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Abstract In this paper, a new one-dimensional
discrete-space chaotic map based on the multiplica-
tion of integer numbers and circular shift is presented.
Dynamical properties of the proposed map are ana-
lyzed, and it exhibits chaotic behavior. The proposed
map has fixed points for certain settings, but it is easy
to completely avoid them. This map preserves all desir-
able properties of previous discrete-space chaotic maps
and has improved characteristics related to orbit length,
computational complexity and memory requirements.
These improvements can be particularly useful when
implementation in digital devices, which have limited
memory and computational resources, is needed. S-box
design method based on this chaotic map is presented
as an example of its application in cryptography. The
results of performance tests show that S-boxes with
good cryptographic properties can be generated on the
basis of this discrete-space chaotic map.
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1 Introduction

Chaotic maps are evolution functions which are deter-
ministic, but their behavior is not predictable due to
a great sensitivity to initial conditions [1]. Mixing,
random-like behavior and ergodic behavior are also
very important characteristics of chaotic maps. Due
to the aforementioned features, chaotic maps are used
in a wide range of disciplines which include cryptog-
raphy, meteorology, sociology, physics, engineering,
economics, biology and philosophy [2–5]. The applica-
tion of chaos in cryptography was particularly popular
in the past few decades which resulted in a great num-
ber of papers dealing with new cryptographic systems
based on chaos and their security.

Low-dimensional chaotic maps have a simple struc-
ture and therefore could be easily implemented, which
is a desirable property for cryptography. This is
their main advantage over high-dimensional chaotic
maps [6]. Some of the examples of simple one-
dimensional chaotic maps are the logistic map [5],
tent map [7] and sine map [8]. However, some low-
dimensional chaotic maps are not resistant to some
attacks such as the attacks based on the nonlinear pre-
diction method [9] which are not efficient on high-
dimensional chaotic maps. For this reason, develop-
ment of new one-dimensional chaotic maps with better
properties is needed.

Most of the existing one-dimensional chaotic maps
have continuous space. However, discrete nature of
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digital devices is in contrast to continuous space on
which these chaotic maps operate. Digital computers
and devices are only able to use mappings from finite
sets to finite sets [10], so approximations of continuous
values to discrete values must be performed [11]. Such
approximations of chaotic systems, defined on the con-
tinuous space, cause dynamical degradation on digital
devices [12]. For this reason, a fully digital approach is
necessary for the application of chaos in cryptography
and other disciplines.

Recently, two one-dimensional discrete-space
chaotic maps are proposed [13,14] which completely
solve the problem with dynamical degradation. Also,
thesemaps do not have fixed points which is a desirable
trait in cryptography. However, there are other charac-
teristics of chaoticmapswhich affect their applicability
in cryptography and other disciplines. Length of orbits
of chaotic maps is very important characteristic when
the application in cryptographic systems is in question.
Both of discrete-space chaotic maps [13,14] have a rel-
atively short orbit lengths when they are set to operate
with lower memory requirements. In order to increase
the length of orbits, both maps [13,14] should be used
with parameter values which enable a larger space of
these maps, but in this case computational complexity
and memory requirements of both maps are increased.
This situation could significantly affect the usability
of these maps in lightweight devices which have lim-
ited memory and computational resources. Also, the
increased computational complexity negatively influ-
ences the speed of implementation of chaotic map
which is in contrast to requirement of fast encryption
in real-time systems [15,16].

For the above-mentioned reasons, there is a need
for the development of new one-dimensional discrete-
space chaotic maps which could improve orbit lengths
without a great cost in increased computational com-
plexity and memory requirements. In this paper, a new
one-dimensional discrete-space chaotic map based on
the multiplication of integer numbers and circular shift
is proposed. Thismap preserves all desirable properties
of previous discrete-space chaotic maps, while charac-
teristics related to the orbit length, computational com-
plexity and memory requirements are improved.

In recent years, the application of chaotic maps in
cryptographic systemswas very prominent in the S-box
design [11,17–19] and the design of pseudo-random
number generators (PRNGs) [20,21]. Design of good
PRNGs proved to be very difficult task due to several

aspects such as security and the requirement for gen-
eration of very long sequences of high randomness.
Numerous papers have shown that PRNGs are very
vulnerable to different cryptanalytic attacks if they are
not carefully designed [22–24]. Also, not every chaotic
map is suitable for the generation of such large quantity
of pseudo-random data which are required in PRNG
design [25]. On the other hand, S-box design methods
do not require sequences of such length and quality as
PRNGs and their security is not very vulnerable unlike
the security of PRNGs. For this reason, in order to show
an example of the application of the proposed map in
cryptography, a random S-box design method will be
presented.

