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Abstract Vegetation patterns can reflect the spatial
distribution of vegetation in both space and time. In
semi-arid regions, the absorption of water by vegeta-
tion is a nonlocal process meaning that its roots can
absorb water from themselves throughout the region.
However, the effects of the nonlocal interaction on the
distribution of vegetation pattern are not clear. In this
paper, a dynamical model of vegetation pattern with
nonlocal delay is investigated. Through the analysis
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of Turing instability, we obtain the conditions for the
generation of stationary patterns. By numerical sim-
ulations, various spatial distribution of vegetation in
semi-arid areas are qualitatively depicted. It is found
that the stripe intervals in pattern decrease with the
increase in the intensity of nonlocal delay effect, and
then a dot-linemixed pattern appears, which eventually
evolves into a high-density dot pattern. This indicates
that vegetation has evolved from low-density stripe dis-
tribution to high-density point distribution. The results
show that the nonlocal delay effect enhances vegetation
biomass. Therefore, we can take measures to increase
the intensity of nonlocal delay effect to increase vegeta-
tion density,which theoretically provides newguidance
for vegetation protection and desertification control.

Keywords Bifurcation · Pattern stability · Time delay

1 Introduction

Vegetation, called “ecosystem engineer,” plays an
important role in the ecological environment. [1]. First
of all, the photosynthesis of vegetation provides the
energy and power of ecosystem operation. Secondly,
vegetation has the function of preventing wind and fix-
ing sand. Last but not least, it promotes the global water
cycle that soil water evaporates into the atmosphere
through transpiration [2–4].

Vegetation pattern is used to describe the distribu-
tion of vegetation density in both time and space, and it
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can be used as an indicator to provide vegetation pro-
tection [5–11]. Regular vegetation patterns have been
observed in many semi-arid areas of the world: stripes,
spots and gaps, etc [12–14]. Many scientists have done
a lot of research on the formation mechanism of veg-
etation pattern in semi-arid areas [15–23]. Klausmeier
used vegetation and water as variables constructing
mathematical models to describe vegetation patterns
[24]. The work in Ref. [25] analyzed the vegetation–
water cross diffusion model in detail and revealed the
positive feedbackmechanism of vegetation pattern for-
mation. Sherratt and Synodiros use a simple reaction–
diffusion–advection model to show that rain water will
flow to the place with high vegetation coverage and
permeate with high permeability because of the low
permeability of rain water, which falls on the bare sur-
face. This process explains the positive feedback effect
of vegetation and water in local areas [26]. Hilleris-
lambers et al. showed that the formation of vegetation
pattern in semi-arid region is not only related to veg-
etation density and local precipitation infiltration, but
also related to spatial distribution of runoff water [27].

Besides, a lot of researches have been done on
the function of vegetation pattern [28–33]. The spatial
exchange of water can not only enhance the resistance
of vegetation to the outsideworld, but also enable vege-
tation to survive under the conditionof low rainfall [34].
Kéfi et al. obtained that the change of patch number-size
distribution can be used as an early warning signal for
desertification by establishing cellular automata model
and field investigation [35]. Vegetation ecosystems in
semi-arid areas may be more adaptable to environmen-
tal changes, but their resilience depends largely on the
adaptability of vegetation patterns [36].

The change of environment will affect the distribu-
tion of vegetation in space. Similarly, vegetation will
also affect the change of environment [37–41]. Seddon
et al. proposed vegetation sensitivity index to identify
areas sensitive to climate change and identified which
climatic factors can promote vegetation growth in each
month through regression modeling [37]. Brasswell et
al. showed that the response of biological communi-
ties to environmental changes had a certain time lag by
analyzing the data of temperature and vegetation spa-
tial index. Analysis shows that the relationship between
climate and carbon storage may change due to changes
in the distribution of ecosystems [38]. Forzieri et al.
provided more evidence to prove that the formation of

LAI-climate was due to the influence of vegetation on
temperature [39].

In semi-arid areas, vegetation patterns will change
with each other under different environments [42–44].
Taking rainfall as a parameter change, the transforma-
tion mode of vegetation pattern is as follows: uniform
vegetation → labyrinth pattern → spot pattern [42].
Gowda et al. analyzed a specificmodel through bifurca-
tion theory and calculated a standard sequence, which
can be used as a series of parameter values in numerical
simulation. Finally, they proposed amethod to evaluate
the robustness of the standard sequence in other mod-
els and formulas [43]. In semi-arid areas, the degree
of drought will affect the change of vegetation pattern.
With the increase in drought intensity, the vegetation
pattern will change as follows: spot pattern→ stripe
pattern→ bare land. Lejeune et al. established a model
to explain this phenomenon [44]. In semi-arid regions,
continuous drought is likely to lead to desertification
[45,46].

