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Abstract In this paper, we propose the opinion
dynamics model with the increasing peer pressure
and the stubborn agents. Cooperation and competition
between individuals are considered simultaneously in
a social network. Similar to the signed DeGroot model,
we adopt a weighted average update rule in our model.
We derive conditions under which opinions converge
to a fixed opinion distribution. In particular, we find
conditions under which opinions reach consensus or
polarization (bipartite consensus). Two examples are
provided to illustrate the effectiveness of the obtained
results.
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1 Introduction

Social networks are constituted by social agents (indi-
viduals and communities) and social relations (friend-
ship or competition) among them [1]. With the rapid
development of computer technology, recent decades
have witnessed the explosive development of online
social media. Nowadays, social networks, no matter
offline or online, are important media for information
diffusion [2]. Hence, social networks have attracted
extensive attention fromnatural, engineering and social
sciences [3,4]. Studies of social networks are mainly
about information propagation [5], social learning [6],
opinion formation [7], opinion dynamics [8] and so on.
Among them, opinion dynamics focuses on the basic
problem of how individuals are influenced by the pres-
ence of others in a social group, or how individuals
in a social network interact and exchange their opin-
ions about a topic or many topics. As one of the foun-
dational problem in sociology, opinion dynamics has
drawn considerable attention among the investigations
of social networks [9–12].

Here, the term “opinion” is broadly referred to indi-
viduals’ displayed cognitive orientations to objects
(e.g., topics or issues); it includes the displayed atti-
tudes (signed orientations) and beliefs (subjective cer-
tainties) [13]. Unlike many multi-agent systems in
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which agents collaborate to achieve a common goal
and it is easier to reach consensus, for opinion dynam-
ics systems, opinions of social actors often disagree,
and clusters [14,15] and polarization (or bipartite con-
sensus) [16–19] usually occur due to the differences
in backgrounds such as politics, economy, culture and
beliefs among individuals. Here, clusters mean the lim-
iting value to which the agent opinions converge. With
some abuse of terminology, it is also referred to the set
of agents whose opinions converge to the same value
as a cluster. Polarization is a special kind of clusters. It
means that the social network separates into two clus-
ters of opposing opinions. Obviously, it is significant
and challenging to develop opinion dynamics models
which admit mathematically rigorous analysis and can
capture these main properties of the real social net-
works [20–22].

In order to explain clusters andpolarization phenom-
ena, the idea of “homophily” or “biased assimilation”
[23] often is adopted to mathematically model the evo-
lution of opinions. The term “homophily” means that
agents readily adopt opinions of like-minded individ-
uals but accept the more deviant opinions with discre-
tion. The mainstream model represented by this idea is
the bounded confidence (BC)model [23], where agents
do not completely consider opinions outside their con-
fidence intervals. To a certain extent, BC models can
capture the characteristic of opinion evolution, so BC
models have attracted significant attention, for exam-
ple, homogeneous BC models [24–26], heterogeneous
BCmodels [27,28], multidimensional BCmodels [29].
These BCmodels all display the clustering characteris-
tic of opinions. However, their rigorous mathematical
analysis is an open problem. For instance, it is very dif-
ficult to predict the structure of opinion clusters for a
given initial condition [13].

Another possible explanation of opinion disagree-
ment is agent’s “innate beliefs” or “prejudices” [5,30],
which means that agents with prejudices have the will
tomaintain their initial opinions (prejudices). Recently,
empirical work [31,32] has shown that the existence of
innate beliefs is often hidden but it can continuously
influence the evolution of opinions. Such a class social
actor is called the stubborn agents and the model asso-
ciated with it is generally called the Friedkin–Johnsen
(FJ) model [5,30]. Unlike the DeGroot model [33],
where each actor is completely open to interpersonal
influence and updates its opinion based on the convex
hull spanned by opinions of himself and neighbors; in

the FJmodel, the stubborn agents always consider their
prejudices for every iteration of opinions. It implies that
it is difficult to affect or alter the stubborn agents’ opin-
ion, even completely impossible. So, in the FJ model,
it is difficult for social group to reach opinion agree-
ment, i.e., agents often form multiple clusters. In spe-
cial cases, the FJ model also can be understood by the
game-theoretic model [5,34] and Leontier economic
model [35]. In [36], the stability problem for the FJ
model was investigated and a sufficient condition of
stability was derived. Furthermore, authors studied the
convergence speed of the FJ model in [34]. In [13], the
convergence problem for multidimensional FJ model
was investigated. Due to the existence of the stubborn
agents, the FJ model cannot achieve consensus in gen-
eral. So an interesting question is under what circum-
stances the FJ model can derive less clusters even a
cluster, i.e., consensus. The empirical evidence [37]
showed that the FJ model may reach an agreement over
a sequence of issues, and authors of the literature [38]
explained this point theoretically. Authors argued in
[39] that when considering the peer pressure between
individuals, the modified FJmodel also can obtain con-
sensus if the peer pressure is increasing and unbounded.