S-box is an important nonlinear component which is
used in block ciphers of substitution-permutation type
in order to achieve the property of confusion [2]. Aims
of the property of confusion are differently described
depending on the type of cipher. In stream ciphers
intended for image encryption, the confusion prop-
erty is aimed at reducing high correlation between pix-
els [26,27]. In order to achieve such aim, DNA cod-
ing [28], Chen system [26], PWLCM [29], perceptron
model [30] and other approaches are used in image
encryption. On the other hand, in block ciphers the
confusion property is aimed at hiding the relationship
between cipher-text and secret key. From the mathe-
matical perspective, an p× p S-box is a nonlinear map-
ping S : {0, 1}p → {0, 1}p, where {0, 1}p represents
the vector spaces of p elements from GF(2) [11].

One of the first chaos-based S-box design meth-
ods was based on exponential and logistic chaotic
maps [3]. Afterward, many chaos-based S-box gener-
ation methods based on different chaotic maps were
proposed. Some of these methods are based on 2D
Baker map and Chebyshev map [31], tent map [32],
Lorenz system [33], 3D four-wing autonomous chaotic
system [34], chaotic scaled Zhongtang system [17],
logistic-sine map [18], fractional-order chaotic Chen
system [19], logistic and asymmetric tentmap [35], etc.
All aforementioned S-box designmethods are based on
chaotic maps, which are defined over the continuous
space, whose implementation in digital devices causes
dynamical degradation.

More recently, some chaos-based S-box design
methods were proposed, which use chaotic maps
defined over the discrete space and therefore are
immune to dynamical degradation [11,14]. Also, an
efficient S-box design method based on composi-
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tion is presented which can use any of the existing
chaotic maps regardless of the space on which they
are defined [36]. Bearing in mind that chaos is used
in S-box design methods in order to provide pseudo-
randomness, several random S-box generation meth-
ods based on different chaotic maps were compared in
paper [37] in order to establish whether the selection
of the chaotic map influences the quality of obtained
S-boxes.Results of that research show that similar qual-
ity of S-boxes could be obtained by using different
chaotic maps, under the condition that these maps are
used properly [37]. Therefore, any chaotic map can be
used in order to generate good S-boxes, but chaotic
maps with longer periodic orbits and lower complexity
are especially useful in enabling smooth generation of
dynamical S-boxes.

The rest of this paper is organized as follows.
In Sect. 2, the new one-dimensional discrete-space
chaoticmapbased on themultiplication of integer num-
bers and circular shift is presented. In Sect. 3, dynam-
ical properties of the proposed map are discussed. In
Sect. 4, performance analysis of the proposed method
regarding its applicability in cryptography and other
disciplines is presented. A new S-box design method
is proposed in Sect. 5. In Sect. 6. recommendations for
future research are presented. Conclusions are drawn
in Sect. 7.

2 The proposed
one-dimensional discrete-space chaotic map

Let n denote the number of digits of a integer number
x . Digits of the integer number x have an arbitrary base
b that is greater than or equal to 2. Therefore, digits of
the integer number x could have base 2 (binary digits),
base 10 (decimal digits), base 16 (hexadecimal digits)
or any other base bigger than one. However, when the
implementation of the proposed chaotic map in digi-
tal computers and devices is in question, using binary
digits is the most suitable. For this reason, an example
of the binary implementation will be provided with the
description of each part of this chaotic map.

The proposed one-dimensional discrete-space chao
ticmap is based on themultiplication of two parts of the
integer number x . This number is divided into two parts
which have n

2 digits each when n is even. In the case,
when n is odd, one part has one digitmore than the other
part. Let d1d2 . . . dn denote digits of the integer number

x and m denote the largest integer less than or equal to
n
2 . Then, x is split into two parts p1(x) = d1d2 . . . dm
and p2(x) = dm+1dm+2 . . . dn .

When binary digits are used, the process of splitting
the integer number x into two parts is very simple and
fast by using integer division. In C++ programming
language, the operator / is used for the integer divi-
sion, while the operator % is used in order to obtain
the remainder of the integer division. Therefore, binary
integer x is split into two parts by using p1(x) = x/2m

and p2(x) = x%2m .
The proposed one-dimensional discrete-space

chaoticmap is also basedon the circular shiftwhichwill
be denoted as function cshift(y). This functionperforms
circular shift on digits of a integer number y. Number
of positions by which y is shifted is dependent on this
number in such way that y is shifted by y%n positions.

