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Abstract This paper proposes a finite-time decou-
pling control strategy for aircraft with thrust vector at
high angle of attack maneuver. Firstly, the nonlinear
mathematical model of the aircraft is presented. Tak-
ing into account the insufficiency of the aerodynamic
control surface, a thrust vector model with double noz-
zles is added. Subsequently, a three-channel decou-
pling control scheme based on finite-time extended
state observer is employed to realize the high angle
of attack maneuver. Strong coupling among different
channels, aerodynamic uncertainties and other unmod-
eled dynamics are regarded as total disturbance and
estimated by a finite-time extended state observer.
Super-twisting (SWT) sliding mode control is utilized
to obtain expected performance and finite-time sta-
bility. The daisy chain method is adopted to realize
the control allocation. Finally, the numerical simula-
tions are provided to demonstrate the effectiveness and
robustness of the proposed methodology.
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1 Introduction

With the envelope extension and enhanced agility of
fighter aircraft, higher flight performances are in urgent
demand [1]. The super maneuverability has become
one of the major features of modern advanced fighter
aircraft, which can improve attack ability and sur-
vival chance. The supermaneuverabilitymeans that the
fighter aircraft can complete fast maneuver action with
high angular rate at high angle of attack (AOA). The
thrust vector technology usually needs to be adopted
due to the low efficiency of aerodynamic control sur-
faces at high AOA [2,3]. Moreover, the deep stall
caused by high AOAmakes the fighter aircraft unstable
and difficult to control. Especially, in super maneuver-
ing, the air flowing through the aircraft changes from
the attached flow to the vortex flow. Then, the vortex
breakdowns in a row and finally becomes the sepa-
rated flow. This process generates unsteady aerody-
namic force leading to strong nonlinearity, coupling,
uncertainty and hysteresis in the fighter aircraft [4]. All
these problems lead to a great challenge for controllers
design for fighter aircraft.

For flight controller design, the linear control meth-
ods such as gain scheduling, pole placement, optimal
control and H∞ control [5–7] are traditionally used.
However, it is relatively difficult for these methods to
cover a large flight envelope. Furthermore, the linear
models and linear control methods will no longer be
suitable when the aircrafts fly at high angle of attack
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or roll with a high rate. Thus, the nonlinear control
strategy needs to be developed. In order to solve these
problems and overcome the limitations of linear con-
trollers, the nonlinear dynamic inversion (NDI) is per-
formed [8–10]. The NDI method can decouple the sys-
tem dynamics by canceling the nonlinear functions of
the nonlinear model, but the premise is that the dynam-
ics must be known accurately. Some nonlinear adap-
tive flight controllers based on back-stepping control
method are designed to eliminate parameter uncertain-
ties and nonlinear factor [11–13]. However, these adap-
tive flight controllers are not simple because a large
number of aerodynamic parameters usually need to be
estimated, which is difficult to apply to practical flight
at high AOA. In addition, these control strategies are
all based on the idea of multivariable design, which
is difficult to perform stability analysis as single-input-
single-output (SISO) system. Active disturbance rejec-
tion control (ADRC) is a novel control method pro-
posed by Han [14], which is not model based. As the
core part of ADRC, the extended state observer (ESO)
can regard the channels coupling, unmodeled dynamics
and external disturbance as generalized disturbance and
estimate it, which then can be compensated in real time
[15–19]. Such control idea can provide a new three-
channel controller design independently in the pres-
ence of aerodynamic uncertainties, strong couplings
and nonlinearity. At high angle of attack, the robustness
of the control system for aircraft is vitally important.
The ESOwith finite-time convergence is more suitable
for flight control design than the conventional ESO.
Thus, it is of practical significance to expand the con-
ventional ESO to finite-time ESO and apply it to flight
system design.

Compared to asymptotically stabilizing control sys-
tems, the finite-time stabilizing controllers usually
show stronger robustness properties [20]. Especially,
the flight controller with finite-time convergence can
produce stronger robustness in the presence of strong
couplings and aerodynamicuncertainties. Slidingmode
control (SMC) is a robust technique to control non-
linear systems in the presence of uncertainty condi-
tions [21], and higher-order SMC has been proposed to
reduce its chattering phenomenon [22,23]. The super-
twisting algorithm (STA) is awell-known second-order
sliding mode algorithm introduced in [24], and its
finite-time convergence and robustness have been ana-
lyzed [25–27]. Due to its excellent finite-time con-
vergence, the STA is widely utilized to design con-

trollers [28–32], differentiators [33,34] and observers
[28,35]. Furthermore, the finite-time control laws for
flight control system in the presence of uncertain-
ties were developed [20,36–40]. Especially, reference
[38] designed the super-twisting controllers to realize
the roll-coupling maneuver by aerodynamic surfaces.
However, the authors do not take the maneuver at high
angle of attack with thrust vector into account. At high
angle of attack, the effectiveness of the aerodynamic
control surfaces degrades significantly so that the thrust
vector usually needs to be employed. Thus, the finite-
time controllers based on super-twisting algorithm and
finite-time ESO can be considered to realize the super
maneuvers at high angle of attack for the aircraft with
thrust vector.

Motivated by the extended state observer principle
and the finite-time control methodologies, this paper
presents a high angle of attack finite-time control
strategy based on finite-time extended state observer
(FTESO) and super-twisting sliding mode control
method for fighter aircraft. The main contributions of
this paper can be summarized as follows:

(1) Compared with the conventional extended state
observer with asymptotic convergence, the FTESO
has an upper bound of convergence time and pro-
duces stronger robustness. Thus, the FTESO can
be used to estimate the state and total disturbance
more effectively, which will improve the observ-
ing and disturbance rejection ability of the flight
control system for aircraft at high AOA.

(2) For high AOA control of fighter aircraft, the tra-
ditional multivariable decoupling control is often
used, which leads to a controversial issue that it is
difficult to carry out stability margin analysis like a
SISO system. By employing FTESO, the indepen-
dent controllers for three channels are designed,
respectively to eliminate the strong couplings of
interchannels. Instead of the traditional multivari-
able decoupling control, such control strategy is
more conducive to controller implementation in
practical flight.