Apart from homophily and prejudices, competition
or confrontation between social actors is also a source
of clusters and polarization. In the real world, antag-
onism, competition, indifference or distrust between
individuals and their groups are ubiquitous; for exam-
ple, the British scientists’ Charles Darwin’s “natural
selection” emphasizes the competition between indi-
viduals [40,41]. Competition, confrontation and dis-
trust are usually modeled by repulsive couplings or
negative ties [42] among the agents, i.e., the signed
graph, where the positive edges represent friendly and
cooperative interactions and the negative edges corre-
spond to the antagonistic counterpart. Recently, opin-
ion dynamics on the signed graphs has attracted signif-
icant attention [42–46]. Due to the antagonistic inter-
action, the evolution of opinions on the signed graphs
is more complicated. In fact, as shown in [17], opin-
ion dynamics with cooperative and competitive inter-
actions may result in clusters, polarity, consensus or
neutrality under different opinion protocols. Further-
more, in [18], a necessary and sufficient condition of
bipartite consensus was obtained, which depends on a
gauge transformation. It implies that the polarization
of opinions and the structural balance graph [18] are
closely related. In [47], the convergence of the DeG-
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root model was studied on the signed graph. In [48], the
bipartite consensus problem for the high-order opinion
dynamic system was investigated. In [41,45], opinion
dynamics with switching topology was researched on
the signed graphs. Considering some special contexts
where people may be more concerned with the signs
of opinions and ignore their size, the sign-consensus
problem for the signed networks was investigated in
[49–51]. In particular, in [49], the influence of stub-
bornness and competition on opinion signs was inves-
tigated for continuous-time opinion dynamics model
and sing-consensus conditions were obtained, which
depend on the eventually positive matrix [52] and are
independent of the structural balance.

Although “homophily,” “stubbornness” and “com-
petition” may lead to clusters and polarization, most
of the aforementioned models of opinion dynamics
focus on one factor of them. In fact, the empirical
work showed that these factors may be coexisting in
real social networks [5,8]. Besides, the peer pressure is
also ubiquitous in the real social networks. For exam-
ple, purchasing behaviors [53], health behaviors [54]
and beliefs and cultural norms [55] are all linked to
the peer pressure. Furthermore, authors of the literature
[39] found that the peer pressure has a positive effect
on agreement, and enormous pressure is more likely to
cause opinion consensus. Therefore, in this paper, we
will consider various factors (“stubbornness,” “compe-
tition” and “peer pressure”) tomodel opinion dynamics
so that our model can capture the clustering property of
the real social network and reveal a richer mechanism
of opinion evolution. Furthermore, we also want to
observe whether huge peer pressure still results in con-
sensus under the case, which stubbornness and compe-
tition are considered in social networks.

The main contributions of this paper are as follow:
Firstly, a novel opinion dynamics model, where “stub-
bornness,” “competition” and “peer pressure” are con-
sidered simultaneously, is proposed. Then, by using the
contraction maps, we obtain conditions under which
opinions converge to a fixed opinion distribution. These
fixed opinions in general correspond to multiple clus-
ters. In particular, we find that in special case, the peer
pressure still results in consensus or bipartite consen-
sus in our model. In other words, we obtain conditions
under which our model will form fewer clusters, i.e.,
polarization or consensus.

The rest of the paper is organized as follows: basic
definitions and properties of graphs and models are

recalled in Sect. 2; the convergence of our model is
discussed in Sect. 3; in Sect. 4, we give two examples
to illustrate the effectiveness of the obtained results.
Finally, in Sect. 5, we give our conclusion.