Based on the above notation, the new one-dimen
sional discrete-space chaotic map is proposed by

xi+1 = cshi f t ((p1(xi ) + 1) ∗ (p2(xi ) + 1) + 1). (1)

In the case when the number of digits of (p1(xi ) +
1)∗(p2(xi )+1)+1 exceeds n, themost significant digit
should be discarded. In most programming languages,
this happens automatically when the number of binary
digits n is equal to the number of bits of the integer type
used to store x . Implementation of this chaotic map in
C++ programming language is very simple and may
be carried out with the following code:

x = (z << (z%n))|(z >> (n − z%n)); (2)

where z = (x/bm + 1) ∗ (x%bm + 1)+ 1. Substitution
of (x/bm + 1) ∗ (x%bm + 1) + 1 with z in Eq. (2) is
only performed in order to fit this code into one line
of text, but it is not needed in C++ programming lan-
guage. This implementation does not consider memory
requirements of integer types because the number of
digits n is not set.

In order to provide an example with exact mem-
ory considerations, we can use unsigned long integer
type which is 32 bits long to store variable x . In this
case, we can consider that x have n = 32 binary dig-
its (b = 2). Integer number x is split into two parts
which consist of m = 16 bits by using integer division
with 216 = 65,536 and % operator. These operations
are equal to using regular (non-circular) left and right
bitwise shifts by 16 positions. Implementation of this
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example inC++ programming language is very simple
and may be carried out with the following code:

x = (z << (z%32))|(z >> (32 − z%32)); (3)

where z = (x/65,536+1)∗ (x%65,536+1)+1. Sub-
stitutionwith z in Eq. (3) is also only performed in order
to fit this code into one line of text, but it is not needed
in C++ programming language. Besides this integer
type, any other integer type which corresponds to the
number of binary digits n can be used. The number of
bits n (when the base b is equal to 2) completely deter-
mines the possible number of initial conditions (key
space) of the proposed chaotic map which is equal to
2n . In order to achieve bigger set in which the pro-
posed map operates, the existing integer types such as
_int128 could be used or implementations with even
bigger number of bits could be created for n > 128 in
order to achieve key space which is bigger than 2128.

3 Dynamical
properties of the proposed chaotic map

In the following text, we will deal with the dynamical
properties of the proposed map. Due to the simplic-
ity of exposition, analysis of dynamical properties will
be mostly based on the example of the proposed map
presented by Eq. (3).

Chaotic map f (x) has a fixed point if for some par-
ticular value of x , equation x = f (x) is correct. If
x = cshi f t ((p1(x) + 1) ∗ (p2(x) + 1) + 1), then the
proposed map has a fixed point. Identification of fixed
points for the proposed map is to some extent more
complicated because of the cshift function, but due to
fact that there are only n different positions by which
number (p1(x) + 1) ∗ (p2(x) + 1) + 1 is circularly
shifted, this problem can be divided into n equations
which are easy to solve.

For example, if we consider the case when the inte-
ger number x consists of n = 4 binary digits, it is easy
to find fixed point x = 1010 (x = 10 in decimal base).
When n is smaller, there is a greater probability of the
existence of fixed points. However, regardless of fixed
points, it is recommended to use the proposed map for
bigger n because space of 2n integer numbers is not
large enough for the most applications when the n is
smaller.

When the integer number x consists of n = 32
binary digits (Eq. 3), there are no fixed points. This is
confirmed theoretically and experimentally by check-
ing all 232 possible values of x . Therefore, we can con-
clude that the proposed map has fixed points for certain
values of n, but it is easy to completely avoid them by
selecting values of n for which it is determined (experi-
mentally or theoretically) that there are no fixed points.

The proposed map is not bijective mostly due to
commutative property of the multiplication operation,
so f (a) = f (b) when p1(a) = p2(b) and p1(b) =
p2(a). Function cshift also influences the bijective
property of the proposed map.

Dynamical behavior of continuous-space chaotic
maps with control parameters is usually verified by
usingbifurcation diagramandLyapunovexponents [38,
39]. However, the proposed map does not have control
parameters which could be used to obtain bifurcation
diagram. Also, according to Kocarev et al [10], dis-
crete Lyapunov exponent of chaotic maps defined over
some finite discrete space is always a positive number
except in some special cases such as identical mapping
when the value of discrete Lyapunov exponent is equal
to zero. For previously mentioned reasons, appropriate
test for discrete-space chaotic maps should be used. In
order to determine whether the proposed map exhibits
chaotic behavior, the 0–1 test [40] was conducted. The
example of the proposed map when n = 32 binary dig-
its are used to represent the variable x (Eq. 3) is used to
generate a sequence of length 1000. This sequence was
tested with the 0–1 test, and the value of 0.998052 is
obtainedwhich is very close to the ideal value of 1. This
result indicates that the proposed map is chaotic [40].

