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Abstract This paper is concernedwith the global reg-
ulation via output feedback for the time-delay nonlinear
systems with unknown continuous output function and
unknown growth rate. Different from the existing liter-
ature, the output is perturbed by an unknown continu-
ous function, and nonlinearities are upper bounded by
unmeasured states multiplying an unknown constant
and a polynomial of the output. A unified methodol-
ogy is proposed to construct a new type of full-order
observer with a dynamic gain by filtering unknown
nonlinearities and time-varying delay. In light of a
delicate scaling transformation, a combined system
is derived to perform the one-step assignment of the
controller instead of traditional backstepping recursive
design. The stability analysis is completed by reduc-
tio and another scaling transformation with the upper
bound of the dynamic gain. The efficiency of the pro-
posed control scheme is demonstrated by two simula-
tion examples including a practical one.
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1 Introduction

In this article, we consider a class of time-delay non-
linear systems described by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi (t) = xi+1(t) + fi (t, x(t), x(t − τ(t))),

i = 1, . . . , n − 1,

ẋn(t) = u(t) + fn(t, x(t), x(t − τ(t))),

y(t) = θ(t)x1(t),

(1)

where x(t) = [x1(t), . . . , xn(t)]T ∈ R
n , u(t) �

xn+1(t) ∈ R, y(t) ∈ R are the state, the input
and the output, respectively; an unknown continuous
function θ(·) denotes time-varying measurement error;
x(t−τ(t)) = [x1(t−τ(t)), . . . , xn(t−τ(t))]T , and the
unknown time-varying delay τ(t) satisfies 0 ≤ τ(t) ≤
τ̃ , τ̇ (t) ≤ τ < 1with τ̃ and τ being known nonnegative
constants; f1(·), . . . , fn(·), known as nonlinearities of
system (1), are unknown continuous functions. The ini-
tial condition is x(�) = ζ0(�) for any� ∈ [−τ̃ , 0] and
ζ0(·) being a specified continuous function.

When τ = 0, Eq. (1) are referred to as a class of
feedback nonlinear systems whose control design has
been focused on considerable attention since the 1990s,
where the distinguished backstepping method [1,2]
was born to provide a systematic methodology in the
construction of the desired controller. Soon afterward,
adding a power integrator method [3] was proposed
to overcome the obstacles of backstepping; that is, the
precise cancelation in design procedures is replaced by
the domination to deal with the strong nonlinearities.
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Thanks to these two methods, a series of interesting
results have been obtained, see [4–16] and the refer-
ences therein. When τ �= 0, Eq. (1) are called a class
of time-varying delayed nonlinear systems. Time delay
widely exists in various control systems and sometimes
benefits the control, such as damping and stabilization
of ordinary differential equations. However,more often
time delay is viewed as an undesirable factor which has
the potential tendency to destabilize control systems by
deteriorating system performances. Thus, the stability
analysis and control design of the time-delay systems
have gained a great deal of attention, and a series of
research results have been achieved, such as [17–25]
and the references therein.

It is necessary to point out that uncertainties/
unknowns (such as unknown growth rate and unknown
output) also exist in practical systems, and these fac-
tors make control design difficult. Hence, it is of much
importance to investigate their effects on control design
and the strategies of manipulating them. Realizing
that nonlinearities are restricted by uncertainties, the
designer tends to impose the assumptions on nonlin-
earities. Generally speaking, there are two types of
growth rates. The one is linear growth rate; that is,
the nonlinearities are bounded by a positive constant
multiplied by a linear sum of unmeasurable state vari-
ables. Whether or not the constant is known, the sys-
tem is linear in nature, so combining the construc-
tions of observers with controllers applicable to non-
linear systems accelerates the development of some
new control approaches. For example, by a feedback
domination method, [26] explicitly constructed a lin-
ear output compensator ensuring the globally expo-
nential stability of the closed-loop systems. Further-
more, the hypothesis on [26] was extended to time-
delay nonlinear systems and stochastic ones based on
the appropriate choice of Lyapunov function in [27]
and [28], respectively. The other one is the nonlinear
growth rate; that is, the nonlinearities are bounded by
a positive constant multiplied by a nonlinear sum of
unmeasurable state variables. In such situation, tradi-
tional linear observers are inapplicable, so a class of
so-called homogeneous observers were proposed for
the first time in the celebrated paper [29] to rebuild
up the unmeasurable states. As a generalized investi-
gation, [30–32] addressed the global stabilization of
inherently nonlinear systems via homogeneous domi-
nation in terms of a new observer/controller construc-
tion. In brief, the existing results [3–5,17,18,20–25]

required the precise knowledge of the output func-
tion.

Recently, the designer began to investigate the case
that the unknown output exists in the systems. By
requiring the continuous differentiability of the out-
put function which could be unknown, [33] solved
the output feedback stabilization, and [34] further
considered the effect of time delay for the system
with an unknown growth. The latest references [9,35–
40] removed this restriction in light of the modi-
fied construction of a homogeneous observer. Specif-
ically, Chen et al. [37] proposed a linear-like non-
differentiable function for the first time; that is, the
output has the form: y(t) = θ(t)x1(t) with θ(t) being
not differentiable and unknown, and they obtained
a global output feedback stabilizer by applying the
double-domination approach, where the central strat-
egy is that two (double) gains are used to domi-
nate unknown fi ’s and unknown θ(t), respectively.
Soon afterward, this approach was extended to inves-
tigate the stabilization of stochastic nonlinear sys-
tem in [41] and disturbance attenuation of feedfor-
ward nonlinear system in [9], respectively. However,
to the best of the authors’ knowledge, in the case that
the time-varying output function is not differentiable
but continuous, the output feedback regulation of sys-
tem (1) whose nonlinearities are bounded by unmea-
sured states multiplying an unknown constant and a
polynomial of output growth rate is not solved until
now.

To solve aforementioned regulation problem, we
have to face with two types of uncertainties composed
of an unknown constant and unmeasurable state vari-
ables together with the polynomial of output growth
rate, and three difficulties come tomind. First, does tra-
ditional adaptive technique compensate the unknown
constant in the nonlinearities? Second, is there an
appropriate observer rebuilding up unmeasurable states
in the presence of time-varying delay? Third, how can
wedealwith the polynomial of the output? In this paper,
the designer overcomes the second difficulty by filter-
ing the information onnonlinearities in the construction
of the observer, and conquers the first and third diffi-
culties simultaneously by introducing a dynamic gain
andmodifying the double-domination approach in [37–
41]. Specifically, this paper proposes a linear-like time-
varying output feedback controller with a dynamic gain
to guarantee that the states of the resulting closed-loop
systemconverge to zero, and theoretical analysis is con-
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ducted based on the construction of two integral Lya-
punov functions.

At last, we highlight the main contributions of this
paper as follows: (i) This paper is the first to inves-
tigate the output feedback regulation of time-delay
nonlinear systems with unknown continuous output
function and unknown growth rate, where the double-
domination approach is extended to provide a unified
control design instead of traditional inductive proce-
dures. (ii) The assumption imposed on nonlinearities is
further relaxed; that is, the growth rate can be unknown,
whose influence is studied by a new scaling transfor-
mation with the upper bound of a new dynamic gain.
(iii) A constant gain is provided to solve the contin-
uous measurement error, and skillful transformations
are introduced to search appropriate integral Lyapunov
functions.