In recent years, nonlocal effects have attracted more
andmore attention inmany fields [47–49]. It can depict
various morphogenesis phenomena. Chen and Shi con-
structed a phytoplankton model with age structure
and nonlocal effects. This paper classified the thresh-
old dynamics of the model. The results showed that
the dynamics of phytoplankton models were affected
by mortality and maturation time. Phytoplankton may
become extinct when the death rate exceeds the crit-
ical death rate. On the contrary, when the death rate
was lower than the critical death rate, there would be
another threshold atmaturity [50].A reaction–diffusion
model with nonlocal effects and Dirichlet boundary
conditions is studied by Lyapunov–Schmidt method to
study the existence and stability of nonhomogeneous
and periodic solutions in the model space. In addition,
this model is applied in one-dimensional space to illus-
trate the correctness of the results [51]. Deforestation
not only affected the temperature in some areas, but
also in other areas. The nonlocal effect of the global
average temperature dominates the local effect. The
climate model is used to simulate and get the follow-
ing conclusion: The influence of nonlocal effect on the
global average temperature is greater than that of local
effect and has no relation with the area and location
of deforestation [52]. Boushaba and Ruan proposed a
reaction–diffusion equation to describe the growth of
plankton community. The model includes the delay of
nutrient cycle and plankton growth, both of which are
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nonlocal. It is found that Turing pattern will appear
when the diffusion coefficient changes, and spatiotem-
poral pattern will appear when the time delay changes
[53].

Time delay is very important for research in many
fields [54–58].An important indicator for studyingveg-
etation growth and productivity is vegetation index.
Wu and Fu proposed a new neural network method
with time delay to predict vegetation index. Using
actual data detection, it was found that the new method
has better prediction effect. The method has important
application value in reducing overgrazing and grass-
land vegetation restoration [59]. In general, the study
of vegetation pattern is carried out in a continuous spa-
tial area. However, a vegetation–water model on the
network is established by considering the propagation
of seeds and connecting the whole scattered areas. It
is used to describe the spatial dynamics of vegetation
in semi-arid areas. The model established by stability
analysis proves that the coexistence of vegetation and
water is stable without delay. When the delay exceeds
the threshold, the stability of Hopf bifurcation changes
[60]. Han et al. studied the stochastic resonance phe-
nomenon of a kind of vegetation ecosystem with delay.
Firstly, it is assumed that the system vegetation dynam-
ics is affected by internal and external noise. Then, the
signal-to-noise ratio is calculated by adding weak peri-
odic signals. Finally, the influence of time delay and
correlation intensity of internal and external noise on
the signal-to-noise ratio is discussed [61].

As we all know, vegetation has two ways of absorb-
ingwater. Firstly, when the vegetation leaves arewet by
rain water or dew, the leaves absorb water but the quan-
tity is very small. This is of no importance to the water
supply of vegetation. Secondly, the root system of veg-
etation absorbswater. The root system is themain organ
for vegetation to absorb soil water. It is the main source
of water resources needed for vegetation growth. In
fact, the roots can absorb water from the entire region,
and this process will take a certain time. The traditional
reaction–diffusion equation can not accurately repre-
sent its characteristics. Due to the pioneer work of Brit-
ton, spatial model with nonlocal delay was introduced
to mathematical model, which can reflect the nonlo-
cal interactions between different individuals [62]. To
well reveal the mechanisms of these nonlocal effects
on the vegetation pattern. In this paper, the reaction–
diffusion equation with nonlocal delay is introduced to
characterize this characteristic.

As far as we know, little work have been studied on
the dynamics of vegetation pattern with nonlocal delay.
As a result, we explained how to build the model and
made a detailed analysis of this model. The structure
of other parts of this paper is as follows. The second
part is the derivation of the model. The third part is
the stability analysis of the model. The fourth part is
the pattern structure of numerical simulation. Finally,
some conclusions and discussions are drawn.

2 Model derivation

The vegetation pattern in many semi-arid regions is
amazing. Klausmeier firstly proposed a vegetation–
water model to simulate the vegetation pattern in semi-
arid regions [23]:{

∂N
∂t = RJWN 2 − MN + D1∇2N ,
∂W
∂t = A − LW − RWN 2 + V ∂W

∂X .
(1)

The model has two variables vegetation (N) and water
(W), in which water is uniformly supplied at rate A
and lost at LW rate due to evaporation. Vegetation
absorbs water at RWN 2 rate and converts it into its
own growth at conversion rate J. Vegetation density
decreases at the rateMN.Water flows downhill at speed
V.∇2 = ∂2

∂X2 + ∂2

∂Y 2 is the general Laplace operator. D1

is the diffusion rate of vegetation, which represents the
rate of vegetation movement by clonal growth or seed
dispersal.