Lengths of the orbits and trajectories of the exam-
ple of the proposed map from Eq. (3) (n = 32) are
experimentally obtained on the sample of one million
randomly selected initial points. The minimal obtained
length of orbit was 176 (more than 2

n
4−1), while the

maximal lengthof orbit including trajectory to that orbit
was 36,103 (more than 2

n
2−1). Distribution of orbit

lengths of the proposed map is presented in Table 1.
Results from Table 1 show that the number of orbits

shorter than 1000 is very small (under half percent),
while almost 90 percent of orbits have length which is
greater than 10,000. These results show that length of
orbits of the proposed map is very good in comparison
with previous one-dimensional discrete-space chaotic
maps [13,14].
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Table 1 Distribution of orbit lengths of the proposed map

Length of orbit I Number of orbits Percent

I < 1000 446 0.045

1000 ≤ I < 10,000 101,003 10.1

10,000 ≤ I < 30,000 832,049 83.205

30,000 ≤ I 66,502 6.65

Fig. 1 Cobweb plot diagram for x0 = 2000,000,000, first 1000
iterations

Qualitative behavior of the example of the proposed
map (Eq. 3) is demonstrated by the cobweb plot dia-
grams when x0 = 2000,000,000. Due to large length
of orbit for this initial point and limited length of the
diagram, lines of cobweb plot are largely overlapping,
which reduces the visibility of the diagram. For this rea-
son, three cobweb plot diagrams for this initial point are
presented with the different number of iterations. The
first cobweb plot diagram presented in Fig. 1 shows
only first 1000 iterations, the second cobweb plot dia-
gram presented in Fig. 2 shows first 9364 iterations,
while the third cobweb plot diagram shows all 19,364
iterations (Fig. 3).

4 Performance analysis

Chaotic maps are widely used in many different fields
such as cryptography. Low-dimensional chaotic maps

Fig. 2 Cobweb plot diagram for x0 = 2000,000,000, first 9364
iterations

Fig. 3 Cobweb plot diagram for x0 = 2000,000,000, all 19,364
iterations

have some desirable characteristics for cryptography
such as simple structure and relatively easy imple-
mentation [6]. For this reason, application of one-
dimensional chaotic maps in cryptography is particu-
larly interesting subject. Great number of continuous-
space chaotic maps is used in cryptographic sys-
tems, especially for an S-box design. However, cryp-
tographic systems are usually implemented in digital
deviceswhich cannot support continuous-space chaotic

123



704 D. Lambić

maps. For this reason, approximations of continuous-
space chaotic maps are used which causes dynam-
ical degradation. On the other hand, discrete-space
chaotic maps [13,14] are not affected by the dynam-
ical degradation, but there are other characteristics of
chaotic maps which affect their applicability in cryp-
tographic systems. For the above-mentioned reasons,
performance analysis of the proposed one-dimensional
chaoticmap is conducted in order to determine its appli-
cability in cryptographic systems.

One-dimensional continuous-space chaotic maps
are especially vulnerable to the dynamical degrada-
tion caused by their implementation on digital com-
puters. The proposed map is fully based on integer
numbers which means that it is not affected by dynam-
ical degradation. This is clear advantage of the pro-
posed map over the continuous-space chaotic maps
when the application in cryptography is considered.
Although certain methods using multiple-precision
arithmetic are proposed with the aim to solve the prob-
lem with dynamical degradation of continuous-space
chaotic maps [41], these methods can only reduce
the effect of the digital degradation but cannot elimi-
nate it completely. Previous one-dimensional discrete-
space chaotic maps [13,14] are also not affected by the
dynamical degradation, same as the proposed chaotic
map.

Available space of chaoticmaps is very important for
chaos-based cryptographic systems because it directly
influences the key space of such systems. Even a ran-
dom S-box design methods, which are not demanding
as some other parts of cryptographic systems, require
considerable key space in order to generate a suffi-
cient number of S-boxes from which one or more
good S-boxes could be selected [37]. Due to its dis-
crete nature, the proposed map can achieve virtually
unlimited space, same as other discrete-space chaotic
maps [13,14], limited only by thememory of the digital
device in which it is implemented.