2 Design of output feedback controller

2.1 Problem formulation and preliminaries

We adopt the following notations throughout this paper.
For a real vector x(t) = [x1(t), . . . , xn(t)]T ∈ R

n ,
the norm is defined by ‖x‖ = (

∑n
i=1 x

2
i )

1
2 . For a

real matrix A = (ai j )m×n , AT is the transpose of A;

‖A‖ � (λmax(AT A))
1
2 , where λmax(AT A) denotes the

largest eigenvalue of the matrix AT A. The arguments
of functions are sometimes simplified; for instance, a
function fi (t, x(t), x(t − τ(t))) is denoted by fi (·) or
fi .
This article is to design anoutput feedback controller

based on an appropriate observer such that the states of
system (1) converge to zero. For this aim, the following
assumptions are needed.

Assumption 1 There is a sufficiently small parameter
θ̄ satisfying |1 − θ(t)| ≤ θ̄ < 1.

Assumption 2 For each i = 1, . . . , n, there exist an
unknown constant c ≥ 0 and a known constant p > 0
such that

| fi (·)| ≤ c(1 + |y(t)|p)

×(
i∑

j=1

|x j (t)| +
i∑

j=1

|x j (t − τ(t))|). (2)

Assumption 1 depicts that the allowable range of time-
varying measurement error θ(t) is standard and used in

the existing results [9,37–41]. Of course, the inequal-
ity in Assumption 1 excludes the case of y(t) ≡ 0
explicitly, and this implies that system (1) is completely
observable.More explanations onAssumption 1 can be
found in [37,41]. In what follows, we illustrate how to
enlarge the class of the systems to be investigated by
Assumption 2.

Remark 1 It is seen from (2) that the nonlinearities
fi (·) satisfy linear growth condition on the unmeasured
states multiplied by unknown growth rate c and output
polynomial function 1 + |y(t)|p. The reasonability of
Assumption 2 can be explained from two aspects. (i)
System (1) satisfying Assumption 2 can cover a wide
variety of nonlinear systems in the literature. For exam-
ple, in the absence of the time delay, Assumption 2
reduces to the Assumption 1.1 in [5]. Neglecting the
term 1 + |y(t)|p, Assumption 2 reduces to Assump-
tion 2.1 in [19,34]. (i i) We emphasize that the term
1 + |y(t)|p is not stringent since it can define many
functions encountered in practice. For instance, any
polynomial/global Lipschitz function can be defined by
c(1+|y(t)|p). Considering bm y(t)m +bm−1y(t)m−1+
· · ·+b1y(t)+b0 withm, b0, . . . , bm being known con-
stants, one has

bm y(t)
m + bm−1y(t)

m−1 + · · · + b1y(t) + b0

≤ (|b0| + · · · + |bm |)(1 + |y(t)|m)

� c(1 + |y(t)|p).
Moreover, the example of |y(t)|4 + |y(t)|3 + ln(2 +
y(t)2) + y(t) cos(y(t)) ≤ 6(1 + |y(t)|4) with c = 6
and p = 4 also shows that any function satisfying
polynomial growth restriction can also be defined by
c(1+|y(t)|p). In short, Assumption 2 implies that non-
linearities can run far away from the zero for awhile, but
must not tend to infinity in a fast way as time increases.

At last, we provide two lemmas that will be used to
prove the core results in this paper.

Lemma 1 [37] If m ≥ 1 is a constant, then for any
xi ∈ R, i = 1, . . . , n, there is

(|x1| + · · · + |xn|)m ≤ nm−1(|x1|m + · · · + |xn|m).

Lemma 2 [14] If a > 0, b > 0 are constants, and
π(x, y) is a known function, then for any x, y ∈ R,
there holds
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1312 Z.-Y. Sun et al.

|π(x, y)xa yb| ≤ γ (x, y)|x |a+b

+ b

a + b

( a

(a + b)γ (x, y)

) a
b |π(x, y)| a+b

b |y|a+b,

where γ (x, y) > 0.

2.2 Observer design

For system (1), one constructs the observer/
compensator with a time-varying gain as follows:
{ ˙̂xi (t)= x̂i+1(t) − air i (t)x̂1(t), i =1, . . . , n−1,

˙̂xn(t)=u(t)−anrn(t)x̂1(t),

(3)

where x̂1(t), . . . , x̂n(t) are the state variables of the
observer; r(t) ≥ 1 is a monotonically increasing func-
tion and satisfies the equation

ṙ(t) = r(t)max

{

− Lρ

16σ
r(t) + ϕ(y(t))

σ
,

(
r−ω(t)

y(t)

1 − θ̄

)2 +
n∑

i=1

( x̂i (t)

r i−1+ω(t)Li−1

)2
}

, (4)

r(t) ≡ 1 if t ∈ [−τ̃ , 0]. It should be noticed that the
positive constants a1, . . . , an, σ, L , ρ and the contin-
uous function ϕ(y) will be determined in the analy-
sis. ω is an appropriate positive constant which will be
assigned in design procedure.

Remark 2 We stress the new elements of the observer
(3). (i) The terms “ai (y(t)− x̂1(t))” or “air i (t)(y(t)−
x̂1(t))” in [1,2,29,42] are replaced by “air i (t)x̂1.”
The benefit of this is that it avoids dealing with the
unknown time-varying sensitivity measurement θ(t)
directly with the aid of removing the output in the
observer. Another benefit of this lies in the introduc-
tion of dynamic gain r(t). Different from the exist-
ing results [26,36,42], theoretical deductionswill show
that the expression of ṙ(t) is composed of two parts.
One part is used to dominate the output polynomial
function 1 + |y(t)|p, and the other part can suppress
the effect of the unknown constant in the nonlinearities.
(i i) The full-order observer (3) looks like the so-called
filter used in [1,4], because it filters unknown nonlin-
earities and time-varying delay. However, nonzero ini-
tial value and the presence of dynamic gain r(t) render
it has a more general form than that in [1,4].

Next, the estimation error is defined by

εi = xi − x̂i
r i−1+ω(t)

, i = 1, . . . , n, (5)

It follows from (1), (3) and (5) that

ε̇i = r(t)εi+1 − r(t)aiε1 − ṙ(t)

r(t)
(ω + i − 1)εi

+ r(t)

rω(t)
ai x1 + fi

r i−1+ω(t)
, i = 1, . . . , n, (6)

where εn+1 � 0. (6) is expressed in a compact form:

ε̇ = r(t)Aε − ṙ(t)

r(t)
(ωI + D)ε + r(t)

rω(t)
Mx1(t)

+ f (t, r(t), x, x(t − τ(t))), (7)

where

A =

⎡

⎢
⎢
⎢
⎣

−a1 1 · · · 0
...

...
. . .

...

−an−1 0 · · · 1
−an 0 · · · 0

⎤

⎥
⎥
⎥
⎦

,

D =

⎡

⎢
⎢
⎢
⎣

0
1

. . .

n − 1

⎤

⎥
⎥
⎥
⎦

, ε(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ε1

ε2

...