(3) The original system dynamic is reduced to a unit
integrator system based upon FTESO. The super-
twisting sliding mode control method can then be
employed to achieve the finite convergence of feed-
back error and the expected control performance.

The remaining parts of this paper are organized as fol-
lows: Sect. 2 describes the aircraft dynamic model with
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Fig. 1 Aircraft model and thrust vector diagram

thrust vector; Sect. 3 presents the proposed control
strategy and control allocation process; Sect. 4 gives
the simulation results and robustness verification; and
the conclusions are provided in Sect. 5.

2 The problem statement and the aircraft model

The mathematical model of the aircraft comes from a
benchmark mathematical model [12]. In order to avoid
the singularity due to the high angle of attack, a mathe-
matical model based on the track coordinate system is
derived. In addition, the thrust vector technology needs
to be adopted owing to the poor control effectiveness
of aerodynamic actuators. Therefore, a mathematical
model with thrust vector model is presented first. The
aircraft and coordinate diagram is shown in Fig. 1. The
meaning of nomenclature and variables can be found
in “Appendix.”

2.1 Nonlinear dynamic model

V̇ = 1

m
[−D + Y sin(β) − mgsin(γ )] + 1

m
[Txcos(β)

cos(α) + Tysin(β) + Tzcos(α)sin(β)]
(1)

α̇ =q − tan(β)[pcos(α) + rsin(α)] + 1

mV cos(β)

[−L + mgcos(γ )cos(μ)] + 1

mV cos(β)
[−Tx

sin(α) + Tzcos(α)]

(2)

β̇ = − rcos(α) + psin(α) + 1

mV
[Y cos(β)

+ mgcos(γ )sin(μ)] + 1

mV
[−Tx sin(β)cos(α)

+ Tycos(β) − Tzsin(β)sin(α)]

(3)

γ̇ = 1

mV
[Lcos(μ) − Y sin(μ)cos(β)] − Ty

mV
cos(β)

+ Tx
mV

[sin(μ)sin(β)cos(α) + cos(μ)sin(α)]

+ Tz
sin(α)

[sin(μ)sin(β)sin(α) − cos(μ)cos(α)]

(4)

χ̇ = 1

mvcos(γ )
[Lsin(μ) + Y cos(μ)cos(β)]

+ Ty
mvcos(γ )

cos(μ)cos(β) + Tx
mVcos(γ )

[sin(μ)

sin(α) − cos(μ)sin(β)cos(α)] − Tz
mV cos(γ )

[cos(μ)sin(β)sin(α) + sin(μ)cos(α)]

(5)

μ̇ = 1

cos(β)
[pcos(α) + rsin(α)] + L

mV
[tan(γ )sin(μ)

+ tan(β)] + Y + Ty
mV

tan(γ )cos(μ)cos(β) − g

V

(cos(γ )cos(μ)tan(β)) + Tx sin(α) − Tzcos(α)

mV

[tan(γ )sin(μ) + tan(β)] − Txcos(α) + Tzsin(α)

mV
[tan(γ )cos(μ)sin(β)]

(6)

ṗ = Izz(la + lT ) + Ixz(na + nT )

Ixx Izz − I 2xz

+ Ixz(Ixx − Iyy + Izz)

Ixx Izz − I 2xz
pq

+ Izz(Iyy − Izz) − I 2xz
Ixx Izz − I 2xz

qr

(7)

q̇ = (ma + mT ) + (Izz − Ixx )pr + Ixz(r2 − p2)

Iyy
(8)

ṙ = Ixz(la + lT ) + Ixx (na + nT )

Ixx Izz − I 2xz

+ Ixx (Ixx − Iyy) + I 2zz
Ixx Izz − I 2xz

pq

− Ixz(Ixx − Iyy + Izz)

Ixx Izz − I 2xz
qr

(9)

ẋE =V cos(γ )cos(χ) (10)

ẏE = V cos(γ )sin(χ) (11)

żE = − V sin(γ ) (12)

D,Y, L represent aerodynamic drag, lateral force and
lift force, respectively, and can be obtained by
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⎡
⎣
D
Y
L

⎤
⎦ =

⎡
⎣

− cosα cosβ − sin β − sin α cosβ

− cosα sin β cosβ − sin α sin β

sin α 0 − cosα

⎤
⎦

⎡
⎣
q̄ SCx_tot

q̄ SCy_tot

q̄ SCz_tot

⎤
⎦ (13)

and the aerodynamic torque can be obtained by⎡
⎣

la
ma

na

⎤
⎦ =

⎡
⎣

q̄ SbCl_tot

q̄ ScCm_tot

q̄ SbCn_tot

⎤
⎦ (14)

Ci_tot(i = x, y, z) and C j_tot( j = l,m, n) denote the
total aerodynamic force and torque coefficients, respec-
tively, which are nonlinear functions for α, β and the
aerodynamic control surfaces δi (i = e, a, r), and can
be obtained by interpolation and calculation. Taking
Cx_tot as an example, its computational formula can be
expressed as

Cx_tot =Cx (α, β, δe) + ΔCx,lef

(
1 − δlef

25

)
+ ΔCx,sb(α)

(
δsb

60

)
+ c̄q

2V

[
Cx,q (α) + ΔCx,lef (α)

(
1 − δlef

25

)]

(15)

where Cx represents the x-axis force coefficient along
positive x body axis, δlef is the leading-edge flap deflec-
tion and Cx,q = ∂Cx

∂(c̄q/(2V ))
. ΔCx,lef can be calculated

by ΔCx,lef = Cx,lef(α, β) − Cx (α, β, δe = 0). Con-
sidering the page limitation, the rest of the expression
of total aerodynamic force or torque coefficients can be
found in [41].