As a matter of fact, rainfall is the most important
source of water in semi-arid areas. After rainfall, water
permeates into the ground, and the roots of vegeta-
tion absorb water resources around them over a certain
period of time. Consequently, we introduce nonlocal
delays to characterize the process:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N
∂T = RJ N 2

∫
�

∫ T
−∞ Q(x, y, T −U )H(T −U )

×W (y,U )dUdy − MN + D1∇2N ,
∂W
∂T = A − LW − RN 2

∫
�

∫ T
−∞ Q(x, y, T −U )

×H(T −U )W (y,U )dUdy

+V ∂W
∂X + D2∇2W,

(2)

where � = [a, b] × [a, b], x = X × Y ∈ �. D2 is the
diffusion rate of the water in absence of the vegetation
(Fig. 1).
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Fig. 1 Vegetation roots can absorb both water resources near
themselves and water resources at a distance. Blue circles indi-
cate undergroundwater and arrows indicate the direction ofwater
flow. (Color figure online)

The nonlocal item
∫
�

∫ T
−∞ Q(x, y, T − U )H(T −

U )W (y,U )dUdy indicates that water resources at any
position can be absorbed by roots to the current posi-
tion, and this value represents the average amount of
water resources absorbed by vegetation at the current
moment. Q(x, y, T ) is the solution of

∂Q

∂T
= D

(
∂2Q

∂X2 + ∂2Q

∂Y 2

)
subject to

∂Q

∂n
= 0 and Q(x, y, 0) = σ(x − y),

n is unit normal vector andσ isDirac delta function.We
choose Neumann boundary conditions [63–67]. The

delay kernel H(T ) = 1
τ
e

−T
τ [68]. The kernel function

Q(x, T )H(T ) represents the weight of water resources
reaching the current position at any position before time
T .

We rescale the model (2), then the simplified system
can be given as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂n
∂t = n2

∫
�

∫ t
−∞ Q(x, y, t − u)h(t − u)w(y, u)dudy

−mn + ∇2n,
∂w
∂t = a − w − n2

∫
�

∫ t
−∞ Q(x, y, t − u)h(t − u)

×w(y, u)dudy + v ∂w
∂x + δ∇2w.

(3)

v ∂w
∂x represents the surface runoff, meaning that

water flows downhill (in the negative direction of x)
at speed v. Hillside is not a necessary formation condi-
tion for vegetation pattern [23]. In this sense, wemainly
consider the following systems:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂n
∂t = n2

∫
�

∫ t
−∞ Q(x, y, t − u)h(t − u)w(y, u)dudy

−mn + ∇2n,
∂w
∂t = a − w − n2

∫
�

∫ t
−∞ Q(x, y, t − u)h(t − u)

×w(y, u)dudy + δ∇2w.

(4)

As far as we know, very few work has been done to
study the dynamics of vegetation patternswith nonlocal
delays. Therefore, we have analyzed the vegetation–
water model with nonlocal delay. First of all, we ana-
lyzed the stability of the model. Furthermore, we car-
ried out numerical simulation to show the pattern struc-
ture with rich vegetation density. We also give some
conclusions and discussions.

3 Stability analysis

Let v(x, t) = ∫
�

∫ t
−∞ Q(x, y, t − u)h(t − u)w(y, u)

dudy, and then system (4) will change as the following
form:

⎧⎪⎪⎨
⎪⎪⎩

∂n
∂t = ∇2n + g1(n, w, v),

∂w
∂t = δ∇2w + g2(n, w, v),

∂v
∂t = d∇2v + g3(n, w, v),

(5)

where

g1(n, w, v) = wn2 − mn,

g2(n, w, v) = a − w − wn2,

g3(n, w, v) = 1

τ
(w − v).

We are only interested in the internal positive equi-
librium point. Solving system (3) to obtain three equi-
librium points E0 = (n0, w0, v0) = (0, a, a), E∗

1 =
(n∗

1, w
∗
1, v

∗
1) and E∗

2 = (n∗
2, w

∗
2, v

∗
2), with

n∗
1 = a − √

a2 − 4m2

2m
,

w∗
1 = 2m2

a − √
a2 − 4m2

,

v∗
1 = 2m2

a − √
a2 − 4m2

,

n∗
2 = a + √

a2 − 4m2

2m
,
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w∗
2 = 2m2

a + √
a2 − 4m2

,

v∗
2 = 2m2

a + √
a2 − 4m2

.

We can get the necessary condition for the existence
of equilibrium point is:

a > 2m.

3.1 Stability analysis of equilibrium point
E∗
1 = (n∗

1, w
∗
1, v

∗
1)

Under the condition that the system (3) does not dif-
fuse, the linearized system at the coexistence state E∗

1
is expressed as follows:

⎧⎪⎪⎨
⎪⎪⎩

dn
dt = a(1)

11 n + a(1)
12 w + a(1)

13 v,

dw
dt = a(1)

21 n + a(1)
22 w + a(1)

23 v,

dv
dt = a(1)

31 n + a(1)
32 w + a(1)

33 v,

(6)

where,

a(1)
11 = m, a(1)

12 = 0,

a(1)
13 = (a − √

a2 − 4m2)2

4m2 ,

a(1)
21 = −m, a(1)

22 = −1,

a(1)
23 = − (a − √

a2 − 4m2)2

4m2 ,

a(1)
31 = 0, a(1)

32 = 1

τ
v, a(1)

33 = −1

τ
.

