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Abstract The increasing input of environmental tox-
ins in aquatic systems raises concerns regarding the
environmental exposure and impact of toxins on natu-
ral aquatic environments. Phytoplankton and zooplank-
ton appear to be among the most sensitive aquatic
organisms to environmental toxins. Moreover, toxin-
producing phytoplankton plays an important role in
regulating the real aquatic ecosystems. In this paper,
the combined effects of these factors on the dynamics
of phytoplankton–zooplankton interactions are inves-
tigated. The phytoplankton grows logistically, but their
growth rate is suppressed due to the presence of envi-
ronmental toxins. The zooplankton is assumed to be
generalist and follows logistic growth in the absence
of phytoplankton. Also, it is considered that toxicants
in the environment are increased constantly due to dif-
ferent natural and human behaviors. Global sensitivity
analysis helps to identify the most significant parame-
ters that reduce the environmental toxins in the system.
Among these, the input rate of environmental toxins,
contact rate between phytoplankton and environmen-
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tal toxins, and environmental toxins-induced growth
suppression of phytoplankton have destabilizing effect
on the dynamics of system, while the depletion rate
of environmental toxins has stabilizing effect. There-
fore, it is imperative to modulate the depletion rate
of environmental toxins to prevent the crash of the
aquatic food web system. Further, we incorporate sea-
sonal variations in the model, letting the parameters
become functions of time. Sufficient conditions for
the existence and stability of positive periodic solu-
tions are obtained. We also derive conditions for exis-
tence, uniqueness and stability of a positive almost peri-
odic solution. Large values of time-dependent toxin
release by phytoplankton and input rate of environ-
mental toxins induce periodic solutions of the nonau-
tonomous systemwhile the corresponding autonomous
system exhibits a stable focus. Interestingly, our nonau-
tonomous system exhibits bursting patterns for two
slow rationally related excitation frequencies. Finally,
we convert our deterministic autonomous model into
stochastic model by introducing additive noise term.
We find that the stability of the system gets disturbed
in the presence of environmental fluctuation.

Keywords Plankton dynamics · Environmental
toxins · Seasonality · Periodic solution · Almost
periodic solution · Global attractiveness · Additive
noise
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1 Introduction

Planktonic species lie at the bottom layer of the marine
food chain and have been investigated since a long time
[1]. They provide food for the higher marine trophic
levels and also are the primary oxygen producers on
earth [2–4]. Phytoplankton is plant that thrives in the
upper water layers, exploiting the available sunlight for
its metabolic processes. Zooplankton predates on phy-
toplankton [5] and constitutes the main food source for
larger aquatic species, in particular cetaceans. Thus,
phytoplankton is instrumental in marine ecosystems
productivity [6,7]. The oceans experience planktonic
blooms similar to what happens on the land during
the spring time. However, in adverse circumstances,
these may become harmful, giving rise to eutrophica-
tion phenomena.Mathematicalmodels have been used,
especially in the past three decades, to try to understand
and possibly help in preventing the occurrence of harm-
ful algal blooms [5,8–13]. Models may exhibit various
peculiarities, take account of nutrients [14], or toxic and
nontoxic species [15], assessing whether the interrela-
tionship between zooplankters may help in stabilizing
the nontoxic phytoplankton–zooplankton oscillations
[16]. It has also been shown that decreasing the fish
amount in a water body may significantly reduce its
chlorophyll content as well as water turbidity. It could
be useful for stably attaining a clear water equilibrium
in shallow lakes [17–20].

Toxins are produced by phytoplankton such as
Alexandrium sp., Amphidinium carterae, Chrysochro-
mulina polylepis, Cooliamonotis and Dinophysis
spKeeping, to avoid zooplankton predation. Zooplank-
ton avoids areas rich in some toxin-producing phy-
toplankton organisms, such as Phacocyslis, Coscin-
odisem, Rhizosopenia and [21,22]. Toxin production
during harmful algae outbreaks not only reduces the
grazing pressure on phytoplankton [23–25], but can
also control stability of bloom occurrences (see, for
instance, [26–28]), or stabilize the dynamics of phy-
toplankton and zooplankton [29], where the nutrient–
phytoplankton–zooplankton model contains aMonod–
Haldane functional response. Schmidt and Hansen
[30] revealed that Chrysochromulina polylepis may
adversely affect the growth of dinoflagellate Hete-
rocapsa triquetra. Windust et al. [31] observed that
certain species of marine dinoflagellates have strong
allelopathy and can secrete okadaic acid inhibiting the
growth of some microalgae that do not produce tox-

ins. Toxicity may be a strong mediator of zooplank-
ton feeding rate as shown by field [32,33] and labora-
tory studies [34]. In [35], a phytoplankton–zooplankton
model withMonod–Haldane response function model-
ing group defense of the former is introduced, which
ultimately is shown to preserve zooplankton in the pres-
ence of toxic phytoplankton.

Pollution of freshwater and marine systems by
anthropogenic sources has become a concern over the
last several decades. Environmental toxins increase
in marine water through different activities such as
chemicals, particles, industrial, agricultural and resi-
dential waste, noise or the spread of invasive organ-
isms. Heavy metals can cause a change to tissue mat-
ter, biochemistry, behavior, reproduction and suppress
growth in marine life. Since many land animals thrive
on a high fish diet, marine toxins can be transferred
to land animals and appear later in meat and dairy
products consumed by humans.Any release of environ-
mental toxins eventually flows into seawater. Moratou-
Apostolopoulou and Ignatiades [36] investigated the
effects of pollution on the growth of phytoplankton
and the interaction dynamics amongphytoplankton and
zooplankton. Considering heavy metals in the envi-
ronment, Tchounwou et al. [37] suggested that they
greatly impact the living organisms in water bodies.
The chronic effects on marine phytoplankton have
been investigated in a subtropical bay, China [38], and
showed that oil pollution has chronic effects on marine
phytoplankton. Also, samples taken from the inner har-
bor of the Waukegan area, located in Lake County,
IL, USA, on the west shore of Lake Michigan, have
shown that photosynthesis of the green algae Selenas-
trum capricornutum is inhibited due to pollutants orig-
inating from industrial and recreational sources [39].

The contact between environmental toxins and
marine organisms mostly depends on their dispersion
and behavior in aqueous systems, and the risk is often
related to their surface speciation [40]. Internalization
and/or attachment of environmental toxins to phyto-
plankton cells causes the growth suppression among
a wide range of phytoplankton species [41–43]. Some
mathematical studies adopted this growth suppression
behavior of environmental toxins [44,45]. These stud-
ies suggest that environmental toxins inducing growth
suppression of phytoplankton population can destabi-
lize the system, leading to limit cycles. An increasing
contact rate of environmental toxins and phytoplankton
induces a decrement in the equilibriumdensities of phy-
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toplankton and zooplankton, while depletion/removal
of environmental toxins from the aquaticmediumplays
a crucial role for the stable coexistence of phytoplank-
ton and zooplankton populations.

In this paper, we study plankton dynamics in the
presence of environmental toxins, by extending the
previous models [44,45], by allowing alternative food
sources for the zooplankton. Indeed, suspended organic
particles, detritus, bacteria, etc., provide alternative
food sources for the zooplankton population [46].
Therefore, following [46–48], we assume that the zoo-
plankton is generalist and does not depend just on phy-
toplankton, but it has also other food sources. A second
extension concerns the modification of the fish pre-
dation on zooplankton, which is known to follow a
Holling type III functional response [49]. The ratio-
nale behind this assumption is that macrophytes may
provide a refuge for zooplankton against fish preda-
tion, and the existence of refuges for the zooplank-
ton effectively causes a type III response. In addition,
many planktivorous fish have the option of feeding on
tubifex, chironomids or other bottom-dwelling inverte-
brates and this possibility of alternative food can also
cause a type III response, if no significant time lag
occurs in the switch [50].

Environmental toxins are discharged into marine
water through different activities such as chemicals,
particles, industrial, agricultural and residential waste,
or the spread of invasive organisms. The irregular or
random input of environmental toxins can be mod-
eled by stochastic differential equations. The effects
of environmental toxins by using impulsive-stochastic
approach have been investigated in [51]. Here, we also
consider the input rate of toxins to be affected by addi-
tive noise, due to the various sources mentioned above.
At first, in a deterministic fashion, we combine peri-
odic input of environmental toxins [52], with periodic
release rate of toxin from phytoplankton [53]. Then, we
study the stochastic version of this autonomous system,
adding noise to the input rate of environmental toxins.

Thus, one of our goals is to investigate how alterna-
tive food sources and Holling type III response affects
the dynamics of system. Another goal is to investigate
the effects of seasonality, bymodeling phytoplankton’s
toxin release and environmental toxins input via time-
dependent functions. Finally, we convert our determin-
istic autonomous model into stochastic model by intro-
ducing additive noise term and compare their dynami-
cal behaviors using numerical simulations.

The model is introduced in the next section and
analyzed in the following one. Section 4 contains its
seasonal counterpart, whose periodic solutions are dis-
cussed inSect. 5.Numerical simulations then substanti-
ate and extend the findings. The stochasticmodel is pre-
sented next in Sect. 7, and the discussion of the results
of Sect. 8 concludes the paper.

2 The mathematical model

Our model for the study of possible effects of toxic
substances on phytoplankton–zooplankton interactions
consists of two plankton populations and an inhibitor
of the phytoplankton, all uniformly distributed over
space. The latter may include agents such as pesticides
or heavy metals, which specifically inhibit the uptake
rate and consequently the growth rate of phytoplankton,
but does not affect zooplankton. Two examples for this
assumptions are given in [54]. In a marine planktonic
community formed mainly by diatoms and herbivo-
rous copepods, when silicate levels are low but cop-
per reaches high concentrations, the latter harms only
diatoms and not crustaceans. Further, at low concentra-
tions, the herbicide triazine inhibits photosynthesis in
the primary producers with indirect consequences on
the higher trophic levels.

Let P and Z be the densities of phytoplankton and
zooplankton populations and ET be the density of envi-
ronmental toxins. The following model assumptions
are made:

1. In the absence of zooplankton and environmental
toxins, the phytoplankton population follows logis-
tic growth; the effect of environmental toxins on the
phytoplankton growth rate is modeled by a mono-
tonic decreasing function of the density of environ-
mental toxins [44,45].

2. Suspended organic particles, detritus, bacteria, etc.,
provide alternative food resource for the zooplank-
ton population [46]. The zooplankton is assumed
to be generalist and is not only dependent on the
phytoplankton for its food but also has other food
sources [47,48]. So, we assume that the zooplank-
ton follows logistic growth with intrinsic growth
rate s and carrying capacity L . The zooplankton
predates phytoplankton with Holling type II func-
tional response.

3. The rate of toxin released by the toxin-producing
phytoplankton is proportional to the crowding of
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Fig. 1 Schematic diagram of system (1)

the phytoplankton, and the toxic effect becomes
significant when the phytoplankton population
reaches high concentration [55].

4. We consider a constant stock size of fish population
[56]. Zooplankton predation by fish follows a func-
tional response type III; the predation rate increases
in a sigmoidal way with the density of zooplank-
ton. Macrophytes may provide a refuge for zoo-
plankton against fish predation [49]. The existence
of refuges for the zooplankton effectively causes
a type III response. In addition, many planktivo-
rous fish have the option of feeding on tubifex, chi-
ronomids or other bottom-dwelling invertebrates.
This possibility of switching to alternative food can
cause a type III response, if no significant time lag
occurs in the switch [50].

5. Environmental toxins are added into the aquatic
environment at a constant rate and deplete natu-
rally.

6. When environmental toxins in the aquatic system
come in close contact with phytoplankton, they
attach to the phytoplankton cell membrane and
sometimes enter into the cell. Due to this inter-
nalization/attachment of environmental toxins in
phytoplankton cells, free environmental toxins are
removed from the aquatic system [57].

The interplay among phytoplankton, zooplankton
and environmental toxins is depicted in Fig. 1. In view
of above assumptions, we have the following mathe-
matical model:
dP

dt
= r P

1 + γ γ1PET

(
1 − P

K

)
− βPZ

α + P
,

dZ

dt
= sZ

(
1 − Z

L

)
+ λβPZ

α + P

− θ P2Z

μ2 + P2 − FZ2

h2 + Z2 ,

dET

dt
= A − γ PET − dET . (1)

Our model (1) differs from the models of [44,45]
in the sense that here zooplankton are assumed to be
generalist. Also, the effect of toxin liberation by phyto-
plankton on zooplankton and predation of zooplankton
byfish are not considered in [44]while in [45] these two
factors are modeled following Holling type II interac-
tions. Note that in [45], the dynamics of fish population
is explicitly considered. The growth of fish population
is assumed to be dependent on the densities of phyto-
plankton and zooplankton both; also the fish population
is subjected to a constant harvesting. Biological mean-
ings of the parameters in system (1) and their values
used in numerical simulations are given in Table 1.

3 Mathematical analysis

3.1 Positivity and boundedness of solutions

In theoretical ecology, boundedness of system (1)
implies that the system is well behaved. Boundedness
of the solutions entails that none of the interacting pop-
ulations growexponentially for a longtime interval. The
abundance of each population is bounded due to limited
resource.

Theorem 1 All nonnegative solutions ofmodel (1) that
start in R

3+ are uniformly bounded, and the region
where ultimately the system dynamics occurs is given
by the following set

Ω =
{
(P, Z , ET ) ∈ R

3+ : 0 ≤ P + Z ≤ N ,

0 ≤ ET ≤ Em

}
,

which is compact and invariant with respect to system
(1).