2.2 The thrust vector model

Two engines with rotatable nozzles are installed in the
rear symmetrically, which can deflect [−20◦,20◦] in
the yaw and pitch directions, respectively. The angle
between the projection of the vector nozzle axis in the
plane of symmetry of the aircraft and the longitudinal
axis of the body is defined as the pitch deflection angle,
which can be represented by δzi (i = l, r denotes the
rotatable nozzles on the left and right, respectively).
Similarly, the angle between the vector nozzle axis and
the plane of symmetry of the aircraft can be defined as
the yaw deflection angle δyi . The two nozzles can gen-
erate the desired three-axis torques by different deflec-
tion combinations, and the corresponding total deflec-
tion angles in the roll, yaw and pitch channels can be
produced as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δx = −δzl+δzr
2

δy = δyl+δyr
2

δz = δzl+δzr
2

. (16)

The thrust components of any engine along the three-
axis in the body coordinate system can be expressed
as

T f i =
⎡
⎣
Txi
Tyi
Tzi

⎤
⎦ = ζ f i Ti

⎡
⎣

cos(δyi )cos(δzi )
sin(δyi )

−cos(δyi )sin(δzi )

⎤
⎦. (17)

where ζ f i is the thrust coefficient. Assume that ζ f r =
ζ f l , Tr = Tl , δyr = δyl = δy . Then, the thrust compo-
nents can be expressed as
⎡
⎣
Tx
Ty
Tz

⎤
⎦ = T f l + T f r

= ζ f T

⎡
⎣

cos(δx )cos(δy)cos(δz)
sin(δy)

−cos(δx )cos(δy)sin(δz)

⎤
⎦

(18)

where Tj ( j = x, y, z) is the engine thrust component
along the three axes in the body-fixed axis, T is the total
engine thrust, and the ζ f is thrust coefficient, which
indicates the engine thrust loss. In order to simplify the
model, when the thrust vector deflection angle is small
(less than 20◦), Eq. (13) can be represented approxi-
mately as
⎡
⎣
Tx
Ty
Tz

⎤
⎦ = ζ f T

⎡
⎣

1
δy

−δz

⎤
⎦. (19)

Define xT , yT , zT as the engine position in the body-
fixed axis and the torque expression can be described
as⎡
⎣

lT
mT

nT

⎤
⎦ =

⎡
⎣
xT
yT
zT

⎤
⎦ ⊗

⎡
⎣
Tx
Ty
Tz

⎤
⎦. (20)

3 Control strategy

In this section, the super-twisting sliding mode control
scheme based on FTESO for the nonlinear dynamic
model with thrust vector is presented. The angular vari-
ables α, β and the angular rates p, q, r are selected
as control variables. Independent SISO controllers for
α, β and p are designed, respectively. The entire control
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structure is illustrated in Fig. 2.αd , βd , pd are the refer-
ence commands, and Tc represents the thrust command.
δe, δa, δr represent the deflection angle of the elevator,
aileron and rudder, respectively. δx , δy, δz represent the
corresponding deflection angle of the vector nozzles. In
high AOA maneuver, the maximum thrust is used. The
specific design process is as follows.

3.1 The finite-time extended state observer

Considering the following system

ẋ = f (x(t)), f (0) = 0, x ∈ Rn, x(0) = x0, (21)

where f : Rn −→ Rn is a nonlinear function.

Definition 1 [42]. The origin of system Eq. (21) is a
finite-time stable equilibrium if the origin is Lyapunov
stable, then there exits a settling time function T f i :
Rn −→ Rn , such that for every x0 ∈ Rn , the solution
x(t, x0) of Eq. (21) satisfies limt→T f i (x0) x(t, x0) = 0.

Lemma 1 [43]. Suppose there exits a continuous func-
tion V : D −→ R such that the following conditions
hold: (1) V is positive definite; (2) there exist real num-
ber c > 0 and θ ∈ (0, 1) and an open neighborhood
U ⊂ D of the origin such that

V̇ (x) + c(V (t))θ ≤ 0, x ∈ U\{0} (22)

Then, the origin is a finite-time stable equilibrium of
system Eq. (21), and the settling time function T f i is

T f i ≤ 1

c(1 − θ)
(V (x))(1−θ) (23)

where T f i is continuous. If in addition D = Rn, V is
proper, and V̇ takes negative values on Rn\{0}, then
the origin is a globally finite-time stable equilibrium of
system Eq. (21).

Consider a second-order plant, described by a second-
order nonlinear differential equation with unknown
dynamics and external disturbance

ÿ(t) = f (y(t), ẏ(t), w(t)) + bu(t), (24)

where u(t), y(t) and w(t) are the input, the output and
the external disturbance of the system, respectively. b
denotes the given input gain. For the given second-order
system, we can rewrite Eq. (24) as

ÿ(t) = f (y(t), ẏ(t), w(t)) + (b − b0)u(t) + b0u

= f + b0u
(25)

where f = f (y(t), ẏ(t), w(t)) + (b − b0)u(t) is
referred to as the generalized disturbance or total dis-
turbance including the unknown internal dynamics and
the external disturbance. b0 is an adjustable parame-
ter related to b. The basic idea is to obtain an esti-
mation of f , that is f̂ . And then, if the control law
u = (u0 − f̂ )/b0 is used, the original system (24) will
be expressed by a unit-gain integrator system plus a
disturbance ( f − f̂ ). That is

ÿ(t) = u0 + ( f − f̂ ) (26)

The disturbance ( f − f̂ ) makes the real plant deviate
from the anticipated integrator system. When f can
be estimated exactly, the original system (24) will be
reduced to

ÿ(t) = u0 (27)

For the systemas (27), the expected performance can be
easily obtained by designing proper control law u0. In
order to obtain f̂ , we can rewrite (25) in state equation
form⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2
ẋ2 = x3 + b0u
ẋ3 = H
y = x1

(28)

where x3 = f, H = ḟ . Define x̂i (i = 1, 2, 3) as an
estimation of xi (i = 1, 2, 3), the estimation error e =
[e1, e2, e3]T = [x̂1, x̂2, x̂3]T − [x1, x2, x3]T, then the
state observer can be constructed as
⎧⎨
⎩

