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Abstract This paper presents an in-depth and rig-
orous mathematical analysis of a family of nonlinear
dynamical circuits whose only nonlinear component is
a Chua Corsage Memristor (CCM) characterized by
an explicit seven-segment piecewise-linear equation.
When connected across an external circuit powered by
a DC battery, or a sinusoidal voltage source, the result-
ing circuits are shown to exhibit four asymptotically
stable equilibrium points, a unique stable limit cycle
spawn from a supercritical Hopf bifurcation along with
three static attractors, four coexisting dynamic attrac-
tors of an associated non-autonomous nonlinear dif-
ferential equation, and four corresponding coexisting
pinched hysteresis loops. The basin of attractions of the
above static and dynamic attractors is derived numer-
ically via global nonlinear analysis. When driven by
a battery, the resulting CCM circuit exhibits a con-
tiguous fixed-point loci, along with its DC V–I curve
described analytically by two explicit parametric equa-
tions. We also proved the fundamental feature of the
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edge of chaos property; namely, it is possible to destabi-
lize a stable circuit (i.e., without oscillation) and make
it oscillate, by merely adding a passive circuit element,
namely L > 0. The CCM circuit family is one of the
few known example of a strongly nonlinear dynamical
system that is endowedwith numerous coexisting static
and dynamic attractors that can be studied both exper-
imentally, and mathematically, via exact formulas.

Keywords Corsage Memristor · Fixed-point loci ·
Phase portrait · Basin of attraction · Local activity ·
Hopf bifurcation · Coexisting dynamic attractors

1 Introduction

Nonlinear dynamical systems are of interest in scien-
tific research field as most of the systems in nature are
inherently nonlinear [1–3]. Various nonlinear dynami-
cal systems have multiple coexisting attractors, and the
properties (such as fixed points, limit cycles, toruses,
and chaotic) of these attractors depend upon the embed-
ded parameters and initial conditions. Starting from a
set of initial conditions, the basin of attraction of each
such attractor exhibits a long-time transitional behavior
approaching toward the attractors. Thus, the qualitative
behavior of the long-time motion of a given nonlinear
dynamical system depends upon the initial conditions
[4,5]. The dynamic behavior of a nonlinear system can
be verified by analyzing its behavior based on the theo-
rem of bifurcation and chaoswhich is highly dependent
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on initial conditions of the systems.Moreover, complex
phenomena and information processing tend to emerge
over the parameter ranges of a system, operating on,
or near the neighborhood of its edge of chaos domain
[6,7]. Memristor is regarded as one of the most promi-
nent element to exhibit both complex phenomena (such
as oscillation and chaos [4–9]) and information pro-
cessing (such application in neural network [10–12],
resistive switching memory [13], and artificial intel-
ligence [14]). Recently, numerous research activities
have been conducted to exploit the nonlinear dynamical
attributes of memristive systems in electronic circuits.

This paper presents an in-depth and rigorous nonlin-
ear analysis of the Chua Corsage Memristor1 (CCM).
The versatile CCM is a piecewise-linear (PWL) multi-
state memory devicewith the following state-dependent
Ohm’s law and state equation [15]:

State-Dependent Ohm’s Law

i = G(x) v, (1)

where G(x) = G0 x2, (2)

State Equation

dx/dt = f (x, v) = f (x) + v, (3)

where

f (x) = 33 − x + |x − 6| − |x − 12|
+ |x − 20| − |x − 30|
+ |x − 42| − |x − 56| , (4)

and x , v, and i denote the memristor state, voltage, and
current, respectively, as shown in Fig. 1. The intrin-
sic memductance scale of the memristor is fitted with
scaling constant G0. In this paper, we choose G0 = 1
so that the parameters of the small-signal equivalent
circuit of the CCM will not be excessive.

This paper presents an in-depth and rigorous non-
linear analysis of three members of the Chua Corsage
Memristor (CCM) circuit family, where the CCM is
driven by the external active circuits shown in Fig. 2:

External Circuit 1 A DC voltage source (battery)
whose voltage v = E is tuned over the entire real line,
i.e., −∞ < v < ∞.

The resulting loci of the steady state (after the tran-
sient tends to zero) x = X , plotted as a function of
constant voltage v = V (dubbed the fixed-point loci),

1 The Chua Corsage Memristor is not a hypothetical device, but
can be built using off-the-shelf components [15].

Fig. 1 Definition of the Chua Corsage Memristor (CCM) with
G0 = 1

is proved in Sect. 2.3 to cover the entire real line—
∞ < X < ∞, as the DC (constant) voltage is tuned
from V = −∞ to V = +∞. The corresponding
steady-state current I can be calculated from the state-
dependent Ohm’s law of the CCM. When plotted in the
I vs. V plane, the fixed-point loci is proved in Sect. 2.3
to be a multi-valued but contiguous curve—called the
DC V–I curve of the CCM.

External Circuit 2 A DC voltage source (with fixed
voltage v = VDC) in series with an inductor whose
inductance L = L∗ (derived via Chua’s oscillation for-
mula) gives rise to a stable oscillation via Hopf bifur-
cation.

A rigorous phase plane analysis supported by a
detailed phase portrait is presented in Sect. 5 along
with a unique stable limit cycle and its basin of attrac-
tion.

External Circuit 3 An AC sinusoidal voltage source
vs(t) = A sin(ωt) is applied across the CCM. Over a
wide range of amplitude A and frequency ω, we show
that, depending on the initial state x(0), the CCM cir-
cuits exhibit four distinct stable periodic steady-state
response xa(t), xb(t), xc(t), and xd(t). The range of
the initial state x(0) which converges to a particular
periodic steady-state response x j (t), j ∈ {a, b, c, d},
is called the basin of attraction B j (0) of the dynamic
attractor2 x j (t). It is called an attractor because
any trajectory with an initial state originating from
inside the basin of attraction B j (0) converges to, or is

2 We appended the adjective “dynamic” to differentiate it from
static attractors (i.e., equilibrium states) of autonomous systems,
since the CCM circuit 3 is driven by a time—varying input sig-
nal vs(t), resulting in a non-autonomous nonlinear differential
equation, and is therefore never in equilibrium.
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(a) (b) (c)

Fig. 2 Three Chua Corsage Memristor (CCM) circuits. a CCM
Circuit 1: The loci of (I, V ) in i vs. v plane, as the DC
voltage E is tuned from E = −∞ to E = +∞, is called
the DC V–I curve of the CC M . b CCM Circuit 2: With
E = −2.25V and L = L∗ = 355.5mH, the CCM Cir-
cuit 2 is described by an autonomous system of two non-
linear ordinary differential equations, whose phase portrait
shows an unique stable limit cycle along with three asymptot-
ically stable equilibrium points in the iL vs.x phase plane. c

CCM Circuit 3: The CCM is driven by a periodic sinusoidal
voltage source vs(t) = A sin(ωt), where A = {1V, 3V},
ω = {0.02π rad/s, 0.1π rad/s, 0.2π rad/s, π rad/s, 2π rad/s,
10π rad/s, 20π rad/s}. The CCM Circuit 3 is described by a
non-autonomous nonlinear differential equation. The steady-
state response of the state variable x(t) is calculated with four
initial states xa(0), xb(0), xc(0), and xd (0), each giving rise to a
distinct periodic steady-state response, dubbed a dynamic attrac-
tor

attracted by, the periodic steady-state response x j (t),
j ∈ {a, b, c, d}.
The existence of the above four coexisting dynamic

attractors xa(t), xb(t), xc(t), and xd(t) with explicit
formulas, along with their basins of attraction, is des-
tined to be a textbook example for future researchers
on non-autonomous systems.

For each attractor x j (t), j ∈ {a, b, c, d}, one can
trivially calculate via Eq. (1) the corresponding steady-
state current i j (t) of theCCM. When plotted in the i vs.
v plane,with time t as parameter, the corresponding loci
are proved to be a contiguous pinched hysteresis loop,
as illustrated in Table 1. The four coexisting pinched
hysteresis loops of the CCM, along with their basins of
attraction, are a surprising new result of this paper.

Table 1 shows four steady-state (after the tran-
sient tends to zero) pinched hysteresis loops of the
CCM Circuit 3 for amplitude A = 3V and fre-
quency ω = 0.2π rad/s. Figure 3a shows an evolu-
tion toward the steady-state, and Fig. 3b shows the
pinched hysteresis loops when the CCM Circuit 3 is
driven by vs(t) = A sin(ωt), where A = 3V and
ω = {1 rad/s, 10 rad/s, 20 rad/s, and 100 rad/s}.

The main contributions of this paper are as follows:

• We present an in-depth and rigorous mathematical
analysis of a family of nonlinear dynamical circuits
whose only nonlinear component is a Chua Cor-
sage Memristor (CCM) characterized by an explicit

seven-segment piecewise-linear equation. Unlike
most of the existing various nonlinear systems with
disconnected DC V–I curves, the CCM (CCM Cir-
cuit 1) exhibits a complicated but contiguous DC
V–I loci induced by the seven equilibrium states
which can be expressed analytically by two exact
explicit parametric equations.