We analyzed the stability of the equilibrium point E∗
1

in Table 1.
When a > 2m, the positive state E∗

1 = (n∗
1, w

∗
1, v

∗
1)

of system (6) is unstable, due to b(1)
3 (0) < 0.

Table 1 Analysis of stability of equilibrium point E∗
1 by Routh–

Hurwitz criterion

Characteristic polynomial
of system (6)

Stability condition

ν3 + b(1)
1 (0)ν2 + b(1)

2 (0)ν

+ b(1)
3 (0) = 0

b(1)
1 (0) > 0

b(1)
3 (0) > 0

b(1)
1 (0)b(1)

2 (0) − b(1)
3 (0) > 0

b(1)
1 (0) = −mτ−τ−1

τ
; b(1)

2 (0) = −2m3τ−2m3−a
√

(a−2m)(a+2m)

2m2τ
;

b(1)
3 (0) = a2m−am

√
(a−2m)(a+2m)−4m3

2m2τ

3.2 Stability analysis of endemic state
E∗
2 = (n∗

2, w
∗
2, v

∗
2)

The system (3) linearized at E∗
2 has the following form:

⎧⎪⎪⎨
⎪⎪⎩

∂n
∂t = ∇2n + a(2)

11 n + a(2)
12 w + a(2)

13 v,

∂w
∂t = δ∇2w + a(2)

21 n + a(2)
22 w + a(2)

23 v,

∂v
∂t = d∇2v + a(2)

31 n + a(2)
32 w + a(2)

33 v,

(7)

where

a(2)
11 = m, a(2)

12 = 0,

a(2)
13 = (a + √

a2 − 4m2)2

4m2 ,

a(2)
21 = −2m, a(2)

22 = −1,

a(2)
23 = − (a + √

a2 − 4m2)2

4m2 ,

a(2)
31 = 0, a(2)

32 = 1

τ
, a(2)

33 = −1

τ
.

We analyzed the stability of the equilibrium point E∗
2

in Table 2.
In other words, the equilibrium point E∗

2 is locally
stable if a > 2m, and stability conditions hold.

Let⎛
⎝n

w

v

⎞
⎠ =

⎛
⎝ζ1

ζ2
ζ3

⎞
⎠ exp (λt + iκr), (8)

where λ is the growth rate of perturbations in time t ,
and κ is wave number. Substituting (8) into (5), we can
obtain characteristic equation det(A) = 0, as follows:

Table 2 Analysis of stability of equilibrium point E∗
2 by Routh–

Hurwitz criterion

Characteristic polynomial
of system (3.2) without
diffusion

Stability condition

ν3 + b(2)
1 (0)ν2 + b(2)

2 (0)ν

+ b(2)
3 (0) = 0

b(2)
1 (0) > 0

b(2)
3 (0) > 0

b(2)
1 (0)b(2)

2 (0) − b(2)
3 (0) > 0

b(2)
1 (0) = −mτ+τ+1

τ
; b(2)

2 (0) =
−2m3τ−2m3+a2+a

√
(a−2m)(a+2m)

2m2τ
;

b(2)
3 (0) = a2m+am

√
(a−2m)(a+2m)−4m3

2m2τ
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det (A) =

∣∣∣∣∣∣∣∣
a(2)
11 − κ2 − λ a(2)

12 a(2)
13

a(2)
21 a(2)

22 − δκ2 − λ a(2)
23

a(2)
31 a(2)

32 a(2)
33 − dκ2 − λ

∣∣∣∣∣∣∣∣
.

The following dispersion relation can be obtained by
solving the characteristic equation:

λ3 + b(2)
1 (κ)λ2 + b(2)

2 (κ)λ + b(2)
3 (κ) = 0, (9)

with

b(2)
1 (κ) = − (−κ2τ − δκ2τ − dκ2τ + mτ − τ − 1)

τ
,

b(2)
2 (κ) = 1

2τm2 (2m2δκ4τ + 2m2dκ4τ

+ 2m2δdκ4τ − 2m3δκ2τ

− 2m3dκ2τ + 2m2κ2τ + 2m2dκ2τ

+ 2m2κ2 + 2m2δκ2

− 2m3τ − 2m3 + a2

+ a
√

(a − 2m)(a + 2m)),

b(2)
3 (κ) = 1

2m2τ
(2m2δdκ6τ − 2m3δdκ4τ

+ 2m2dκ4τ + 2m2δκ4 + 2m3dκ2τ

− 2m3δκ2 + a2κ2

+ a
√

(a − 2m)(a + 2m)κ2

+ a2m + am
√

(a − 2m)(a + 2m) − 4m3).