˙̂x1 = x̂2 − β01ϕ(x̂1 − x1)˙̂x2 = x̂3 − β02ϕ(x̂1 − x1) + b0u˙̂x3 = −β03ϕ(x̂1 − x1)
(29)

where ϕ(·) is a function about the estimation error, li >

0(i = 1, 2, 3) represents the adjustable observer gain.
x̂1 and x̂2 can provide the estimation of x1 and x2.More
importantly, x̂3 can estimate the total disturbance f .
Then, the estimation error dynamic can be expressed
as⎧⎨
⎩
ė1 = e2 − β1ϕ(e1)
ė2 = e3 − β2ϕ(e1)
ė3 = −β3ϕ(e1) − h

(30)

When ϕ(e) are chosen as linear form, that is ϕ(e) = e,
the extended state observer can be described as
⎧⎨
⎩

˙̂x1 = x̂2 − β01(x̂1 − x1)˙̂x2 = x̂3 − β02(x̂1 − x1) + b0u,
˙̂x3 = −β03(x̂1 − x1)

(31)
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Fig. 2 Super-twisting
control structure based on
FTESO

which is called linear extended state observer (LESO).
Motivated by the finite-time stable system

ė = −ksgn(e) |e|κ , κ ∈ (0, 1)

and the continuous smooth tracking differentiator in
reference [34], a finite-time convergent extended state
observer can be constructed as⎧⎪⎪⎨
⎪⎪⎩

ė1 = e2 − β01|e1|
κ+1
2 sgn(e1)

ė2 = e3 − β02|e1|
κ+1
2 sgn(e1)

ė3 = −β03|e1|κsgn(e1) − H

(32)

Assumption 1 For the dynamic system asEq. (32), the
total disturbance f is continuously differentiable and
its differential H is bounded, which satisfies |H | <

HM .

Theorem 1 For the dynamic system (24), if the
extended state observer as Eq. (31) is designed, then
there exit constant number 0 < κ < 1, β0i (i =
1, 2, 3) > 0 and β01β02

κ+1
2 − β03 > 0, the state vari-

ables x1 and x2 can be estimated within a finite time
T f i .Moreover, the estimation error of total disturbance
can also converge to a neighborhood of the origin in
finite time.

Proof For the error dynamic system in Eq. (32), define

ς = [|e1|
κ+1
2 sgn(e1) e2 e3]T

P =
⎡
⎣

2β01
α+1 + β2

02 + β2
03 − β02 − β03

−β02 2 0
−β03 0 2

⎤
⎦

Then, a Lyapunov candidate function can be chosen as

V (β0i , ς) = ςTPς (33)

When β0i > 0, P is a symmetric positive definite
matrix. Let λ represent eigenvalue sequence, we can
obtain

λmin{P} ‖ς‖22 ≤ V ≤ λmax{P} ‖ς‖22 (34)

where ‖ς‖22 = |e1|κ+1 + e22 + e23, and

|e1| κ+1
2 ≤ ‖ς‖2 ≤

√
V

λmin{P} (35)

Derivative V , that is

V̇ =[|e1|
κ+1
2 sgn(e1) e2 e3]Q

· [|e1|
κ+1
2 sgn(e1) e2 e3]T

+ 2H(β03|e1|
κ+1
2 sgn(e1) + 2e3)

= − ςTQς + 2H(β03|e1|
κ+1
2 sgn(e1) + 2e3)

=V1 + V2

(36)

Q =

⎡
⎢⎢⎢⎣

−β01(κ + 1)( 2β01
κ+1 + β2

02 + β2
03)|e1|

κ−1
2 + 2β2

03|e1|
κ−1
2 + 2β2

02
κ+1
2 |e1|

κ−1
2 (

2β01
κ+1 + β2

02 + β2
03 + β01β02) − 2β02 β01β03

κ+1
2 |e1|

κ−1
2 − 2β03|e1|

κ−1
2 − β02

κ+1
2 |e1|

κ−1
2 (

2β01
κ+1 + β2

02 + β2
03 + β01β02) − 2β02 −β02(κ + 1)|e1|

κ−1
2 −β03

κ+1
2 |e1|

κ−1
2 + 2

β01β03
κ+1
2 |e1|

κ−1
2 − 2β03|e1|

κ−1
2 − β02 −β03

κ+1
2 |e1|

κ−1
2 + 2 0

⎤
⎥⎥⎥⎦ . 
�
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where Q is symmetric and can be equivalent to

AT P + PA = −Q (37)

where

A =
⎡
⎢⎣

−β01
κ+1
2 |e1| κ−1

2 κ+1
2 |e1| κ−1

2 0
−β02 0 1

−β03|e1| κ−1
2 0 0

⎤
⎥⎦

=
⎡
⎢⎣

− κ+1
2 |e1| κ−1

2 0 0
0 −1 0

0 0 −|e1| κ−1
2

⎤
⎥⎦

⎡
⎣

β01 −1 0
β02 0 −1
β03 0 0

⎤
⎦ .