εn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

M =

⎡

⎢
⎢
⎢
⎢
⎣

a1

a2
...

an

⎤

⎥
⎥
⎥
⎥
⎦

, f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
rω(t)
f2

rω+1(t)

...

fn
rn−1+ω(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Choose the positive constants a1, . . . , an to guarantee
that there is a symmetric and positive definite matrix P
such that

AT P + PA ≤ −I, − ωP ≤ DP + PD. (8)

The proof is given as follows: Lemma 1 in [42] holds
for order n; that is, for any constant a > 0, there exist a
constant d0 > 0 and a positive definite and symmetric
matrix P̄ satisfying

AT P̄ + P̄ A ≤ −d0 P̄, − a P̄ ≤ P̄ D + DP̄, (9)

where the definitions of matrices A and D are the same
as these ones in this paper. By using λ1 > 0 to represent
the smallest eigenvalue of the matrix P̄ , then it follows
from (9) that

AT P̄ + P̄ A ≤ −d0 P̄ ≤ −d0λ1 I,
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Output feedback regulation for time-delay nonlinear systems 1313

which can be rewritten as

AT
( P̄

d0λ1

)
+

( P̄

d0λ1

)
A ≤ −I,

so the first inequality in (8) is obtained by letting P =
P̄

d0λ1
. The second inequality in (8) is deduced directly

according to multiplying both sides by 1
d0λ1

on the sec-

ond inequality in (9) and letting ω = a, P = P̄
d0λ1

.
To proceed with the analysis of estimation error, one
chooses

V1 = εT Pε +
n∑

i=1

c

1 − τ

∫ t

t−τ(t)

x2i (s)

r2i−2+2ω(s)
ds. (10)

Since 1− τ̇ ≥ 1−τ , and r(t) is monotonically increas-
ing, the time derivative of V1 along the trajectories of
(7) is given as

V̇1 = r(t)εT (PA + AT P)ε

− ṙ(t)

r(t)
εT (DP + PD + 2ωP)ε

+2εT P f + 2εT P
r(t)

rω(t)
Mx1

+
n∑

i=1

c

1 − τ

x2i
r2i−2+2ω(t)

−
n∑

i=1

c

1 − τ

x2i (t − τ(t))

r2i−2+2ω(t − τ(t))
(1 − τ̇ (t))

≤ −r(t)‖ε‖2 − ω
ṙ(t)

r(t)
εT Pε + 2εT P f

+2r(t)

rω(t)
εT PMx1 +

n∑

i=1

cx2i
(1 − τ)r2i−2+2ω(t)

−
n∑

i=1

cx2i (t − τ(t))

r2i−2+2ω(t)
. (11)

In what follows, one needs to deal with the indefinite
terms on the right-hand side of (11). To begin with, by
Lemma 2 one can get

2r(t)

rω(t)
εT PMx1 ≤ r(t)

4
‖ε‖2 + 4r(t)

r2ω(t)
‖PM‖2x21 . (12)

On the other hand, it follows from Assumption 2 and
r(t) ≥ 1 that

‖ f ‖ ≤
n∑

i=1

| fi |
r i−1+ω(t)

≤ c
n∑

i=1

1 + |y|p
r i−1+ω(t)

i∑

j=1

(
|x j | + |x j (t − τ(t))|

)

≤ c(1 + |y|p)
n∑

i=1

n − i + 1

r i−1+ω(t)

×
(
|xi | + |xi (t − τ(t))|

)
.

Lemma 2 gives rise to

2εT P f ≤ 2c(1 + |y|p)‖ε‖ · ‖P‖
n∑

i=1

(n − i + 1)(|xi | + |xi (t − τ(t))|)
r i−1+ω(t)

≤ cn(n + 1)‖P‖
(
1 + 2n + 1

6
‖P‖

)

×(1 + |y|p)2‖ε‖2

+c‖P‖
n∑

i=1

(n − i + 1)x2i
2r2i−2+2ω(t)

+c
n∑

i=1

x2i (t − τ(t))

r2i−2+2ω(t)
. (13)

Based on the inequalities (11)–(13), one can get

V̇1 ≤ −r(t)

2
‖ε‖2 + r(t)

4
‖ε‖2 − ω

ṙ(t)

r(t)
εT Pε

+ 4r(t)

r2ω(t)
‖P‖2‖M‖2x21

+
n∑

i=1

cx2i
(1 − τ̄ )r2i−2+2ω(t)

+ cn(n + 1)‖P‖
(
1 + 2n + 1

6
‖P‖

)

× (1 + |y|p)2‖ε‖2

+ c‖P‖
n∑

i=1

(n − i + 1)x2i
2r2i−2+2ω(t)

≤ −r(t)

4
‖ε‖2 − ωλ1

ṙ(t)

r(t)
‖ε‖2 +

n∑

i=1

ki+2(c)x2i
r2i−2+2ω(t)

+ k2r(t)

r2ω(t)
x21 + k1(c)(1 + |y|p)2‖ε‖2, (14)

where the unknown constant k1(c) > 0 and the known
constant k2 > 0 and the unknown constants ki+2(c) for
i = 1, 2, . . . , n are defined by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1(c) = cn(n + 1)‖P‖
(
1 + 2n + 1

6
‖P‖

)
,

k2 = 4‖P‖2‖M‖2,
ki+2(c) = c‖P‖(n − i + 1)

2
+ c

1 − τ
.

(15)
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2.3 Control design

We focus on the following system:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 + f1(·),
˙̂xi = x̂i+1 + r i (t)ai (rω(t)ε1 − x1), i = 2, . . . , n − 1,

˙̂xn = u + rn(t)an(rω(t)ε1 − x1),

(16)

where f1 is defined in (1). To obtain the desired control,
the following transformations are introduced:

ξ1 = x1
rω(t)

, ξi = x̂i
r i−1+ω(t)Li−1 , i = 2, . . . , n,

v = u

rn+ω(t)Ln
, (17)

where L ≥ 1 is a constant gain to be determined later.
It can be deduced from (16) and (17) that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = Lr(t)ξ2 − ω
ṙ(t)

r(t)
ξ1 + r(t)ε2 + f1

rω(t) ,

ξ̇i = Lr(t)ξi+1 − (ω + i − 1)
ṙ(t)

r(t)
ξi + r(t)ai

Li−1 ε1 − r(t)ai
Li−1 ξ1,

i = 2, . . . , n − 1,

ξ̇n = Lr(t)v − (ω + n − 1)
ṙ(t)

r(t)
ξn + r(t)an

Ln−1 ε1 − r(t)an
Ln−1 ξ1.

(18)

Now, one can design the control as follows:

v = − b1
rω(t)

y − b2ξ2 − · · · − bn−1ξn−1 − bnξn, (19)

where positive constants b1, . . . , bn can be determined
later. Using (19) in (18), we arrive at a compact form
of (18) as follows:

ξ̇ = r(t)LBξ − (ωI + D)
ṙ(t)

r(t)
ξ

+r(t)

L
H3(ε1 − ξ1) + r(t)H2ε2

+r(t)LH1b1(1 − θ(t))ξ1

+H4(t, r(t), x, x(t − τ)), (20)

where

B =

⎡

⎢
⎢
⎢
⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−b1 −b2 · · · −bn

⎤

⎥
⎥
⎥
⎦

, ξ =

⎡

⎢
⎢
⎢
⎣

ξ1
ξ2
...

ξn

⎤

⎥
⎥
⎥
⎦

,

H1 =

⎡

⎢
⎢
⎢
⎣

0
0
...

1

⎤

⎥
⎥
⎥
⎦

, H2 =

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

, H3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
a2
a3
L
...
an

Ln−2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

H4(·) =

⎡

⎢
⎢
⎢
⎣

f1
rω(t)
0
...