Of course, we demonstrated the dispersion relation
in Fig. 2. Stability of the system (3) without diffusion is
a necessary condition for the occurrence of Turing pat-
tern, while the equilibrium is unstable with diffusion.
Next, we will examine in detail the conditions under
which Turing pattern occurs from the equilibrium point
E∗
2 .

4 Analysis of Turing bifurcation

Next, we will find the conditions of Turing pattern
occurring. There are three conditions.

Condition 1 b(2)
1 (κ) > 0, and b(2)

1 (κ) = (1 + δ +
d)κ2τ + b(2)

1 (0). Since the diffusion condition is posi-
tive, the situation 1 is always established on the condi-
tion b(2)

1 (0) > 0 holds.

Condition 2 b(2)
3 (κ) > 0.

Let b(2)
3 (κ) = F (2)

2 (κ2) and u = κ2. We can get the
following expressions (Table 3):

The properties of polynomial F (2)
2 (u) are analyzed

as follows:

1. limu→+∞ F (2)
2 (u) = +∞.

Fig. 2 Dispersion relation of system (4): for different τ , we get
the relation graph between the real part of the characteristic root
and κ . The real part of the eigenvalue increases with the increase
in τ . Red curve: τ = 0.5; Blue curve: τ = 1; Green curve:

τ = 1.5. The figure illustrates that the system is stable when
there is no space. When space is added, the instability of the sys-
tem is related to wave number k. (We set other parameter value
as: σ = 10, m = 1.7, a = 4.4, d = 1). (Color figure online)
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Table 3 Expressions and
coefficients of equation
F (2)
2 (u)

The Mathematical
Expression of F (2)

2 (u)

Coefficients

F (2)
2 (u) = f (2)

23 u3 + f (2)
22 u2

+ f (2)
21 u + f (2)

20

f (2)
23 = δd

f (2)
22 = d + δ

τ
− δdm

f (2)
21 = 1

2m2τ
(a2 + a

√
a2 − 4m2 − 2m3dτ − 2m3δ)

f (2)
20 = ma2 + am

√
a2 − 4m2 − 4m3

2. Calculate the first derivative of F (2)
2 (u):

dF (2)
2 (u)

du
= 3 f (2)

23 u2 + 2 f (2)
22 u + f (2)

21 .

Wecan calculate the two extreme points of F (2)
2 (u).

It follows that:

u(2)
21 = − f (2)

22 +
√

( f (2)
22 )2−3 f (2)

23 f (2)
21

3 f (2)
23

and u(2)
22 =

− f (2)
22 −

√
( f (2)

22 )2−3 f (2)
23 f (2)

21

3 f (2)
23

.

Second derivation of F (2)
2 (u) has:

d2F (2)
2 (u)

du2
= 6 f (2)

23 u + 2 f (2)
22 .

It is easy to obtain 6 f (2)
23 = 6δd > 0, according

to the concavity discrimination method, we have
F (2)
2 (u) is a concave upward function when u is

large enough.
3. According to the property of the cubic polynomial

with positive first coefficient, we will get the fol-
lowing result:

u(2)
2,max < u(2)

2,min = u(2)
21 .

To meet the occurrence conditions of turing
pattern, the following conditions need to be met:
F (2)
2 (u(2)

2,min) = F (2)
2 (u(2)

21 ) < 0. Since u(2)
2,min = u(2)

21 =
− f (2)

22 +
√

( f (2)
22 )2−3 f (2)

23 f (2)
21

3 f (2)
23

is the wave number, therefore

u(2)
2,min = u(2)

21 is positive. The number in the square root

of u(2)
2,min is positive by ( f (2)

22 )2 − 3 f (2)
23 f (2)

21 > 0.
We summarized the analysis methods and sufficient

conditions for producing Turing pattern under condi-
tion 2 in Table 4.

Condition 3 b(2)
1 (κ)b(2)

2 (κ) − b(2)
3 (κ) > 0.