• We proved the fundamental feature of the edge of
chaos property3 by connecting the CCM in series
with an appropriate choice of battery voltage V =
V ∗, and inductance L = L∗ (i.e., CCM Circuit 2)
which exhibits a unique stable limit cycle spawn
from a supercritical Hopf bifurcation along with
three static attractors in phase plane.

• Another exciting discovery in this paper is that,
when driven by v = A sin(2π f t), the non-
autonomousODEofCCM (CCM Circuit 3) exhibits
four distinct periodic solutions (namely, xa(t),
xb(t), xc(t), and xd(t)) along with four distinct
coexisting pinched hysteresis loops, whose corre-
sponding basins of attraction were precisely calcu-
lated.

The rest of the paper is organized as follows:Various
attributes of the CCM circuits are introduced in Sect. 2.
In Sect. 3, the design and in-depth analysis of a CCM

3 Edge of Chaos Property: It is possible to destabilize a stable
circuit (i.e., without oscillation) and make it oscillate, by merely
adding a passive circuit element (L > 0).
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Table 1 Basins of attraction of the four dynamic attractors of the
CCM Circuit 3, along with their associated coexisting pinched
hysteresis loops with sinusoidal excitation vs(t) = A sin(ωt),
where A = 3V and ω = 0.2π rad/s. The steady-state response

x j (t), j ∈ {a, b, c, d}, of CCM Circuit 3 for four initial states
x j (0) and its associated steady-state current i j (t), when plotted
in the i j (t) − v(t) plane, are pinched hysteresis loops

oscillator circuit are presented. The Hopf bifurcation
analysis, which gives rise to a unique stable limit cycle,
is given in Sect. 4. Section 5 presents a detailed analysis
of the phase portrait of the CCM oscillator, including
the location of limit cycle and three asymptotically sta-
ble equilibrium points Q3, Q5, and Q7 (attractors) and
four unstable equilibrium points Q1, Q2, Q4, and Q6

(repellers). The basins of attraction of the limit cycle
and three attractors are clearly shown in the phase por-
trait. Section 6 shows four coexisting pinched hystere-
sis loops induced by the four coexisting dynamic attrac-
tors shown in Table 1, along with their basins of attrac-

tion. The final Sect. 7 is devoted to some concluding
remarks.

2 Dynamic route map, parametric representation
of contiguous multi-valued DC V–I curve of the
CCM, fixed-point loci, and small-signal model

2.1 Dynamic route map of the CCM

In the parlance of nonlinear circuit theory, any curve
f (x, v) plotted in the phase plane, e.g., (dx/dt vs. x)
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(a)

(b)

Fig. 3 Signature of the CCM when driven by a sinusoidal
input voltage vs(t) = A sin(ωt), where A = 3V and ini-
tial state x(0) = 1. a Illustration of the identical zero-
crossing phenomenon with frequency ω = 10 rad/s. Observe
each lobe of the hysteresis loop always passes through the
origin whenever vs(t) = 0, as the transient component
decreases over time. b Four frequency-dependent steady-state
pinched hysteresis loops computed with frequencies ω =
{1 rad/s, 10 rad/s, 20 rad/s, and 100 rad/s}

plane, along with the direction of motion from the rep-
resentative points is called a dynamic route where it
prescribes the dynamics of the defining scalar nonlinear
differential equation [16,17]. In spite of its simplicity,
the dynamic route map (DRM) is themost powerful and
ideal tool for analyzing the dynamics of any first-order
differential equation dx/dt = f (x, v) because of its
predictability regarding the evolution of any initial state

with increasing time [18]. The dynamic route map of
the CCM Circuit 1 is shown in Fig. 4 for input voltages
v = V ={−9V,−7V,−5V,−3V, 0V, 3V, 5V, 7V,

9V}. Observe that for any applied nonzero positive
voltage (v = +VA), the red curve f (x, 0) is trans-
lated upward by VA units. Conversely, for any nonzero
negative voltage (v = −VA), the red curve f (x, 0)
is translated downwards by VA units, as shown in
Fig. 4. As an example, for v = +3V the corresponding
DRM for f (x, 3) (blue curve) is obtained by translat-
ing the red curve (parameterized by v = 0) upward
by three units. In contrast, for v = −7V, the DRM
for f (x,−7)(burgundy curve) is obtained by translat-
ing the red curve f (x, 0) downward by seven units, as
shown in Fig. 4.

2.2 Power-off plot (POP) of the CCM

The short-circuited (v = 0) dynamic route, also known
as Power-off plot (POP) [17] of the CCM, is the street
in Fig. 4 with the street name v = 0. It is a plot of
dx/dt |v=0 vs. x , where

dx/dt |v=0 = f (x, 0) = 33 − x + |x − 6|
− |x − 12| + |x − 20|
− |x − 30| + |x − 42| − |x − 56| . (5)

Figure 5 shows that every intersection between the
POP and x-axis, where dx/dt = 0, is an equilibrium
point of the CCM Circuit 1 with E = 0. The four
equilibrium points Q1, Q3,Q5, and Q7 are asymptoti-
cally stable, whereas the three equilibrium points Q2,
Q4, and Q6 are unstable, since the state variable x(t)
diverges away from Q2, Q4, and Q6. Any initial point
x(0) > X Q + δx , where X Q ∈ {X Q2, X Q4, X Q6} and
dx/dt > 0, located near an unstable equilibrium points
Q2, Q4, and Q6 must converge to an adjacent stable
equilibrium points Q3, Q5, and Q7 on its right, as indi-
cated by purple arrowheads in Fig. 5. Conversely, any
initial point x(0) < X Q − δx , where dx/dt < 0, near
the unstable equilibrium points Q2, Q4, and Q6 must
converge to an adjacent stable equilibrium points Q1,
Q3, and Q5 on its left, as indicated by black arrow-
heads in Fig. 5. Moreover, the calculated eigenvalues
of the stable equilibrium points are found to be nega-
tive, whereas the calculated eigenvalues of the unstable
equilibrium points are found to be positive, as predicted
by theory in [19,20].
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Fig. 4 Dynamic route map
(DRM) of the CCM. Each
curve is analogous to a
street whose street name is
the value of the parameter v
and whose direction is
indicated by an arrowhead,
which follows the traffic
rule: move right (resp.,
move left) if the street is
located above (resp., below)
the horizontal axis x = 0

2.3 Explicit parametric equations of DC V–I curve of
the CCM

In circuit theory, the DC V–I curve of a two-terminal
electronic device is defined as the set of all measur-
able or calculated points (V , I ) upon application of a
DC voltage V , DC current I , across the device. In gen-
eral, the DC V–I curves of commercial two-terminal
nonlinear resistive, or memristive, devices are gener-
ally described by a loci of points in the I vs. V plane
because no analytical equations exist that would repro-
duce themeasured loci of points.Moreover, for devices
exhibiting strong nonlinearities, the DC V–I curve usu-
ally consist of two or more disconnected branches. As
an example, consider the memristor [16] described by

Ohm’s Law

v = R (x, i) i =
(
0.01 x2i2

)
i, (6)

State Equation

dx/dt = f (x, i) = −x3 − 2 x2 +
(
3 + i2

)
x . (7)

Equating (7) to zero, with constant (DC) current i =
I , and solving for x , we obtain the exact equation of
the following three equilibrium points

Equilibrium Point 1: x = X0 = 0, (8a)

Equilibrium Point 2: x = X1 = −1 +
√
4 + I 2, (8b)

and

Equilibrium Point 3: x = X2 = −1 −
√
4 + I 2. (8c)

Substituting Eqs. 8(a), (b), and (c) into the state-
dependent Ohm’s law (6), we obtain the following
three disconnected branches of the DC V–I curve of
the above memristor:

DC V–I Curve Branch 1 : V = 0, (9a)

DC V–I Curve Branch 2 : V = 0.01
[
−1 +

√
4 + I 2

]
I 3,

(9b)

DC V–I Curve Branch 3 : V = 0.01
[
−1 −

√
4 + I 2

]
I 3.

(9c)

Thus, the DCV–I curve of the abovememristor con-
sists of three separated branches, as shown in Fig. 6.