Proof System (1) can be rewritten in the following
form
dX

dt
= CX + D,

X = [P, Z , ET ]T and C = diag[Cii ], i = 1, 2, 3,
where

c11 = r

1 + γ γ1PET

(
1 − P

K

)
− βZ

α + P
,
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Table 1 Biological meanings of parameters and their values (hypothetical) used for simulations

Parameters Descriptions Values

r Intrinsic growth rate of phytoplankton 1.55

K Carrying capacity of the system for phytoplankton 19

s Intrinsic growth rate of zooplankton 0.03

L Carrying capacity of the system for zooplankton 2

γ Contact rate between phytoplankton and environmental toxins 0.2

γ1 Environmental toxins-induced growth suppression of phytoplankton 0.03

β Consumption rate of phytoplankton by zooplankton 0.58

α Half-saturation constant for the consumption of phytoplankton by zooplankton 2.523

λ Growth of zooplankton due to consumption of phytoplankton 0.76

θ Rate of toxins released by phytoplankton 0.08

μ Half-saturation constant for the toxin release by phytoplankton 0.3

F Maximum predation rate of the present fish stock on zooplankton 0.87

h Half-saturation constant for the predation of fish on zooplankton 1.7

A Input rate of environmental toxins 5.1

d Depletion rate of environmental toxins 0.1

c22 = s

(
1 − Z

L

)
+ λβP

α + P
− θ P2

μ2 + P2 − FZ

h2 + Z2 ,

c33 = −(γ P + d).

The vector D = [0, 0, A]T is positive. Since all off-
diagonal entries of C(X) are nonnegative, it is a Met-
zler matrix for all X ∈ R

3+; since D ≥ 0, system (1) is
positively invariant in R

3+ [58]. Therefore, any trajec-
tory of system (1) starting from an initial state in R

3+
remains trapped forever in R3+.

From the last equation of system (1), we have

dET

dt
= A − γ PET − dET ≤ A − dET .

Using a standard comparison theorem [59], we have

0 ≤ ET (t) ≤ A

d
+
(
ET (0) − A

d

)
e−dt . Thus, as t →

∞, 0 ≤ ET (t) ≤ A

d
, we have for any t > 0, 0 ≤

ET (t) ≤ Em , where Em = max

{
A

d
, ET (0)

}
.

We define a new variable U = P + Z . For an arbi-
trary σ > 0, by summing up the first two equations in
system (1), we find

dU

dt
+ σU ≤ (r + σ)P + (s + σ)Z − r P2

K

− sZ2

L
− (1 − λ)βPZ

α + P
− θ P2Z

μ2 + P2 − FZ2

h2 + Z2 .

Since 0 ≤ λ ≤ 1, we have

dU

dt
+ σU ≤ (r + σ)P + (s + σ)Z − r P2

K
− sZ2

L
.

Thus, we obtain the following upper bound

dU

dt
+ σU ≤ K (r + σ)2

4r
+ L(s + σ)2

4s
= M.

Applying standard results on differential inequali-
ties [59], we have

U (t) ≤ e−σ t
(
U (0) − M

σ

)
+ M

σ

≤ max

{
M

σ
,U (0)

}
= N .

Thus, there exists an N > 0, depending only on the
parameters of system (1), such that 0 ≤ U (t) ≤ N for
all sufficiently large values of t . Hence, the solutions of
system (1) and consequently all the densities appearing
in the system are ultimately bounded above [60]. ��

3.2 Permanence

Biologically, permanence of a system means the long-
term survival of all populations of the system, no mat-
ter what the initial populations are. From mathemat-
ical point of view, permanence of a system means
that strictly positive solutions do not have omega limit
points on the boundary of the nonnegative cone.

123



3378 A. Mandal et al.

Theorem 2 Assume that system (1) is uniformly
bounded, then it is permanent if the following inequal-
ities are satisfied:

r >
βZm

α
(1 + γ γ1K Em), s + λβPa

α + Pa
>

θK 2

μ2 , (2)

where Pa and Zm are defined in the proof.

Proof Since P(t) ≤ K and E(t) ≤ Em as t → ∞,
there exist T1, T2 > 0 such that P(t) ≤ K for all
t ≥ T1 and ET (t) ≤ Em for all t ≥ T2. Also,
lim
t→∞ sup[P(t) + Z(t)] ≤ N . Therefore, there exists

T3 > 0 such that Z(t) ≤ Zm for all t ≥ T3, where Zm is
a finite positive constant with Zm +K ≤ N . Hence, for
all t ≥ max{T1, T2, T3} = T , P(t) ≤ K , Z(t) ≤ Zm

and ET (t) ≤ Em . We define M2 = max{K , Zm, Em}.
Now, from first equation of system (1), for all t ≥ T

we have

dP

dt
≥ r P

1 + γ γ1K Em

(
1 − P

K

)
− βZm P

α
.

Hence, it follows that for some Pa

lim
t→∞ inf P(t) ≥ K [rα − βZm(1 + γ γ1K Em)]

rα
= Pa .

Again, from second equation of system (1), we have

dZ

dt
≥ sZ

(
1 − Z

L

)
+ λβPa Z

α + Pa
− θK 2Z

μ2 − FZ2

h2
.

Hence, it follows that for some Za

lim
t→∞ inf Z(t) ≥

Lh2
(
s + λβPa

α+Pa
− θK 2

μ2

)
sh2 + FL

= Za .

Similarly, from the last equation of system (1), we have

lim
t→∞ inf ET (t) ≥ A

γ K + d
= Ea (say).

Let M1 = min{Pa, Za, Ea}. Note that Ea > 0; Pa ,
Za > 0 provided inequalities in (2) are satisfied. ��

3.3 Equilibrium analysis

System (1) has the following four nonnegative equilib-
ria:

1. The phytoplankton–zooplankton-free equilibrium
E0 = (0, 0, A/d), which always exists.

2. The zooplankton-free equilibrium E1 = (K , 0, A/

(γ K + d)), which always exists.

3. The phytoplankton-free equilibrium E2 = (0, Z2,

A/d), where Z2 is positive root of the following
cubic equation

sZ3 − sLZ2 + (sh2 + LF)Z − sh2L = 0. (3)

Equation (3) has one or three positive roots. Equa-
tion (3) can be rewritten as

Z3 + q1Z
2 + q2Z + q3 = 0, (4)

where

q1 = −L , q2 = h2 + FL/s, q3 = −h2L .

Equation (4) has a unique real positive root, say Z2

if

a22
4

+ a31
27

> 0, a1 = 1

3
(3q2 − q21 ),

a2 = 1

27
(2q31 − 9q1q2 + 27q3). (5)

4. The coexistence equilibrium E∗ = (P∗, Z∗, E∗
T ),

where

E∗ = A

γ P∗ + d
,

Z∗ = r(α + P∗)(1 − P∗/K )(γ P∗ + d)

β(γ P∗ + d + γ γ1AP∗)
and P∗ is positive root of the equation

f (P) = s

(
1 − r(α + P)(1 − P/K )(γ P + d)

Lβ(γ P + d + γ γ1AP)

)

+ λβP

α + P
− θ P2

μ2 + P2

− Frβ(α+P)(1 − P/K )(γ P + d)(γ P+d+γ γ1AP)

{hβ(γ P+d+γ γ1AP)}2+{r(α + P)(1−P/K )(γ P + d)}2
= 0. (6)

It is difficult to analyze the behavior of Eq. (6)
mathematically. To see its behavior numerically, in
Fig. 2, we plot Eq. (6) for the set of parameter val-
ues given in Table 1. It is clear from the figure that
Eq. (6) has exactly one positive root for the chosen
set of parameter values.

3.4 Stability analysis

Regarding local stability of the equilibria of system (1),
we have the following theorem.

Theorem 3 1. The equilibrium E0 is always unsta-
ble.
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Fig. 2 Graph of the function f (P) (Eq. (6)). The function f (P)

has a unique positive real solution, which is better seen in the
blowup.Here, all the parameter values are taken from the Table 1.
Red solid line represents the function f (P), and green star ( )
represents the unique real positive solution. (Color figure online)

2. The equilibrium E1 is stable if the following con-
dition holds:

θ >

(
s + λβK

α + K

)
μ2 + K 2

K 2 . (7)

3. The equilibrium E2 is stable if the following con-
ditions hold:

βZ2 > αr, s(h2 + Z2
2)

2 > FL(Z2
2 − h2). (8)

4. The equilibrium E∗, if exists, is locally asymptoti-
cally stable if and only if the following conditions
are satisfied:

A1 > 0, A3 > 0, A1A2 − A3 > 0, (9)

where Ai ’s are defined in the proof.

Proof The Jacobian J = (Ji j ), i, j = 1, 2, 3, of sys-
tem (1) has two vanishing entries, J23 = J32 = 0,
while the remaining ones are

J11 = r

1 + γ γ1PET

(
1 − 2P

K

)
− rγ γ1PET

(1 + γ γ1PET )2

×
(
1 − P

K

)
− αβZ

(α + P)2
, J12 = − βP

α + P
,

J13 = − rγ γ1P2

(1 + γ γ1PET )2

(
1 − P

K

)
,

J21 = αλβZ

(α + P)2
− 2θμ2PZ

(μ2 + P2)2
,

J22 = s

(
1 − 2Z

L

)
+ λβP

α + P
− θ P2

μ2 + P2

− 2Fh2Z

(h2 + Z2)2
, J31 = −γ ET , J33 = −γ P − d.

1. The Jacobian J evaluated at the equilibrium E0

leads to the eigenvalues r , s and−d. In view of signs of
the eigenvalues, the equilibrium E0 is always unstable.

2. The eigenvalues of the Jacobian J evaluated at
the equilibrium E1 are

− r(γ K + d)

γ K + d + γ γ1K A
, −(γ K + d),

s + λβK

α + K
− θK 2

μ2 + K 2 .

Clearly, two eigenvalues are always negative and the
third will be negative if condition (7) holds.

3. The Jacobian J evaluated at the equilibrium E2

leads to the eigenvalues

r − βZ2

α
, −

{
sZ2

L
− FZ2(Z2

2 − h2)

(h2 + Z2
2)

2

}
, −d.

Clearly, one eigenvalue is always negative. The other
two are negative provided the conditions in (8) hold.

4. The Jacobian J evaluated at the equilibrium E∗
leads to the matrix

JE∗ =
⎛
⎝−a11 −a12 −a13

a21 −a22 0
−a31 0 −a33

⎞
⎠ , (10)

where

a11 = rγ γ1P∗E∗
T

(1 + γ γ1P∗E∗
T )2

(
1 − P∗

K

)
+ αβZ∗

(α + P∗)2

− r

1 + γ γ1P∗E∗
T

(
1 − 2P∗

K

)
, a12 = βP∗

α + P∗ ,

a13 = rγ γ1P∗2

(1 + γ γ1P∗E∗
T )2

(
1 − P∗

K

)
,

a21 = αλβZ∗

(α + P∗)2
− 2θμ2P∗Z∗

(μ2 + P∗2)2
,

a22 = θ P∗2

μ2 + P∗2 + 2Fh2Z∗

(h2 + Z∗2)2
− s

(
1 − 2Z∗

L

)

− λβP∗

α + P∗ , a31 = γ E∗
T , a33 = γ P∗ + d.

The associated characteristic equation is

x3 + A1x
2 + A2x + A3 = 0, (11)

where

A1 = a11 + a22 + a33, A2 = a11a22 + a11a33
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+ a12a21 + a22a33 − a13a31,

A3 = a11a22a33 + a12a21a33 − a13a22a31.

Using Routh–Hurwitz criterion, roots of Eq. (11) are
either negative or have negative real parts if and only if
the conditions in (9) hold. ��

3.5 Existence of Hopf bifurcation

We consider here the parameters: r , s, A, d, F , L , γ ,
γ1, λ, β, θ and α as possible bifurcation parameters
in the numerical simulations. Analytically, we study
the Hopf bifurcation with respect to the uptake rate
of zooplankton on phytoplankton β, while keeping the
other parameters fixed.

Let the critical value of β, say β∗, be defined by

A1(β
∗)A2(β

∗) − A3(β
∗) = 0. (12)

Thus, at β = β∗, the characteristic Eq. (11) can be
rewritten as (x + A1)(x2 + A2) = 0. This equation
has three roots, a pair of purely imaginary roots x1,2 =
±i

√
A2 and a negative one x3 = −A1. This ensures

the presence of Hopf bifurcation.
To show the transversality condition, let us consider

a point β in an ε− neighborhood of β∗; the above roots
become function of β, namely x1,2 = κ(β) ± iρ(β).
Substituting them in Eq. (11) and separating real and
imaginary parts, we have

κ3 − 3κρ2 + A1(κ
2 − ρ2) + A2κ + A3 = 0, (13)

3κ2ρ − ρ3 + 2A1κρ + A2ρ = 0. (14)

As ρ(β) �= 0, from Eq. (14), it follows that

ρ2 = 3κ2 + 2A1κ + A2.

Substituting this in Eq. (13), we find

8κ3 + 8A1κ
2 + 2κ(A2

1 + A2) + A1A2 − A3 = 0.(15)

From the above equation, recalling that κ(β∗) = 0, we
get
[
dκ

dβ

]
β=β∗

= −
[

1

2(A2
1 + A2)

d

dβ
(A1A2 − A3)

]
β=β∗

and the latter does not vanish provided that[
d

dβ
(A1A2 − A3)

]
β=β∗

�= 0. (16)

Thus, we have the following result for the existence
of Hopf bifurcation.