Table 4 Methods and the sufficient conditions for Turing pattern

Methods The sufficient conditions
for Turing pattern

1. Monotonicity of
judgment function

( f (2)
22 )2 − 3 f (2)

23 f (2)
21 > 0

u(2)
2,min = u(2)

21 > 0

2. Judging concavity and
convexity of function

F (2)
2 (u(2)

2,min) = F (2)
2 (u(2)

21 ) < 0

F (2)
2 (0) = b(2)

3 (0) > 0

3. The sufficient
conditions for turing
pattern.

b(2)
1 (0)b(2)

2 (0) − b(2)
3 (0) > 0

b(2)
1 (0) > 0

Let b(2)
1 (κ)b(2)

2 (κ) − b(2)
3 (κ) = F (2)

3 (κ2) and u =
κ2, then F (2)

3 (u) = f (2)
33 u3 + f (2)

32 u2 + f (2)
31 u + f (2)

30 ,
where

f (2)
33 = (δ + d + 1)(δ + d + δd) − f (2)

23 ,

f (2)
32 = 1

τ
(τ + 2δτ + 3dτ

+ 2δdτ + d2τ + 1 + 3δ + 2d + δ2

+ 2δd − 2mδτ − 2mdτ − mτδ2

− 3mdδτ − mτd2) − f (2)
22 ,

f (2)
31 = 1

2m2τ 2
(2m4dτ 2 − 4m3τ 2 − 4m3τ 2δ

− 6m3dτ 2 − 4m3τ − 6m3δτ − 4m3dτ

+ 2m2τ 2 + 2m2τ 2d + a2τ + a2τδ

+ a2dτ + aτ
√
a2 − 4m2) + aδτ

√
a2 − 4m2

+ adτ
√
a2 − 4m2 + 4τm2 + 2m2δτ

+ 2m2dτ + 2m2 + 2m2δ) − f (2)
21 ,

f (2)
30 = 1

2m2τ 2
(1 + τ − mτ)

(−2m3τ − 2m3 + a2 + a
√
a2 − 4m2) − f (2)

20 .

123



3414 Q. Xue et al.

The coefficient f (2)
33 = (d1+1)(d2+1)(d1+d2) > 0

always holds. The properties of polynomial F (2)
3 (u) are

analyzed as follows:

1. limu→+∞ F (2)
3 (u) = +∞.

2. Calculate the first derivative of F (2)
3 (u):

dF (2)
3 (u)

dz
= 3 f (2)

33 u2 + 2 f (2)
32 u + f (2)

31 .

We will get two extreme points of F (2)
3 (u) by cal-

culating, as follows:

u(2)
31 = − f (2)

32 +
√

( f (2)
32 )2−3 f (2)

33 f (2)
31

3 f (2)
33

and u(2)
32 =

− f (2)
32 −

√
( f (2)

32 )2−3 f (2)
33 f (2)

31

3 f (2)
33

.

Second derivative of F (2)
3 (u) has:

d2F (2)
3 (u)

dz2
= 6 f (2)

33 u + 2 f (2)
32 .

It is easy to obtain 6 f (2)
33 = 6(δ + 1)(d + 1)(d +

δ) > 0. According to the concavity discrimination
method, we have F (2)

3 (u) is a concave upward func-
tion when u is large enough.

3. According to the property of the cubic polynomial
with positive first coefficient, we will get the fol-
lowing result:

u(2)
3,max < u(2)

3,min = u(2)
31 .

F (2)
3 (u(2)

3,min) = F (2)
3 (u(2)

31 ) < 0 ensures the emer-

gence of Turing pattern. Since u(2)
3,min = u(2)

31 =
− f (2)

32 +
√

( f (2)
32 )2−3 f (2)

33 f (2)
31

3 f (2)
33

is the wave number, u(2)
3,min =

u(2)
31 is positive. The number in the square root of u(2)

3,min

is positive by ( f (2)
32 )2 − 3 f (2)

33 f (2)
31 > 0.

We summarized the analysis methods and sufficient
conditions for producing Turing pattern under condi-
tion 3 in Table 5.

In order to show the parameter space for the emer-
gence of Turing pattern, we show the Hopf and Tur-
ing bifurcation (According to the critical condition of
branching, the bifurcation curves are drawn with τ as
the independent variable and m as the dependent vari-
able) in Fig. 3. In the spatial domain denoted by T,
one can obtain the stationary patterns with rich pattern
structures.

Hopf bifurcation occurs when the fixed point of the
system switches from stable focus to unstable focus. If

Table 5 Methods and the sufficient conditions for Turing pattern

Methods The sufficient conditions for
Turing pattern

1. Monotonicity of
judgment function

( f (2)
32 )2 − 3 f (2)

33 f (2)
31 > 0

u(2)
3,min = u(2)

31 > 0

2. Judging concavity
and convexity of
function

F (2)
3 (u(2)

3,min) = F (2)
3 (u(2)

31 ) < 0

F (2)
3 (0) = b(2)

1 (0)b(2)
2 (0)−b(2)

3 (0) > 0

3. The sufficient
conditions for turing
pattern

b(2)
3 (0) > 0

b(2)
1 (0) > 0

Hopf bifurcation occurs, it needs to satisfy the follow-
ing conditions:

Im(λκ) �= 0,Re(λκ) = 0, at κ = 0.

According to the Routh–Hurwitz, we can obtain the
critical condition for Hopf bifurcation to occur as fol-
lows:

b(2)
1 (0)b(2)

2 (0) − b(2)
3 (0) = 0.

