane with control effort
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Fig. 18 2-D projection of the master and slave systems on
(x1, x3)-plane and (y1, y3)-plane with control effort

Fig. 19 2-D projection of the master and slave systems on
(x2, x3)-plane and (y2, y3)-plane with control effort

Fig. 20 Error dynamic of the states x1 and y1

Fig. 21 Error dynamic of the states x2 and y2

Fig. 22 Error dynamic of the states x3 and y3

Fig. 23 Synchronization behavior of the state variables x1 and
y1

123



1286 R. Wang et al.

Fig. 24 Synchronization behavior of the state variables x2 and
y2

Fig. 25 Synchronization behavior of the state variables x3 and
y3

synchronization of FO chaotic systems with exter-
nal disturbances. A T–S fuzzy neural network model
is introduced to approximate the uncertain terms and
unknown upper bounds of some parameters. Further-
more, the corresponding adaptive laws are designed to
tune online a set of free parameters. Two simulation
examples, one of which consists of two nonidentical
FO uncertain chaotic system, are given to demonstrate
the effectiveness of the proposed method. Simulation
results show that an asymptotical synchronization of
the master and the slave systems can be achieved. On
the other hand, how to eliminate the chattering caused
by sign function in another way as well as to design
a different sliding mode surface so that the systems

have better synchronization effect is one of our primary
works in the future.
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