Theorem 4 The necessary and sufficient conditions
for the occurrence of Hopf bifurcation from the coexis-
tence equilibrium E∗ are that there exists β = β∗ such
that conditions (12) and (16) hold.

To better understand the nature of the instability,
we determine the initial period and the amplitude
of the oscillatory solutions. Set A3 = ψ A1A2 in
Eq. (11). Assuming that x depends continuously on
ψ , we rewrite Eq. (11) as

x3 + A1x
2 + A2x + ψ A1A2 = 0. (17)

At ψ = ψ∗ = 1, because A3 = A1A2, Eq. (17), as
seen above, factorizes into (x + A1)(x2 + A2), which
has a pair of purely imaginary roots, x(ψ∗) = ±i

√
A2

while the other one is x(ψ∗) = −A1.
Further, A1A2 − A3 = (1− ψ)A1A2. Thus, if ψ ∈

(0, 1), then A1A2 − A3 > 0 and this ensures stability;
conversely, we have instability for ψ > 1.

If we setψ = ψ∗+ε2ξ , where |ε| � 1 and ξ = ±1,
then x(ψ) = x(ψ∗ + ε2ξ) so that the linear portion in
ε2ξ of the Taylor series expansion of x about ψ∗ is

x(ψ) = x(ψ∗) + x ′(ψ∗)ε2ξ + O(ε4), (18)

where prime denotes differentiation with respect to ψ .
Differentiating and simplifying Eq. (17) yields

x ′(ψ) ≡ A1A2

2(A2
1 + A2)

± i
A2
1

√
A2

2(A2
1 + A2)

. (19)

Using the fact that �(x(ψ∗)) = 0 and �(x ′(ψ∗)) =
A1A2

2(A2
1 + A2)

> 0, and substituting x(ψ∗) and x ′(ψ)

into Eq. (18), we obtain the approximation

x(ψ) = x(ψ∗) + x ′(ψ∗)ε2ξ = A1A2ε
2ξ

2(A2
1 + A2)

± i
√
A2

(
1 + A2

1ε
2ξ

2(A2
1 + A2)

)
+ O(ε4). (20)

Thus, the initial period and amplitude of the oscilla-
tions associatedwith the loss of stabilitywhenψ > ψ∗,
respectively, are

2π
√
A2

(
1 + A2

1ε
2ξ

2(A2
1+A2)

) and

exp

(
A1A2ε

2ξ

2(A2
1 + A2)

)
, ε =

√
|ψ − ψ∗|

|ξ | .
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3.6 Direction and stability of bifurcated periodic
solution

In this section, we determine the direction and stabil-
ity criterion of Hopf-bifurcating periodic solutions of
system (1) by using the normal form theory [61].

We calculate the right eigenvectors v1 and v3 of the
Jacobian matrix J at the equilibrium E∗ corresponding
to the eigenvalues x1 = iω0 and x3 = −A1, respec-
tively, at β = β∗, where ω0 = √

A2;

v1 =
⎛
⎝b11 − ib12
b21 − ib22
b31 − ib32

⎞
⎠ , v3 =

⎛
⎝b13
b23
b33

⎞
⎠ ,

where

b11 = 1, b12 = 0, b13 = 1, b21 = a21a22
a222 + ω2

0

,

b22 = a21ω0

a222 + ω2
0

,

b23 = a21
a22 − A1

, b31 = − a31a33
a233 + ω2

0

,

b32 = − a31ω0

a233 + ω2
0

, b33 = − a31
a33 − A1

.

Now, we use the transformation

P = P∗ + b11x + b12y + b13z,

Z = Z∗ + b21x + b22y + b23z,

ET = E∗
T + b31x + b32y + b33z. (21)

Using transformation (21), system (1) reduces to
dx

dt
= E1(b22b33 − b23b32) + E2b32 − E3b22

M
≡ F1,

dy

dt
= E1(b23b31 − b21b33) + E2(b33 − b31) + E3b21

M
≡ F2,

dz

dt
= E1(b21b32 − b22b31) + E3b22 − E2b32

M
≡ F3, (22)

where
M = b22b33 − b23b32 + b21b32 − b22b31,

E1 = r(P∗ + b11x + b12 y + b13z)(1 − (P∗ + b11x + b12 y + b13z)/K )

1 + γ γ1(P∗ + b11x + b12 y + b13z)(E∗
T + b31x + b32 y + b33z)

− β(P∗ + b11x + b12 y + b13z)(Z∗ + b21x + b22 y + b23z)

α + (P∗ + b11x + b12 y + b13z)
,

E2 = s(Z∗ + b21x + b22 y + b23z)

×
(
1 − Z∗ + b21x + b22 y + b23z

L

)

+ λβ(P∗ + b11x + b12 y + b13z)(Z∗ + b21x + b22 y + b23z)

α + (P∗ + b11x + b12 y + b13z)

− θ(P∗ + b11x + b12 y + b13z)(Z∗ + b21x + b22 y + b23z)

μ2 + (P∗ + b11x + b12 y + b13z)2

− F(Z∗ + b21x + b22 y + b23z)

h2 + (Z∗ + b21x + b22 y + b23z)2
,

E3 = A − γ (P∗ + b11x + b12 y + b13z)

× (E∗
T + b31x + b32 y + b33z)

− d(E∗
T + b31x + b32 y + b33z).

The point (0, 0, 0) is an equilibrium of system (22).
The Jacobian matrix of system (22) at (0, 0, 0) has the
real canonical form

J =
⎛
⎝ 0 −ω0 0

ω0 0 0
0 0 D1

⎞
⎠ .

We calculate the following quantities, all to be eval-
uated at β = β∗, at the equilibrium (0, 0, 0):

g11 = 1

4

[
∂2F1

∂x2
+ ∂2F1

∂y2
+ i

(
∂2F2

∂x2
+ ∂2F2

∂y2

)]
,

g02 = 1

4

[
∂2F1

∂x2
− ∂2F1

∂y2
− 2

∂2F2

∂x∂y

+ i

(
∂2F2

∂x2
− ∂2F2

∂y2
+ 2

∂2F1

∂x∂y

)]
,

g20 = 1

4

[
∂2F1

∂x2
− ∂2F1

∂y2
+ 2

∂2F2

∂x∂y

+ i

(
∂2F2

∂x2
− ∂2F2

∂y2
− 2

∂2F1

∂x∂y

)]
,

G21 = 1

8

[
∂3F1

∂x3
+ ∂3F1

∂x∂y2
+ ∂3F2

∂x2∂y
+ ∂3F2

∂y3

+ i

(
∂3F2

∂x3
+ ∂3F2

∂x∂y2
− ∂3F1

∂x2∂y
− ∂3F1

∂y3

)]
,

h11 = 1

4

[
∂2F3

∂x2
+ ∂2F3

∂y2

]
,

h20 = 1

4

[
∂2F3

∂x2
− ∂2F3

∂y2
− 2i

∂2F3

∂x∂y

]
.

We solve the linear systems

D1w11 = −h11, (D1 − 2iω0 I )w20 = −h20

for the 1-dimensional vectors w11 and w20. Now, we
calculate the expressions

G110 = 1

2

[
∂2F1

∂x∂z
+ ∂2F2

∂y∂z
+ i

(
∂2F2

∂x∂z
− ∂2F1

∂y∂z

)]
,

G101 = 1

2

[
∂2F1

∂x∂z
− ∂2F2

∂y∂z
+ i

(
∂2F1

∂y∂z
+ ∂2F2

∂x∂z

)]
,

g21 = G21 + 2G110w11 + G101w20,

C1(0) = i

2ω0

[
g20g11 − 2|g11|2 − 1

3
|g02|2

]
+ 1

2
g21

and compute the following quantities

μ2 = −ReC1(0)

α′(0)
, τ2 = − ImC1(0) + μ2ω

′(0)
ω0

,
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β2 = 2ReC1(0),

where

α′(0) = dRex1(β)

dβ

∣∣∣
β=β∗ , ω′(0) = dImx1(β)

dβ

∣∣∣
β=β∗ .

Now, regarding direction and stability of bifurcating
periodic solutions, we have the following result.

Theorem 5 If μ2 > 0 (respectively, μ2 < 0), then the
Hopf bifurcation of system (1) at the equilibrium E∗
is nondegenerate and supercritical (subcritical) pro-
vided the sign of periodic solutions exist for β > β∗
(respectively, β < β∗). The bifurcating periodic solu-
tions are orbitally asymptotically stable (respectively,
unstable) if β2 < 0 (respectively, β2 > 0), and the
period increases (decreases) if τ2 > 0 (respectively,
τ2 < 0).

4 Seasonally forced model

Skipping of blooms is observed in lakes, which is due
to seasonal changes of the nutrient concentration. How-
ever, there are some other reasons for which the bloom
skips. For example, the toxic chemicals released by
the toxic phytoplankton change over time [53,62,63].
Following [52], we consider the input rate of environ-
mental toxins in the aquatic environment to be affected
by seasonality. To include the effect of the seasonal
cycle in the parameters in model (1), we impose a cos-
inusoidal variation of the value of the relevant model
parameters over the year. For the theoretical analysis,
we assume all parameters of system (1) to be peri-
odic, but in the simulations, we will take only the toxin
release rate by phytoplankton, θ , and the input rate of
environmental toxins, A, to be periodic functions of
time.

We thus rewrite system (1) in the following nonau-
tonomous form:

dP(t)

dt
= r(t)P(t)

1 + γ (t)γ1(t)P(t)ET (t)

(
1 − P(t)

K (t)

)

−β(t)P(t)Z(t)

α(t) + P(t)
,

dZ(t)

dt
= s(t)Z(t)

(
1 − Z(t)

L(t)

)
+ λ(t)β(t)P(t)Z(t)

α(t) + P(t)

−θ(t)P2(t)Z(t)

μ2(t) + P2(t)
− F(t)Z2(t)

h2(t) + Z2(t)
,

dET (t)

dt
= A(t) − γ (t)P(t)ET (t) − d(t)ET (t). (23)

We assume that the parameters are positive, continuous
and bounded, have positive lower bounds and are ω-
periodic functions, assuming for simplicity a period of
one year.

Let g(t) be a continuous periodic function with
period ω and let

gu = sup
t∈R

g(t), gl = inf
t∈R g(t), g = 1

ω

∫ ω

0
g(t)dt.

Definition 1 System (23) is said to be permanent if
there exist some positive δi > 0 (i = 1, 2) with 0 <

δ1 < δ2 such that

min
{
lim
t→∞ inf P(t), lim

t→∞ inf Z(t),

lim
t→∞ inf ET (t)

}
≥ δ1,

max
{
lim
t→∞ sup P(t), lim

t→∞ sup Z(t),

lim
t→∞ sup ET (t)

}
≤ δ2

for all solutions of system (23) with positive initial val-
ues.

Definition 2 If x̃(t) is a ω-periodic solution of system
(23), and x(t) is any solution of system (23) satisfy-
ing lim

t→∞ |̃x(t) − x(t)| = 0, then the ω-periodic solu-

tion x̃(t) is said to be globally attractive.

Lemma 1 Both the nonnegative and positive cones of
R
3 are positively invariant for system (23).

Proof The solution (P(t), Z(t), ET (t)) with initial
values (P0, Z0, ET 0) satisfies

P(t) = P0 exp

{∫ t

0

[
r(u)

1 + γ (u)γ1(u)P(u)ET (u)

×
(
1 − P(u)

K (u)

)
− β(u)Z(u)

α(u) + P(u)

]
du

}
,

Z(t) = Z0 exp

{∫ t

0

[
s(u)

(
1 − Z(u)

L(u)

)

+λ(u)β(u)P(u)

α(u) + P(u)
− θ(u)P2(u)

μ2(u) + P2(u)

− F(u)Z(u)

h2(u) + Z2(u)

]
du

}
,

ET (t) = ET 0 exp

{∫ t

0

[
A(u)

ET (u)

−γ (u)P(u) − d(u)

]
du

}
.

In view of these formulae, the conclusion follows
immediately for all t ∈ [0,+∞). ��
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For sufficiently small ε ≥ 0, let

Mε
1 = ruK u

rl
+ ε,

mε
1 = Kl

ru

(
rl

1 + γ uγ u
1 M

ε
1M

ε
3

− βuMε
2

αl

)
− ε,

Mε
2 = Lu

sl

(
su + λuβuMε

1

αl

)
,

mε
2 = Llhl

2

suhl2 + FuLl

(
sl + λlβlmε

1

αu + mε
1

− θuMε
1
2

μl2

)
,

Mε
3 = Au

dl
+ ε,

mε
3 = Al

γ uMε
1 + du

,

then Mε
i > mε

i , i = 1, 2, 3. We show that max{m0
i , 0},

i = 1, 2, 3 are lower bounds for the limiting bounds
of the components P(t), Z(t) and ET (t), respectively,
as t → ∞. This is obvious when mε

i ≤ 0. Hence, we
assume that mε

i > 0, i = 1, 2, 3.

Lemma 2 Suppose m0
i > 0, i = 1, 2, 3, then for any

sufficiently small ε > 0, the set

Γε = {(P, Z , ET ) ∈ R
3| mε

1 ≤ P(t) ≤ Mε
1 , mε

2 ≤ Z(t)

≤ Mε
2 , mε

3 ≤ ET (t) ≤ Mε
3 }

is positively invariant with respect to system (23).

Proof Solution to the equation

X ′(t) = G(t, X)X (t)[B − X (t)], B �= 0

is given by

X (t) =
BX0 exp

{∫ t
0 BG(s, X (s))ds

}

X0
[
exp
{∫ t

0 BG(s, X (s))ds
}

− 1
]

+ B
,

X0 = X (0).