On the other hand, implementations of continuous-
space chaotic maps suffer from limitations caused by
available floating-point formats which lead to a lim-
ited space. If we consider one-dimensional continuous-
space chaotic maps such as the logistic map [5] and
tent map [7], both maps have one initial condition and
one control parameter in their original form. Accord-
ing to IEEE standard for floating-point arithmetic [42],
double precision format use 1 bit for sign, 11 bits for
exponent and 52 bits for mantissa, which means that

key space of one variable in double precision format
has less than 264 possible values. Bearing in mind
that values of initial conditions and parameters of one-
dimensional maps are usually in the interval (0, 1) or
some other interval of similar length, the number of dif-
ferent values for one variable is approximately 253 [23].
If we, in addition to the initial condition, include con-
trol parameter to the key space of one-dimensional
continuous-space chaotic map, the total key space is
about 253 × 253 = 2106 which is less than 2128. The
proposed map can easily achieve key space of 2128 for
n = 128which could be stored in integer type _int128.
In order to avoid these limitations of continuous-
space chaotic maps, certain procedures using multiple-
precision arithmetic are proposed [41], but the use of
such procedures is more complex than using discrete-
space chaotic maps. Therefore, discrete-space chaotic
maps have clear advantage over the continuous-space
chaotic maps when the available space is considered.

However, available space of different discrete-space
chaotic maps is not achieved with the same mem-
ory requirements. When a comparison of different
discrete-space chaotic map is made, it is important
to bear in mind that their characteristics such as orbit
length, required memory and computational complex-
ity depend on parameters which determine the size of
space on which these maps operate. For this reason,
examples of discrete-space chaotic maps with similar
memory requirements should be compared with other
chaotic maps of this type.

Previous one-dimensional discrete-space chaotic
maps [13,14] use permutations to represent the vari-
able x and the parameter c of each map. If we con-
sider the case when permutations of 8 elements are
used, required memory for the variable and parameter
of these discrete-space chaotic maps is 3× 8 = 24 bits
each. Therefore, each map requires 48 bits of memory
for its variable and parameter. The proposed map does
not has parameter c, so there are memory requirements
only for the variable x . Although the proposed map can
use variable represented with 48 bits, in order to high-
light the advantages of thismapwewill use the example
from Eq. (3) for the comparison which requires only 32
bits of memory.

When permutations of 8 elements are used, the avail-
able space on which chaotic maps [13,14] operate have
only 8! = 40,320 elements (about 215.3) which is very
small compared to the space of the proposed map of
232 elements which is achieved on a smaller memory.
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The maximal orbit length reported in the paper [13]
for this example is 214. This is very short compared
to the example of the proposed map (Eq. 3) where the
majority of orbits achieve length greater than 10,000.
Also, the maximal orbit length 36,103 (plus trajectory)
of this example of the proposed map is very close to
the total size of the space of maps [13,14]. Therefore,
we can claim that length of orbits of the example of the
proposed map is much greater than the length of orbits
ofmaps [13,14] achievedwith similarmemory require-
ments. Conversely, the proposed map can achieve sim-
ilar space and orbit lengths as maps [13,14], but with
less required memory. Small memory requirement is
especially desirable for the use in devices with limited
memory space.

If we include parameter c in the key space of chaotic
maps [13,14] when permutations of 8 elements are
used, total key space is only about 230.6 with 48 bits
of memory required. The proposed map achieves key
space of 232 with only 32 bits of memory required,
while with the same memory requirement as previous
discrete-space maps it achieves key space of 248.

The existence of fixed points is not a desirable trait
of chaotic maps when it comes to their application
in cryptography. Previous one-dimensional discrete-
space chaotic maps do not have fixed points [13,14].
The proposed map has fixed points for certain val-
ues of the parameter n, but this is not significant dis-
advantage in comparison with discrete-space chaotic
maps [13,14] because these fixed points could be eas-
ily avoided by selecting values of n for which it is
determined (experimentally or theoretically) that there
are no fixed points. One-dimensional continuous-space
chaotic maps usually have fixed points regardless of
values of theirs parameters. Also, it is very hard to
identify all values of continuous-space chaotic maps
which lead to fixed points and therefore it is very com-
plicated or even impossible to avoid selection of ini-
tial points which lead to fixed points [22–24]. Easy
identification of parameter n for which fixed points
exist and ability to avoid them is advantage of the pro-
posed map over mentioned continuous-space chaotic
maps.