(38)

According to Eq. (38), we can obtain

|s I − A| =

∣∣∣∣∣∣∣

s + β01
κ+1
2 |e1| κ−1

2 − κ+1
2 |e1| κ−1

2 0
β02 s −1

β03|e1| κ−1
2 0 s

∣∣∣∣∣∣∣

= s2(s + β01
κ + 1

2
|e1| κ−1

2 )

+ κ + 1

2
|e1| κ−1

2 (β02s + β03|e1| κ−1
2 )

= s3 + β01
κ + 1

2
|e1| κ−1

2 s2

+ β02
κ + 1

2
|e1| κ−1

2 s + β03
κ + 1

2
|e1|κ−1

(39)

From Eq. (39), the polynomial coefficients are all posi-
tive. If β01, β02, β03, κ are chosen properly, and satisfy
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 > 0

β01
κ+1
2 |e1| κ−1

2 > 0

β02
κ+1
2 |e1| κ−1

2 > 0,

β03
κ+1
2 |e1|κ−1 > 0

β01β02
κ+1
2 − β03 > 0

then it can be considered that A is Hurwitz. According
to Lyapunov theory, there exists solution P in Eq. (37).
Thus, it is easy to get

V1= −ςTQς ≤ −λmin{Q} ‖ς‖22 (40)

From Eq. (36), V2 can be re-expressed as

V2 = 2H(β03|e1|
κ+1
2 sgn(e1) + 2e3)

= [
2H 0 4H

]
⎡
⎢⎣

|e1|
κ+1
2 sgn(e1)
e2
e3

⎤
⎥⎦

= [
2H 0 4H

]
ς

≤ 2
√
5HM‖ς‖2

(41)

Combining Eqs. (37), (40) and (41), we can know

V̇ = V1 + V2 ≤ −λmin{Q} ‖ς‖22 + 2
√
5HM‖ς‖2

= −
(
λmin{Q}‖ς‖2 − 2

√
5HM

)
‖ς‖2

(42)

Q is positive definite and nonsingular, then

λmin{Q} = σmin{Q} = σmin{−ATP + PA}
= σmin{(−A)TP + ((−A)TP)T

= 2σmin{(−A)TP}
≥ 2σmin{(−A)T}σmin{P}
= 2min{κ + 1

2
|e1| κ−1

2 , 1}σmin{Ξ}λmin{P}

(43)

where

(−A)T =
⎡
⎢⎣

κ+1
2 |e1| κ−1

2 0 0
0 1 0

0 0 |e1| κ−1
2

⎤
⎥⎦

⎡
⎣

β01 β02 β03

−1 0 0
0 −1 0

⎤
⎦

= �Ξ.

When |e1| > 1, ‖ς‖2 ≥ |e1| κ+1
2 ,

λmin{Q} ≥ (κ + 1)|e1| κ−1
2 σmin{Ξ}λmin{P}, thus

λmin{Q}‖ς‖2 − 2
√
5HM

≥ (κ + 1)|e1|κσmin{Ξ}λmin{P} − 2
√
5HM

≥ (κ + 1)σmin{Ξ}λmin{P} − 2
√
5HM (44)

V̇ ≤ −
(
λmin{Q}‖ς‖2 − 2

√
5HM

)
‖ς‖2

≤ −
(
(κ + 1)σmin{Ξ}λmin{P} − 2

√
5HM

)
‖ς‖2

≤ −
(
(κ + 1)σmin{Ξ}λmin{P} − 2

√
5HM

)√ V

λmax{P}

= −
(
(κ + 1)σmin{Ξ}λmin{P} − 2

√
5HM

)
√

λmax{P} V
1
2 ≤ 0 (45)

Let β0i (i = 1, 2, 3) be adjusted properly so that Eq.
(44) > 0, that is (κ + 1)σmin{Ξ}λmin{P} > 2

√
5HM .

According to Lemma 1, the error system as Eq. (32)
can converge to region |e1| ≤ 1 and satisfy |ς | ≤ 1 in
finite time. When error system converges to |e1| ≤ 1,

it is easy to verify min{ κ+1
2 |e1| κ−1

2 , 1} ≥ κ+1
2 , then we

have λmin{Q} ≥ (κ + 1)σmin{Ξ}λmin{P}, thus

λmin{Q}‖ς‖2 − 2
√
5HM

≥ (κ + 1)|e1| κ+1
2 σmin{Ξ}λmin{P} − 2

√
5HM

(46)

If the observer gains are chosen properly, then the fol-
lowing inequality is established

1 ≥ ‖ς‖2 ≥ |e1| κ+1
2 >

2
√
5HM

(κ + 1)σmin{Ξ}λmin{P} (47)
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such that V̇ < 0 is true. The convergence time is

T f i ≤ 2

K
(V (ς))

1
2 ≤ 2

K
(V (ς0))

1
2 (48)

where K =
(
(κ+1)σmin{Ξ}λmin{P}−2

√
5HM

)
√

λmax{P} .

3.2 Angle of attack controller design

Equation (2) can be reformulated as

α̇ = q + fα (49)

fα = − tan(β)(cos(α)p + sin(α)r) + 1

mV cos(β)

(−L + mg cos(γ ) cos(μ)) + 1

mV cos(β)

(−Tx sin(α) + Tz cos(α))

(50)

Differentiate Eq. (49) and then substituting Eqs. (8) and
(20) into it, we can obtain

α̈ = ḟα + (Izz − Ixx )pr + Ixz(r2 − p2)

Iyy

+ (
(ma + mT )

Iyy
− b0αv1) + b0αv1

= Fα + b0αv1

(51)

where v1 indicates the pitch manipulation torque,
which is a combination of the deflection of elevator
surface and the nozzles. b0α is an adjustable parame-
ter, and the positive and negative polarity can be deter-
mined according to (ma+mT )

Iyy
. According to Eq. (51),

v1 firstly appears in the second-order differential of α.
Define⎧⎪⎪⎨
⎪⎪⎩

y = α

x1 = y
x2 = ẏ
x3 = Fα

(52)

where x3 is the extended state, which includes model
uncertainties and coupling from other channels. Then,
the state-space form of Eq. (51) can be described as⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2
ẋ2 = x3 + b0αv1
ẋ3 = Hα

y = x1

(53)

where b0α is an adjustable parameter related to the sys-
tem, Hα represents the total disturbance. In thisway, the
original dynamics can be approximated by a second-
order integrator plus a total disturbance. The total dis-
turbance causes the system to deviate from the expected

second-order integrator. The key to solving the problem
is to estimate the total disturbance and eliminate it. The
unique advantage of Eq. (53) is that it treats x3 regard-
less of its original form. Reference [34] proposed a
continuous finite-time convergent differentiator. Based
this finite-time convergent differentiator, a finite-time
extended state observer is presented as follows.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1 = z2 − β01|z1 − x1|
κ+1
2 sgn(z1 − x1)