Consider the solution of system (23) with initial values
(P0, Z0, ET 0) ∈ Γε . From Lemma 1 and from the first
equation of system (23), we obtain

dP(t)

dt
≤ r(t)P(t)

(
1 − P(t)

K (t)

)

≤ rl

K u
P(t)(M0

1 − P(t)).

Using the comparison theorem, for t ≥ 0, we have

P(t) ≤ M0
1 P0 exp(r

ut)

P0[exp(rut) − 1] + M0
1

≤ Mε
1 P0 exp(r

ut)

P0[exp(rut) − 1] + Mε
1

≤ Mε
1 . (24)

From the second equation of system (23), we have

dZ(t)

dt
≤
(
su + λuβuMε

1

αl

)
Z − sl

Lu
Z2

= sl

Lu
Z(t)[Mε

2 − Z(t)].
Using the comparison theorem, we get

Z(t) ≤ Mε
2 Z0 exp(su + λuβuMε

1
αl )t

Z0

[
exp
(
su + λuβuMε

1
αl

)
t − 1

]
+ Mε

2

≤ Mε
2 ,

t ≥ 0. (25)

From the last equation of system (23), we find

dET (t)

dt
≤ Au − dl ET .

Hence, it follows that

ET (t) ≤ Mε
3 , t ≥ 0. (26)

Now, from the first equation of system (23), we have

dP(t)

dt
≥ rl

1 + γ uγ u
1 M

ε
1M

ε
3
P(t)

− ru

K l
P2(t) − βuMε

2 P(t)

αl
= ru

K l
P(t)[mε

1 − P(t)].
Since P0 ≥ m0

1, by the comparison theorem, we obtain

P(t) ≥
P0m0

1 exp
(
ru

K l m
0
1t
)

P0
[
exp
(
ru

K l m
0
1t
)

− 1
]

+ m0
1

≥ mε
1,

t ≥ 0. (27)

The second equation of system (23) yields

dZ(t)

dt
≥ sl Z − su

Ll
Z2 + λlβlmε

1Z

αu + mε
1

− θuMε
1
2Z

μl2

− Fu Z2

hl2
=
(
suhl

2 + FuLl

Llhl2

)
Z(t)[mε

2 − Z(t)].

Hence, it follows that

Z(t) ≥ mε
2, ∀ t ≥ 0. (28)

From the last equation of system (23), we have

dET (t)

dt
≥ Al − (γ uMε

1 + du)ET .

Hence, it follows that

ET (t) ≥ Al

γ uMε
1 + du

= mε
3, t ≥ 0. (29)

From Eqs. (24)–(29), it follows that the set Γε is posi-
tively invariant with respect to system (23). ��
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Corollary 1 Let (P(t), Z(t), ET (t)) be a solution of
system (23) with P(0) > 0, Z(0) > 0, ET (0) > 0. If
m0

i > 0, i = 1, 2, 3, then system (23) is permanent.

4.1 Existence of periodic solutions

Let X and Y be two real Banach spaces and G :
DomG ⊂ X → Y a linear mapping, and H : X →
Y a continuous mapping. The mapping G is called
a Fredholm mapping of index zero if dimKerG =
codimImG < ∞ and ImG is closed in Y . If G is
a Fredholm mapping of index zero, there exist con-
tinuous projections R : X → X and S : Y → Y
such that ImR = KerG, ImG = KerS = Im(I − S).
It follows that G|DomG∩KerR : (I − R)X → ImG
has an inverse which will be denoted by KR . If Ω

is an open and bounded subset of X , the mapping H
will be called G-compact on Ω if SH(Ω) is bounded
and KR(I − S)H : Ω → X is compact. Since ImS
is isomorphic to KerG, there exists an isomorphism
J : ImS → KerG.

Lemma 3 Let Ω ⊂ X be an open bounded set. Let
G be a Fredholm mapping of index zero and H be G-
compact on Ω . Suppose that

1. For each ψ ∈ (0, 1), x ∈ ∂Ω ∩ DomG, Gx �=
ψHx.

2. For each x ∈ ∂Ω ∩ KerG, SHx �= 0.
3. The Brouwer degree does not vanish, i.e., deg

{J SH, Ω ∩ KerG, 0} �= 0.

Then, the operator equation Gx = Hx has at least one
solution in DomG ∩ Ω .

Theorem 6 System (23) has at least one positive ω-
periodic solution if the algebraic equation set

r

1 + γ γ1eu1+u3

(
1 − eu1

K

)
− βeu2

α + eu1
= 0,

s

(
1 − eu2

L

)
+ λ βeu1

α + eu1
− θe2u1

μ2 + e2u1

− Feu2

h
2 + e2u2

= 0,

Ae−u3 − γ eu1 − d = 0

has finite real-valued solutions (u∗
1i

, u∗
2i

, u∗
3i

), i =
1, 2, 3, · · · , n such that∑

(u∗
1i

,u∗
2i

,u∗
3i

)

detG(u∗
1i , u

∗
2i , u

∗
3i )Π

n
i=1u

∗
1i Π

n
i=1u

∗
2i

Πn
i=1u

∗
3i �= 0,

where G(u1, u2, u3) is a 3× 3 matrix with the compo-
nents

G11 = − reu1

K (1 + γ γ1eu1+u2)
− r γ γ1eu1+u3

(1 + γ γ1eu1+u3)2

×
(
1 − eu1

K

)
+ βeu1+u2

(α + eu1)2
, G12 = − βeu2

α + eu1
,

G13 = − r γ γ1eu1+u3

(1 + γ γ1eu1+u3)2

(
1 − eu1

K

)
,

G21 = λ βeu1

α + eu1
− λ βe2u1

(α + eu1)2
− 2θe2u1

μ2 + e2u1

+ 2θe4u1

(μ2 + e2u1)2
,

G22 = − seu2

L
− Feu2

h
2 + e2u2

+ 2Fe3u2

(h
2 + e2u2)2

,

G23 = 0, G31 = −γ eu1 , G32 = 0, G33 = −Ae−u3 .

Proof Putting P(t) = eu1(t), Z(t) = eu2(t) and
ET (t) = eu3(t) in system (23), we have

du1(t)

dt
= r(t)

1 + γ (t)γ1(t)eu1(t)+u3(t)

(
1 − eu1(t)

K (t)

)

− β(t)eu2(t)

α(t) + eu1(t)
,

du2(t)

dt
= s(t)

(
1 − eu2(t)

L(t)

)
+ λ(t)β(t)eu1(t)

α(t) + eu1(t)

− θ(t)e2u1(t)

μ2(t) + e2u1(t)
− F(t)eu2(t)

h2(t) + e2u2(t)
,

du3(t)

dt
= A(t)e−u3(t) − γ (t)eu1(t) − d(t). (30)

Obviously if system (30) has a ω-periodic solution
(u∗

1(t), u
∗
2(t), u

∗
3(t))

T , then z∗(t) = (P∗(t), Z∗(t),
E∗
T (t))T = (eu

∗
1(t), eu

∗
2(t), eu

∗
3(t))T is a positive ω-

periodic solution of system (23). Define

X = Y = {(u1(t), u2(t), u3(t))T ∈ C(R,R3) :
ui (t + ω) = ui , i = 1, 2, 3},

||(u1(t), u2(t), u3(t))T || =
3∑

i=1

max
t∈[0,ω] |ui (t)|,

where ||.|| denotes the Euclidian norm. Then X and Y
are Banach spaces endowed with the norm ||.||.

Let G : DomG ∩ X → Y be defined by G(u1(t),

u2(t), u3(t))
T =

(
du1(t)

dt
,
du2(t)

dt
,
du3(t)

dt

)T

,where
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DomG = {(u1(t), u2(t), u3(t))T ∈ C1(R,R3)}, H :
X → X ,

H

⎛
⎝ u1
u2
u3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

r(t)

1 + γ (t)γ1(t)eu1(t)+u3(t)

(
1 − eu1(t)

K (t)

)
− β(t)eu2(t)

α(t) + eu1(t)

s(t)

(
1 − eu2(t)

L(t)

)
+ λ(t)β(t)eu1(t)

α(t) + eu1(t)
− θ(t)e2u1(t)

μ2(t) + e2u1(t)
− F(t)eu2(t)

h2(t) + e2u2(t)

A(t)e−u3(t) − γ (t)eu1(t) − d(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Define

R

⎛
⎝ u1
u2
u3

⎞
⎠ = S

⎛
⎝ u1
u2
u3

⎞
⎠ =

⎛
⎝

1
ω

∫ ω

0 u1(t)dt
1
ω

∫ ω

0 u2(t)dt
1
ω

∫ ω

0 u3(t)dt

⎞
⎠ ,

⎛
⎝ u1
u2
u3

⎞
⎠ ∈ X.

Obviously, KerG = {x | x ∈ X, x = h′, h′ ∈ R
3},

ImG = {y| y ∈ Y,
∫ ω

0 y(t)dt = 0} and dim(KerG) =
codim(ImG) = 3.

Since ImG is closed in Y , G is a Fredholm mapping
of index zero. R and S are continuous projections such
that ImR = KerG, KerS = ImG = Im(I − S). The
inverse KR ofGR has the form KR : ImG → DomG∩
KerR and is given by

KR

⎛
⎝ u1(t)
u2(t)
u3(t)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ t

0
u1(s)ds − 1

ω

∫ ω

0

∫ t

0
u1(s)dsdt∫ t

0
u2(s)ds − 1

ω

∫ ω

0

∫ t

0
u2(s)dsdt∫ t

0
u3(s)ds − 1

ω

∫ ω

0

∫ t

0
u3(s)dsdt

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Accordingly, SH : X → Y and KR(I − S)H :
X → X lead to

SH

⎛
⎝ u1(t)
u2(t)
u3(t)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ω

∫ ω

0

[
r(t)

1 + γ (t)γ1(t)eu1(t)+u3(t)

(
1 − eu1(t)

K (t)

)
− β(t)eu2(t)

α(t) + eu1(t)

]
dt

1

ω

∫ ω

0

[
s(t)

(
1 − eu2(t)

L(t)

)
+ λ(t)β(t)eu1(t)

α(t) + eu1(t)
− θ(t)e2u1(t)

μ2(t) + e2u1(t)
− F(t)eu2(t)

h2(t) + e2u2(t)

]
dt

1

ω

∫ ω

0

[
A(t)e−u3(t) − γ (t)eu1(t) − d(t)

]
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

KR(I − S)Hx =
∫ t

0
Hx(s)ds

− 1

ω

∫ ω

0

∫ t

0
Hx(s)dsdt −

(
t

ω
− 1

2

)∫ ω

0
Hx(s)ds.

Obviously, SH and KR(I − S)H are continuous.

Moreover, SH(Ω) and KR(I − S)H(Ω) are relatively

compact for any open bounded set Ω ⊂ X . Therefore,
H is G-compact on Ω for any open bounded subset
Ω ⊂ X .

Corresponding to the operator equation Gx =
ψHx, ψ ∈ (0, 1), we have

du1(t)

dt
= ψ

[
r(t)

1 + γ (t)γ1(t)eu1(t)+u3(t)

(
1 − eu1(t)

K (t)

)

− β(t)eu2(t)

α(t) + eu1(t)

]
,

du2(t)

dt
= ψ

[
s(t)

(
1 − eu2(t)

L(t)

)
+ λ(t)β(t)eu1(t)

α(t) + eu1(t)

− θ(t)e2u1(t)

μ2(t) + e2u1(t)
− F(t)eu2(t)

h2(t) + e2u2(t)

]
,

du3(t)

dt
= ψ[A(t)e−u3(t) − γ (t)eu1(t) − d(t)]. (31)

Suppose (u1(t), u2(t), u3(t))T ∈ X is a solution of
system (31) for some ψ ∈ (0, 1), then from system
(31), we have

r(t)

1 + γ (t)γ1(t)eu1(t)+u3(t)

(
1 − eu1(t)

K (t)

)

− β(t)eu2(t)

α(t) + eu1(t)
= 0, (32)

s(t)

(
1 − eu2(t)

L(t)

)
+ λ(t)β(t)eu1(t)

α(t) + eu1(t)
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− θ(t)e2u1(t)

μ2(t) + e2u1(t)
− F(t)eu2(t)

h2(t) + e2u2(t)
= 0, (33)

A(t)e−u3(t) − γ (t)eu1(t) − d(t) = 0. (34)

Now from Eqs. (32) and (34), we obtain the follow-
ing

u1(t) ≤ ln{K (t)} = H1,

u1(t) ≥ ln

⎧⎨
⎩

1

γ (t)
(
A(t)
eH3

− d(t)
)
⎫⎬
⎭ = L1,

u2(t) ≤ ln

{
r(t)(α(t) + eH1)

β(t)

}
= H2,

u2(t) ≥ ln

⎧⎨
⎩
r(t)(α(t) + eL1)

(
1 − eH1

K (t)

)
1 + γ (t)γ1(t)eH1+H3

⎫⎬
⎭ = L2,

u3(t) ≤ ln

{
A(t)

d(t)

}
= H3,

u3(t) ≥ ln

{
A(t)

γ (t)eH1 + d(t)

}
= L3.