0

⎤

⎥
⎥
⎥
⎦

,

where the initial condition is ξ(t) = ξ(0) for any
t ∈ [−τ̃ , 0]. One can select the positive constants
b1, . . . , bn to guarantee that there is a symmetric and
positive definite matrix Q such that

BT Q + QB ≤ −I, − ωQ ≤ DQ + QD. (21)

In fact, Lemma 1 in [42] shows again that for any con-
stant a > 0 and the same B, D in this paper, there exist
a constant d0 > 0 and a positive definite and symmetric
matrix Q̄ satisfying

BT Q̄ + Q̄B ≤ −d0 Q̄, − aQ̄ ≤ Q̄D + DQ̄. (22)

If we denote the smallest eigenvalue of the matrix Q̄
by λ2 > 0, then (22) gives rise to

BT Q̄ + Q̄B ≤ −d0 Q̄ ≤ −d0λ2 I,

and a simple calculation shows

BT
( Q̄

d0λ2

)
+

( Q̄

d0λ2

)
B ≤ −I,

so the first inequality in (21) is obtained by letting Q =
P̄

d0λ2
. The second inequality in (21) is deduced directly

according to multiplying both sides by 1
d0λ2

on the sec-

ond inequality in (22) and letting ω = a, Q = Q̄
d0λ2

.
We construct

V2 = ξ T Qξ + c

1 − τ

∫ t

t−τ(t)

x21 (s)

r2ω(s)
ds, (23)

whose time derivative along the trajectories of (20) is
given as follows:

V̇2 ≤ 2ξ T Q
(
r(t)LBξ − (ωI + D)

ṙ(t)

r(t)
ξ

+ r(t)H2ε2 + H4

+ r(t)LH1b1(1 − θ(t))ξ1 + r(t)

L
H3(ε1 − ξ1)

)

+ cx21
(1 − τ)r2ω(t)

− cx21 (t − τ(t))

r2ω(t)
, (24)

where themonotonic increase in r(t) is used. Similarly,
we need to cope with indefinite terms on the right-hand
side of (24). To begin with, one can deduce from (21),
ṙ(t) ≥ 0 and |ξ1| ≤ ‖ξ‖ that
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2ξ T Q
(
r(t)LBξ − (ωI + D)

ṙ(t)

r(t)
ξ

+ r(t)LH1b1(1 − θ(t))ξ1
)

≤ r(t)Lξ T (QB + BT Q)ξ

− ṙ(t)

r(t)
ξ T (2ωQ + DQ + QD)ξ

+2r(t)Lb1‖ξ‖ · ‖Q‖ · ‖H1‖ · |1 − θ(t)| · |ξ1|
≤ −r(t)L

(
1 − 2b1|1 − θ(t)| · ‖Q‖

)
‖ξ‖2

−ωλ2
ṙ(t)

r(t)
‖ξ‖2. (25)

Secondly, applying Assumption 2 and Lemma 2, one
has

2ξ T QH4 ≤ 2‖ξ‖ · ‖Q‖ · ‖H4‖
≤ 2‖ξ‖ · ‖Q‖ · 1

rω(t)

×
(
c(1 + |y|p)(|x1| + |x1(t − τ(t))|)

)

≤ 2c‖Q‖(1 + |y|p)2‖ξ‖2
+ c‖Q‖2(1 + |y|p)2‖ξ‖2

+cx21 (t − τ(t))

r2ω(t)
. (26)

Thirdly, with ‖H2‖ = 1 and ‖H3‖ ≤ (
∑n

i=2 a
2
i )

1
2 � δ

in mind, it is not hard to obtain

2ξ T Qr(t)H2ε2 + 2ξ T Q
r(t)

L
H3(ε1 − ξ1)

≤ r(t)

8
‖ε‖2 + 16r(t)‖Q‖2‖ξ‖2

+ 16r(t)δ2

L2 ‖Q‖2‖ξ‖2

+ 2δ‖Q‖r(t)
L

‖ξ‖2. (27)

Finally, substituting (25)–(27) in (24), one has

V̇2 ≤ −r(t)L
(
1 − 2b1|1 − θ(t)| · ‖Q‖

)
‖ξ‖2

− ωλ2
ṙ(t)

r(t)
‖ξ‖2

+ r(t)

8
‖ε‖2 + 16r(t)‖Q‖2‖ξ‖2

+ 16r(t)δ2

L2 ‖Q‖2‖ξ‖2

+ 2δ‖Q‖r(t)
L

‖ξ‖2 + 2c‖Q‖(1 + |y|p)2‖ξ‖2

+ c‖Q‖2(1 + |y|p)2‖ξ‖2 + c

1 − τ
‖ξ‖2

≤ −r(t)L
(
1 − 2b1|1 − θ(t)| · ‖Q‖

)
‖ξ‖2

− ωλ2
ṙ(t)

r(t)
‖ξ‖2

+ r(t)

8
‖ε‖2+r(t)L

(2δ(1+8δ‖Q‖)‖Q‖ + 16‖Q‖2
L

+ c(1 + |y|p)2(2 + ‖Q‖)‖Q‖
r(t)

+ c

(1 − τ)r(t)

)
‖ξ‖2

= −r(t)L
(
1 − 2b1|1 − θ(t)| · ‖Q‖

)
‖ξ‖2

− ωλ2
ṙ(t)

r(t)
‖ξ‖2

+ r(t)

8
‖ε‖2 + r(t)L

( k̄1
L

+ k̄2(c, y)

r(t)

)
‖ξ‖2, (28)

where the positive constant k̄1 and the positive function
k̄2(c, y) are defined as
⎧
⎨

⎩

k̄1 = 2δ(1 + 8δ‖Q‖)‖Q‖ + 16‖Q‖2,
k̄2(c, y) = c(1 + |y|p)2(2 + ‖Q‖)‖Q‖ + c

1 − τ
.

Inwhat follows,we further calculate the time deriva-
tive of V1. Actually, (5) and (17) imply

x1 = rω(t)ξ1, xi = r i−1+ω(t)εi + r i−1+ω(t)Li−1ξi ,

i = 2, . . . , n. (29)

By Lemma 1 and |εi | ≤ ‖ε‖, |ξi | ≤ ‖ξ‖ for i =
2, . . . , n, one gets

1

r2i−2+2ω(t)
x2i ≤ 2‖ε‖2 + 2L2(i−1)‖ξ‖2,

i = 2, 3, . . . , n. (30)

Using (29) and (30) in (14), we can deduce

V̇1 ≤ −r(t)

4
‖ε‖2 − ωλ1

ṙ(t)

r(t)
‖ε‖2

+ k1(c)(1 + |y|p)2‖ε‖2
+ r(t)k2ξ

2
1 + k3(c)ξ

2
1

+
n∑

i=2

ki+2(c)(2‖ε‖2 + 2L2(i−1)‖ξ‖2)

≤ −r(t)

4
‖ε‖2 − ωλ1

ṙ(t)

r(t)
‖ε‖2

+
(
k1(c)(1 + |y|p)2 + 2

n∑

i=2

ki+2(c)
)
‖ε‖2

+
(
r(t)k2 + L

(
k3(c) + 2

n∑

i=2

ki+2(c)L
2i−3

))

‖ξ‖2. (31)
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Defining the positive functions k̃1 and k̃2 as
⎧
⎪⎪⎨

⎪⎪⎩

k̃1(c, y) = k1(c)(1 + |y|p)2 + 2
n∑

i=2
ki+2(c),

k̃2(c) = k3(c) + 2
n∑

i=2
L2i−3ki+2(c),

(32)

one can express (31) as

V̇1 ≤ −r(t)

4
‖ε‖2 − ωλ1

ṙ(t)

r(t)
‖ε‖2 + k̃1(c, y)‖ε‖2

+
(
r(t)k2 + Lk̃2(c)

)
‖ξ‖2. (33)

3 Main results

Now, we state the main results of this paper.

Theorem 1 Under Assumptions 1–2, there exists a
continuous output feedback controller

u(t) = −rn(t)Lnb1y(t) − r(t)n−1Ln−1b2 x̂2(t) − · · ·
− r2(t)L2bn−1 x̂n−1(t) − r(t)Lbn x̂n(t), (34)

such that the state [x(t), x̂(t), r(t)]T of closed-loop
systems composed of (1), (3), (4) and (34) is glob-
ally uniformly bounded and [x(t), x̂(t)]T converges
to the origin for any initial conditions, where x̂(t) =
[x̂1(t), . . . , x̂n(t)]T , and b1, . . . , bn and L are specified
constants.