ż2 = z3 − β02|z1 − x1|
κ+1
2 sgn(z1 − x1) + b0αv1

ż3 = −β03|z1 − x1|κsgn(z1 − x1)

(54)

where κ is a constant number and κ ∈ (0, 1), β0i (i =
1, 2, 3) represents the observer gains, and sgn(·) is sym-
bolic function. The estimation error of extended state
observer e1α = z1 − x1, e2α = z2 − x2, e3α = z3 − Fα

can be expressed as follows.⎧⎪⎪⎨
⎪⎪⎩

ė1α = e2α − β01|z1 − x1|
κ+1
2 sgn(z1 − x1)

ė2α = e3α − β02|z1 − x1|
κ+1
2 sgn(z1 − x1)

ė3α = −β03|z1 − x1|κsgn(z1 − x1) − Hα

(55)

When we obtain z3 ≈ x3 by FTESO and use the
control signal as

v1 = −z3 + u0
b0α

(56)

where u0 is a virtual control variable. Then, the original
plant can be approximately reformulated as

ÿ ≈ u0 (57)

The objective is to select u0 to regulate eα = α −αd to
zero in a finite time. From reference [27], an improved
super-twisting sliding model control law is selected as{

u0(t) = −λ|σ | 12 sgn(σ ) − k1σ + u1
u̇1 = −W sgn(σ ) − k2σ

(58)

where σ = eα + λėα represents the sliding surface.

Remark 1 [27]. For the super-twisting sliding mode
control law in Eq. (58), if the gains λ,W, k1, k2 are
chosen properly, it can be proved that the continu-
ous super-twisting sliding mode control injection term
σ = σ̇ = 0 is satisfied in finite time.

In order to generate the filtering reference maneuver
commands and its differential signal, a tracking differ-
entiator (TD) [14] is used, and its form can be expressed
as{
ṡα1 = sα2
ṡα2 = f han (sα1 − αd , sα2, ε, η)

(59)
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where sα1 is the tracking signal for αd , sα2 is the dif-
ferential signal of sα1, ε is the speed factor which can
determine the convergence speed, η is the filtering fac-
tor, and f han(·) represents an optimal synthetic func-
tion which is constructed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d = εη2

a0 = ηsα2

y = (sα1 − αd ) + a0

a1 = √
d (d + 8|y|)

a2 = a0 + sgn(y)(a1 − d)/2

a = (a0 + y) f sg(y, d) + a2(1 − f sg(y, d))

f sg(x, d) = (sgn(x + d) − sgn(x − d))/2

f han = −ε( ad ) f sg(a, d) − rsgn(a)(1 − f sg(a, d))

(60)

3.3 Sideslip angle controller design

Equation (3) can be reformulated as

(β̇) = −rcos(α) + fβ (61)

fβ =p sin(α) + 1

mV
(Y cos(β) + mg cos(γ ) sin(μ))

+ 1

mV
(−Tx sin(β) cos(α) + Ty cos(β)

− Tz sin(β) sin(α))

(62)

Due to the symmetry of angle of attack and sideslip
angle, the virtual control law for sideslip angle β can
be given directly as

v2 = u0β − z3β
b0β

(63)

where z3β can be obtained by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1β = z2β − β01
∣∣z1β − x1

∣∣ κ+1
2 sgn(z1β − x1)

ż2β = z3β − β02
∣∣z1β − x1

∣∣ κ+1
2 sgn(z1β − x1) + b0βv2

ż3β = −β03
∣∣z1β − x1

∣∣κ sgn(z1β − x1)

(64)

Define eβ = β − s1β , the finite-time feedback control
law is designed as{

u0β(t) = −λβ |σ | 12 sgn(σ ) − k1βσ + u1β
u̇1β = −Wβsgn(σ ) − k2βσ

(65)

where σ = eβ + λβ ėβ . s1β is produced by TD{
ṡβ1 = sβ2
ṡβ2 = f han

(
sβ1 − βd , sβ2, ε, η

) (66)

3.4 Roll angular rate controller design

In practical flight, the bank angleμ cannot bemeasured
accurately. Considering this situation, we regulate the
roll angular rate p to track an appropriate curve such
that can change as expected. Equation (7) can be rewrit-
ten as

ṗ = Fp + b0pv3 (67)

Fp = Ixz(n + nT )

Ixx Izz − I 2xz
+ Ixz(Ixx − Iyy + Izz)

Ixx Izz − I 2xz
pq

+ Izz(Iyy − Izz) − I 2xz
Ixx Izz − I 2xz

qr

+ (
Izz

Ixx Izz − I 2xz
− b0p)(l + lT )

(68)

Define x1 = p, x2 = Fp, Ḟp = Hp, the extended
state-space expression for the roll angular dynamics
can be established as⎧⎨
⎩
ẋ1 = x2 + b0pv3
ẋ2 = Hp

y = x1

(69)

Thus, the corresponding FTESO can be designed as

{
ż1p = z2p − β01p

∣∣z1p − x1
∣∣ κ+1

2 sgn(z1p − x1) + b0pv3
ż2p = −β02p

∣∣z1p − x1
∣∣κ sgn(z1p − x1)

(70)

Define the estimation error of extended state observer
e1 = z1p − x1, e2 = z2p − Fp , then the estimation
error system can be expressed as follows.
{
ė1p = e2p − β01p

∣∣z1p − x1
∣∣ κ+1

2 sgn(z1p − x1)
ė2p = −β02p

∣∣z1p − x1
∣∣κsgn(z1p − x1) − Hp

(71)

When total disturbance z2p is estimated by FTESO and
then compensated by

v3 = u0p − z2p
b0p

(72)

For the control law u0p in the roll angular rate channel,
we let ep = p − sp1 and then choose σ = ep as the
sliding mode surface, where s1p is generated by TD
{
ṡ p1 = sp2
ṡ p2 = f han