We will now derive the exact analytical equation
defining the DC V–I curve of the CCM defined in
Fig. 1. In particular, we will derive two formulas which
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Fig. 5 Power-off plot
(POP) of the CCM

together gives the exact parametric equationsof theDC
V–I curves, with the equilibrium state x = X (−∞ <

X < ∞), as an independent parameter.
Let us assume that for each DC voltage v = V , the

CCM has at least one equilibrium state x = X , namely
dx/dt |(v=V, x=X) = 0. In particular, substituting v =
V , x = X , and dx/dt = 0 in (3), and solving for V ,
we obtain

V = −
[
33 − X + |X − 6| − |X − 12| + |X − 20|

− |X − 30| + |X − 42| − |X − 56|
]

� v̂ (X) . (10a)

The plot of V = v̂(X) in the V vs. X plane is shown in
Fig. 7a. Next, substituting (10a) into (1), with v = V ,
i = I , and x = X , we obtain

I = −X2
[
33 − X + |X − 6| − |X − 12| + |X − 20|
− |X − 30| + |X − 42| − |X − 56|

]

� î (X) . (10b)

-4 -3 -2 -1 0 1 2 3 4

-20

-15

-10

-5

5

10

15

20

I

V

Stable DC V-I Curve for 
(x(0) > 0)

Stable DC V-I Curve for 
(x(0) < 0)

Unstable DC V-I Curve 
V = 0 for (x(0) = 0)

Fig. 6 A memristor and its DC V–I curve, which consists of
three disconnected branches described by the unstable branch
V = 0 (dotted red loci), and two asymptotically stable branches
(for each fixed value of I ) defined analytically by a blue equation
for x(0) > 0, and by a magenta equation for x(0) < 0 [16]
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Table 2 Coordinates of
(V, I ) for a sample set of X
calculated from the two
parametric equations,
V = v̂(x) and I = î(x) in
(10a) and (10b)

X V = v̂(X),V I = î(X), kA X V = v̂(X),V I = î(X), kA

−12 −15 −2.16 30 −5 −4.5

−10 −13 −1.3 35 0 0

−7 −10 −0.49 40 5 8

0 −3 0 42 7 12.35

3 0 0 49 0 0

6 3 0.11 50 −1 −2.5

9 0 0 56 −7 −21.95

10 −1 −0.1 60 −3 −10.8

12 −3 −0.43 63 0 0

15 0 0 70 7 34.3

20 5 2 73 10 53.29

25 0 0 78 15 91.26

The plot of I = î(X) in the I vs. X plane is shown
in Fig. 7b.

Note that the equilibrium state X in Fig. 7a, b spans
the entire horizontal axis, namely −∞ < X < ∞.
Observe that for any value X ∈ (−∞,∞), we can
calculate the corresponding DC voltage V , and DC
current I using the exact formulas (10a) and (10b),
respectively. Table 2 shows the values of V and I for
−12 < X < 78, which covers the region shown in
Fig. 7.

Plotting the points (V, I ) from Table 2 for −7 <

X < 73, we obtain the DC V–I curve of the CCM
(defined in Fig. 1) shown in Fig. 7c. Observe that unlike
the examples shown in Fig. 6, this DC V–I curve is a
contiguous curve. Each point on this curve corresponds
to an equilibrium state X , which may be stable (solid
line) or unstable (dotted line).

Moreover, substituting the value of the state vari-
able x = X Qi into (10a) at the seven equilibrium
states Qi identified in Fig. 5, where i = 1, 2, . . . , 7,
we obtain V

(
X Qi

) = 0, at each of the seven equilib-
rium points Qi (listed in the upper left box in Fig. 7c). It
follows from the state-dependent Ohm’s law in (10b)
that I

(
X Qi

) = 0 at all seven equilibrium states. In
other words, in the DC V–I plane in Fig. 7c, the
loci of the state variable x pass through the origin
(V, I ) = (0, 0) 7 times.

It is important to observe that the DC V–I curve in
Fig. 7c is obtained without solving any algebraic, or
differential equations! Indeed, it is obtained by substi-

tuting any desired value of X , where −∞ < X < ∞,
into the explicit analytical Eq. (10a) for V = v̂(x)

and (10b) for I = î(x). This derivation of a memris-
tor DC V–I curve by direct substitution into the explicit
state-dependent Ohm’s law, and state equation is a truly
remarkable example for future researchers.

Observe that the inset in the lower-right corner
reveals a short piece of the DC V–I curve that exhibits
a negative slope, over−3V < V < −1V . This implies
the Chua Corsage Memristor is locally active [21] and
can be used to design an oscillator, which is presented
in Sect. 3.

2.4 Explicit parametric equations of the fixed-point
loci of CCM

The fixed-point loci of the CCM is defined to be the set
of steady-state (constant) response of the state vari-
able x = X (V ), calculated from the CCM Circuit 1 in
Fig. 2a upon applying a constant DC voltage v = V ,
−∞ < V < ∞, across the CCM.

Observe that the above definition assumes the
CCM circuit in Fig. 2a is in equilibrium, namely
dx/dt |v=V = 0. The fixed-point loci of the CCM can
be calculated by setting dx/dt = 0 in (3) and solving
for X for each constant v = V ; namely, the fixed-point
loci of the CCM is the set of all solutions of x = X of
the equilibrium equation
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(a) (b)
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-30
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X = 6, (3, 0.11)

X = 20, (5, 2)

X = 42, (7, 12.35)

X = 12, (-3, -0.43)

X = 56, (-7, -21.95)
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X = 73, (10, 53.29)

X = 0,  (-3, 0)

X = -7, (-10, -0.49)
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Red DC V-I curve
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Region
-3V < V < -1V

-4 -2 0 2
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curve)

, Slope = 1225 (Cyan DC V-I curve)

, Slope = 2401 (Brown DC V-I curve)

, Slope = 3969 (Green DC V-I curve)

Fig. 7 Exact parametric equation of the Chua Corsage Memris-
tor. a V = v̂(X) vs. X , and b I = î(x) vs. X , for each values of
χ = {X : −12 ≤ X ≤ 78}. cDC V–I plot, where the coordinates
(V, I) of each point are extracted from (a) and (b), for each values

of X , where χ = {X : −7 ≤ X ≤ 73}. The lower-right inset
shows the zoomed portion of red DC V–I curve over the voltage
range −5V ≤ V ≤ 2V. The upper left inset shows the state
variable X values at V = 0V
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Fig. 8 Fixed-Point loci of the CCM

f (X) + V

=
[
33 − X + |X − 6| − |X − 12| + |X − 20|
− |X − 30| + |X − 42| − |X − 56| + V

]

= 0. (11)

Using the notation in (10a), the fixed-point loci of the
CCM is obtained by solving the voltage parametric
equation (10a) for X , namely

X = v̂−1 (V ) , (12)

where v̂−1(•) denotes the inverse of the single-valued
function V = v̂(X) given in Fig. 7a, which is obtained
by replotting Fig. 7a with V as the abscissa and X as
the ordinate, as shown in Fig. 8. Observe that v̂−1(V )

in (12) is a multi-valued function of V . In particular,
for each V value, where−3V < V < 3V , X has seven
fixed points. Moreover, if we substitute (12) for X in
(10b), we would obtain the equation of the DC V–I
curve of the CCM; namely,

I = î (X) = î
(
v̂−1 (V )

)
� g (V ) . (13)

The above equation is called a composition in math-
ematics and is denoted by î ◦ v̂−1. Hence, we have
proved the DC V–I curve of the CCM is just the mathe-
matical composition between the parametric equation
for the current I = î(X) and the inverse voltage para-
metric equation X = v̂−1(V ).

2.5 Small-signal equivalent circuit model of the CCM

Small-signal device modeling is the standard nonlinear
circuit analysis technique for predicting the behavior
of a nonlinear device via its linearized equation about
an operating point on its DC V–I curve. The small-
signal equivalent circuit of the CCM is derived about
an equilibrium point (V , I ), utilizing the circuit shown
in Fig. 9a. Applying the Taylor series and the Laplace
transform, presented in [5], the small-signal admittance
function Y (s, Q) of the CCM about an equilibrium
point Q is obtained as,

Y (s, Q) � î(s)

v̂ (s)
= a11(Q) b12(Q)

s − b11(Q)
+ a12(Q) (14)

where

a11(Q) = v
∂G(x)

∂x

∣∣∣∣
Q

= 2X V, (15a)

a12(Q) = G(x)
∂v

∂v

∣∣∣∣
Q

= G(X)|Q = X2, (15b)

b11(Q) = ∂

∂x
g(x, v)

∣∣∣∣
Q

= −1 , (15c)

and

b12(Q) = ∂

∂v
g (x, v)

∣∣∣∣
Q

= 1. (15d)

The small-signal parameters of the CCM can be
extracted from (14) as:

Y (s, V ) = Yx (s, V )+Yy(s, V ) = 1

s Lx + Rx
+ 1

Ry

(16a)

where,

Lx (V ) = 1

a11(Q) b12(Q)
= 1

2X V
, (16b)

Rx (V ) = −b11(Q)

a11(Q) b12(Q)
= 1

2X V
, (16c)

and

Ry(V ) = 1

a12(Q)
= 1

X2 . (16d)

The small-signal equivalent circuit of theCCM com-
puted at V = −2.25 V is shown in Fig. 9b. Observe
that both Lx and Rx are negative, whereas Ry is posi-
tive.
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Fig. 9 a Chua Corsage
Memristor driven by
v = V + δv, where
V = −2.25V. b
Small-signal equivalent
circuit of the CCM at
V = −2.25V. c Pole–zero
diagram of the admittance
function Y (s, V ) of the
CCM over the range
−10V ≤ V ≤ 3V

(b)
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+
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+
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The pole s = p and the zero s = z of the small-
signal admittance Y (s, V )of the CCM Circuit 1, shown
in Fig. 9c, can be obtained from (14) as :

Y (s, V ) = a12(Q)s + (a11(Q) b12(Q) − a12(Q) b11(Q))

s − b11(Q)

= b1(V )s + b0(V )

a1(V )s + a0(V )
= K (s − z)

(s − p)
, (17a)

where

K = b1(V )

a1(V )
= a12(Q), (17b)

p = −a0(V )

a1(V )
= b11(Q) = −1, (17c)

z = −b0(V )

b1(V )
= −[a11(Q)b12(Q) − a12(Q)b11(Q)]

a12(Q)

= −[2X V + X2]
X2 . (17d)

Observe from Fig. 9c that the pole p is constant
(Re [p] = −1), whereas the zero z varies as a function
of voltage, V .