Notations Throughout this paper, Rm×n and R
n

denote, respectively, the m × n real matrix and the
n-dimensional real space. Suppose A ∈ R

m×n or
A ∈ R

n , A ≥ 0 means all elements of A ≥ 0
are not less than 0, and AT denotes its transpose.
1n denotes the n-dimensional vector [1, 1, . . . , 1]T.
We use diag[m1,m2, . . . ,mn] to denote the diagonal
matrix whose diagonal elements are m1,m2, . . . ,mn .
The notation [−1, 1]n denotes the set {x |xi ∈ [−1, 1],
x ∈ R

n}.

2 Model and preliminaries

Consider a set of n nodes denoted by V = {1, 2, . . . , n}
and the subset E ⊂ V × V , G = (V, E) is called a
digraph with the set of nodes (or vertices) V and the
set of edges E . A path from a vertex i to another vertex
j is a sequence of distinct vertices starting with i and
ending with j , in which each vertex is adjacent to its
next vertex. We say that the digraph G = (V, E) con-
tains a spanning tree if there is a vertex i such that there
exists a path from i to every other vertex inG = (V, E)

where the node i is called a root node. Furthermore, if
each node is a root node, then a digraph G = (V, E)

is said to be strongly connected. The neighbor set of
the vertex i is defined by Ni = { j ∈ V |( j, i) ∈ E}.
We say that G = (V, E) is an undirected graph if
∀ j ∈ Ni means i ∈ N j . For an undirected graph,
the strong connectivity means connectivity. Suppose
a matrix A ∈ R

n×n satisfies: ai j �= 0 ⇐⇒ ( j, i) ∈ E ,
then matrix A is called the weighted adjacency matrix.
In this paper, we assume aii > 0 for all i ∈ V , i.e.,
each vertex has a self-loops. If the adjacency matrix A
is assumed both positive and negative values, then it
is called the signed adjacency matrix and its associate
graph is called the signed graph G(A). For the signed
adjacency matrix A, its Laplacian matrix L = D − A
where D =diag[d1, d2, . . . , dn] and di = ∑n

j=1 |ai j |
for all i ∈ V [56].

The state of agent i ∈ V at k is a continuous
value xi (k) ∈ [−1, 1] that represents the disclosed
opinion or position on a topic. The constant prejudice
x+
i ∈ [−1, 1] represents agent i inherent bias which
may differ from the opinion disclosed to the public.
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si ≥ 0 models the tendency of agent to maintain its
prejudice x+

i in public. If si = 0, i.e., agent i has
no willingness to maintain prejudice which is called
a non-stubborn agent; otherwise, the agent is called
a stubborn agent and si is called stubbornness. Let
V1 = {i |si > 0, i ∈ V } denote the set of all stubborn
agents and V2 = {i |si = 0, i ∈ V } denote the set of all
non-stubborn agents. As pointed out in [18], compe-
tition, antagonism or distrust between stubborn agents
and non-stubborn agents are ubiquitous, which are usu-
ally modeled by repulsive couplings or negative ties
among the agents.Meanwhile, the relationship between
stubborn agents (or non-stubborn agents) is cooperative
and friendly, which can be usually modeled by positive
ties. It means that ai j ≥ 0 for ∀i, j ∈ Vl(l ∈ {1, 2}) and
ai j ≤ 0 for ∀i ∈ Vp, j ∈ Vq , p �= q, (p, q ∈ {1, 2}).
In other words, in this paper, the signed graph G(A) is
structural balance [18]. We also say that the weighted
adjacency matrix A is structural balance. The vector
x(k) = [x1(k), x2(k), . . . , xn(k)]T denotes the set of
all disclosed opinions, while the set of constant pri-
vate prejudice is x+ = [x+

1 , x+
2 , . . . , x+

n ]T. For conve-
nience, we refer to publicly disclosed opinions simply
as opinions in the remainder of this paper.

Inspired by the literature [5,39], in this paper, we
adopt the following social stress function.

�i (xi (k), x(k − 1), k) = si (xi (k) − x+
i )2

+ ρ(k)
n∑

i=1

|ai j |(xi (k) − sgn(ai j )x j (k − 1))2, (1)

where ρ(k) > 0 is the peer pressure coefficient which
is also call the peer pressure. sgn(·) is a sign function
defined as follows:

sgn(z) =
⎧
⎨

⎩

1 if z > 0
0 if z = 0
−1 if z < 0.