The non-equilibrium phase transition correspond-
ing to Turing bifurcation is the transformation of the
system from the uniform stationary state to the non-
uniform spatial periodic oscillation state. The condition
for Turing bifurcation is that the system is stable with-
out spatial diffusion and unstablewith spatial diffusion.
Therefore, we can obtain that the critical condition for
Turing bifurcation to occur as follows:

Re(λκ) = 0, Im(λκ) = 0, at κ2 = u(2)
2,min �= 0.

That is b(2)
3 (κ) = 0 with κ2 = u(2)

2,min.

5 Numerical results

In this section, based on the previous theoretical analy-
sis of the system (4), we select appropriate parameters
for numerical simulation in the conditions of branching.
The program runs until the vegetation pattern reaches
a stable state or its main characteristics do not seem
to change any more. We use finite difference algorithm
and select the Newman boundary condition. A network
consisting of a finite number of discrete points is used
instead of a continuous fixed solution region, and these
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Fig. 3 Bifurcation diagram
of system (5) with a = 4.4
and δ = 10. Red curve:
Turing bifurcation; Blue
curve: Hopf bifurcation.
The brown part of Turing
region is marked by T.
(Color figure online)

discrete points are called nodes of the network. The
derivative of each lattice point is replaced by a finite
difference approximation formula. The size of space
is 100 × 100. The space step is dx = h = 1, and
the time step is dt = 0.001. Assumed spatial region
� = (a, b) × (a, b), b 	 a, h = (b− a)/(Z − 1). We
can get the spatial points as the follows form:

�h = (xp, yq) : xp = (p − 1)h + 1,

yq = (q − 1)h + 1, p, q = 1, 2, . . . , Z .

According to Taylor’s expansion, we can get the fol-
lowing form:

∂2n(xp, yq)

∂x2
= n(xp+1, yq ) − 2n(xp, yq ) + n(xp−1, yq )

h2

+o(h2),

∂2w(xp, yq)

∂x2
= w(xp+1, yq ) − 2w(xp, yq ) + w(xp−1, yq)

h2

+o(h2).

where, o(h2) is a higher-order term.
We define n pq and wpq as the finite difference

approximation of n(xp, yq) and w(xp, yq). For the
vegetation–water model, the difference semidiscrete
form of internal nodes in space, namely (xp, yq) ∈ �h ,
is as follows:

dn pq

dt
= g1(n pq , wpq)

+ d(n p−1,q + n p,q−1 − 4n pq + n p,q+1 + n p+1,q),

dwpq

dt
= g1(n pq , wpq)

+ d(wp−1,q + wp,q−1 − 4wpq + wp,q+1 + wp+1,q).

For corner nodes:
dn pq

dt
= g1(n pq , wpq)

+ d(n p,q+1 − 2n pq + n p+1,q),

dwn pq

dt
= g1(n pq , wpq)

+ d(wp,q+1 − 2wpq + wp+1,q).

For boundary nodes except corner nodes:

dn pq

dt
= g1(n pq , wpq)

+ d(n p,q−1 + n p+1,q + n p,q+1 − 3n pq),

dwpq

dt
= g1(n pq , wpq)

+ d(wp,q−1 + wp+1,q + wp,q+1 − 3wpq).

The Turing patternwe studied is that the equilibrium
point of the system is stable when there is no diffusion,
and it is unstable when there is diffusion. After the
previous theoretical analysis, we determined the initial
distribution of vegetation and water are as follows:

n(x, y, 0) = a + √
a2 − 4m2

2m
+ η1,

w(x, y, 0) = 2m2

a + √
a2 − 4m2

+ η2,

where ηi (i = 1, 2) is a small random perturbation
term. In the system (4), we are more concerned about
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Fig. 4 Snapshots of
contour pictures of
evolution of vegetation at
different time. Parameters
are taken as m = 0.93,
a = 3, τ = 0.55, d = 1 and
σ = 50. a t = 10; b t = 25;
c t = 599; d t = 10000

Fig. 5 Stationary patterns of vegetation with different nonlocal delay parameter. a τ = 0.25; b τ = 0.45; c τ = 0.65; d τ = 0.74; e
τ = 0.89; f τ = 1.11

the evolution of vegetation density with time in spatial
location. For this purpose, the parameters are taken as
m = 0.93, a = 3, τ = 0.55, d = 1, σ = 50. The
evolution process is shown in Fig. 4.