It is well known that in order for a linear time-
invariant circuit to oscillate, its admittancemust have at
least two poles. Hence, in order to design an oscillator
using the locally active CCM, it is necessary to add at
least one positive capacitor, or one positive inductor, to
the CCM Circuit 1. This additional energy storage ele-
ment can force the poles of the composite admittance

YC (s, V ) of the CCM to move and cross the imaginary
axis of the complex plane [5,6]. The type and value
of the energy storage element can be determined from
the frequency response of the CCM Circuit 1. The fre-
quency response Y (iω, V ) of the CCM at the applied
DC voltage V is obtained by substituting s = iω in
(17a):

Y (iω, V ) = a0(V ) b0(V ) + ω2a1(V ) b1(V )

a2
0(V ) + ω2a2

1(V )

+i
ω (a0(V ) b1(V ) − a1(V ) b0(V ))

a2
0(V ) + ω2a2

1(V )
,

(18a)

where

ReY (iω, V) = a0(V )b0(V ) + ω2a1(V )b1(V )

a2
0(V ) + ω2a2

1(V )

=
(
2X V + X2

) + ω2X2

1 + ω2 , (18b)

ImY (iω, V) = ω (a0(V )b1(V ) − a1(V )b0(V ))

a2
0(V ) + ω2a2

1(V )

= ω
[
X2 − (

2X V + X2
)]

1 + ω2 . (18c)

The frequency responses Re[Y (iω, V )] of theCCM,
parameterized by the input voltage V , at the equi-
librium points Q1,Q3, Q5, and Q7 over the fre-
quency range −10 rad/s ≤ ω ≤ 10 rad/s are shown
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(a)

(b) (c)

(d) (e)

Fig. 10 Frequency response of the admittance function
Y (iω, V ) of the CCM parameterized by the input voltage V . a
Re[Y (iω, V )] vs.ω for equilibriumpoint Q1. The left inset shows
the logarithmic plot of Re[Y (iω, V )] over the input voltage
V ∈ (−0.05V, 0.05 V ), and the right inset shows the zoomed-
in view near the origin of (a). b Re[Y (iω, V )] vs.ω for equi-

librium point Q2, c Re[Y (iω, V )] vs.ω for equilibrium point
Q5, d Re[Y (iω, V )] vs.ω for equilibrium point Q7. e Frequency
response [Re[Y (iω, V )] + i Im[Y (iω, V )]] of the admittance
function Y (iω, V ) of the CCM at V = −2.25V( f or Q1) over
the frequency range −10 rad/s ≤ ω ≤ 10 rad/s
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in Fig. 10a–d, respectively. Observe from Fig. 10a–
d that Re[Y (iω, V )] is constant for all values of ω

at V = 0, i.e., Re[Y (iω, V )] is independent of ω.
At V = 0, the inductance Lx and the resistance
Rx of the small-signal equivalent circuit in Fig. 9b
tend to infinity, i.e., Yx (s, V ) = 1/(sLx + Rx ) →
0 [see Eq. (16a)] and the corresponding impedance
Zx (s, V ) = 1/Yx (s, V ) → ∞ (open circuit). Hence,
the admittance Y (s, V ) = Yy (s, V ) = X2, where
the state variable X depends on the input voltage V
at the equilibrium point Qn , i.e., X = F

(
V, X Qn

)
where n ∈ {1, 3, 5, 7} . For example, the frequency
response Y (iω, V ) at V = 0 is equal to a constant
Y (iω, 0) |Q1

= Re[Y (iω, 0)]|Q1
= X2

Q1
= 9 (see

Fig. 7) over the frequency range −10 rad/s ≤ ω ≤
10 rad/s, as shown in the right inset of Fig. 10a. Sim-
ilarly, Fig. 10b–d shows that the frequency response
Y (iω, 0) |Qn

= Re[Y (iω, 0)]|Qn
= X2|Qn

, at V =
0, depends only on the value of the state variable
X Qn listed in Fig. 7, for n = [3, 5, 7], despite the
frequency(ω) variation over the range ω ∈ (−∞, ∞).
The curve of Re[Y (iω, V )] shown in the left inset (with
logarithmic scale in Re[Y (iω, V )]) of Fig. 10a affirms
that for nonzero voltage (V �= 0) Re[Y (iω, V )] is vary-
ing as a function of ω over the range −3 rad/s ≤ ω ≤
3 rad/s, whereas Re[Y (iω, V )] is constant at V = 0.
Moreover, at V = 0, the value of Re[Y (iω, V )] at
the equilibrium points Q1,Q3, Q5, and Q7, shown in
Fig. 10a–d, is equal to the corresponding slopes of the
DC V–I curve shown in Fig. 7.

The frequency response Y (iω, V ) of the CCM cal-
culated at V = −2.25 V (for Q1) is shown in Fig. 10e
over the range −10 rad/s ≤ ω ≤ 10 rad/s. Figure 10e
shows that the real and imaginary parts of the fre-
quency response Y (iω) at V = −2.25V are equal to
Re[Y (iω∗)] = 0 and Im[Y (iω∗)] = ±1.258S, respec-
tively, at ω∗ = ±2.236 rad/s. Since Re[Y (iω∗)] = 0
and Im[Y (iω∗)] �= 0, the CCM requires a positive
inductance with value L = L∗H to be connected in
serieswith theCCM in Fig. 9a to satisfy themain condi-
tion for oscillation to emerge; namely, the small-signal
impedancemust be zero atV = −2.25V [5]. The value
of the inductance L∗ is calculated from the following
Chua oscillation formula:

L∗ = 1

ω∗ Im Y (iω∗)
= 355.5mH. (19)

Figure 10e shows that at ω = 0 the admittance
Y (iω) = −2.813 S at V = −2.25V. This admittance
is equal to the admittance of the small-signal equiv-
alent circuit of the CCM, shown in Fig. 9b, but with
the inductor Lx replaced by a short circuit because
the impedance of an inductor at DC (ω = 0) is

equal to zero. In particular, Y (0) =
[

1
Rx

+ 1
Ry

]
=[ −1

296.3×10−3 + 1
1.78

]
= −2.813S.

3 Chua Corsage Memristor (CCM) oscillator
circuit

The composite one-port oscillator circuit, as shown in
Fig. 11a, is designed based on the CCM Circuit 2 with
an external inductance value (L = L∗ = 355.5mH)
and a battery (E = −V = 2.25V) connected in
series with the CCM, where the input port current,
i = iL = iM , input voltage v = vL +vM , and themem-
ristor voltage vM = iM/G(x). The state-dependent
Ohm’s law of the CCM and the two nonlinear differen-
tial equations of the Chua Corsage Memristor oscilla-
tor (CCM oscillator) circuit4 are defined as follows:

State-Dependent Ohm’s Law of CCM

iM = G(x) vM . (20)

Second-order autonomous differential equations of

CCM oscillator circuit

dx/dt=
[
33 − x + |x − 6| − |x − 12| + |x − 20|
− |x − 30| + |x − 42| − |x − 56| + iL/x2

]

� f (x, iL ) , (21a)

diL/dt = 1/L∗ (
V − iL/x2

)
� g (x, iL ) . (21b)

A typical trajectory of (21a)–(21b) starting from ini-
tial state (x(0), iL(0)) = (0.84,−1.767) is shown in
Fig. 11b converging to a limit cycle. The corresponding
periodic waveforms (x(t), iL(t)) are shown in Fig. 11c,
d, respectively.

4 TheCCM oscillator circuit in Fig. 11a is a circuit, unlike an iso-
lated Chua Corsage Memristor (CCM) which is a two-terminal
device with two isolated external terminals which is not attached
to any circuit. It is important to remember a circuit does not
have dangling circuit elements with only one of its two terminals
connected to the circuit, leaving other terminal dangling freely,
thereby resulting in zero circuit current flowing into the element.
In this case, the dangling element can be deletedwithout affecting
the solutions of the circuit.
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To verify the oscillation conditions, we compute the
admittance5 YC (s, Q) of the composite one-port N
consisting of the inductor L∗ in series with the CCM
in Fig. 11a. The small-signal admittance YC (s, Q) of
the composite one-port can be computed by adding the
impedance 1/Y (s, Q) of the CCM and the impedance
1/YL∗ of the external inductor [5]:

1

YC (s, Q)
= 1

YL∗
+ 1

Y (s, Q)
, (22)

YC (s, V ) = î(s)

v̂(s)
= s a12(Q) + (a11(Q) b12(Q) − a12(Q) b11(Q))

s2a12(Q)L∗ + s (L∗a11(Q) b12(Q) − L∗a12(Q) b11(Q) + 1) + (−b11(Q))

= b1s + b0
a2s2 + a1s + a0

, (23a)

where
a2 = a12(Q) L∗ = L∗ X2

a1 = (L∗ [a11(Q) b12(Q) − a12(Q) b11(Q)] + 1)
= (

L∗ [
2X V + X2

] + 1
)

a0 = −b11(Q) = 1

⎫⎪⎪⎬
⎪⎪⎭

,

(23b)

b1 = a12(Q) = X2

b0 = a11(Q) b12(Q)−a12(Q) b11(Q)=2X V +X2

}
.