(2)

The state of agent i is updated by minimizing its
social stress. In this paper, we assume that ρ(k) is
an increasing function of k. Intuitively, we should
assume that each agent experiences a distinct peer
pressure effect. But, for simplicity, we can assume
agents are exposed to the same degree of pressure.
As noted in [39], the reason is as follows: their adop-
tion rate depends on their stubbornness (si ) and the
relative weights of influence by their neighbors (ai j ).
It implies that in fact each agent has a distinct peer
pressure. According to [5], under these assumptions,

the necessary conditions are sufficient for minimizing
�i (xi (k), x(k − 1), k). So it is easy to obtain the opti-
mal state xi (k) for agent i at k:

xi (k) = si x
+
i + ρ(k)

∑n
j=1 ai j x j (k − 1)

si + ρ(k)di
, (3)

where k ∈ Z = {1, 2, . . .}. Let S =diag[s1, s2, . . . , sn]
and X+ =diag[x+

1 , s+
2 , . . . , s+

n ]; then, the model (3)
can be rewritten in the following compact form

x(k) = (S + ρ(k)D)−1(Sx+ + ρ(k)Ax(k − 1)). (4)

Remark 1 Empirical and experimental science shows
that individuals always consider their own and neigh-
bors’ opinions when making decisions. So, in this
paper, we suppose aii > 0 for all i ∈ V . It implies
si + ρ(k)di > 0, i.e., (3) can be well-defined. In fact,
when some aii = 0, (3) can still be established; we
only need to assume G(A) is connected.

Remark 2 Recently, opinion dynamics with stubborn
agents has been investigated in [13,38,57,58]. It should
be pointed out that in [13,38,57,58], only the coop-
eration between individuals was considered, and the
competition and distrust between individuals were
neglected. In other words, all elements of the weighted
adjacency A are assumed to be nonnegative. Mean-
while, opinion dynamics on signed graphs has been
studied in [17,18,42–45,50,51]. However, in these
papers, it was implicitly assumed that each actor was
completely open to interpersonal influence, i.e., they
did not consider the stubborn behavior of social actors.
Besides, peer pressure between individuals was not
considered in the literature mentioned above. In [39],
authors investigated how opinions evolve under the
existenceof stubborn agents andpeer pressure.But they
did not consider the influence of competition and dis-
trust between individuals for opinion evolution. How-
ever, in our model, in the presence of stubborn agents,
we simultaneously consider the possible cooperation
and competition between individuals and the agree-
ment pressure between individuals. Hence, our model
may be more general than most of opinion dynamics
models mentioned above and can reveal a richer mech-
anism of opinion evolution.

In order to derive our main results, we also need the
following definitions, assumptions and lemmas
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Assumption 1 The signed digraph G(A) contains a
spanning tree and there is at least one root node which
is a stubborn agent.

Definition 1 If limk→∞ |xi (k)| = α > 0 for all i ∈ V ,
and there exist i and j satisfying that limk→∞ xi (k) =
− limk→∞ x j (k), then we claim that system (3) can
achieve bipartite consensus or polarization. In partic-
ular, if limk→∞ xi (k) = α for all i ∈ V , we say that
system (3) reaches consensus.

Lemma 1 ([59]) Assume A ∈ R
n×n and A ≥ 0. If

G(A) contains a spanning tree, then the Laplacian
matrix L of matrix A has a simple eigenvalue at 0.

Lemma 2 ([60]) Assume A ∈ R
n×n and A ≥ 0 is a

stochastic matrix and its all diagonal elements aii >

0. If G(A) contains a spanning tree, then A has an
eigenvalue λ = 1 with algebraic multiplicity equal to
one and all the other eigenvalues satisfy |λ| < 1.

3 Main results

In this section, we will consider the convergence of
system (4). Firstly, we will consider opinions x(k) as a
sequence of contraction maps. We will show that every
map has the unique fixed point. Then, wewill show that
all these unique fixed points converge to the constant c.
Finally, we will obtain that x(k) also converges to this
constant c. For this purpose, we also need the following
lemmas.

Lemma 3 Let � =diag[σ1, σ2, . . . σn] where σi is
defined as follows:

σi =
{
1 if the i th agent is a stubborn agent
−1 otherwise,

(5)

then, for system (4), we have �A� ≥ 0 and �S = S.