From Fig. 5, we can clearly observe that low-density
gap patterns (Fig. 5a) appeared when the water absorp-

tion strength in the stagnant nucleus was relatively
small. The perfect gap patterns (Fig. 5b) will appear
when the water absorption intensity in the delayed
effect is increased slightly. If the water absorption
strength is further increased, high-density mixed pat-
terns of stripes and spot (Fig. 5c) will appear due to
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Fig. 6 Variation of
vegetation average density
with time. (I) τ = 1.11; (II)
τ = 0.89; (III) τ = 0.74;
(IV) τ = 0.65; (V)
τ = 0.45; (VI) τ = 0.25.
Parameters are taken as
m = 0.93, a = 3, τ = 0.55,
d = 1 and σ = 50. This
figure shows that the
average density of
vegetation tends to be stable
with time
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Fig. 7 Changes of
vegetation average density
with root water absorption
intensity
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the difference of water absorption capacity of vege-
tation. Then, there will be high density spot patterns
(Fig. 5c, d). Finally, the greater the water absorption
intensity, the isolated spot patterns will occupy the
whole space (Fig. 5f). From the phase transformation
of vegetation pattern, we can see that the vegetation
isolation becomes larger, which makes the vegetation
system more vulnerable to disturbance and increases
the possibility of desertification. This shows that in a
certain range, the greater the water absorption intensity
and the higher the vegetation density, the less prone the
region is to desertification. From Fig. 5, we can clearly
observe thatwith the increase inwater absorption inten-
sity in the delay kernel, the vegetation pattern gradu-
ally transits from the initial low-density wide strip to

the high-density narrow strip and then evolves into a
high-density mixed pattern. When the water absorp-
tion intensity reaches a certain value, an isolated high-
density spot pattern (hot spot pattern) will appear. This
shows that in a certain range, the greater the water
absorption intensity and the higher the vegetation den-
sity.

In fact, after rainfall in semi-arid areas, rainwater
permeates the root system of vegetation, and the root
system will preferentially absorb the water resources
in the nearest position. The water resources in the
nearest position are not enough. It will absorb water
from the entire region. When the root water absorption
intensity is small, the competition of water resources
between vegetation is small, and vegetation distribu-
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tion with low density and wide range will appear
in space. Increasing the water absorption capacity of
roots will increase the competition of water resources
among vegetation, and therewill be high-density dotted
mixed vegetation distribution in space.When the water
absorption capacity of root system increases to a certain
extent, the competition ofwater resources between veg-
etation becomes greater, and there will be high-density
isolated vegetation spot distribution in space. Reflected
in the numerical simulation is the final hot spot pattern.

By changing differentwater absorption intensities in
the delay kernel, the vegetation pattern has reached a
stable state (shown in Fig. 6). The numerical simulation
results show thatwith the passage of time, the density of
vegetation tends to a certain value at any position. The
density of vegetation may vary in different locations,
and the chart is a Turing pattern.

In addition, we simulated the effect of water absorp-
tion intensity of vegetation roots on vegetation in non-
local delay. As seen from Fig. 7, in a certain range,
the higher the water absorption intensity, the higher the
vegetation density. In other words, increasing the water
absorption intensity of vegetationwithin a certain range
can prevent desertification.

6 Conclusions

In this paper, the pattern dynamics of a vegetation–
water model with nonlocal delay in semi-arid region
is studied. The stability of the equilibrium point of
the model without diffusion is mainly analyzed. The
conditions for the generation of vegetation pattern are
obtained by analyzing Turing instability in the case of
diffusion. Nonlocal effect is introduced to characterize
the water resources absorbed by vegetation roots in the
whole region. Finally, the Turing pattern with different
nonlocal delay effects is obtained by taking appropri-
ate parameters that satisfy the conditions to carry out
numerical simulation on the model.

The results in this work show that with the increase
in the intensity of nonlocal delay effect, the vegetation
pattern gradually changed from the initial low-density
wide strip to the high-density narrow strip. Then, it
evolved into a high-density dot-line mixed pattern.
Finally, it evolves into an isolated high-density spot
pattern, when the water absorption intensity reaches a
certain value. The results well reflect the effect of non-
local delay effect. What we are concerned about is that

the vegetation pattern structure represents the actual
distribution of vegetation density in semi-arid areas.
The understanding of vegetation patterns can provide
new theoretical guidance for the protection of vegeta-
tion and the prevention of land desertification. At the
same time, the construction of this model also enriches
the existing models of studying vegetation pattern.

In this work, the natural evolution of the water–
vegetationmodel is mainly considered, and human fac-
tors are not considered. In fact, there are many factors
that affect vegetation density, such as deforestation and
overgrazing. When the density of vegetation decreases
to a certain extent, desertification will reach a certain
extent. In order to solve the problem of desertification,
the most common method is probably afforestation.
Of course, many scholars have also established differ-
ent models to study this topic. However, the study of
vegetation pattern dynamics is only at the theoretical
level and there is no specific experiment to support it.
Therefore, we hope to reveal its essentials characteris-
tics through experimental research in the further study
[69].What is more, our results can be extended in other
related research fields, such as spatial epidemiology
[70–72] or predator-prey systems [73–75].
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