(23c)

The frequency response defined by (Re[ZC (iω, V)]
+i Im[ZC (iω, V)]) of the composite impedance func-
tion ZC (s, V ) of the one-port N in Fig. 11a at an
applied voltage v = V is computed by substituting
s = iω in (23a) [6] and then taking its inverse:

ZC (iω, V ) = 1

YC (iω, V )

= a0b0 + ω2 (a1b1 − a2b0)

b20 + b21 ω2
︸ ︷︷ ︸

Re [ZC (iω, V )]

+ i

⎡
⎢⎢⎢⎢⎣

ω
(
a2b1ω2 + a1b0 − a0b1

)

b20 + b21 ω2
︸ ︷︷ ︸

I m [ZC (iω, V )]

⎤
⎥⎥⎥⎥⎦

.

(24)

Figure 12 shows the real and imaginary part of
the composite impedance function ZC (iω, V ) at V =
5 YC denotes the admittance of the “composite” one-port N
made of inductor L∗ in series with the Chua Corsage Memristor
(CCM).

−2.25V over the range −10 rad/s ≤ ω ≤ 10 rad/s.
Observe from Fig. 12 that ZC (iω∗, V = −2.25V) →
0 at ω = ω∗ = ±2.236 rad/s which satisfies the prime
condition of the CCM oscillator circuit; namely, the
small-signal impedance of the composite one-port N
must be equal to zero at v = V = −2.25V Observe
that at V = −2.25V and ω = 0, the value of the com-
posite impedance function ZC (iω,V ) = −355.5 m�,
in Fig. 12, must be equal to the reciprocal of the admit-
tance Y (iω, V ) = −2.813 S at ω = 0 in Fig. 10e,

because the impedance of the inductor L∗ is zeroOhms
at ω = 0, so that ZC (iω, V ) = 1/YC (iω, V ) =
1/ − 2.813S = −355.5m�.

The poles s = {p1, p2} and zero s = z1 of the com-
posite admittance YC (s,V ) in Fig. 11a are computed
using (23a):

YC (s, V ) = b1s + b0
a2s2 + a1s + a0

= (s − z1)

(s − p1) (s − p2)
,

(25a)

where

z1 = −b0
b1

, (25b)

p1 =
−a1 +

√
a2
1 − 4a2a0

2a2
, (25c)

p2 =
−a1 −

√
a2
1 − 4a2a0

2a2
. (25d)

The loci of the real vs. imaginary parts of the
poles pi = Re[pi (V )] + i Im[pi (V )] of the com-
posite admittance YC (s, V ) of the composite one-port
N in Fig. 11a, parameterized by the input voltage
V over the range −3V ≤ V ≤ 3V, are shown in
Fig. 13. The arrowheads indicate the direction of the
movement of the poles. Observe the complex conju-
gate poles of YC (s, V ) in Fig. 13 lie in both the left-
hand side and the right-hand side of the imaginary axis.
Observe also that there are two pairs of complex conju-
gate poles on the imaginary axis at V = −2.25V and
V = −1.75V, respectively. The inset of Fig. 13 shows
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Chua Corsage Memristor Oscillator 
(CCM Oscillator)

Composite one-port 

E = 2.25 V 

iL +

-

vM

L*= 355.5mH

iM+ -

v

vL

i

G(x) = x2

+

-

(c)

(a)

(d)

(b)

180 185 190 195 200
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-2
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-0.5

Q1 (0.75, -1.267)

(x0(0), iL(0)) = (0.84, -1.767)

V = -2.25 V 

T = 2.81 s

x(0) = 0.84 

iL(0) = -1.767

T = 2.81 s

Fig. 11 Circuit diagram of CCM oscillator circuit with E =
2.25V, b a trajectory with initial state (x(0), iL (0)) =
(0.84,−1.767) in the phase plane. c Periodic waveforms of x(t)
with T = 2.81 s, and d corresponding periodic waveforms of
iL (t)

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

-1

-0.375
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1.5

ω

Re [ZC (iω, V)], Im [ZC (iω, V)]

Re [ZC (iω*)] = 0Ω
Im ZC [(iω*)] = 0Ω

ω* = 2.236 rad/s

Re [ZC (-iω*)] = 0Ω
Im ZC [(-iω*)] = 0Ω

ω* = - 2.236 rad/s

Re [ZC (0)] = -355.5 mΩ

V = -2.25 V

Fig. 12 Frequency response Re[ZC (iω, V )] and 	[ZC (iω, V )]
of the composite impedance function ZC (iω, V ), plotted as a
function of frequency ω , with V = −2.25V and L = L∗ =
355.5mH

that Re[p1] > 0 and Re[p2] > 0 for input voltages
−2.25V < V < −1.75V.

Figure 14 shows the loci of the Im[p1] and Im[p2]
of the poles vs. Re[p1] and Re[p2] of the poles p1 and
p2 of YC (s, V ), parameterized by the value of induc-
tance L at DC input voltage V = −2.25V, where the
arrowheads indicate the direction of movement of the
poles. The pole diagram in Fig. 14 contains a pair of
complex conjugate poles located at Im[p1] = 2.236
and Im[p2] = −2.236 at the inductance value of
L = L∗ = 355.5mH. Observe also when the induc-
tance L → 0, Re[p1] → −1 and Re[p2] → −∞
and when L → ∞, Re[p1] → 5 and Re[p2] → 0,
respectively.

Figure 13 shows that the external inductance L∗
in the CCM oscillator circuit compels the constant
poles of CCM [shown in Fig. 9c] to cross the imag-
inary axis of the complex plane. The right-hand side
poles and the complex conjugate poles on the imag-
inary axis of the complex plane, in Fig. 13, might
give rise to bifurcation. Moreover, Fig. 14 shows that
the complex conjugate poles (Im[p1] = 2.236 and
Im[p2] = −2.236) on the imaginary axis for an induc-
tance L = L∗ = 355.5mH are equal to the operating
frequency ω = ω∗ = ±2.236 rad/s (in Fig. 12). Thus,
Figs. 13 and14 affirm that theHopf bifurcation points at
V = −2.25V and V = −1.75V or a small neighbor-
hood of these two points on the open right-half plane, in
Fig. 13, might give rise to stable oscillation by exploit-
ing the Hopf bifurcation.
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Fig. 13 Loci of the real and
imaginary parts of the poles
p1 and p2 of the admittance
YC (s, V) of the composite
one-port N of the CCM
oscillator as a function of
input voltage V , where the
inductance
L = L∗ = 355.5mH
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Fig. 14 Loci of the real and
imaginary parts of poles of
the composite admittance
YC (s, V ) of the CCM
oscillator, plotted as a
function of the external
inductance L , at the applied
battery voltage
V = −2.25V. To avoid
clutter, we choose an uneven
horizontal scaling between 2
and 5 in the horizontal axis

4 Bifurcation analysis

The presence of complex phenomena in a nonlinear
dynamical system is predicted by the local activity prin-
ciple [21]. In particular, it asserts that a nonlinear circuit
made of two-terminal circuit elements, and/or more
complicated two-terminal devices, or one-ports [22],
can exhibit complex bifurcation phenomena, such as
oscillation and chaos only if the circuit contains at least
one nonlinear locally active element. There is a funda-

mental deepmathematical theorem given in [21] which
allows one to test whether a two-terminal element, or
one-port6, is locally active about some equilibrium
point, aka aDC operating point.While a rigorous proof
of this theorem is couched in abstruse mathematics,
testing whether a two-terminal element, or one-port,

6 Any two-terminal electronic device, or an interconnection of
electronic devices, enclosed by a package, aka a black box, with
only two externally accessible conducting wires is called a one-
port [22]. Hence, all two-terminal devices are examples of one-
ports.
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is locally active involves only standard sophomore-
level mathematics. In particular, the test is couched in
terms of the small-signal impedance Z(s), or admit-
tance Y (s) � 1/Z(s), derived from an equilibrium
point (or DC operating point) Q of the two-terminal
element, or one-port N .

4.1 Simple test for local activity

A two-terminal element or one-portN is locally active
at an equilibrium point (or a point on its associated DC
V–I curve) Q if at least one of the following two criteria
is satisfied:

Local Activity Criterion 1 Either Z(s), or Y (s), has a
pole s = p located in the open right-half s-plane, i.e.,
Re[s] > 0.
Local Activity Criterion 2 Either Re [Z(iω)] < 0, or
Re [Y (iω)] < 0, for at least one frequency ω.

Here, Z(s) (resp., Y (s)) denotes the small-signal
impedance (resp., admittance) about Q.

Example 1 Local Activity regime of the CCM
Consider the DC V–I curve of the CCM in Fig. 7c.