Proof Let E = (ei j ) = �A�. Through simple calcu-
lations, one can obtain that ei j = σiσ j ai j . If i ∈ V1
( j ∈ V1) and j ∈ V2 (i ∈ V2), then ai j ≤ 0. According
to the definition of σi , it implies ei j ≥ 0. Similarly, one
can easily obtain that ei j ≥ 0 for ∀i, j ∈ V1(V2). It
shows that �A� ≥ 0. Note that si = 0 and σi = −1
when the agent i is a non-stubborn agent, when the
agent i is a stubborn agent, si > 0 and σi = 1. Hence,
we have �S = S. In this paper, the diagonal matrix �

will play a key role in deriving our main results. �

Lemma 4 SupposeAssumption1holds, then thematrix
(S + ρ(k)L) is invertible for system (4) where L =
D − A.

Proof According to Lemma 3, the gauge transforma-
tion � satisfies �A� ≥ 0. Let

B = �(S + ρ(k)L)�

= S + ρ(k)(D − �A�). (6)

Noting that �−1 = �, we only need to prove that B is
invertible. Let

C =
[

0 0
S1n ρ(k)�A�

]

. (7)

Noting that S1n ≥ 0 and �A� ≥ 0, soC ≥ 0. Accord-
ing to Assumption 1, there is at least one stubborn root
node inG(A)which is assumed to be agent i . So si > 0.
It is obvious that the graphs G(A) and G(ρ(k)�A�)

are exactly the same; hence, the graph G(C) contains
a spanning tree. According to the matrix C , one can
easily obtain the Laplacian matrix Lc of it.

Lc =
[

0 0
−S1n B

]

. (8)

According to Lemma 1, Lc has a simple eigenvalue at
0. So all eigenvalues of the matrix B are not 0, i.e.,
the matrix B is invertible. This completes the proof of
Lemma 4. �

Next, we will establish a relationship between opin-
ions x(k) and contractionmaps. Suppose fk(x) = (S+
ρ(k)D)−1(Sx+ + ρ(k)Ax), Fk = fk ◦ fk−1 ◦ . . . ◦ f1.
Obviously, we have x(k) = fk(x(k − 1)) and x(k) =
Fk(x(0)). Furthermore, we have the following lemma.

Lemma 5 [39] If fk is an analytic contraction func-
tion in a domain with fk(D) ⊆ D for all k ∈ Z,
then F = limk→∞ Fk is a constant function c, i.e.,
F(x) = c for all x ∈ D and the fixed point x(k)
of fk also converges to the constant c. It implies that
limk→∞ x(k) = limk→∞ x(k).

Next, we will explain that fk is a contraction map
on the domain [−1, 1]n .
Lemma 6 Suppose Assumption 1 holds, then, for all
k ∈ Z, fk is a contraction map and its unique fixed
point x(k) = (S + ρ(k)L)−1Sx+.
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Proof By adding a row and a column to ρ(k)(S +
ρ(k)D)−1A, we construct the following auxiliary
matrix

B =
[

ρ(k)(S + ρ(k)D)−1A (S + ρ(k)D)−1S1n
0 1

]

.

(9)

Let

C =
[

� 0
0 1

]

, (10)

then we have

CBC

=
[

ρ(k)(S + ρ(k)D)−1�A� (S + ρ(k)D)−1�S1n
0 1

]

. (11)

According to Lemma 3, �A� ≥ 0 and �S = S ≥ 0,
so we have CBC ≥ 0. Furthermore,

[ρ(k)(S + ρ(k)D)−1�A�,

(S + ρ(k)D)−1�S1n]1n+1

= ρ(k)(S + ρ(k)D)−1�A�1n

+ (S + ρ(k)D)−1�S1n

= ρ(k)(S + ρ(k)D)−1D1n

+ (S + ρ(k)D)−1S1n
= 1n . (12)

Hence, CBC is a stochastic matrix. According to
Assumption 1, G(A) contains a spanning tree, and
there is at least one root node which is a stub-
born agent. Similar to Lemma 4, one can know that
G(CBC) has a spanning tree. Note that all diagonal
elements of matrix CBC are greater than 0; accord-
ing to Lemma 2, CBC has an eigenvalue λ = 1
with algebraic multiplicity equal to one, and all the
other eigenvalues satisfy |λ| < 1. Hence, all eigen-
values λi of matrix ρ(k)(S + ρ(k)D)−1�A� sat-
isfy |λi | < 1. It implies that all eigenvalues λi of
matrix ρ(k)(S + ρ(k)D)−1A satisfy |λi | < 1. There-
fore, limi→∞(ρ(k)(S + ρ(k)D)−1A)i = 0. Equiva-
lently, if ‖ · ‖ denotes the matrix operator norm, then
‖ρ(k)(S+ρ(k)D)−1A‖ < 1. For any x, y ∈ [−1, 1]n ,
one has that