Proof The proof consists of two parts.
Part I: Determination of design parameters. It must

be pointed out that the sensitivity error θ̄ is specified
through the inequality θ̄ < min{1, 1

2b1‖Q‖ }; that is,
1 − 2b1|1 − θ(t)| · ‖Q‖ ≥ 1 − 2b1θ̄‖Q‖ � ρ, (35)

where 0 < ρ < 1 is a known positive constant. Choos-
ing the function V = V1 + V2, whose time derivative
can be arrived by means of (28), (33) and (35):

V̇ ≤ −
(
ρ + ωλ2

ṙ(t)

r2(t)L
− k2 + k̄1

L
− k̃2(c) + k̄2(c, y)

r(t)

)

· r(t)L‖ξ‖2 − r(t)

×
(1

8
+ ωλ1

ṙ(t)

r2(t)
− k̃1(c, y)

r(t)

)
‖ε‖2. (36)

To determine the design parameter L , we let ρ −
k2+k̄1

L ≥ 1
8ρ, and obtain L ≥ max{1, 8(k2+k̄1)

7ρ }. Then,
it is straightforward to rewrite (36) as

V̇ ≤ −r(t)
(ρ

8
+ ωλ1

ṙ(t)

r2(t)L(t)
− k̃1(c, y)

r(t)

)
‖ε‖2

− r(t)L
(ρ

8
+ ωλ2

ṙ(t)

r2(t)L
− k̃2(c) + k̄2(c, y)

r(t)

)

‖ξ‖2. (37)

With Lemma 2, specified L and ω in mind, there hold

k̃1 = cn(n + 1)‖P‖(1 + 2n + 1

6
‖P‖)(1 + |y|p)2

+2
n∑

i=2

(1

2
c(n − i + 1)‖P‖ + c

1 − τ̄

)

≤ 1

2
c2 + 1

2
g1(y), (38)

and

k̃2(c) + k̄2(c, y)

= c(1 + |y|p)2(2 + ‖Q‖)‖Q‖ + 2c

1 − τ̄
+ 1

2
cn‖P‖

+ 2c

1 − τ̄

n∑

i=2

L2i−3 +
n∑

i=2

L2i−3c(n − i + 1)‖P‖

≤ 1

2
c2 + 1

2
g2(y), (39)

where continuous polynomial functions g1(y) =(
n(n+1)‖P‖(1+ 2n+1

6 ‖P‖)(1+|y|p)2+∑n
i=2((n−

i + 1)‖P‖ + 2
1−τ̄

)
)2

and g2(y) =
(
(1 + |y|p)2(2 +

‖Q‖)‖Q‖ + 2
1−τ̄

+ 2
∑n

i=2 L
2i−3( 12 (n − i + 1)‖P‖ +

1
1−τ̄

) + 1
2n‖P‖

)2
; both their orders are 4p. Therefore,

(37) can be rewritten as

V̇ ≤ −r(t)
(ρ

8
+ ωλ1

ṙ(t)

r2(t)L
− c2 + g1(y)

2r(t)

)
‖ε‖2

− r(t)L
(ρ

8
+ ωλ2

ṙ(t)

r2(t)L
− c2 + g2(y)

2r(t)

)

‖ξ‖2. (40)

Let σ = min{ωλ1, ωλ2}, ϕ(y) = L
2 g1(y) + L

2 g2(y),
andω can be specified through the inequality 4pω < 1.
Since ϕ(y), σ, L , ρ are assigned properly, using (4) in
(40), one has

V̇ ≤ −r(t)
( ρ

16
− c2

2r(t)

)
‖ε(t)‖2

− r(t)
( ρ

16
− c2

2r(t)

)
‖ξ(t)‖2. (41)

At present, the actual control u(t) can be explicitly
constructed by (34).

Part II: Stability analysis. Now, it is time to consider
the closed-loop systems composed of (1), (3) and (34).
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By the existence and the continuation of solutions, the
closed-loop system state X (t) � [ε(t), ξ(t), r(t)]T can
be defined on [−τ̃ , T f ), where T f > 0 may be finite
or +∞. The left proof is divided into five steps, with a
conclusion pointed out at the beginning of each part.

Step 1: r(t) is bounded on [−τ̃ , T f ). This can be done
by reductio. Suppose that there is T1 ∈ (0, T f ) such
that limt→T1 r(t) = +∞. By this and ṙ(t) ≥ 0, there
must be a finite time T0 ∈ (0, T1) such that

r(t) ≥ 16c2

ρ
,∀t ∈ [T0, T1). (42)

Then, it follows from (41) that

V̇ (t) ≤ −ρr(t)

32
‖ε(t)‖2

−ρr(t)

32
‖ξ(t)‖2 ≤ 0, ∀t ∈ [T0, T1). (43)

Therefore, V (t) is decreasing and bounded on [T0, T1),
so is ‖ξ(t)‖. By (42) and (43), one can get

c2

2

∫ T1

T0

(
‖ξ(t)‖2 + ‖ε(t)‖2

)
dt

≤
∫ T1

T0

(ρr(t)

32
‖ε(t)‖2 + ρr(t)

32
‖ξ(t)‖2

)
dt

≤ V (T0) < +∞. (44)

Thus,
∫ T1
T0

‖ξ(t)‖2dt and ∫ T1
T0

‖ε(t)‖2dt are bounded.
By this in hand, we derive from (1) and the expression
ofϕ(y) that there are positive numbersM1 andM2 such
that

|y(t)| ≤ |θ(t)| · |x1(t)| ≤ (1 + θ̄ )|ξ1(t)|rω(t)

≤ M1r
ω(t), (45)

|ϕ(y)| ≤ M2(1 + |y(t)|p)4, ∀t ∈ [T0, T1). (46)

In view of known number p provided in Assumption 2
and 4pω < 1, it is easy to deduce from Lemma 2 that

ϕ(y(t)) ≤ 8M2(1 + y4p(t))

≤ 8M2 + 8M2M
4p
1 r4pω(t)

≤ ρL

32
r(t) + M3, (47)

where

M3 = 8M2 + (1 − 4pω)

×
(
8M2M

4p
1

(128pω

ρL

)4pω) 1
1−4pω

> 0.

In terms of (4), one needs to consider two cases.

If ṙ(t) = − Lρ
16σ r

2(t) + ϕ(y(t))
σ

r(t), then (47) yields

ṙ(t) ≤ − ρL

32σ
r2(t) + M3

σ
r(t) � −l1r

2(t) + l2r(t).

(48)

A direct calculation shows that

r(t) ≤ l2el2t

l2 − l1 + l1el2t
≤ lim

t→+∞
l2el2t

l2 − l1 + l1el2t
= l2

l1
;

that is, r(t) is bounded on [T0, T1), which contradicts
limt→T1 r(t) = +∞,

if ṙ(t) = r(t)
(
r−ω(t) y(t)

1−θ̄

)2 + r(t)
∑n

i=1
(

x̂i (t)
r i−1+ω(t)Li−1

)2
. Since (5) and (17) show x̂1(t)

rω(t) =
ξ1(t) − ε1(t), it is not hard to deduce from (44) and
1 − θ̄ ≤ θ(t) ≤ 1 + θ̄ that

+∞ = r(T1) − r(T0) =
∫ T1

T0
ṙ(t)dt

=
∫ T1

T0

(
r(t)

( θ(t)

1−θ̄

)2
ξ21 (t)+r(t)(ξ1(t)−ε1(t))

2

+ r(t)
n∑

i=2

ξi
2(t)

)
dt

≤
(
2 + (1 + θ̄

1 − θ̄

)2
)

×
∫ T1

T0

(
r(t)‖ξ(t)‖2 + r(t)‖ε(t)‖2

)
dt

= 32

ρ

(
2 + (1 + θ̄

1 − θ̄

)2
) ∫ T1

T0

×
(ρr(t)

32
‖ε(t)‖2 + ρr(t)

32
‖ξ(t)‖2

)
dt

≤ 32

ρ

(
2 + (1 + θ̄

1 − θ̄

)2
)
V (T0) < +∞.