Observe that the slope at any point on the DCV–I curve
over−3V < V < −1V (see the enlarge inset in lower-
right corner) is negative. It follows from the derivations
in Sect. 2.5 that the slope at DC operating point Q is
equal to the Re[Y (iω)] calculated at Q.

Since the slope at any point Q over the interval
−3V < V < −1V in Fig. 7c is negative, Re[Y (iω)] <

0 at Q and ω = 0. Here, ω = 0 because the testing sig-
nal is a DC battery.

It follows from the Local Activity Criterion 2 that
the CCM is locally active at any DC operating point
over the range −3V < V < −1V .

4.2 Edge of chaos

The preceding subsection shows that there are at least
two avenues for a two-terminal element, or one-port
N , to be locally active. Example 1 is locally active at
Q because the CCM satisfies the Local Activity Crite-
rion 2. There are other examples where a two-terminal
element, or one-port, is locally active because it sat-
isfies the Local Activity Criterion 1. In fact, there are
many examples of locally active elements which satis-
fies both criterion 1 and criterion 2.

However, there exists a much smaller subset of
locally active two-terminal elements, or one-ports,
which satisfies only Criterion 2, in the sense that all
poles pi of its impedance Z(s) (resp., admittance
Y(s)) are located in the open left-half plane; namely,
Re pi < 0, i = 1, 2, . . . , n, assuming Z(s) (resp.,
Y (s)) has “n” poles.

This relatively small subclass of locally active
impedances Z(s) (resp., admittances Y(s)) which sat-
isfies only Local Activity Criterion 2, but not Criterion
1, is said to be operating in the edge of chaos [21].

Since there are two independent chances for an
impedance Z(s) (resp., admittance Y (s)) of a two-
terminal element, or one-port, to be locally active, but
only one chance for it to be on the edge of chaos, it is
much harder to earn the accolade of belonging to the
edge of chaos club.

The reason why elements belonging to the edge of
chaos club are superior over those that are only locally
active is the following fundamental hypothesis in [21,
23].

Complexity Hypothesis Complex phenomena such as
power amplification, oscillation, chaos, catastrophic
events, and artificial intelligence tend to emerge over
parameter ranges of a device or system, operating on,
or near the neighborhood of the system’s edge of chaos
domain.

Example 2 Edge of chaos domain of the CCM
Let us derive the parameter domain where the CCM

defined in Fig. 9a is operating on the edge of chaos.
Figure 9c shows the admittance Y (s) of the CCM

has only one pole p = −1 for −∞ < V < ∞. Hence,
the Local Activity Criterion 1 cannot be satisfied by
the admittance Y (s, V ) of the CCM over all DC bat-
tery voltage −∞ < V < ∞. However, observe from
Fig. 10a that Re[Y (iω, V )] < 0 over the open interval
−3 V < V < −1V. It follows from the Local Activity
Criterion 2 that an edge of chaos domain of the CCM
exists over −3V < V < -1 V.

4.3 Hopf bifurcation

Nonlinear dynamical systems satisfying the edge of
chaos criterion can exhibit bifurcation from a stable
equilibrium point regime to a chaotic regime by forced
excitation [24]. In a local bifurcation, called the Hopf
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bifurcation, an equilibrium point of the system’s differ-
ential equations loses its stability as a pair of complex
conjugate eigenvalues, or equivalently poles of its asso-
ciated admittance Y (s, V ) or impedance Z(s, I ) if the
CCM is driven by a DC voltage source V or current
source I, cross the imaginary axis of the complex plane
at some critical parameter value μc [25]. The Hopf
bifurcation theorem asserts that under a relatively gen-
eral situation, a small-amplitude sinusoidal oscillation
will emerge for the control parameter μ > μc, and
its amplitude A increases proportional to

√
μ − μc,

for μ close to μc [25,26]. The CCM oscillator circuit
exhibits Hopf bifurcation as it is endowed with critical
Hopf bifurcation points, namely two pairs of complex
conjugate poles at V = −2.25V and V = −1.75V
on the imaginary axis of the complex plane shown in
Fig. 13.

The Hopf bifurcation exhibited in the CCM oscil-
lator circuit is classified as supercritical because the
typical supercritical amplitude function Av(V ) =√

x̄2 + ī2L (where x̄ and īL denote the amplitude of
the small sinusoidal x(t) and iL(t)) at V = 2.25V
and V = −1.75V shown in Fig. 15a, b as a func-
tion of V is quite similar to the curve computed from
the analytical formulas7 Am1(V ) = k1[√|V + 2.25|]
and Am2 (V ) = k2[√|V + 1.75|] with control param-
eter μ = V , critical parameter values μc1 = −2.25
and μc2 = −1.75, and constants k1 = 2.65 and
k2 = 8.75, respectively. For further assurance of a
supercritical Hopf bifurcation, we plotted the ampli-

tude AL(L) =
√

x̄2 + ī2L of the CCM Oscillator cir-
cuit with the inductance L as a bifurcation parameter
in Fig. 15c.

According to the supercritical Hopf bifurcation
theorem [26–28], the CCM oscillator circuit must
exhibit a small stable near-sinusoidal oscillation, i.e.,
a limit cycle, over a small range of V beyond the
critical parameter value μc = V = −2.25V. Fig-
ure 16a, d shows that the transient waveforms con-
verge to two asymptotically stable equilibrium points
Q1

0(0.7,−1.127) for the parameter value V = −2.3V
[which is near but to the left of the first Hopf bifur-
cation point V = −2.25V(see inset of Fig. 13)],
and Q2

0(1.3,−2.873) for V = −1.7V (which is near
but to the left of the second Hopf bifurcation point

7 To avoid the emergence of complex number, the absolute value
of (μ − μC) is used in the analytical formulas. The constants
k1 = 2.65 and k2 = 8.75 are determined empirically.

(a)

(b)

(c)

Fig. 15 Numerical verification of supercritical Hopf bifurcation
of the CCM oscillator circuit as a parameter of V , near a first
Hopf bifurcation point V = −2.25V, and b second Hopf bifur-
cation point V = −1.75V . c Verification of supercritical Hopf
bifurcation of the CCM oscillator with the inductance L as the
bifurcation parameter

V = −1.75V), respectively. Observe, however, that
the transient waveforms generated from two different
initial states (x(0) = 0.95, iL(0) = −2.031) and
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(x(0) = 0.8, iL(0) = −1.43) in Fig. 16b converge to
the yellow stable limit cycle for V = −2.23V (which
is near but to the right of the first Hopf bifurcation
point V = −2.25V). Moreover, transient waveforms
generated from two different initial states (x(0) = 1.1,
iL(0) = −2.431) and (x(0) = 1.2, iL(0) = −3.53) for
V = −1.77 [which is near but to the right of the sec-
ond Hopf bifurcation point V = −1.75V (see inset
of Fig. 13)] converge to a larger yellow limit cycle
shown in Fig. 16c. The numerical simulation results
shown in Fig. 16 confirm that the CCM oscillator cir-
cuit exhibits a stable limit cycle when the bifurcation
parameter μ = V is chosen between the Hopf bifur-
cation points at V = −2.25V and V = −1.75V, as
predicted by the supercritical Hopf bifurcation theo-
rem.

In addition, the supercritical Hopf bifurcation phe-
nomenon of the composite CCM oscillator circuit in
Fig. 11a is also verified by choosing the external induc-
tance L as the bifurcation parameter μ = L , (with
the input voltage V = −2.25V) as shown in Fig. 17.
Observe that for the parameter value μ = L =
350.5mH < L∗ = 355.5mH, the transient wave-
forms in Fig. 17a converge to a stable equilibrium point
Q0(0.75,−1.27), whereas for μ = L = 356mH the
transient waveforms converge to a very small stable
limit cycle, as shown in Fig. 17b. Figure 17c shows that
the transient waveforms generated from the two differ-
ent initial states (x(0), iL(0)) = (0.95,−2.031) and
(x(0), iL(0)) = (0.75,−1.27) converge to the green
limit cycle for the parameter valueμ = L = 370.5mH,
where L = 370.5mH > L∗ = 355.5mH. It fol-
lows from Fig. 17 that the CCM oscillator circuit
exhibits a supercritical Hopf bifurcation at μ = L ≥
L∗ = 355.5mH resulting in a limit cycle, whereas at
μ = L < L∗ = 355.5mH it converges to a stable
equilibrium point, as predicted by supercritical Hopf
bifurcation theorem.

It is very interesting to observe that the numerical
simulation results in Figs. 16 and 17 show that although
Q1 is stable in the CCM Circuit 1, it has become unsta-
ble in the compositeCCM Circuit 2, bymerely adding a
passive circuit element, namely L > 0. This phe-
nomenon is a fundamental feature of the edge of chaos
property; namely, it is possible to destabilize a stable
circuit (i.e., without oscillation) and make it oscillate,
by adding only passive circuit elements.