Therefore, |u1(t)| ≤ H1, |u2(t)| ≤ H2, |u3(t)| ≤ H3,
∀ t ∈ R. Clearly, Hi ’s (i = 1, 2, 3) are independent of
ψ . Denote Ũ = H1 + H2 + H3 + ε, where ε is chosen
sufficiently large such that each solution (u∗

1, u
∗
2, u

∗
3)

T

(if the system has at least one solution) of the system
of algebraic equations,

r

1 + γ γ1eu1+u3

(
1 − eu1

K

)
− βeu2

α + eu1
= 0,

s

(
1 − eu2

L

)
+ λ βeu1

α + eu1
− θe2u1

μ2 + e2u1
− Feu2

h
2 + e2u2

= 0,

Ae−u3 − γ eu1 − d = 0, (35)

satisfies ||(u∗
1, u

∗
2, u

∗
3)

T || < Ũ , provided that system
(35) has one or a number of solutions. We set Ω =
{(u1(t), u2(t), u3(t))T ∈ X : ||(u1(t), u2(t), u3(t))T
|| < Ũ }. It can be easily seen that the condition 1 of
Lemma 3 is satisfied.

If (u1(t), u2(t), u3(t))T ∈ ∂Ω∩KerG = ∂Ω ∩ R
3,

(u1(t), u2(t), u3(t)) is a constant vector and the value
of |u1| + |u2| + |u3| is equal to Ũ . If system (35) has
at least one solution, then

SH

⎛
⎝ u1
u2
u3

⎞
⎠

=

⎛
⎜⎜⎜⎜⎝

r

1 + γ γ1eu1+u2

(
1 − eu1

K

)
− βeu2

α + eu1

s

(
1 − eu2

L

)
+ λ βeu1

α + eu1
− θe2u1

μ2 + e2u1
− Feu2

h
2 + e2u2

Ae−u3 − γ eu1 − d

⎞
⎟⎟⎟⎟⎠

�=
⎛
⎝ 0
0
0

⎞
⎠ .

If system (35) has no solution, then we can directly
obtain

SH

⎛
⎝ u1
u2
u3

⎞
⎠ �=

⎛
⎝ 0
0
0

⎞
⎠ .

Hence, the condition 2 in Lemma 3 is satisfied.
Let us define the homomorphism J : ImS →

KerG, (u1, u2, u3)T → (u1, u2, u3)T , then we have

deg
(
JSH(u1, u2, u3)

T ,Ω ∩ KerG, (0, 0, 0)T
)

=
∑

z∗i ∈SH−1
(0)

sgnJSH(z∗i )

=
∑

(u∗
1i

,u∗
2i

,u∗
3i

)∈SH−1
(0)

detG(u∗
1i , u

∗
2i , u

∗
3i )Π

n
i=1u

∗
1i

Πn
i=1u

∗
2i Π

n
i=1u

∗
3i �= 0.

Hence, the condition 3 in Lemma 3 is satisfied. Thus,
using Lemma 3, we conclude that system (23) has at
least one positive ω-periodic solution in Ω ∩Dom(G).

��
Lemma 4 Let κ be a real number and f be a non-
negative function defined on [κ,+∞) such that f is
integrable and uniformly continuous on [κ,+∞), then
lim

t→+∞ f (t) = 0 [64].

4.2 Global stability of positive periodic solutions

Here, we derive sufficient conditions for global asymp-
totic stability of the positive periodic solutions of sys-
tem (23).

Theorem 7 Suppose that system (23) has a positive
periodic solution and 0 < P(0), Z(0), ET (0) < +∞,
then the ω-periodic positive solution is unique and
globally attractive provided the following conditions
hold:[

μ3γ (t) + μ1r(t)γ (t)γ1(t)e
L3

(1 + γ (t)γ1(t)eH1+H3 )2

− μ1r(t)γ (t)γ1(t)e
H1+H3

K (t)(1 + γ (t)γ1(t)eL1+L3 )2

+ μ1r(t)

K (t)(1 + γ (t)γ1(t)eH1+H3 )

123



A nonautonomous model for the effect of environmental toxins on plankton dynamics 3387

− μ1β(t)eH2

(α(t) + eL1 )2
− μ2λ(t)β(t)

α(t) + eL1
+ μ2λ(t)β(t)eL1

(α(t) + eH1 )2

− 2μ2θ(t)e3H1

(μ2(t) + e2L1 )2
+ 2μ2θ(t)eL1

μ2(t) + e2H1

]
t∈[0,ω]

> 0, (36)

[
μ1β(t)

α(t) + eH1
+ μ2s(t)

L(t)
− 2μ2F(t)eH2

(h2(t) + e2L2 )2

+ F(t)

h2(t) + e2H2

]
t∈[0,ω]

> 0, (37)
[

μ1r(t)γ (t)γ1(t)e
L1

(1 + γ (t)γ1(t)eH1+H3 )2

− μ1r(t)γ (t)γ1(t)e
2H1

K (t)(1 + γ (t)γ1(t)eL1+L3 )2
+ μ3A(t)

e2H3

]
t∈[0,ω]

> 0.(38)

Proof Let system (23) has at least oneω-periodic solu-
tion (P̃(t), Z̃(t), ẼT (t)), then we have

eL1 ≤ P̃(t) ≤ eH1 , eL2 ≤ Z̃(t) ≤ eH2 ,

eL3 ≤ ẼT (t) ≤ eH3 . (39)

For any positive periodic solution (P(t), Z(t), ET (t)),
we define

V (t) = μ1| ln P(t) − ln P̃(t)| + μ2| ln Z(t) − ln Z̃(t)|
+μ3| ln ET (t) − ln ẼT (t)|. (40)

By calculating the Dini’s derivative of Eq. (40) along
the solutions of system (23), we get

D+V (t) = μ1sgn(P(t) − P̃(t))

(
Ṗ(t)

P(t)
−

˙̃P(t)

P̃(t)

)

+μ2sgn(Z(t) − Z̃(t))

(
Ż(t)

Z(t)
−

˙̃Z(t)

Z̃(t)

)

+μ3sgn(ET (t) − ẼT (t))

(
ĖT (t)

ET (t)
−

˙̃ET (t)

ẼT (t)

)
. (41)

Now,

μ1sgn(P(t) − P̃(t))

(
Ṗ(t)

P(t)
−

˙̃P(t)

P̃(t)

)

≤ −μ1
r(t)γ (t)γ1(t)P̃(t)

(1 + γ (t)γ1(t)P(t)ET (t))(1 + γ (t)γ1(t)P̃(t)ẼT (t))

|ET (t) − ẼT (t)|
− μ1

r(t)γ (t)γ1(t)ET (t)

(1 + γ (t)γ1(t)P(t)ET (t))(1 + γ (t)γ1(t)P̃(t)ẼT (t))

|P(t) − P̃(t)|
+ μ1

r(t)γ (t)γ1(t)P(t)ET (t)

K (t)(1 + γ (t)γ1(t)P(t)ET (t))(1 + γ (t)γ1(t)P̃(t)ẼT (t))

|P(t) − P̃(t)|
+ μ1

r(t)γ (t)γ1(t)P(t)P̃(t)

K (t)(1 + γ (t)γ1(t)P(t)ET (t))(1 + γ (t)γ1(t)P̃(t)ẼT (t))

|ET (t) − ẼT (t)|
− μ1

r(t)

K (t)(1 + γ (t)γ1(t)P̃(t)ẼT (t))
|P(t) − P̃(t)|

+μ1
β(t)Z(t)

(α(t) + P(t))(α(t) + P̃(t))
|P(t) − P̃(t)|

−μ1
β(t)

α(t) + P̃(t)
|Z(t) − Z̃(t)|; (42)

μ2sgn(Z(t) − Z̃(t))

(
Ż(t)

Z(t)
−

˙̃Z(t)

Z̃(t)

)

≤ −μ2
s(t)

L(t)
|Z(t) − Z̃(t)|

+μ2
λ(t)β(t)

α(t) + P̃(t)
|P(t) − P̃(t)|

−μ2
λ(t)β(t)P(t)

(α(t) + P(t))(α(t) + P̃(t))
|P(t) − P̃(t)|

+μ2
θ(t)P2(t)(P + P̃(t))

(μ2(t) + P2(t))(μ2 + P̃2(t))
|P(t) − P̃(t)|

−μ2
θ(t)(P(t) + P̃(t))

μ2 + P̃2(t)
|P(t) − P̃(t)|

+μ2
F(t)(Z(t) + Z̃(t))

(h2(t) + Z2(t))(h2(t) + Z̃2(t))
|Z(t) − Z̃(t)|

− μ2F(t)

h2(t) + Z̃2(t)
|Z(t) − Z̃(t)| (43)

and

μ3sgn(ET (t) − ẼT (t))

(
ĖT (t)

ET (t)
−

˙̃ET (t)

ẼT (t)

)

≤ −μ3A(t)
|ET (t) − ẼT (t)|
ET (t)ẼT (t)

−μ3γ (t)|P(t) − P̃(t)|. (44)

Using inequalities (42)–(44) in Eq. (41), we have
D+V (t) ≤

−
[
μ1

r(t)γ (t)γ1(t)P̃(t)

(1 + γ (t)γ1(t)P(t)ET (t))(1 + γ (t)γ1(t)P̃(t)ẼT (t))(
1 − P(t)

K (t)

)
+ μ3A(t)

ET (t)ẼT (t)

]
|ET (t) − ẼT (t)|

− [
μ3γ (t)

+ μ1
r(t)γ (t)γ1(t)ET (t)

(1 + γ (t)γ1(t)P(t)ET (t))(1 + γ (t)γ1(t)P̃(t)ẼT (t))(
1 − P(t)

K (t)

)
+ μ1r(t)

K (t)(1 + γ (t)γ1(t)P̃(t)ẼT (t))

− μ1β(t)Z(t)

(α(t) + P(t))(α(t) + P̃(t))

+μ2
λ(t)β(t)

α(t) + P̃(t)

(
P(t)

(α(t) + P(t))
− 1

)

+ μ2
θ(t)(P(t) + P̃(t))

μ2(t) + P̃2(t)

(
1 − P2(t)

μ2(t) + P2(t)

)]

|P(t) − P̃(t)|
−
[

μ1β(t)

α(t) + P̃(t)
+ μ2s(t)

L(t)
+ μ2

F(t)

h2(t) + Z̃2(t)(
1 − Z(t) + Z̃(t)

h2(t) + Z2(t)

)]
|Z(t) − Z̃(t)|. (45)

Thus,
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D+V (t) ≤ −δ1|P(t) − P̃(t)| − δ2|Z(t) − Z̃(t)|
−δ3|ET (t) − ẼT (t)|, (46)

where

δ1 = μ3γ (t) + μ1r(t)γ (t)γ1(t)eL3

(1 + γ (t)γ1(t)eH1+H3)2

− μ1r(t)γ (t)γ1(t)eH1+H3

K (t)(1 + γ (t)γ1(t)eL1+L3)2

+ μ1r(t)

K (t)(1 + γ (t)γ1(t)eH1+H3)

− μ1β(t)eH2

(α(t) + eL1)2
− μ2λ(t)β(t)

α(t) + eL1

+ μ2λ(t)β(t)eL1

(α(t) + eH1)2
− 2μ2θ(t)e3H1

(μ2(t) + e2L1)2

+ 2μ2θ(t)eL1

μ2(t) + e2H1
,

δ2 = μ1β(t)

α(t) + eH1
+ μ2s(t)

L(t)

− 2μ2F(t)eH2

(h2(t) + e2L2)2
+ F(t)

h2(t) + e2H2
,

δ3 = μ1r(t)γ (t)γ1(t)eL1

(1 + γ (t)γ1(t)eH1+H3)2

− μ1r(t)γ (t)γ1(t)e2H1

K (t)(1 + γ (t)γ1(t)eL1+L3)2
+ μ3A(t)

e2H3
.

If conditions (36)−(38) are satisfied, then δi > 0,
i = 1 − 3 and in that case V (t) is nonincreasing on
[0,∞). Since 0 < P(0), Z(0), ET (0) < +∞, inte-
grating inequality (46) from 0 to t , we have

V (t) + δ1

∫ t

0
|P(t) − P̃(t)| + δ2

∫ t

0
|Z(t) − Z̃ t)|

+δ3

∫ t

0
|ET (t) − ẼT (t)| ≤ V (0) < ∞,

∀ t > 0. (47)

From Lemma 4, we thus have

lim
t→∞ |P(t) − P̃(t)| = 0, lim

t→∞ |Z(t) − Z̃(t)| = 0,

lim
t→∞ |ET (t) − ẼT (t)| = 0, (48)

so the ω-periodic solution (P̃(t), Z̃(t), ẼT (t)) of sys-
tem (23) is globally attractive.

To prove that the globally attractive periodic solu-
tion (P̃(t), Z̃(t), ẼT (t)) is unique, we assume that
(P̃1(t), Z̃1(t), ẼT 1(t)) is another globally attractive
periodic solution of system (23) with period ω. If
this solution is different from the solution (P̃(t), Z̃(t),

ẼT (t)), then there exists at least one ξ ∈ [0, ω] such
that P̃(ξ) �= P̃1(ξ), which means |P̃(ξ) − P̃1(ξ)| =
ε1 > 0. Thus,

ε1 = lim
n→∞ |P̃(ξ + n) − P̃1(ξ + n)|

= lim
t→∞ |P̃(t) − P̃1(t)| > 0,

which contradicts the fact that the periodic solution
(P̃(t), Z̃(t), ẼT (t)) is globally attractive. Therefore,
P̃(t) = P̃1(t), ∀ t ∈ [0, ω]. Similar arguments can
be used for other components, Z̃(t) and ẼT (t) also.
Hence, system (23) has globally attractive unique pos-
itive ω-periodic solution. ��

5 Existence of almost positive periodic solution

When considering environmental factors effects, the
concept of almost periodicity is sometimesmore realis-
tic and more general than periodicity because of possi-
ble environmental fluctuations. In this section, assume
therefore that the model parameters are almost peri-
odic functions. We obtain sufficient conditions for the
existence of a unique globally attractive positive almost
periodic solution of system (23).