This leads to a contradiction.
Combining above two cases, one concludes that r(t)

is bounded on [−τ̃ , T f ).

Step 2:
∫ T f
0 ‖ξ(t)‖2dt is bounded on [−τ̃ , T f ). Since

r(t) is bounded and continuous on [−τ̃ , T f ), therefore,
r(T f ) is finite. By 1 − θ̄ ≤ θ ≤ 1 + θ̄ , (17) and (4),
one can get
∫ T f

0
‖ξ(t)‖2dt ≤

∫ T f

0

(
r(t)

( θ(t)

1 − θ̄

)2
ξ21 (t)

+ r(t)
n∑

i=2

ξi
2(t)

)
dt

123



1318 Z.-Y. Sun et al.

≤
∫ T f

0

(
r(t)

( θ(t)

1 − θ̄

)2
ξ21 (t) + r(t)

n∑

i=1

ξi
2(t)

)
dt

≤
∫ T f

0
ṙ(t)dt = r(T f ) − r(0) < +∞; (49)

that is,
∫ T f
0 ‖ξ(t)‖2dt is bounded.

Step 3: ‖ε(t)‖ is bounded on [−τ̃ , T f ). The boundness
of r(t) implies that there exists a large enough constant
r̄ such that r(t) ≤ r̄ for all t ∈ [−τ̃ , T f ). Define

ηi (t) = xi (t) − x̂i (t)

r̄ i−1+ωr i−1+ω(t)
, i = 1, 2, . . . , n. (50)

By (1), (3) and (50), we have for i = 1, . . . , n

η̇i (t) = xi+1(t) + fi (·) − x̂i+1(t) + air i (t)x̂1(t)

r̄ i−1+ωr i−1+ω(t)

−(i − 1 + ω)
(xi (t) − x̂i (t))ṙ(t)

r̄ i−1+ωr i+ω(t)

= xi+1(t) − x̂i+1(t)

r̄ i+ωr i+ω(t)
r̄r(t) + fi (·)

r̄ i−1+ωr i−1+ω(t)

+ air i (t)x̂1(t)

r̄ i−1+ωr i−1+ω(t)
− (i − 1 + ω)

ṙ(t)

r(t)
ηi (t)

= xi+1(t) − x̂i+1(t)

r̄ i+ωr i+ω(t)
r̄r(t) − ai (x1(t) − x̂1(t))

r̄ωrω(t)
r̄r(t)

+ai (x1(t) − x̂1(t))

r̄ωrω(t)
r̄r(t) + fi (·)

r̄ i−1+ωr i−1+ω(t)

+ air i (t)x̂1(t)

r̄ i−1+ωr i−1+ω(t)
− (i − 1 + ω)

ṙ(t)

r(t)
ηi (t)

= r̄r(t)ηi+1(t) − r̄r(t)aiη1(t) + r̄r(t)aiη1(t)

+ fi (·)
r̄ i−1+ωr i−1+ω(t)

− air i (t)(x1(t) − x̂1(t))

r̄ i−1+ωr i−1+ω(t)

+ air i (t)x1(t)

r̄ i−1+ωr i−1+ω(t)
− (i − 1 + ω)

ṙ(t)

r(t)
ηi (t),

where ηn+1(t) � 0 and the forgoing equation can be
rewritten in a compact form:

η̇(t) = r̄r(t)Aη(t) + r̄r(t)Mη1(t) + Z1(r(t))Mx1(t)

−r(t)Z2Mη1(t) + f̄ (t, x(t), x(t − τ))

−(ωI + D)
ṙ(t)

r(t)
η(t), (51)

where

Z1 =

⎡

⎢
⎢
⎢
⎢
⎣

r(t)
r̄ωrω(t)

r(t)
r̄ω+1rω(t)

. . .
r(t)

r̄ n−1+ωrω(t)

⎤

⎥
⎥
⎥
⎥
⎦

,

η =

⎡

⎢
⎢
⎢
⎣

η1
η2
...

ηn

⎤

⎥
⎥
⎥
⎦

, Z2 =

⎡

⎢
⎢
⎢
⎣

1
1
r̄

. . .
1

r̄ n−1

⎤

⎥
⎥
⎥
⎦

,

f̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
r̄ωrω(t)

f2
r̄1+ωr1+ω(t)

...
fn

r̄ n−1+ωrn−1+ω(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the definitions of A and M come from (7). One can
calculate

‖Z1‖ = max
{ r(t)

r̄ωrω(t)
,

r(t)

r̄ω+1rω(t)
, . . . ,

r(t)

r̄ n−1+ωrω(t)

}

≤ r̄

r̄ω
,

‖Z2‖ = max
{
1,

1

r̄
, . . . ,

1

r̄ n−1

}
≤ 1. (52)

Next, choosing

V3 = ηT Pη +
n∑

i=1

c

1 − τ

∫ t

t−τ(t)

x2i (s)

r̄2i−2+2ωr2i−2+2ω(s)
ds (53)

and following the deduction of (14), one can deduce
from (51) and (52) that

V̇3 = r̄r(t)ηT (t)(PA + AT P)η(t) + 2r̄r(t)ηT (t)PMη1(t)

+2ηT (t)PZ1(t)Mx1(t) − 2r(t)ηT (t)PZ2Mη1(t)

+2ηT (t)P f̄ − (2ωP + DP + PD)
ṙ(t)

r(t)
‖η(t)‖2

+
n∑

i=1

cx2i (t)

(1 − τ)r̄2i−2+2ωr2i−2+2ω(t)

−
n∑

i=1

cx2i (t − τ(t))

r̄2i−2+2ωr2i−2+2ω(t)

≤ −r̄r(t)‖η(t)‖2 + 2r̄r(t)‖η(t)‖ · ‖PM‖ · |η1(t)|
+2

r̄

r̄ω
‖η(t)‖ · ‖PM‖ · |x1(t)|

+2r(t)‖η(t)‖ · ‖PM‖ · |η1(t)|
+2‖η(t)‖ · ‖P‖ · ‖ f̄ ‖ − ωλ1

ṙ(t)

r(t)
‖η(t)‖2

+
n∑

i=1

cx2i (t)

(1 − τ)r̄2i−2+2ωr2i−2+2ω(t)

−
n∑

i=1

cx2i (t − τ(t))

r̄2i−2+2ωr2i−2+2ω(t)
, (54)
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next, we have

2
r̄

r̄ω
‖η(t)‖‖P‖‖M‖|x1(t)|

≤ r̄r(t)

4
‖η(t)‖2 + 4r̄

r̄2ω
‖P‖2‖M‖2x21 (t), (55)

then, we can get that similar to (13)

2‖η(t)‖‖P‖‖ f̄ ‖
≤ 2c‖η(t)‖ · ‖P‖
n∑

i=1

n − i + 1

r̄ i−1+ωr i−1+ω(t)

(
(1 + |y(t)|p)|xi (t)|

+ (1 + |y(t)|p)|xi (t − τ(t))|)

≤ cn(n + 1)‖P‖
(
1 + 2n + 1

6
‖P‖

)

‖η(t)‖2(1 + |y(t)|p)2

+ c‖P‖
n∑

i=1

(n − i + 1)x2i (t)

2r̄2i−2+2ωr2i−2+2ω(t)

+ c
n∑

i=1

x2i (t − τ(t))

r̄2i−2+2ωr2i−2+2ω(t)
.