5 Phase portrait

Aphase portrait consists of a family of trajectories cor-
responding to differential initial conditions of a dynam-
ical system in the phase plane. It is an invaluable graph-
ical tool to visualize the qualitative behavior of the
solutions of a second-order autonomous system of two
ordinary differential equations. The phase portrait of a
dynamical system reveals information about the pres-
ence of an attractor, a repeller, or a limit cycle for the
chosen parameter values [26,29]. The stable and unsta-
ble equilibrium points in a phase portrait are called
an attractor or sink, and a repeller or source, respec-
tively. The Cartesian plane where the family of solu-
tion curves reside is called the phase plane and the
curves traced by the solutions, with the time t as hid-
den parameter, are called trajectories [26,29]. Since
every initial state of the CCM Circuit 1 (with only one
state variable x) converges to one of four stable equilib-
rium points (Q1 , Q3, Q5, and Q7) and diverges from
three unstable equilibrium points (Q2 , Q4, and Q6) at
V = 0, one might conjecture that the phase portrait of
the second-order CCM oscillator, based on the CCM
Circuit 2 (with two state variables x and iL), could also
exhibit four attractors and three repellers in the phase
plane. But this conjecture is false as already shown in
Figs. 16 and 17.

The phase portrait of the CCM oscillator circuit is
shown in Fig. 18withDCbattery voltageV = −2.23V
and inductance L = L∗ = 355.5mH. In Fig. 18,
the arrowheads attached to the red, blue, cyan, and
green trajectories indicate the direction of motion of
the composite oscillator state (x , iL) from the initial
state (x(0), iL(0)) (marked in black dots). Figures 18
and 19a show that the red trajectories converge to
a small limit cycle surrounding the unstable equilib-
rium point Q1(xQ1 = 0.77, iL Q1 = −1.32). All blue,
cyan, and green trajectories, in Figs. 18 and 19b–d,
converge to the stable equilibrium points Q3(xQ3 =
12.77, iL Q3 = −363.65), Q5(xQ5 = 32.77, iL Q5 =
−2394.73), and Q7(xQ7 = 60.77, iL Q7 = −8235.37),
respectively. Observe, however, the trajectories in a
small neighborhood of the three unstable equilib-
rium points Q2(xQ2 = 11.23, iL Q2 = −281.23)
Q4(xQ4 = 27.23, iL Q4 = −1653.48), and Q6(xQ6 =
51.23, iL Q6 = −5852.66) diverge from them as shown
in green dashes passing through Q2 and Q3 in Fig. 19e
and in magenta and brown curves in Fig. 18. Each of
these dash curves is called a separatrix. Since each tra-
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Fig. 16 Numerical
simulation results of the
supercritical Hopf
bifurcation theorem with
L = L∗ = 355.5mH. a
Transient waveform
converges to
Q1

0(0.7,−1.127) for
V = −2.3V with initial
condition (x(0), iL(0)) =
(0.95,−2.031), b transient
waveforms generated from
two different initial states
(x(0), iL (0)) =
(0.95,−2.031) and (x(0), iL (0)) =
(0.8,−1.43) converge to a
yellow limit cycle for
V = −2.23V , c transient
waveforms generated from
two different initial states
(x(0), iL (0)) =
(1.1,−2.431) and
(x(0), iL (0)) =
(1.2,−3.53) converge to a
large yellow limit cycle for
V = −1.77V, and d
transient waveform
converges to
Q2

0(1.3,−2.873) for
V = −1.7V with initial
condition (x(0), iL (0)) =
(0.95,−2.031)

V= -2.3 V, x(0) = 0.95, iL (0) = -2.031
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jectory can converge either to the limit cycle surround-
ing the unstable equilibrium point Q1, or to one of the
three stable equilibrium points Q3, Q5, and Q7, or can
diverge from Q2, Q4, and Q6, it follows that the phase

portrait of the CCM Circuit 2 has three attractors (Q3,
Q5, and Q7) and four repellers (Q1, Q2, Q4, and Q6).
Observe that although the equilibrium point Q1 is sta-
ble in the CCM Circuit 1, it has become unstable and
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L= 356.0 mH, x(0) = 0.95, iL (0) = -2.031
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Fig. 17 Simulation results illustrating supercritical Hopf bifur-
cation at V = −2.25V. a Transient waveform from initial
condition (x(0), iL (0)) = (0.95,−2.031) converges to the
asymptotically stable equilibrium point Q0(0.75,−1.27) for
L = 350.5mH. b Transient waveform from initial condition

(x(0), iL (0)) = (0.95,−2.031) converges to a stable limit
cycle for L = 356mH. c Transient waveforms generated from
two different initial states (x(0), iL (0)) = (0.95,−2.031) and
(x(0), iL (0)) = (0.75,−1.27) converge to a relatively large
green limit cycle for L = 370.5mH

diverges from Q1 while converging to a limit cycle in
the composite CCM Circuit 2 when V = −2.23V, as
shown in Figs. 16b and 19a.

Observe from Fig. 19e that all the trajectories start-
ing from initial states to the left of the Q2 separa-
trix converge to a small stable limit cycle surrounding
repeller Q1, whereas trajectories starting from initial
states to the right of the Q2 separatrix converge to the
stable equilibrium point Q3. The region on the left side
of the Q2 separatrix is called the basin of attraction of
the stable limit cycle, and the region on the right side
of the Q2 separatrix is called the basin of attraction of
the stable equilibrium point Q3. Similarly, trajectories
starting from any initial state to the left of the Q4 sep-
aratrix converge to either the basin of attraction of the
stable equilibrium point Q3 or to the basin of attraction
of the stable limit cycle, as shown in Fig. 18. In con-
trast, trajectories starting from initial states to the right
of the Q4 separatrix belong to the basin of attraction
of the stable equilibrium point Q5 and would converge
to Q5, as shown in Fig. 18. Similar dynamics also hap-

pens for initial states starting from either sides of the
Q6 separatrix, as shown in Fig. 18.

6 Basins of attractions of coexisting pinched
hysteresis loops

The steady-state dynamics of a memristor or memris-
tive system depends on the initial condition of the state
variables. Under a periodic bipolar excitation, a mem-
ristor circuit can exhibit different asymptotic behaviors
for different initial states [30,31]. For such systems, the
state space contains multiple attractors where each one
has its own basin of attraction. A state-space trajectory
would converge to an attractor whose basin of attrac-
tion contains the initial state x(0) [26]. The steady-state
behavior of the dynamic attractors of the CCM Circuit
3, driven by a sinusoidal excitation vs(t) = A sin(ωt),
where ω = 2π f , with different amplitudes A, fre-
quencies f , and initial states x(0) is shown in Figs. 20
and 21. For simplicity, let us fix the amplitude A of
the input voltage and consider four frequencies { f1,
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Fig. 18 Phase portrait of
the CCM oscillator circuit
for DC battery voltage
V = −2.23V with external
inductor
L = L∗ = 355.5mH. The
separatrix emerging from
the unstable equilibrium
points Q4 and Q6 is drawn
as magenta and brown
dashes loci, respectively
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f2, f3, f4} = {0.01, 0.1, 0.5, 1}Hz. For amplitude
A = 1V and A = 3V of the sinusoidal excitation,
the corresponding four distinct stable periodic steady-
state responses x j (t) of theCCM Circuit 3 are shown in
Figs. 20 and 21, respectively. The corresponding basins
of attraction B j (0) of the x j (t), j ∈ {a, b, c, d}, are
listed in their corresponding insets.

The four periodic steady-state responses of the state
variable x , dubbed xa(t), xb(t), xc(t) and xd(t), of the
CCM Circuit 3 in Figs. 20 and 21 exhibit four dis-
tinct types of stable pinched hysteresis loops. As an
example, the blue pinchedhysteresis loop for amplitude

A = 1V, initial state x(0) = 15.12, and f = 0.1Hz
in Fig. 20b is spawn from the stable periodic steady-
state response xb(t) of the state variable x , because
the initial state x(0) = 15.12 falls within the basin of
attraction Bb(0) (8.55 < x(0) ≤ 24.55), as specified
in the inset in Fig. 20b. However, for any initial states
x(0) ≤ 8.55, or x(0) > 24.55, the state variable x(t)
of the CCM Circuit 3 converges to the stable periodic
steady-state response xa(t), or xc(t), respectively, in
Fig. 20b, because x(0) ≤ 8.55 belongs to the basin of
attraction Ba(0), whereas x(0) > 24.55 falls in the
basin of attraction Bc(0). In contrast, any initial state
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Fig. 19 Zoom view of the
phase portrait in Fig. 18. a
All red trajectories converge
to the stable limit cycle
corresponding to the
repeller Q1, b all blue
trajectories converge to the
stable equilibrium point Q3,
c all cyan trajectories
converge to the stable
equilibrium point Q5, d all
green trajectories converge
to the stable equilibrium
point Q7. e Zoom view of
the basins of attraction of
the tiny stable limit cycle
and stable equilibrium point
Q3, respectively. The
separatrix (passing through
Q2) of the basins of
attraction of the small stable
limit cycle surrounding the
repeller Q1 and the stable
equilibrium point Q3 is
shown in green dashes

(a) (b)

(c) (d)

(e)
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Fig. 20 The steady-state pinched hysteresis loop response
(i(t), v(t)) of the CCM Circuit 3 on the i − v plane under AC
periodic excitation vs(t) = A sin(2π f t) where A = 1 V and
frequencies: a f = 0.01Hz, b f = 0.1Hz, c f = 0.5Hz,

and d f = 1Hz. For each frequency f , there exist four distinct
basins of attraction, labeled as Ba(0), Bb(0), Bc(0) and Bd (0),
for the corresponding four periodic steady-state state variable
responses xa(t), xb(t), xc(t), and xd(t), respectively

x(0) > 48.55 belongs to the basin of attraction Bd(0),
which spawns the corresponding green pinched hys-
teresis loop in the i − v plane shown in Fig. 20b.