Definition 3 Let D be an open subset ofRn . The func-
tion f (t, x) ∈ C(R × D,Rn) is said to be almost peri-
odic in t uniformly for x ∈ D if for any ε > 0 and for
any compact set F in D, there exists a positive num-
ber L(ε, F) such that any interval of length L(ε, F)

contains a τ for which

|| f (t + τ, x) − f (t, x)|| ≤ ε, ∀ t ∈ R, x ∈ F.

Consider the almost periodic system

x ′ = f (t, x), (49)

where f (t, x) ∈ C(R × Γ,Rn), Γ = {x : |x | < B}
and f (t, x) is almost periodic in t uniformly for x ∈
Γ . By means of a Lyapunov function, we discuss the
existence of a uniformly asymptotically stable almost
periodic solution in the whole region. To discuss this,
corresponding to system (49), we consider the systems

x ′ = f (t, x), y′ = f (t, y). (50)

The next two lemmas are standard results [65].

Lemma 5 Suppose that there exists a Lyapunov func-
tion V (t, x, y) defined on 0 ≤ t < ∞, |x | < B,
|y| < B, which satisfies the following conditions:
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1. a(|x − y|) ≤ V (t, x, y) ≤ b(|x − y|), where a(r)
and b(r) are continuous, increasing and positive
definite functions.

2. |V (t, x1, y1)−V (t, x2, y2)| ≤ k{|x1 − x2|+ |y1 −
y2|}, where k > 0 is a constant.

3. V̇ (t, x, y) ≤ −αV (t, x, y), where α > 0 is a con-
stant.

Then, in the region R × Γ , there exists a unique uni-
formly asymptotically stable almost periodic solution
of system (49), which is bounded by B.

Put P(t) = eu(t), Z(t) = ev(t) and ET (t) = ew(t)

in system (23), we get

du(t)

dt
= r(t)

1 + γ (t)γ1(t)eu(t)+w(t)

(
1 − eu(t)

K (t)

)

− β(t)ev(t)

α(t) + eu(t)
,

dv(t)

dt
= s(t)

(
1 − ev(t)

L(t)

)
+ λ(t)β(t)eu(t)

α(t) + eu(t)

− θ(t)e2u(t)

μ2(t) + e2u(t)
− F(t)ev(t)

h2(t) + e2v(t)
,

dw(t)

dt
= A(t)e−w(t) − γ (t)eu(t) − d(t).

Lemma 6 Let us denote mε
i = mi and Mε

i = Mi for
i = 1, 2, 3 in the region Γε . Assuming that the condi-
tions of Lemma 2 are satisfied, system (30) is positively
invariant and ultimately bounded in the region

Γ ∗ = {(P, Z , ET ) ∈ R
3| ln{m1} ≤ u(t) ≤ ln{M1},

ln{m2} ≤ v(t) ≤ ln{M2},
ln{m3} ≤ w(t) ≤ ln{M3}}.

Consider the ordinary differential equation

x ′ = f (t, x), f (t, x) ∈ C(R × D,Rn),

where D is an open subset of Rn , f (t, x) is almost
periodic in t , uniformly with respect to x ∈ D.

Let S be the set of all solutions (P(t), Z(t), ET (t))T

of system (23) satisfying m1 ≤ P(t) ≤ M1, m2 ≤
Z(t) ≤ M2, m3 ≤ ET (t) ≤ M3, ∀ t ∈ [0,∞).

Lemma 7 The set S is nonempty.

Proof From the properties of almost periodic func-
tions, there exists {tn} with t → ∞ as n → ∞,
we have r(t + tn) → r(t), K (t + tn) → K (t),
β(t+tn) → β(t), α(t+tn) → α(t), γ (t+tn) → γ (t),

γ1(t+tn) → γ1(t), s(t+tn) → s(t), L(t+tn) → L(t),
λ(t+ tn) → λ(t), θ(t+ tn) → θ(t),μ(t+ tn) → μ(t),
F(t+tn) → F(t), h(t+tn) → h(t), A(t+tn) → A(t)
and d(t + tn) → d(t) as n → ∞ uniformly on R. Let
S1(t) be a solution of system (23) satisfying m1 ≤
P(t) ≤ M1, m2 ≤ Z(t) ≤ M2, m3 ≤ ET (t) ≤ M3 for
t > T . Clearly, the sequence S1(t + tn) is equicontinu-
ous and uniformly bounded on every compact subset of
R. Therefore, by Arzela-Ascoli theorem, there exists a
subsequence S1(t + tk) which converges to a continu-
ous function s1(t) = (P̂(t), Ẑ(t), ÊT (t))T as k → ∞
uniformly on every compact subset of R. Let T∗ ∈ R

be given. Here, we assume that tk + T∗ ≥ T , ∀ k. For
t ≥ 0, the integration of (23) on [tk + T∗, t + tk + T∗]
leads to

P(t + tk + T∗) − P(tk + T∗)

=
∫ t+tk+T∗

tk+T∗

[
r(x)P(x)

1 + γ (x)γ1(x)P(x)ET (x)(
1 − P(x)

K (x)

)
− β(x)P(x)Z(x)

α(x) + P(x)

]
dx

=
∫ t+T∗

T∗

[
r(x + tk)P(x + tk)

1 + γ (x + tk)γ1(x + tk)P(x + tk)ET (x + tk)(
1 − P(x + tk)

K (x + tk)

)

−β(x + tk)P(x + tk)Z(x + tk)

α(x + tk) + P(x + tk)

]
dx .

Similarly,

Z(t + tk + T∗) − Z(tk + T∗)

=
∫ t+T∗

T∗

[
s(x + tk)Z(x + tk)

(
1 − Z(x + tk)

L(x + tk)

)

− λ(x + tk)β(x + tk)P(x + tk)Z(x + tk)

α(x + tk) + P(x + tk)

−θ(x + tk)P2(x + tk)Z(x + tk)

μ2(x + tk) + P2(x + tk)

− F(x + tk)Z2(x + tk)

h2(x + tk) + Z2(x + tk)

]
dx,

ET (t + tk + T∗) − ET (tk + T∗)

=
∫ t+T∗

T∗

[
A(x+tk)−γ (x + tk)P(x+tk)ET (x + tk)

− d(x + tk)ET (x + tk)] dx .

Now, we apply Lebesgue dominated convergence
theorem to obtain,

P̂(t + T∗) − P̂(T∗)
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=
∫ t+T∗

T∗

[
r(x)P̂(x)

1 + γ (x)γ1(x)P̂(x)ÊT (x)(
1 − P̂(x)

K (x)

)
− β(x)P̂(x)Ẑ(x)

α(x) + P̂(x)

]
dx,

Ẑ(t + T∗) − Ẑ(T∗)

=
∫ t+T∗

T∗

[
s(x)Ẑ(x)

(
1 − Ẑ(x)

L(x)

)

− λ(x)β(x)P̂(x)Ẑ(x)

α(x) + P̂(x)

−θ(x)P̂2(x)Ẑ(x)

μ2(x) + P̂2(x)
− F(x)Ẑ2(x)

h2(x) + Ẑ2(x)

]
dx,

ÊT (t + T∗) − ÊT (T∗)

=
∫ t+T∗

T∗

[
A(x) − γ (x)P̂(x)ÊT (x)

−d(x)ÊT (x)
]
dx, ∀ t ≥ 0.

SinceT∗ ∈ R is arbitrary, s1(t) = (P̂(t), Ẑ(t), ÊT (t))T

is a solution of system (23) onR. Clearly,m1 ≤ P̂(t) ≤
M1, m2 ≤ Ẑ(t) ≤ M2, m3 ≤ ÊT (t) ≤ M3, ∀ t ∈ R.
Therefore, s1(t) ∈ S. ��
Theorem 8 Assuming that the conditions of Lemma 2
are satisfied, system (30) has a unique uniformly
asymptotically stable almost periodic solution in Γε

provided the following conditions are satisfied:

inf
t∈R

{
r(t)

(1 + γ (t)γ1(t)M1M3)2

×
(

γ (t)γ1(t)m3 + 1

K (t)

)

+ 2θ(t)μ2(t)m1

(μ2(t) + M2
1 )2

+ γ (t)

− β(t)(M2 + α(t)λ(t))

(α(t) + m1)2

}
> 0, (51)

inf
t∈R

{
s(t)

L(t)
+ β(t)

α(t) + M1

− F(t)(M2
2 − h2(t))

(h2(t) + m2
2)

2

}
> 0, (52)

inf
t∈R

{
A(t)

M2
3

+ r(t)γ (t)γ1(t)m1

(1 + γ (t)γ1(t)M1M3)2

×
(
1 − M1

K (t)

)}
> 0. (53)

Proof To prove that system (23) has unique uniformly
asymptotically stable almost periodic solution in Γε ,

it suffices to show that system (30) exhibits the same
property in Γ ∗.

Consider the product systems

du1(t)

dt
= r(t)

1 + γ (t)γ1(t)eu1(t)+u3(t)

(
1 − eu1(t)

K (t)

)

− β(t)eu2(t)

α(t) + eu1(t)
,

du2(t)

dt
= s(t)

(
1 − eu2(t)

L(t)

)
+ λ(t)β(t)eu1(t)

α(t) + eu1(t)

− θ(t)e2u1(t)

μ2(t) + e2u1(t)
− F(t)eu2(t)

h2(t) + e2u2(t)
,

du3(t)

dt
= A(t)e−u3(t) − γ (t)eu1(t) − d(t); (54)

dv1(t)

dt
= r(t)

1 + γ (t)γ1(t)ev1(t)+v3(t)

(
1 − ev1(t)

K (t)

)

− β(t)ev2(t)

α(t) + ev1(t)
,

dv2(t)

dt
= s(t)

(
1 − ev2(t)

L(t)

)
+ λ(t)β(t)ev1(t)

α(t) + ev1(t)

− θ(t)e2v1(t)

μ2(t) + e2v1(t)
− F(t)ev2(t)

h2(t) + e2v2(t)
,

dv3(t)

dt
= A(t)e−v3(t) − γ (t)ev1(t) − d(t) (55)

and the Lyapunov function,

V (t, u1, u2, u3, v1, v2, v3) = |u1(t) − v1(t)|
+|u2(t) − v2(t)| + |u3(t) − v3(t)|.

Then the condition 1 of Lemma 5 is satisfied when
a(r) = b(r) = r , r ≥ 0.

In addition,

|V (t, u1, u2, u3, v1, v2, v3)

−V (t, u4, u5, u6, v4, v5, v6)|
= (|u1(t) − v1(t)|
+|u2(t) − v2(t)| + |u3(t) − v3(t)|)

−(|u4(t) − v4(t)| + |u5(t)
−v5(t)| + |u6(t) − v6(t)|)
≤ (|u1(t) − u4(t)| + |u2(t) − u5(t)|
+|u3(t) − u6(t)|)

+(|v1(t) − v4(t)| + |v2(t)
−v5(t)| + |v3(t) − v6(t)|)
≤ ||(u1(t), u2(t), u3(t)) − (u4(t), u5(t), u6(t))||
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+||(v1(t), v2(t), v3(t)) − (v4(t), v5(t), v6(t))||,
which satisfies condition 2 of Lemma 5.

Let (u1(t), u2(t), u3(t))T and (v1(t), v2(t), v3(t))T

be any two solutions of system (30). Now, calculating
the upper right derivative of V (t) along the solutions
of system (30), we get

D+V (t) = sgn(u1(t) − v1(t))

×
[{

r(t)

1 + γ (t)γ1(t)eu1(t)+u3(t)

×
(
1 − eu1(t)

K (t)

)

− r(t)

1 + γ (t)γ1(t)ev1(t)+v3(t)

(
1 − ev1(t)

K (t)

)}

−
{

β(t)eu2(t)

α(t) + eu1(t)
− β(t)ev2(t)

α(t) + ev1(t)

}]

+sgn(u2(t) − v2(t))

×
[
− s(t)

L(t)
(eu2(t) − ev2(t)) + λ(t)β(t)

×
{

eu1(t)

α(t) + eu1(t)
− ev1(t)

α(t) + ev1(t)

}

−
{

θ(t)e2u1(t)

μ2(t) + e2u1(t)
− θ(t)e2v1(t)

μ2(t) + e2v1(t)

}

−
{

F(t)eu2(t)

h2(t) + e2u2(t)
− F(t)ev2(t)

h2(t) + e2v2(t)

}]

+sgn(u3(t) − v3(t))
[
A(t)(e−u3(t)

−e−v3(t)) − γ (t)(eu1(t) − ev1(t))
]
.

After rearranging the terms, we have

D+V (t) =
−
[

r(t)

(1 + γ (t)γ1(t)eu1(t)+u3(t))(1 + γ (t)γ1(t)ev1(t)+v3(t))

×
(

γ (t)γ1(t)e
v3(t) + 1

K (t)

)

+ θ(t)μ2(t)(eu1(t) + ev1(t))

(μ2(t) + e2u1(t))(μ2(t) + e2v1(t))
+ γ (t)

− β(t)(α(t)λ(t) + ev2(t))

(α(t) + eu1(t))(α(t) + ev1(t))

]
|eu1(t) − ev1(t)|

−
[
s(t)

L(t)
+ β(t)

α(t) + eu1(t)

− F(t)(eu2(t)+v2(t) − h2(t))

(h2(t) + e2u2(t))(h2(t) + e2v2(t))

]

×|eu2(t) − ev2(t)|

−
[

A(t)

eu3(t)+v3(t)

+ r(t)γ (t)γ1(t)e
u1(t)

(1 + γ (t)γ1(t)eu1(t)+u3(t))(1 + γ (t)γ1(t)ev1(t)+v3(t))

×
(
1 − ev1(t)

K (t)

)]
|eu3(t) − ev3(t)|.