On the other hand, by Lemma 2, (5), (52), |η1(t)| ≤
|ε1(t)| and r(t) ≤ r̄ we have

2r̄r(t)‖η(t)‖ · ‖PM‖ · |η1(t)|
+ 2r(t)‖η(t)‖ · ‖PM‖ · |η1(t)|

≤ r̄r(t)

4
‖η(t)‖2 + 4r̄r(t)‖P‖2‖M‖2ε21(t)

+ r̄r(t)

4
‖η(t)‖2 + 4r̄r(t)‖P‖2‖M‖2ε21(t)

≤ r̄r(t)

2
‖η(t)‖2 + 8r̄2‖P‖2‖M‖2ε21(t). (56)

Based on the inequalities (54)–(56), one can get

V̇3(t) ≤ − r̄r(t)

4
‖η(t)‖2+k1(c)(1+|y(t)|p)2‖η(t)‖2

+ k2r̄

r̄2ω(t)
x21 (t)+2k2r̄

2ε21(t)−ωλ1
ṙ(t)

r(t)
‖η(t)‖2

+
n∑

i=1

ki+2(c)x2i (t)

r̄2i−2+2ωr2i−2+2ω(t)
, (57)

where the definitions of ki ’s can be found in (15). By
(17), (50) and r(t) ≤ r̄ , we have for i = 2, . . . , n

x2i (t) = (
r̄ i−1+ωr i−1+ω(t)ηi (t)+r i−1+ω(t)Li−1ξi (t)

)2

≤ 2r̄2i−2+2ωr2i−2+2ω(t)
(
η2i (t) + L2i−2ξ2i (t)

)
,

then it is easy to get

x2i (t)

r̄2i−2+2ωr2i−2+2ω(t)
≤ 2‖η(t)‖2 + 2L2i−2‖ξ(t)‖2.

(58)

Following the deduction of (33), the inequality (57) can
be further expressed by

V̇3(t) ≤ −
( r̄r(t)

4
+ ωλ1

ṙ(t)

r(t)
− k1(c)(1 + |y(t)|p)2

)
‖η(t)‖2

+ k2r̄‖ξ(t)‖2 + 2k2r̄
2ε21(t) + k3(c)

x12(t)

r̄2ωr2ω(t)

+
n∑

i=2

ki+2(c)
(
2‖η(t)‖2 + 2L2i−2‖ξ(t)‖2

)

≤ −
( r̄r(t)

4
+ ωλ1

ṙ(t)

r(t)
− k1(c)(1 + |y(t)|p)2

)
‖η(t)‖2

+ k2r̄‖ξ(t)‖2 + 2k2r̄
2ε21(t) + 2

n∑

i=2

ki+2(c)‖η(t)‖2

+
(
k3(c) + 2

n∑

i=2

ki+2(c)L
2i−2

)
‖ξ(t)‖2. (59)

where the definitions of ki ’s are given in (15).
Notably, following (38), one can get

k1(c)(1 + |y(t)|p)2 ≤ 1

2
c2 + 1

2
g1(y). (60)

Then, we can deduce from (4), (32), (59) and (60) that

V̇3(t) ≤ −r
( r̄

4
− ρ

16
− c2

2r

)‖η‖2 + k2r̄‖ξ(t)‖2

+ 2k2r̄
2ε1

2(t) + 2
n∑

i=2

ki+2(c)‖η(t)‖2

+
(
k3(c) + 2

n∑

i=2

ki+2(c)L
2i−2

)
‖ξ(t)‖2

≤ − 3

16
r̄‖η‖2 +

(1

2
c2 + 2

n∑

i=2

ki+2(c)
)
‖η(t)‖2

+ k2r̄‖ξ(t)‖2+2k2r̄
2ε1

2(t)+Lk̃2(c)‖ξ(t)‖2.
(61)

Since r̄ is sufficiently large, one can choose r̄ to ensure
8( 12c

2 + 2
∑n

i=2 ki+2(c)) ≤ r̄ for all t ∈ [−τ̃ , T f ). By
(4), (5), 0 < θ̄ < 1 and 1 − θ̄ ≤ θ(t) ≤ 1 + θ̄ , there is

ε21(t) ≤ r(t)
(x1(t) − x̂1(t))2

r2ω(t)
≤2r(t)

( x21 (t)

r2ω(t)
+ x̂21 (t)

r2ω(t)

)

≤ 2r(t)y2(t)

(1 − θ̄ )2r2ω(t)
+ 2r(t)x̂21 (t)

r2ω(t)
≤ 2ṙ(t). (62)
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Using (62) in (61), one has

V̇3(t) ≤ − r̄

16
‖η(t)‖2 + (Lk̃2(c) + r̄ k2)‖ξ(t)‖2

+ 4r̄2k2ṙ(t). (63)

Integrating from 0 to t (t ≤ T f ) on both sides of (63)
renders

V3(t) − V3(0)

≤ − r̄

16

∫ t

0
‖η(s)‖2ds

+ (Lk̃2(c) + r̄ k2)
∫ t

0
‖ξ(s)‖2ds

+ 4r̄2k2(r(t) − r(0)). (64)

From (64), the boundness of r(t) and
∫ T f
0 ‖ξ(t)‖2dt

means that V3(t) and
∫ t
0 ‖η(s)‖2ds are bounded on

[0, T f ). Furthermore,
∫ t
0 ‖ε(s)‖2ds is bounded. The

definition of V3 shows ηT (t)Pη(t) ≤ V3(t), so ‖η(t)‖
is bounded on [0, T f ). Now, it follows from the rela-
tionship εi (t) = r̄ i−1+ωηi (t) that ‖ε(t)‖ is bounded
for all t ∈ [−τ̃ , T f ). Finally, it follows from (41) that

V (t)≤V (0)+r̄
( ρ

16
+ c2

2

) ∫ t

0

(‖ε(s)‖2+‖ξ(s)‖2)ds,

we can get V (t) is bounded, so is ‖ξ(t)‖.
Step 4: T f = +∞. If T f is finite, then T f would be
a escape time, which means that at least one argu-
ment of X (t) would tend to ∞ as t → T f . How-
ever, the continuity of εi (t), ξi (t) and r(t) guarantees
the boundedness of X (t) at t = T f , because X (t) is
bounded on [−τ̃ , T f ). This is a contradiction. There-
fore, T f = +∞.