(
sp1 − pd , sp2, ε, η

) (73)

The corresponding super-twisting controller can be
designed as
{
u0p(t) = −λp|σ | 12 sgn(σ ) − k1pσ + u1p
u̇1p = −Wpsgn(σ ) − k2pσ

(74)
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3.5 Control allocation

The output of the control law characterizes the need for
the desired torques along the three-axis. The control
allocation is to obtain the deflection command of each
control surface according to the relationship between
the control surface and the desired three-axis torque.
Let x1 = [p q r ]T, x̄ = [V α β p q r ]T,

u = [
δe δa δr δx δy δz

]T, F(x̄) = [ f p(x̄)
fq(x̄) fr (x̄)]T, according to the deflection of aerody-
namic control surfaces and thrust vector nozzles, Eqs.
(7), (8) and (9) can be reformulated as
{
ẋ1 = F(x̄) + G(x̄)u
y1 = x1

(75)

where F(x̄) and G(x̄) are expressed as

F(x̄)

=

⎡
⎢⎢⎢⎣

Ixz (Ixx−Iyy+Izz )
Ixx Izz−I 2xz

pq + Izz (Iyy−Izz )−I 2xz
Ixx Izz−I 2xz

qr
(Izz−Ixx )pr+Ixz (r2−p2)

Iyy
Ixx (Ixx−Iyy )+I 2xz

Ixx Izz−I 2xz
pq − Ixz (Ixx−Iyy+Izz )

Ixx Izz−I 2xz
qr

⎤
⎥⎥⎥⎦ (76)

G(x̄)

=
⎡
⎣
gpδe (x̄) gpδa (x̄) gpδr (x̄) gpδx (x̄) gpδy (x̄) gpδz (x̄)
gqδe (x̄) gqδa (x̄) gqδr (x̄) gqδx (x̄) gqδy (x̄) gqδz (x̄)
grδe (x̄) grδa (x̄) grδr (x̄) grδx (x̄) grδy (x̄) grδz (x̄)

⎤
⎦

(77)

where g(x̄) represents control derivatives with respect
to all control surfaces including aerodynamic control
surfaces and thrust vectoring nozzles. According to the
control design process, F(x̄) is included in the total
disturbance and ESO can estimate it in real time. Let
v = [

v1 v2 v3
]T

, the control allocation problem can
be described as follows. Assume that the expected vir-
tual control command is v(t) ∈ R3, and the deflection
of control surface is u(t) ∈ R6. Then, for the given

virtual control input v = [
v1 v2 v3

]T
, the control

allocation problem is to solve indefinite equation under
mapping relations G(x̄) : R6 → R3

{
ẋ1 = F(x̄) + G(x̄)u
y1 = x1

(78)

and make u(t) satisfy the constraint

Ω =
{
u(t) ∈ R6 |umin ≤ u ≤ umax, Γmin ≤ u̇ ≤ Γmax

}
,

where umin(max) andΓmin(max) represent the control sur-
face deflection limitation and its rate of change limita-
tion. Considering that the deflection reduction of the

Table 1 The control surfaces constraints

actuator bandwidth rate limit position limit
(rad/s) (deg/s) (deg)

Aileron (δa) 20.2 ±80 ±21.5

Elevator (δe) 20.2 ±60 ±25

Rudder (δr ) 20.2 ±120 ±30

Roll (δx ) 30.2 ±150 ±20

Yaw (δy) 30.2 ±150 ±20

Pitch (δz) 30.2 ±150 ±20

Fig. 3 Control allocation diagram

vector nozzle can extend its lifespan, the allocation
principle is that the priority of aerodynamic control
surface should be higher than the thrust vector nozzles.
Then, the control input can be divided into two groups
as{

u = [
uaero utv

]T
G(x̄) = [

Gaero G tv
] (79)

whereuaero = [δe δa δr ]T,utv = [
δx δy δz

]T,Gaero

and G tv represent the first three columns and the last
three columns of the matrix G(x̄), respectively. The
generalized inverse matrix of Gaero and G tv can be
obtained as Paero = G−1

aero , Ptv = G−1
tv , respectively.

The actuators are approximated by first-order lags; the
position and rate limitations are listed in Table 1.

Let ωa and ωt represent the bandwidth of aerody-
namic surface and thrust vector surface, respectively.
The entire allocation process can be shown in Fig. 3.
In allocation process, the aerodynamic control surfaces
are used first. In practical flight, the control constraints
need to be considered. Within its position and rate
limitation, the aerodynamic control surface deflections
should attempt to satisfy

uaero = Paev (80)

When the calculated deflections of the aerodynamic
control surfaces are within the limitation, the allocation
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Table 2 The control parameters

α β p

TD ε = 1, η = 0.1 ε = 1, η = 0.1 ε = 2, η = 0.1

FTESO β01 = 20, β01 = 18, β01 = 16,

β02 = 120, β02 = 108, β02 = 64,

β03 = 240, β03 = 216, κ = 0.3,

κ = 0.6, κ = 0.9, b0p = −3.0

b0α = 7.0 b0β = −1.5

SWT λ = 1.8, λβ = 0.8, λp = 1,

W = 0.4, Wβ = 0.3, Wβ = 0.2,

k1 = 2.5, k1β = 0.5, k1p = 2.5,

k2 = 0.5 k2β = 0.1 k2p = 0.5

process is over. Ifuaero reaches the aerodynamic surface
saturation, then the thrust vector surface utv will be
added to supplement the allocation error E.⎧⎨
⎩
uaero = Sataero(Paerov)

E = v − Gaerouaero
utv = Sattv(PtvE)

(81)

where Sat((x, ū) represents the saturation function as

y = Sat(x, ū) =
⎧⎨
⎩
ū x > ū
x − ū ≤ x ≤ ū
−ū x < −ū

(82)

where ū represents the upper limitation. In summary,
this allocationmethodmaximizes the use of the aerody-
namic control surface and reduces the use of the thrust
vector control surface.