On simplification, we find

D+V (t) ≤ −
[

r(t)

(1 + γ (t)γ1(t)M1M3)
2

×
(

γ (t)γ1(t)m3 + 1

K (t)

)
+ 2θ(t)μ2(t)m1

(μ2(t) + M2
1 )2

+ γ (t)

−β(t)(α(t)λ(t) + M2)

(α(t) + m1)
2

]
|eu1(t) − ev1(t)|

−
[
s(t)

L(t)
+ β(t)

α(t) + M1
− F(t)(M2

2 − h2(t))

(h2(t) + m2
2)

2

]

×|eu2(t) − ev2(t)|

−
[
A(t)

M2
3

+ r(t)γ (t)γ1(t)m1

(1 + γ (t)γ1(t)M1M3)
2

(
1 − M1

K (t)

)]

×|eu3(t) − ev3(t)|.

Note that ui and vi are continuous functions on the
bounded region Γ ∗. Using the mean value theorem, we
have

|eui (t) − evi (t)| = eθi (t)|ui (t) − vi (t)|, ui (t)

≤ θi (t) ≤ vi (t), i = 1, 2, 3.

Thus, we obtain

D+V (t) ≤ −m1

[
r(t)

(1 + γ (t)γ1(t)M1M3)
2

×
(

γ (t)γ1(t)m3 + 1

K (t)

)

+ 2θ(t)μ2(t)m1

(μ2(t) + M2
1 )2

+ γ (t)

− β(t)(α(t)λ(t) + M2)

(α(t) + m1)
2

]
|u1(t) − v1(t)|

−m2

[
s(t)

L(t)
+ β(t)

α(t) + M1
− F(t)(M2

2 − h2(t))

(h2(t) + m2
2)

2

]

× |u2(t) − v2(t)|
−m3

[
A(t)

M3
+ r(t)γ (t)γ1(t)m1

(1 + γ (t)γ1(t)M1M3)
2

×
(
1 − M1

K (t)

)]
|u3(t) − v3(t)|

≤ −η(|u1(t) − v1(t)| + |u2(t) − v2(t)|
+ |u3(t) − v3(t)|)

= − η||(u1(t), u2(t), u3(t)) − (v1(t), v2(t), v3(t))||,

where

η = min

{
inf
t∈R

[
r(t)

(1 + γ (t)γ1(t)M1M3)
2
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×
(

γ (t)γ1(t)m3 + 1

K (t)

)

+ 2θ(t)μ2(t))m1

(μ2(t) + M2
1 )2

+ γ (t)

− β(t)(M2 + α(t)λ(t))

(α(t) + m1)
2

]
m1,

× inf
t∈R

[
s(t)

L(t)
+ β(t)

α(t) + M1
− F(t)(M2

2 − h2(t))

(h2(t) + m2
2)

2

]
m2,

× inf
t∈R

[
A(t)

M2
3

+ r(t)γ (t)γ1(t)m1

(1 + γ (t)γ1(t)M1M3)
2

(
1 − M1

K (t)

)]
m3

}
> 0.

Hence, the condition 3 of Lemma 5 is verified. So,
we conclude that system (30) has unique uniformly
asymptotically stable almost periodic solution in Γ ∗
and, as a consequence, also in Γε . The proof is now
complete. ��

6 Numerical simulations

Here, we report the simulations performed to inves-
tigate the system behavior using the MATLAB. To
visualize different analytical results and to have some
insights from it, we have numerically simulated sys-
tems (1) and (23) by using hypothetical parameter val-
ues given inTable 1, chosenwithin the ranges as defined
in the existing literature [44,45,53].

6.1 Effect of varying model parameters on output
variables

The effects of some important parameters of model
(1) on the densities of phytoplankton, zooplankton and
environmental toxins appear in Fig. 3. From Fig. 3a, an
increase in the toxins release rate (θ ) induces a phyto-
plankton increase, but a zooplankton and environmen-
tal toxins decrease. Both these behaviors are saturated
after a certain level of toxin release rate. On increasing
the predation rate of fish on zooplankton, phytoplank-
ton increases linearly while zooplankton and environ-
mental toxins decrease (Fig. 3b). The input rate of
environmental toxins decreases the densities of phy-
toplankton and zooplankton (Fig. 3c). It is observed
that for high input rate of environmental toxins in the
system, the phytoplankton density drops to very low
levels. But by increasing the depletion rate of envi-
ronmental toxins, the densities of phytoplankton and

zooplankton increase almost linearly (Fig. 3d). For the
larger values of depletion rate, the environmental tox-
ins may be substantially reduced to very low values.
On increasing the contact rate between phytoplankton
and environmental toxins, the phytoplankton density
decreases and entails a corresponding decrease of zoo-
plankton density (Fig. 3e). The environmental toxins
decrease in the system as this contact rate increases.
Overall, we observe that decrease in the input rate or
increase in the depletion rate of environmental toxins
may be plausible factors tomaintain ecological balance
of the food web.

6.2 Sensitivity analysis

It is well known that to run simulations the parameters
of amodel should have values, which come from exper-
iments and are therefore subject to errors. To overcome
the uncertainties in their determination for system (1),
here two statistical techniques are used for global sen-
sitivity analysis: Latin hypercube sampling (LHS) and
partial rank correlation coefficients (PRCCs). The for-
mer is based on a stratified sampling without replace-
ment that allows to vary several parameters simultane-
ously in an efficient way [66,67]. The latter assesses
how strongly correlated are the model output and the
input parameters, by returning a number in the interval
[−1, 1], the sign being related to the type of correlation,
the value to its strength. Assuming a uniform distribu-
tion for each parameter, 200 simulations per LHS run
are performed, using the reference values of Table 1,
letting the parameters deviate±25% from these values.

Figure 4 depicts the PRCCvalues for each parameter
of the model using the density of environmental toxins
as the response function. Parameters with the highest
PRCC values have the largest impact on the density of
environmental toxins. Therefore, the key parameters
influencing, when increasing, the density of environ-
mental toxins are separated into those that decrease the
density of environmental toxins (negative PRCC val-
ues) and those that cause the density of environmental
toxins to increase (positive PRCC values). From Fig.
4, it follows that the parameters that have the negative
influence on the density of environmental toxins are r ,
K , γ , α, s, θ , μ, F and d, while the parameters with
the positive impact on the density of environmental tox-
ins are γ1, β, L , λ, h and A. Of these, the significant
parameters are r , K , γ , β, A and d. Identification of
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Fig. 3 Effects of a θ , b F , c A, d d and e γ on phytoplankton (first column), zooplankton (second column) and environmental toxins
(third column). The remaining parameter values are the same as in Table 1

these key parameters is important for the formulation of
effective control strategies necessary for combating the
level of environmental toxins in the aquatic system. In
particular, the results of this sensitivity analysis suggest
that a strategy that reduces the parameters with positive

PRCC values (i.e., γ1, β, L , λ, h and A) will adequately
reduce the density of phytoplankton in the system. Fur-
thermore, a strategy that increases the parameters with
negative PRCC values (i.e., r , K , γ , α, s, θ ,μ, F and d)
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Fig. 4 Effect of uncertainty
of model (1) on the density
of environmental toxins in
the aquatic system.
Significant parameters are
marked by ∗. The mean
values of parameters are
chosen as in Table 1
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will be effective in curtailing the level of environmental
toxins in the system.

6.3 Existence of transcritical and Hopf bifurcations

We find that for the parameter values in Table 1 and
θ = 0.8, system (1) settles to the zooplankton-free
equilibrium, E1 (see Fig. 5a) while at r = 0.01, with
the remaining parameter values as in Table 1, the sys-
tem settles to the phytoplankton-free equilibrium, E2

(see Fig. 5b). For the parameter values in Table 1,
the dynamics near the coexistence equilibrium, E∗,
changes as the uptake rate of phytoplankton by zoo-
plankton (β) increases. It is observed that for small
values of β the equilibrium E∗ is stable, but on increas-
ing the values of β past a threshold, the equilibrium E∗
destabilizes and periodic oscillations appear. This fact
reveals that a Hopf bifurcation occurs as the values of
β crosses a threshold value. The critical value of β at
which this change in stability occurs is found to be
β = β∗ ≈ 0.585. It may be noted that for β ∈ [0, β∗),
all the eigenvalues of the Jacobian matrix correspond-
ing to the equilibrium E∗ are either negative or with
negative real parts, showing that the equilibrium E∗ is
stable whenever β < β∗, while loss of stability occurs
for β > β∗. The conditions stated in Theorem 4 are
also fulfilled, which guarantees that model (1) under-
goes Hopf bifurcation around the equilibrium E∗ at
β = β∗. Further, we found that μ2 > 0, β2 < 0
and τ2 > 0. Using Theorem 5, we can say that the
Hopf bifurcation is supercritical and bifurcating peri-
odic solutions exist for β > β∗; the periodic solutions
are stable and their period increases.

We observe that the coexistence equilibrium is sta-
ble for the parameter values in Table 1 (see Fig. 6a) but

becomes unstable and limit cycle oscillations appears
on increasing the value of β. Figure 6b depicts oscilla-
tory behavior of the system at β = 0.8. From Figs. 5a
and 6a, we may conclude that the equilibria E1 and E∗
are related via transcritical bifurcation with the toxin
release rate by phytoplankton as a bifurcation parame-
ter (this bifurcation diagram is not shown). Similarly,
from Figs. 5b and 6a, we may infer that the equilibria
E2 and E∗ are related via transcritical bifurcation with
the intrinsic growth rate of phytoplankton as a bifur-
cation parameter (also this bifurcation diagram is not
shown). We then let A = 6.1. The system dynamics
becomes oscillatory (Fig. 6c), but note that an increase
in s again stabilizes the system at the coexistence equi-
librium (see Fig. 6dwith s = 0.05). This shows that the
system can be returned at a stable state by feedingmore
the zooplankton, if it oscillates due to the presence of
environmental toxins. To have a clearer view on the
effects of β, we vary β and draw a bifurcation diagram
of the system (Fig. 7a): For low values of β, the system
is stable, but on increasing β, the system loses its sta-
bility and limit cycles appear past a critical value of β.
Similar behaviors are observed for the input rate of the
environmental toxins A (Fig. 7b), the contact rate of
environmental toxins with phytoplankton γ (Fig. 7c),
the carrying capacity of zooplankton L (Fig. 7d), the
environmental toxins-induced growth suppression of
phytoplankton population γ1 (Fig. 7e) and the growth
of zooplankton due to consumption of phytoplankton λ

(Fig. 7f). Next we observe that for low values of θ , sys-
tem (1) exhibits persistent oscillations that are damped
out, with the system settling to stable coexistence, for
higher values of θ , Fig. 8a. Similar effects appear for
the predation rate of fish on zooplankton F (Fig. 8b),
the intrinsic growth rate of phytoplankton r (Fig. 8c),
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Fig. 5 System (1) settles to a zooplankton-free equilibrium E1 at θ = 0.8, and b phytoplankton-free equilibrium E2 at r = 0.01. The
remaining parameter values are the same as in Table 1

the depletion rate of environmental toxins d (Fig. 8d),
the half-saturation constant for the uptake of phyto-
plankton by zooplankton α (Fig. 8e), and the intrinsic
growth rate of zooplankton due to alternative food, s
(Fig. 8f).

Next, we see the combined effects of some of
these parameters on the dynamics of system (1). The
two-parameter bifurcation diagrams are plotted in the
(A, θ), (d, β), (γ, F) and (γ1, s) planes (Fig. 9). Here
red and blue regions represent stable and unstable
domains, respectively. From Fig. 9a, for low values of
θ , on increasing the values of A, the system remains
unstable while after a certain value of θ , the system
stabilizes for all values of A. Figure 9b shows that for
low values of β, the system remains stable only for all
values of d while after a fixed value of β, it is always
unstable. Note that there is a critical value of F , above
which the system is stable for all values of γ , and below
this threshold value, the system is unstable for all values
of γ (Fig. 9c). The stability region is much smaller than
the unstable one. Finally, a similar behavior occurs in
Fig. 9d: The system is stable for all values of γ1 above
a threshold value of s, while it is unstable below it,
irrespective of the values of γ1.

6.4 Seasonality effects

We now perform numerical simulations to investigate
the behavior of the nonautonomous system (23). The
only parameters that are assumed to have a cosinusoidal
form are

θ(t) = θ + θ12 cos(ω1t),

A(t) = A + A12 cos(ω2t), (56)

while the remaining parameters are taken to be inde-
pendent of time.