Step 5: limt→+∞ xi (t) = limt→+∞ x̂i (t) = 0, i =
1, . . . , n. To sum up, the boundedness of r(t), ‖ε(t)‖
and ‖ξ(t)‖ implies that xi (t) and x̂i (t) are bounded on
[−τ̃ ,+∞), which further illustrates the boundedness
of fi (·). With this in mind, (20) and (51) show that ξ̇ (t)
and η̇(t) are bounded. In terms of the boundedness of
∫ T f
0 ‖ξ(t)‖2dt , ‖ξ(t)‖, ∫ T f

0 ‖η(t)‖2dt and ‖η(t)‖, we
infer from Lemma A.6 in [1] that limt→+∞ ξi (t) =
limt→+∞ ηi (t) = 0. In consequence, it is easy to prove
limt→+∞ xi (t) = limt→+∞ x̂i (t) = 0. This completes
the proof. ��
Remark 3 It is crucial to find a delicate time-varying
function r(t) which should be fast enough to overtake
all possible uncertainties.Hence, ṙ(t)has twoparts, and

this leads to the choice of the dynamic gain r(t) in this
paper which is superior to those in the existing results,
such as [10,18,19,34,36,42]. (i) There is no unknown
growth rate in [18,42]; that is, c in (2) is known, so
the first part in (4) can be used to control the output
function sufficiently. (ii) If c in (2) is unknown, then the
methods in [19,34,36] addressed that the expression of
ṙ(t) is obtained by compensating c, which coincides
with the second part in (4) to some extent; hence, the
expression in this paper has a more general form than
those in [19,34,36]. In addition, two time-varying gains
in [10] are simplified to one here, and thismay decrease
the control effort.

Remark 4 Substantial obstacles will be inevitably met
due to the existence of a dynamic gain r(t) and an
unknown growth rate c. (i) Remark 3 shows that it is
not easy to prove the boundedness of r(t). (i i) It is
intricate to prove the boundedness of ‖ε(t)‖. For this
aim,we introduce anewscaling transformationwith the
upper bound of r(t) and carefully tease out the relation-
ship between ξ(t) and ṙ(t). (i i i)Without estimating the
unknown constant c directly by the traditional adaptive
technique, we can simplify the structure of the output
feedback controller at the expense ofmore complicated
stability analysis.

4 Simulation examples

Example 1 To show the effectiveness of the proposed
control strategy, we consider the following nonlinear
system with time-varying delay:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = x2(t) + x1(t − τ(t))(1 + y(t)),

ẋ2(t) = u(t)+x2(t−τ(t))(1+y(t)) sin(6x1(t)),

y = θ(t)x1,

(65)

where θ(t) will be selected through different cases. It
is easy to verify that Assumption 1 is satisfied with
p = c = 1. If one chooses ω = 1

6 , a1 = 5, a2 = 1,
b1 = 1, b2 = 1

2 , L = 1, then the observer can be
expressed by

˙̂x1(t)= x̂2(t)−5r(t)x̂1(t), ˙̂x2(t)=u(t)−r2(t)x̂1(t),
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Fig. 1 The trajectories of the states x1 and x̂1
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Fig. 2 The trajectories of the states x2 and x̂2

and the time-varying gain can be selected as

ṙ(t) = max
{
4r

2
3 (t)y2(t)+r

2
3 (t)x̂21 (t)+r− 4

3 (t)x̂22 (t),

−3r2(t) + (5 + 5(1 + |y(t)|)4)r(t)
}
.

Now, the output feedback controller is constructed as
u(t) = −y(t)r2(t) − 0.5r(t)x̂2(t).

In the simulation, we choose the initial values
as [x1(�), x̂1(�), x2(�), x̂2(�)]T = [1,−1, 1,−1]T ,
r(�) = 1 for all � ∈ [−0.1, 0]. Figures 1, 2, 3, 4,
5, 6, 7 and 8 demonstrate the effectiveness of con-
trol scheme and correctness of theoretical results. (i)
[x(t), x̂(t), r(t)]T is uniformly bounded, and [x(t),
x̂(t)]T converges to zero. (ii) By the same time-varying
delay τ(t) = 1+ 0.8 sin t , Figs. 1, 2, 3 and 4 show the
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Fig. 3 The trajectories of dynamic gain r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time(Sec)

-150

-100

-50

0

50

100

150

C
on

tro
l

Fig. 4 The trajectories of control u
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Fig. 5 The trajectories of the states x1 and x̂1
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Fig. 6 The trajectories of the states x2 and x̂2
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Fig. 7 The trajectories of dynamic gain r

0 0.5 1 1.5
Time(Sec)

-200

-150

-100

-50

0

50

100

150

200

C
on

tro
l

Fig. 8 The trajectories of control u
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Fig. 9 The trajectories of the states x1 and x̂1
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Fig. 10 The trajectories of the states x2 and x̂2

effect of the maximal time derivative of the continuous
function θ(t), especially the larger time derivative can
lead to the drastic oscillation of the control u(t). (iii) By
the same continuous function θ(t) = 0.3+0.4| sin 5t |,
Figs. 5, 6, 7 and 8 exhibit the effect of different time-
varying delays whose upper bound is greater than 1 or
less than 1, and it can be seen that the larger delay slows
down the convergent time of the states and enlarges the
effort of the control.

Example 2 To further show the effectiveness of the
proposed control scheme in practice, we consider a
two-stage chemical reactor system [43] as follows:
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Fig. 11 The trajectory of dynamic gain r
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Fig. 12 The trajectory of control u

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = 1−Rβ

Vα
x2(t) − 1

Cα
x1(t) − Kαx1(t),

ẋ2(t) = E
Vβ
u(t) − 1

Cβ
x2(t) − Kβx2(t)

+ Rα

Vβ
x1(t − τ(t)) + Rβ

Vβ
x2(t − τ(t)),

y(t) = θ(t)x1(t),

(66)

where x1 and x2 are the compositions; u and y are
the input and output, respectively; Rα and Rβ are the
recycle flow rates; Cα and Cβ are the reactor residence
times; E is the feed rate; Vα and Vβ are the reactor
volumes; Kα and Kβ are the reaction functions. For
the possibility of the simulation, set Rα = Rβ = 0.5,
Kα = Kβ = 0.5, Vα = Vβ = 0.5, Cα = Cβ = 2,
E = 1 and θ(t) = 0.3+0.4| cos(5t)|. Then, the system
(66) is changed into

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) − x1(t),

ẋ2(t) = 2u(t) − x2(t) + x1(t − τ(t))

+x2(t − τ(t)),

y(t) = θ(t)x1(t).

(67)

It is easy to verify that Assumption 1 is satisfied with
p = c = 1. Now, choosing ω = 1

8 , a1 = 4, a2 = 2,
b1 = 1

2 , b2 = 1, L = 1, then the observer and the
output feedback controller can be achieved as follows:
⎧
⎪⎪⎨

⎪⎪⎩

˙̂x1(t) = x̂2(t) − 4r(t)x̂1(t),

˙̂x2(t) = u(t) − 2r2(t)x̂1(t),

u(t) = − 1
2 y(t)r

2(t) − r(t)x̂2(t),

(68)

where the time-varying gain can be selected as

ṙ(t) = max
{
2r

3
4 (t)y2(t)+r

3
4 (t)x̂21 (t)+r− 5

4 (t)x̂22 (t),

−2r2(t) + (4 + 4(1 + |y(t)|)4)r(t)
}
.

In the simulation, we choose the time-varying
delay as τ(t) = 1 + sin(0.8t). Then, Figs. 9, 10,
11 and 12 show the states response of the closed-
loop system consisting of (67) and (68) with initial
condition and r(�) = 1 for all � ∈ [−0.1, 0],
[x1(�), x̂1(�), x2(�), x̂2(�)]T = [2,−1, 5,−5]T . It
can be observed that the control and all the states con-
verge to the origin, and the time-varying gain is uni-
formly bounded.

5 Conclusions

In this paper, we find the feasible dynamic gain and
valid integral Lyapunov candidate function for the
time-varying time-delay nonlinear output feedback
systems with unknown growth rate. We introduce two
gains to explicitly construct a state observer as well
as an output feedback control law, where one dynamic
gain is used to dominate the unknown nonlinear terms
and a constant gain is used to dominate unknown mea-
surement error. Finally, output feedback regulation of
the investigated system is realized in a unifying frame-
work.
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