Most cryptographic applications require a large
speed for their proper functioning. Therefore, it is
desirable that chaotic maps have low complexity of
their implementations which will result in a greater
speed. One iteration of the proposed map has only
one multiplication and three additions. Previous one-

dimensional discrete-space chaotic maps [13,14] re
quire much more calculations per one iteration due
to the use of the Lehmer code [43] whose compu-
tation time according to its definition is quadratic in
number of elements of the permutation. Complexity
of the proposed map is comparable to simpler one-
dimensional continuous-space chaotic maps such as
logistic map [5] which has two multiplications and
one subtraction operation. For the above-mentioned
reasons, we can conclude that the proposed chaotic
map has several advantages over previous chaoticmaps
when we consider the application in cryptographic
systems.

5 Random S-box design method based on the
proposed map

The quality of an S-box is estimated according to the
set of a widely used criteria which include bijection,
nonlinearity, strict avalanche criterion, output bits inde-
pendence criterion, equiprobable input/output XOR
distribution and maximum expected linear probabil-
ity [3,11,17–19,31–34,36]. When the random S-box
generation is in question, there is no specific procedure
aimed at creating an S-box which satisfies one or more
mentioned criteria except for the bijective property. In
order to generate an S-box which satisfies other crite-
ria, random methods are aimed at generating a larger
number of random S-boxes from which the best ones
are selected according to the certain bounds [37].

In this section, a simple example of a random p× p
bijective S-box design method, which is based on the
example of the proposed map from Eq. (3), will be
presented. First, the identical permutation Sb[ j] = j
for all 0 ≤ j < 2p is used as an initial state of an
S-box Sb. The initial value of the proposed discrete-
space chaotic map x is selected from the set of inte-
ger values [0, 2n − 1] which is in the example of the
proposed chaotic map from Eq. (3) equal to the set
[0, 232 − 1].

After the initial value of an S-box is set and the initial
value of the chaotic map is chosen, the S-box design
procedure follows the simple Knuth shuffle [44]. For
each 0 ≤ i < 2p, index j = f loor( xi2n ·2p) is obtained,
values of Sb[2p − 1 − i] and Sb[ j] are swapped and
the chaotic map (Eq. 3) is iterated one time in order
to obtain value xi+1. The process of the generation
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of single S-box can be implemented by the following
pseudo-code:

for 0 ≤ i < 2p

swap values of Sb[2p−1−i] and Sb[ f loor( xi2n ·2p)]
xi+1 = F(xi )
end for

where F(xi ) is Eq. (3). The proposed S-box generation
method returns the p × p S-box Sb. For example, if
p = 8, n = 32 and x0 = 4604,860 then the 8×8 S-box
from Table 2 is found. Although some more complex
procedure could be applied in order to obtain a random
S-box, it is not justified because the proposed chaotic
map provides sequences of sufficient quality, so any-
thingmore than the simplest procedurewill only reduce
the efficiency of an S-box design process without any
significant benefit for the quality of an S-box.

5.1 Performance analysis of the generated S-box

The example of an S-box generated with the approach
based on the proposed discrete-space chaotic map
was compared with some representative examples of
random bijective chaos-based S-boxes from the ref-
erences [11,14,17,31,33,34,36]. Also, some bounds
used to measure the quality of 8 × 8 S-boxes will be
used as a benchmark.

An S-box generation method presented in this paper
is designed in such way that only bijective S-boxes
could be generated. The S-box from Table 2 has
all different output values from the interval [0, 255],
so it can be concluded that the bijective property is
achieved [11].

The nonlinearity of an S-box is estimated according
to the formula presented in the paper [45]. The nonlin-
earities of eight output bits of the generated S-box are
108, 108, 106, 106, 106, 106, 106 and 106. The mini-
mum nonlinearity of 106 should be used as an indicator
of the quality of an S-box according to this criterion,
because an attacker will focus its attack on the weakest
part of an S-box. Theminimumnonlinearity of the gen-
erated S-box is better or equal to the most of random
chaotic S-box examples from Table 3, and it satisfies
the nonlinearity bound from the paper [37].

The description of the strict avalanche criterion can
be found in the paper [46]. The dependence matrix of
the S-box from Table 2 is presented in Table 4. The
average offset of the dependence matrix elements from
the ideal value of 0.5 is 0.02881 which satisfies the

bound for SAC offset set in the paper [37]. The mean
value of the dependence matrix is 0.501. The generated
S-box has the second best SAC offset in the Table 3.

BIC criteria refer to the nonlinearities of all pairs of
output bits. According to these criteria, pairs of output
bits should also satisfy the avalanche criterion [46]. The
value of dynamic distance (DD) should be as small as
possible integer in order for an S-box to satisfy the SAC
for pairs of output bits [31]. The data regarding this cri-
terion of the generated S-box are presented in Tables 5
and 6. The minimum value of BIC nonlinearity is 100,
and the maximum value of DD is 10.