4 Simulation results

In order to evaluate the effectiveness of the proposed
control strategy, the numerical simulations are con-
ducted. The Herbst-type maneuver is selected to verify
the control effect of the designed controller. The initial
velocity, height and angle of attack are V = 100m/s
, h0 = −zE0 = −1200m and α0 = 10◦, respec-
tively. The controller parameters are tuned as shown
in Table 2.

4.1 Performance verification

Case 1: State Tracking and Turning Flight
Herbst maneuver is to complete a small radius turn
rapidly at high AOA. In order to verify the performance

of the proposed controllers, we choose a Herbst-type
maneuver as a benchmark. The termination condition
of the Herbst-type maneuver is that the velocity head-
ing angle reverses its direction with a small turning
radius. The control objective of the whole maneuver
process is to maintain stable tracking of the states α, β

and p. In this section, the proposed control strategy
is compared with the results of the ADRC method of
[44]. Moreover, the conventional sliding mode control
(SMC) [45] with finite-time extended state observer
(FTESO) is also conducted to stress the advantages of
the proposed method.

The simulation results are shown in Figs. 4 and 5.
On the whole, the maneuver process can be described
as that both the angle of attack and the roll angular rate
can track the reference signal, and the sideslip angle
is always near zero throughout the maneuvering pro-
cess. At first, for α and p channel, we let an appropriate
curve go through a designed fastest tracking differen-
tiator and use its smooth output as final reference signal
shown in Fig. 4a, c, respectively. The angle of attack
begins to increase at t = 1.5 s and reaches 62°after
2 s and then keeps a certain period of time, while the
roll angular rate changes as shown in Fig. 4c to cause
the aircraft to realize rolling around the velocity vec-
tor. When the rolling is completed, the maneuver ends
after the aircraft has been swooped for a while. From
Fig. 4a–c, the three control strategies can realize the
reference signal tracking, but the proposed method in
this paper (SWT + FTESO) can obtain better tracking
performance than the other two methods.

In this maneuvering process, the velocity decreases
at first and then increases as shown in Fig. 4e. With the
changes ofα and p,μ changes as bell-shaped curve dis-
played in Fig. 4d . It is evident from Fig. 4f the heading
angle changes 180°which indicates a velocity reversal,
and the proposed control method can obtain higher pre-
cision. The deflections of engine nozzles are presented
in Fig. 5a, and all the controls are within saturation
limits. The deflections of aerodynamic control surface
are presented in Fig. 5b. The elevator is kept at deflec-
tion limitation for a long time, which indicates that the
aerodynamic surface is insufficient at low speed and
high angle of attack. Although using saturated function
instead of sign function, the conventional sliding con-
trol method produces some slight chattering in thrust
vector nozzles yaw deflection. The control inputs by
super-twisting method contain almost no chattering.
Case 2: The Total Disturbance Observation
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Fig. 4 Herbst-type maneuver. a Angle of attack, b sideslip angle, c roll angular rate, d roll angle about the velocity vector, e flight
speed, f velocity heading angle
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Fig. 5 Control deflections. a Thrust vector nozzles deflection, b aerodynamic control surfaces deflection
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Fig. 6 The total disturbance observation

To compare the observation ability for the total dis-
turbance between the conventional extended state
observer and the finite-time extended state observer, we
take the angle of attack channel as an example. When
choosing the same output error feedback control law,
the estimation of total disturbance is demonstrated in
Fig. 6, which indicates that FTESO can obtain better
estimation accuracy and smaller estimation delay than
the conventional extended state observer.

4.2 Robustness verification

In order to verify the robustness of the proposed con-
troller, a Monte Carlo simulation test is conducted.

Fig. 7 Monte Carlo simulation. a AOA, b roll angular rate

Forty-three aerodynamic parameters of the nonlinear
model are uniformly perturbed within ±30% range,
and 500 simulations are conducted together. The results
are shown in Figs. 7 and 8, and it is obvious that the
response has good consistency and the dynamic perfor-
mance robustness can be realized.

5 Conclusion

A finite-time control strategy was presented to real-
ize the aircraft high angle of attack maneuver using
thrust vector technique. Instead of traditionalmultivari-
ate control methods, practical decoupling controllers
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Fig. 8 MonteCarlo simulation. (a) sideslip angle, (b)bank angle

were designed based on finite-time observers and
super-twisting sliding mode controllers. Strong cou-
pling among channels, aerodynamic uncertainties and
other unmodeled dynamics were regarded as total dis-
turbance and estimated by a finite-time extended state
observer. Daisy chain method was used to achieve con-
trol allocation between aerodynamic control surface
and thrust vector nozzles. Simulation results demon-
strated the effectiveness and robustness of the proposed
strategy. In the future, the nonlinear allocation method
of aerodynamic control surface and thrust vector can be
researched to obtain higher control efficiency. More-
over, the fault tolerance control strategy may be added
to improve the performance of aircraft.
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Appendix: Nomenclature

Nomenclature Interpretation

α, β Angle of attack, sideslip angle
V Flight speed
g Gravitational acceleration
μ Bank angle about the velocity vector
γ Flight path angle
χ Velocity heading angle
T Total engine thrust
q̄ Dynamic pressure
Ixx , Iyy, Izz Roll, pitch, yaw inertia moments
p, q, r Components of angular velocity
xE , yE , zE Position coordinates
Cx_tot Aerodynamic force coefficient in x axis
Cy_tot Aerodynamic force coefficient in y axis
Cz_tot Aerodynamic force coefficient in z axis
Cl_tot Aerodynamic torque coefficient in x axis
Cm_tot Aerodynamic torque coefficient in y axis
Cn_tot Aerodynamic torque coefficient in z axis
Tx , Ty, Tz Thrust components in three axes
l,m, n Aerodynamic torque
lT ,mT , nT Thrust vector torque
δe, δa, δr Aerodynamic surfaces deflection angles
δx , δy, δz Thrust vector deflection angles
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