6.4.1 Fast–slow analysis for commensurate excitation
frequencies

Fast–slow systems, i.e., dynamical systemswhose vari-
ables evolve over two different scales (the fast and
slow ones), are ubiquitous in neuroscience [68], biol-
ogy [69], chemistry [70] and physics [71]. Bursting, as
a result of mutual influence between different scales,
is frequently observed [72] and can be understood by a
bifurcation analysis of the fast subsystem with respect
to the slow variables [73]. The fast subsystem can be in
different states (e.g., the rest and active states), which is
modulated by the slow variables. Bursting will appear
if the slow variables visit the fast subsystem’s different
parameter areas where different states exist [74]. In the
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Fig. 6 System (1) exhibits a stable focus at β = 0.58, b limit cycle oscillations at β = 0.8, c limit cycle oscillations at A = 6.1 and d
stable focus at A = 6.1 and s = 0.05. The remaining parameter values are the same as in Table 1

process of modulating the behaviors of the fast sub-
system, the slow variables, however, may not get any
feedback from the fast variables. That is, the slow vari-
ables do not rely on the fast ones, but evolve on their
own. Here, we investigate the emergence of bursting
dynamics. The general form of the parametrically and
externally excited system (23) with two slow commen-
surate excitation frequencies can be written as

ẋ = F(x, θ12 cos(ω1t)) + A12 cos(ω2t), (57)

where x ∈ R
3 models the dynamics of a relatively fast

changing process, and θ12 cos(ω1t) and A12 cos(ω2t)
(0 < ω1, ω2 � 1) are the slowly varying parametric
and external excitations. Our aim is to transform sys-
tem (57) into the one with one single slow variable,
g(t).
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Fig. 7 Bifurcation diagrams of system (1) with respect to a β, b
A, c γ ,d L ,e γ1 and fλ. Here, themaximumandminimumvalues
of the oscillations are plotted in blue and red colors, respectively.

The remaining parameter values are the same as inTable 1. (Color
figure online)
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Fig. 8 Bifurcation diagrams of system (1) with respect to a θ , b
F , c r , d d, e α and f s. Here, the maximum andminimum values
of the oscillations are plotted in blue and red colors, respectively.

The remaining parameter values are the same as in Table 1 except
A = 6 in (d). (Color figure online)
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Fig. 9 Two-parameters
stability regions of system
(1) in the a (A, θ), b (d, β),
c (γ, F) and d (γ1, s)
planes. Here, red and blue
colors stand for stable and
unstable domains,
respectively. The remaining
parameter values are the
same as in Table 1. (Color
figure online)

Let ω1:ω2 = m:n, wherem and n are integers. Then
the transformed fast–slow system is given by

ẋ = F(x, θ12 f
∗
p (g(t))) + A12 f

∗
q (g(t)), (58)

where g(t) = cos(εlt) = ν, for some ν > 0, is the
slow variable. Here, l is the greatest common divisor
of m and n satisfying m = pl and n = ql, where p
and q are two prime numbers. Hence, the slow exci-
tation frequencies are ω1 = εpl and ω2 = εql with
ε � 1. Here, f ∗

p (x) and f ∗
q (x) are, respectively, the

corresponding trigonometric polynomial for cos(ω1t)
and cos(ω2t), where f ∗

n (x) is the following polynomial
function,

f ∗
n (x) = C0

n x
n − C2

n x
n−2(1 − x2) + C4

n x
n−4(1 − x2)2

− · · · + imCm
n xn−m (1 − x2)m/2, (59)

where m (m ≤ n) is the maximum even number not
larger than n.

The solution trajectories of system (23) are plotted
in Fig. 10 for different values of θ12, A12, ω1 and ω2.
First we fix ω1 = ω2 = 2π/365. We observe that for
θ12 = A12 = 0, the systemhas a stable focus (Fig. 10a).
Keeping θ12 = 0 and increasing the values of A12, the
system exhibits periodic solutions at A12 = 0.05 (see
Fig. 10b) and A12 = 0.1 (see Fig. 10c); the ampli-
tude of oscillations increases on increasing the values
of A12. Now we fix θ12 = 0.01 and gradually increase
the values of A12. We see that at A12 = 0, the sys-

tem exhibits periodic solutions (Fig. 10d) and simi-
lar behavior is observed for higher values of A12 (see
Fig. 10e, f). Now we fix the values of θ12 and A12 at
θ12 = A12 = 0.05 and see the behavior of system
(23) for different values of ω1 and ω2. For ω1 = 0.01
and ω2 = 0.03, we observe that the fast–slow sys-
tem exhibits bursting oscillations (Fig. 10g [75–79]).
Han et al. [75] reported an approximation method, the
frequency-truncation fast–slow analysis, for analyzing
fast–slow dynamics in parametrically and externally
excited systems with two slow incommensurate exci-
tation frequencies. Han et al. [78] presented a general
method for analyzing mixed-mode oscillations in para-
metrically and externally excited systems with two low
excitation frequencies for the case of arbitrarym:n rela-
tion between the slow frequencies of excitations. Next
we set ω1 = 0.03 and ω2 = 0.01 (see Fig. 10h), and
ω1 = ω2 = 2π/365 (see Fig. 10i), and obtain that the
bursting patterns are changing qualitatively. In Table 2,
the parametrically and externally excited system and
the associated fast subsystem with different ω1 and ω2,
and the corresponding control parameters are listed.
Next, we show global stability of the positive periodic
solutions. For this, we plot the phase portrait of the
system (23) in the P − Z − ET space with three dif-
ferent initial values (Fig. 11). From the figure, all the
periodic solutions initiating from three different ini-
tial values converge to a single periodic solution, sug-
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Fig. 10 Time series of system (23) for different combinations of
θ12 and A12: a θ12 = 0 and A12 = 0,b θ12 = 0 and A12 = 0.05, c
θ12 = 0 and A12 = 0.1, d θ12 = 0.01 and A12 = 0, e θ12 = 0.01

and A12 = 0.05, f θ12 = 0.01 and A12 = 0.1, g–i θ12 = 0.05
and A12 = 0.05. In a–f, i ω1 = ω2 = 2π/365; g ω1 = 0.01,
ω2 = 0.03; h ω1 = 0.03, ω2 = 0.01.

gesting that the positive periodic solutions are globally
asymptotically stable. Finally, we fix the value of A12

at A12 = 0.1 and see the effect of θ12 on the nonau-
tonomous system. We draw the bifurcation diagram of
the nonautonomous system by varying the values of
θ12 in the interval (0,0.08] (Fig. 12). We see that on
increasing the values of θ12, the nonautonomous sys-
tem undergoes a Hopf bifurcation and exhibits higher
periodic oscillations.

7 Stochastic model

Environment is full with randomness; the smooth
depiction by deterministic models remains far from the
real situations [51,80,81]. The use of stochastic differ-
ential equations depicts more realistic situation as they
include environmental disturbances. Therefore, we
consider the additive noise present in the atmosphere
which affects the input rate of environmental toxins
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Fig. 11 Phase portrait of system (23) in the P − Z − ET
space with three different initial starts: θ12 = 0.01, A12 = 0.1,
ω1 = ω2 = 2π/365. The figure shows that the positive periodic
solution is globally stable

from various sources. We assume that environmental
fluctuations are of additive noise type which vary as
the distance of dynamical variable increases from the
equilibrium point (P∗, Z∗, E∗

T ). Thus, the stochastic
analogue of deterministic model (1) is given by,

dP =
[

r P

1 + γ γ1PET

(
1 − P

K

)
− βPZ

α + P

]
dt,

dZ =
[
sZ

(
1 − Z

L

)
+ λβPZ

α + P

− θ P2Z

μ2 + P2 − FZ2

h2 + Z2

]
dt,

dET = [A − γ PET − dET ]dt − α1dB1(t). (60)

In system (60), B1 denotes one-dimensional indepen-
dent Brownian motion and α1 represents the intensity
of additive noise.

We do not perform any analytical calculation for
the stochastic system (60) and investigate the behav-
ior of the system through numerical simulation only.
Milstein’s method is used to solve the stochastic dif-
ferential equation [82]. We choose A = 3.15 and the
remaining parameters as in Table 1, forwhich the deter-

ministic system (1) is stable. The intensity of additive
noise is α1 = 0.15. The solution trajectories of sys-
tem (60) are plotted in Fig. 13, showing that in the
presence of environmental noise, the system fluctu-
ates around its coexistence equilibrium. Recall that the
nonautonomous system (23) exhibits periodic solutions
for the sameparametric setup. Thus, for a periodic input
of environmental toxins, the system behaves periodi-
cally while if the input rate of environmental toxins is
affected by additive noise, the system exhibits irregular
fluctuations around the coexistence stable steady state.
The amplitude of the fluctuation increases gradually
with the increment of the intensity of additive noise.
On the other hand, the nonautonomous system shows
bursting patterns when the two slow frequencies are
rationally related.

8 Results and discussion

It is experimentally known that environmental toxins
are harmful to freshwater and marine phytoplankton,
in that they reduce algal growth and lower photosyn-
thesis production [41,43,83]. In this paper, this inter-
action and its consequences have been mathematically
investigated. Our results agree with the above exper-
imental studies, in that environmental toxins present
in water bodies reduce the plankton populations equi-
librium levels. These equilibria depend on the model
parameters. To attain healthier levels, sensitivity analy-
sis can be helpful. It allows to determine the parameters
with positive and negative PRCC values. Thus, a pos-
sible strategy of intervention can be devised, aimed at
reducing the parameters, namely γ1, β, L , λ, h and A,
and increasing instead r , K , γ , α, s, θ , μ, F and d.

The parameters β, A, γ , γ1, L and λ have desta-
bilizing effects on the dynamics of the system, while
the parameters θ , α, d, F , r and s have stabilizing
effects. We obtain a threshold value of the interaction
rate between environmental toxins and phytoplank-
ton (γ ∗ ≈ 0.32), above which the system produces
limit cycle oscillations. Below that threshold value of
the rate of contact between phytoplankton and envi-
ronmental toxins, the system remains stable. There-
fore, the introduction of environmental toxins leads to
destabilization of the system through Hopf bifurcation.
Moreover, if the depletion rate of environmental tox-
ins (d) increases, then the system regains stability from
limit cycle oscillations through Hopf bifurcation (crit-

123



3402 A. Mandal et al.

Fig. 12 Bifurcation diagram of system (23) with respect to θ12 at A12 = 0.1, ω1 = ω2 = 2π/365. (Color figure online)

Table 2 Parametrically and externally excited system and associated fast subsystem with different ω1 and ω2

ω1 ω2 Parametrically and externally excited system Fast subsystem Control parameter

0.01 0.03 ẋ = F(x, θ12 cos(0.01t)) + A12 cos(0.03t) ẋ = F(x, θ12ν) + A12(4ν3 − 3ν) ν = cos(0.01t)

0.03 0.01 ẋ = F(x, θ12 cos(0.03t)) + A12 cos(0.01t) ẋ = F(x, θ12(4ν3 − 3ν)) + A12ν ν = cos(0.01t)

2π

365

2π

365
ẋ = F(x, θ12 cos

( 2π
365 t

)
) + A12 cos

( 2π
365 t

)
ẋ = F(x, θ12ν) + A12ν ν = cos

(
2π

365
t
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Fig. 13 Simulation results of the stochastic system (60) at A = 3.15. The remaining parameters are at the same values as in Table 1

ical threshold value is obtained as d∗ ≈ 0.21). This
clearly shows that if the life cycle of environmental tox-
ins becomes shorter, their interaction with phytoplank-
ton will become smaller and their negative impact on
phytoplankton will reduce. Our results are in line with
the findings of the previous studies [44,45]. Moreover,
in this paper, for the first time the logistic growth of
zooplankton due to alternative food sources is consid-
ered. The intrinsic growth rate of zooplankton due the

latter is shown to possess stabilizing effects while their
carrying capacity has destabilizing effect on the system
dynamics. This indicates that if the system is in oscilla-
tory state due to higher concentration of environmental
toxins, then it can be brought back to a stable state by
feeding more the zooplankton.

We also capture the seasonal variation of rate param-
eters and study the dynamics of the corresponding
nonautonomous system. Conditions for the existence
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andglobal stability of the positive periodic solutions are
derived. Moreover, we obtain conditions for existence,
uniqueness and stability of a positive almost periodic
solution. We consider periodic function with a period
of one year to incorporate the seasonal patterns of the
rate parameters, input rate of environmental toxins and
toxin release rate by phytoplankton, and assumed the
rest of the parameters as constant. The nonautonomous
system shows a unique positive globally asymptotically
stable periodic solution with a period of one year, while
the corresponding autonomous system for the same set
of parameter values exhibits instead stable dynamics.
Increasing values of input rate of environmental toxins
in the system generate periodic oscillations; the sys-
tem exhibits higher periodic oscillations on increasing
the values of the toxin release rate by phytoplankton.
Moreover, complex bursting dynamics were observed
for two slow commensurate excitation frequencies. We
note that the bursting phenomenon for the plankton sys-
tem is reported here for the first time. Uncertainties due
to environmental fluctuations are considered by turn-
ing the deterministicmodel into a stochastic one. In this
way, the stability of the system gets disturbed, with the
environmental noise showing a destabilizing effect on
the system.

From this analysis, we can conclude that in order
to have a stable phytoplankton–zooplankton system,
we should control the environmental toxin release by
natural sources or human activities. Bioremediation
technology could be very useful to convert the tox-
igenic compounds to nontoxic products without fur-
ther disruption for the local environment, which will
enhance the persistence and stability of the populations
[84]. Although environmental toxins are thought not
to be entering into marine ecosystems in large quanti-
ties yet, experimental evidence reveals that phytoplank-
ton is highly vulnerable by environmental toxins [85]
up to the point, for high concentrations, of complete
phytoplankton growth inhibition [42], entailing their
population crash. Our investigation shows, however,
that higher depletion rate of environmental toxins can
control this negative impact, for which regulating the
depletion rate of pollutants could become an effective
control to prevent the crash of the aquatic food web
system. Ways of implementing this strategy could be
achievedwith suitable human activities such as reduced
use of pesticides and of chemical toxins. Thus, raising
awareness among humanwould be an effective strategy
to control environmental toxins in the aquatic systems.
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