The equiprobable input/outputXORdistribution cri-
terion refers to the maximum expected differential
probability (MEDP) which is estimated on the basis
of the formula from the paper [47]. The results of this
test for the generated S-box are presented in Table 7 in
which the maximal value is 10. This value is achieved
by the most of S-boxes from Table 7.

The maximum expected linear probability criteria
are described in papers [48,49]). The S-box presented
in this paper achieves value of 0.070557 according to
these criteria which satisfies the bound set in [37].

The example of S-box generated by the method
based on the proposed chaotic map satisfies all bounds
set in the paper [37]. Therefore, we can claim that the
proposedmap can be used for the generation of S-boxes
of high quality.

S-boxes of such quality could be used in block
ciphers which use fixed S-box. Also, the proposed S-
box design method could be used for generation of
dynamical S-boxes under the condition that the num-
ber of digits n of the variable x of the proposed chaotic
map is large enough to provide sufficient quantity of S-
boxes. For example, the proposed S-box designmethod
could be used for the generation of dynamical S-boxes
in image encryption algorithm [35] instead of the step
3. In that image encryption algorithm, the logistic map
and the asymmetric tent map were used in order to
generate S-boxes, but the control parameter µ of the
logistic map has fixed value, so only two variables and
one control parameter influence the key space of S-
box generation method [35]. Therefore, the proposed
S-box design method could be used in image encryp-
tion algorithm [35] when the value of n is bigger than
3 × 64 = 192, for example, for n = 256 and corre-
sponding variable could be stored in integer types such
as _int256. The proposed map could also be used in
image encryption algorithm [35] instead of one of the
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Table 2 The S-box generated by the algorithm based on the proposed chaotic map

173 249 216 50 121 112 28 233 118 226 171 254 248 44 232 203

228 95 164 4 209 157 207 244 17 71 211 255 46 126 186 90

196 240 197 38 18 117 20 200 115 131 166 161 9 132 221 1

10 201 225 36 15 100 214 53 75 39 82 246 187 198 40 213

154 247 236 146 178 151 192 175 79 22 205 52 89 231 215 74

243 237 170 125 180 224 16 208 212 31 206 168 85 65 150 58

7 177 8 145 60 223 101 83 230 130 32 76 194 64 165 182

92 68 77 217 155 26 242 99 62 67 108 147 59 27 142 199

184 220 30 181 48 21 54 33 153 47 61 63 34 129 11 120

51 174 97 35 80 57 176 25 110 55 159 143 163 105 37 72

219 156 137 42 136 235 188 2 5 106 98 45 109 3 141 73

104 218 158 87 114 189 253 204 210 148 222 93 91 49 88 43

107 86 250 172 138 116 124 185 127 41 6 96 133 167 70 56

193 227 111 128 191 29 179 103 94 12 251 229 152 14 135 23

139 19 234 102 122 123 144 245 239 169 252 149 113 66 195 24

190 162 119 134 238 160 84 78 69 202 241 140 81 183 13 0

Table 3 Comparison of the random bijective chaotic S-boxes

Min. nonlinearity SAC offset Min. BIC nonlinearity Max. XOR MELP

Scheme in Ref. [36] 108 0.02954 104 8 0.035156

Scheme in Ref. [17] 104 0.03809 98 10 0.0791

Scheme in Ref. [34] 104 0.03027 98 10 0.0625

Scheme in Ref. [11] 106 0.02441 100 10 0.070557

Scheme in Ref. [33] 100 0.03125 100 10 0.070557

Scheme in Ref. [31] 102 0.03174 100 10 0.088135

Scheme in Ref. [14] 106 0.02954 100 10 0.070557

Bounds in Ref. [37] 106 0.03 100 10 0.079

The proposed scheme 106 0.02881 100 10 0.070557

Table 4 The dependence matrix of the generated S-box

0.546875 0.5 0.53125 0.46875 0.5 0.546875 0.515625 0.546875

0.453125 0.515625 0.5 0.46875 0.484375 0.5625 0.53125 0.5

0.515625 0.5 0.484375 0.453125 0.515625 0.46875 0.421875 0.515625

0.484375 0.5 0.515625 0.546875 0.4375 0.515625 0.4375 0.515625

0.546875 0.546875 0.578125 0.5 0.421875 0.46875 0.515625 0.578125

0.484375 0.53125 0.53125 0.484375 0.5 0.5 0.53125 0.46875

0.5 0.5 0.484375 0.515625 0.453125 0.46875 0.4375 0.5

0.453125 0.5625 0.515625 0.46875 0.453125 0.5625 0.5 0.5
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Table 5 BIC-nonlinearity criterion for the generated S-box