Similarly, Fig. 21a–d shows four pinched hysteresis
loops in the i − v plane, spawn by four correspond-
ing stable periodic steady-state responses x j (t) of the
CCM Circuit 3. Their basins of attraction B j (0) are
determined by the corresponding initial states x j (0),
where j ∈ {a, b, c, d}.

All steady-state responses in Figs. 20 and 21 are
pinched hysteresis loops passing through the origin,
including those drawn as single-valued curves (in
Figs. 20a and 21a) when their lobe areas are too small
to discern. Moreover, observe that there exist four dis-
tinct stable steady-state responses (xa(t), xb(t), xc(t)
and xd(t)) for sinusoidal excitation just like the exis-
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Fig. 21 The steady-state pinched hysteresis loop response (i(t),
v(t)) of the CCM Circuit 3on the i − v plane under AC periodic
excitation v(t) = A sin(ωt) with A = 3 V and frequencies: a
f = 0.01Hz, b f = 0.1Hz, c f = 0.5Hz, and d f = 1Hz.

Four distinct basins of attraction B j (0) of the state variables x(t)
and their corresponding initial states x j (0), j ∈ {a, b, c, d}, are
listed in the inset of each figure

tence of four distinct equilibrium points (Q1, Q3, Q5

and Q7) under DC excitation8 (in Figs. 9a and 11a)
Since any initial state x j (0) originating from inside

the basin of attraction B j (0) is attracted by a corre-
sponding periodic steady-state response x j (t), the sta-
ble periodic steady-state responses x j (t) of the CCM
Circuit 3 are called dynamic attractors in this paper. For
each sinusoidal excitation, the one-dimensional basin

8 Under DC steady state, the inductor L in CCM Circuit 2 is
equivalent to a short circuit. In this case, from the circuit analysis
perspective, the battery is directly connected across the CCM.

of attraction B j (0) of the four distinct dynamic attrac-
tors x j (t) is separated by three real numbers x ′(0),
x ′′(0), and x ′′′(0), henceforth called pinched hystere-
sis loop bifurcation points. Each of the three bifur-
cation points depends on both the amplitude A, and
the frequency f of the sinusoidal excitations, namely
x ′(0) = F ′(A, f ), x ′′(0) = F ′′(A, f ), and x ′′′(0) =
F ′′′(A, f ). For the convenience of readers, we include
the heatmap, in Fig. 22, for specifying the bifurca-
tion points (boundary points) separating the basins
of attraction of the four dynamic attractors, xa(t),
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(c)

(b)(a)

Fig. 22 The pinched hysteresis loop bifurcation points defin-
ing the basins of attraction of the dynamic attractors xa(t),
xb(t), xc(t) and xd (t) of the CCM Circuit 3 for an input exci-
tation v(t) = A sin(2π f t) in the amplitude–frequency plane.
The heatmaps show a the bifurcation point x ′(0) specifying the

basins of attraction of the dynamic attractors xa(t), b the bifurca-
tion point x ′′(0) specifying the basins of attraction of the dynamic
attractors xb(t), and c the bifurcation point x ′′′(0) specifying the
basins of attraction of dynamic attractors xc(t)

xb(t), xc(t), and xd(t), of the CCM Circuit 3, for
amplitudes A ∈ {−3,−2,−1, 1, 2, 3} and frequen-
cies f ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10} . For example,
the boundary points listed in the inset of Fig. 21 for
A = 3V are listed in Row 1 (A = 3) of Fig. 22a for
xa(t), Fig. 22b for xb(t), and Fig. 22c for xc(t).

For example, Fig. 22a shows the periodic steady-
state response x(t) for a sinusoidal excitation9 with
A = −3V and f = 0.1Hz converges to the dynamic
attractor xa(t) for any initial states x(0) ≤ (x ′(0) =
F ′(−3, 0.1) = 10.35) whereas for x(0) > (x ′(0) =
10.35), x(t) converges to the dynamic attractor xb(t).

9 Negative amplitude A means v(t) = −|A| sin(2π f t), i.e.,
180◦ out of phase from vs(t) = A sin(2π f t).

In contrast, any initial state (x ′(0) = 10.35) <

x(0) ≤ (x ′′(0) = F ′′(−3, 0.1) = 26.35), the steady-
state response x(t) of the CCM Circuit 3 exhibits
the basin of attraction Bb(0) corresponding to the
dynamic attractor xb(t) shown in Fig. 22b, whereas for
(x ′′(0) = 26.35) < x(0) ≤ (x ′′′(0) = F ′′′(−3, 0.1) =
50.35), x(t) converges to the dynamic attractor xc(t)
with corresponding basin of attraction Bc(0) as shown
in Fig. 22c. However, any initial states greater than
the pinched hysteresis loop bifurcation points x ′′′(0),
i.e., x(0) >(x ′′′(0) = F ′′′(A, f )), the steady-state
response x(t) of the CCM Circuit 3 converges to the
dynamic attractor xd(t) and exhibits the basin of attrac-
tion Bd(0).
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Fig. 23 Loci of the invertedDCV–I curve of theCCM, described
analytically by two parametric equations V = v̂(x) and I = î(x)

(Eqs. 10a and 10b).When the op-amp-based circuit realization of
the CCM is measured experimentally using an oscilloscope, the
dotted portion of the computed DC V–I curve in Fig. 7c cannot
be seen without additional instrumentation because it represents
unstable equilibriumpoints of theCCM circuit 1 in Fig. 2a,where
the battery voltage is slowly tuned to cover the range −10V <

V < 10V

7 Conclusion

This paper presents an in-depth global analysis of a
three-element electronic oscillator circuit made of a
Chua Corsage Memristor (CCM) connected in series
with an inductor and a battery. The CCM can be built
via a simple operational amplifier (op amp) circuit.

TheCCM is a two-terminal electric device described
by i = x2v, where v and i denote the voltage and cur-
rent of the device, respectively, and x is a state variable
described by dx/dt = f (x)+vwhere f (x) = 33−x+
|x−6|−|x−12|+|x−20|−|x−30|+|x−42|+|x−56|.

When connected in series with an inductor L
with current iL and a battery with voltage v, the
Chua Corsage Memristor Oscillator is described by an
autonomous system of two nonlinear ordinary differ-
ential equations (ODE)

dx/dt=
[
33 − x + |x − 6| − |x − 12| + |x − 20|
− |x − 30| + |x − 42| − |x − 56| + iL/x2

]

� f (x, iL)

diL/dt = 1/L∗ (
V − iL/x2

)
� g (x, iL) .

.

When the CCM is connected directly (without the
inductor) across a battery with voltage v = V , the
resulting CCM circuit exhibits four stable equilib-
rium states X (Q1), X (Q3), X (Q5), and X (Q7) and
three unstable equilibrium states X (Q2), X (Q4), and
X (Q6), located at the equilibrium points Q1, Q3, Q5,
and Q7, and Q2, Q4, and Q6, in the (x , ẋ)-plane,
respectively.

Our first remarkable new results in this paper is
to show that the DC V–I curve induced by the seven
equilibrium states form a complicated but contigu-
ous loci which can be expressed analytically by two
exact explicit formulas V = v̂(X) and I = î(X), for
−∞ < X < ∞.

Our next major result is to show that the second-
order autonomous ODE can be designed into an oscil-
lator with an appropriate choice of battery voltage
V = V ∗, and inductance L = L∗, by invoking the
local activity principle. In particular, we derive a small
subset of the two parameters (V , L), dubbed the edge
of chaos, via explicit analytical formulas. We analyze
the edge of chaos domain and found systematically a
parameter set (V ∗, L∗) satisfying the supercriticalHopf
bifurcation theorem, leading automatically to an elec-
tronic oscillator circuit, dubbed the CCM oscillator.

But the most exciting discovery of this paper is
that when driven by v = A sin(2π f t), instead of the
constant battery voltage v = V , the resulting non-
autonomous ODE exhibits four distinct periodic solu-
tions x = x̂(t), which induces four corresponding peri-
odic currents i = î(t). When plotted in the current-vs.-
voltage plane, the four periodic attractors induced four
distinct coexisting pinched hysteresis loops, whose cor-
responding basins of attraction were precisely calcu-
lated.

The nonlinear dynamical theory presented in this
paper can be easily generalized to design other second-
order non-autonomous system of ODE with any finite
number of coexisting attractors and their correspond-
ing coexisting set of pinched hysteresis loops, which
are the fingerprints of memristive systems endowed
with memory, which are essential for designing learn-
ing machines.

We end this manuscript with the pinup portrait of a
contiguousDCV–ICurve, redrawn in the -I vs.V plane
(shown in Fig. 23) of the Chua Corsage Memristor,
which resembles a multi-lobe corsage ribbon.
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