– 104 106 108 104 102 106 104

104 – 104 104 104 106 100 104

106 104 – 106 100 102 108 108

108 104 106 – 102 100 104 102

104 104 100 102 – 106 104 104

102 106 102 100 106 – 104 106

106 100 108 104 104 104 – 102

104 104 108 102 104 106 102 –

Table 6 The DD of generated S-box (BIC-SAC criterion)

0 0 2 10 0 0 4 6

0 0 4 0 2 2 10 0

2 4 0 4 8 4 6 0

10 0 4 0 4 2 6 6

0 2 8 4 0 6 8 2

0 2 4 2 6 0 4 2

4 10 6 6 8 4 0 2

6 0 0 6 2 2 2 0

Table 7 Input/output XOR distribution table of S-box generated by the proposed method

6 6 8 6 6 6 6 6 6 6 6 6 6 8 6 10

6 6 6 6 6 6 6 6 8 6 8 6 6 6 6 8

8 6 6 6 8 8 6 6 6 4 6 8 6 8 8 6

6 6 8 6 6 8 6 6 6 8 6 8 6 6 6 8

6 6 6 6 6 6 6 6 8 8 8 6 6 6 6 6

4 6 8 6 8 6 6 8 6 10 6 6 6 6 10 8

6 8 6 4 8 8 6 6 6 6 6 6 6 6 8 8

6 6 6 6 6 8 4 6 8 10 6 8 8 8 6 6

8 6 8 6 8 6 6 6 6 6 6 6 6 8 6 8

8 6 6 8 8 6 4 6 10 8 8 6 8 6 6 8

6 8 6 6 8 6 8 10 6 8 8 6 8 10 6 8

6 8 10 8 6 6 8 6 8 6 8 6 6 6 10 6

8 8 8 6 6 6 6 6 8 6 6 6 8 8 6 8

6 6 8 6 8 6 6 8 6 8 6 6 6 6 6 6

6 6 8 6 6 8 6 10 10 6 8 6 6 8 8 6

6 6 6 6 6 4 8 6 10 6 6 8 8 6 8 –
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two maps. For example, the proposed map could be
used instead of the logistic map. Bearing in mind that
the value of the control parameter of the logistic map
is fixed in the paper [35], the proposed map with value
of n = 64 should be sufficient.

6 Recommendations for future research

Realization of chaotic maps in hardware such as FPGA
is very important issue due to the need to optimize such
implementations in order to save resources [50]. Bear-
ing in mind that the proposed discrete-space chaotic
map can operate on variables presented with various
number of digits and even on digits of arbitrary base,
it could be implemented in various types of hard-
ware. For this reason, future research should investi-
gate in detail hardware implementations of the pro-
posed chaotic map.

In this paper, one simple example of the application
of the proposed map in S-box design is presented in
order to demonstrate how this map can be used. How-
ever, chaos have been widely used in various applica-
tions from many fields including cryptography. In the
last decade, many chaotic techniques have been used
in various cryptographic applications such as PRNGs,
image and video encryption, pattern recognition for
biometric purposes such as voice recognition [51].
For this reason, future research should investigate in
detail whether the proposed map can be used in PRNG
design which could consequently lead to its applica-
tion in various types of the mentioned cryptographic
systems. Also, the application of the proposed map in
other fields should be explored.

7 Conclusion

In this paper, a new one-dimensional discrete-space
chaoticmapbased on themultiplication of integer num-
bers and circular shift is presented. Dynamical proper-
ties of the proposed map are analyzed, and it exhibits
chaotic behavior. The proposedmaphas fixed points for
certain values of n, but it is easy to completely avoid
them by selecting values of n for which it is determined
that there are no fixed points. The proposedmap is suit-
able for the application in fields where the fully digi-
tal approach is necessary because it is defined over a
finite set and therefore does not require approximations
of any kind. Compared to previous one-dimensional

discrete-space chaotic maps, this map has improved
characteristics related to the orbit length, computa-
tional complexity andmemory requirements. Improve-
ments regarding computational complexity and mem-
ory requirements can be particulary useful for the
implementation in lightweight devices with limited
memory and computational resources such as wireless
sensor networks. As an example of the application of
the proposed map in cryptography, an S-box design
method based on this chaotic map is presented. The
results of performance tests show that S-boxes with
good cryptographic properties can be generated on the
basis of this discrete-space chaotic map.
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