‖ fk(x) − fk(y)‖

= ‖ρ(k)(S + ρ(k)D)−1A(x − y)‖
≤ ‖ρ(k)(S + ρ(k)D)−1A‖‖(x − y)‖
≤ ‖(x − y)‖. (13)

It implies that fk is a contraction map on a compact
set. According to Banach fixed-point theorem, fk has
an unique fixed point. Suppose x(k) is the unique fixed
point of fk , then x(k) = fk(x(k)). So

x(k) = (S + ρ(k)D)−1(Sx+ + ρ(k)Ax(k)) (14)

⇒ (S + ρ(k)D)x(k) = Sx+ + ρ(k)Ax(k)

⇒ (S + ρ(k)L)x(k) = Sx+

⇒ x(k) = (S + ρ(k)L)−1Sx+.

This completes the proof. �
Combining Lemma 5 with Lemma 6, one can easily

obtain the following result.

Theorem 1 For system (4), if Assumption 1 is true and
ρ(k) is increasing and bounded, then

lim
k→∞ x(k) = (S + ρ∗L)−1Sx+, (15)

where ρ∗ = limk→∞ ρ(k).

Proof Sinceρ(k) is increasing and bounded, according
to the monotone convergence principle, it converges
to a finite constant ρ∗. From Lemma 4, (S + ρ∗L) is
well-defined and invertible. Furthermore, we know that
matrix inversion is continuous.According toLemmas 5
and 6, we can obtain

lim
k→∞ x(k) = lim

k→∞ x(k)

= lim
k→∞(S + ρ(k)L)−1Sx+

= (S + lim
k→∞ ρ(k)L)−1Sx+

= (S + ρ∗L)−1Sx+. (16)

This completes the proof of Theorem 1. �
In Theorem 1, we assume that G(A) is a directed

signed graph. If G(A) is an undirected graph, we can
obtain the following corollary.

Corollary 1 For system (4), suppose G(A) is an undi-
rected signed graph and contains a spanning tree. If
ρ(k) is increasing and bounded, then
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Opinion dynamics with the increasing peer pressure and prejudice 3427

lim
k→∞ x(k) = (S + ρ∗L)−1Sx+, (17)

where ρ∗ = limk→∞ ρ(k).

Proof Since G(A) is an undirected graph and has a
spanning tree, G(A) must be connected. It implies that
each node in G(A) is the root node. So, Lemmas 4–6
hold. According to Theorem 1, the conclusion is obvi-
ously established. �

According to (15) and (17), if ρ(k) is bounded,
then system (4) converges to multiple clusters in gen-
eral. The following theorem shows that if ρ(k) is
unbounded, then system (4) forms two clusters at most.
It implies that increasing the peer pressure can weaken
the opinion differences and reduce the number of clus-
ters.

Theorem 2 For system (4), assume A = AT and the
signed graph G(A) is connected. If ρ(k) is increasing
and unbounded, then

lim
k→∞ x(k) =

∑
i∈V1 si x

+
i∑

i∈V1 si
�. (18)

It implies that if
∑

i∈V1 si x
+
i �= 0, system (4) will

achieve bipartite consensus; otherwise, system (4) will
reach consensus.

Remark 3 Theorem 2 shows that in the case of increas-
ing and unbounded peer pressure, opinion absolute
value of all the agents always converges to the constant

|
∑

i∈V1 si x
+
i∑

i∈V1 si
| which depends on the average of their the

prejudices weighted by stubbornness of the stubborn
agents. It is irrespective of the non-stubborn agents and
the weighting of the edges in the network, so long as
A = AT and G(A) contains a spanning tree.

Remark 4 The literature [13,38,57] presented that
when considering the stubborn agents opinions usually
form multiple clusters. However, Theorem 2 reveals
that as the peer pressure is increasing and unbounded,
the considered social groups will form two clusters at
most. Corollary 2 also illustrates this point. This shows
that the peer pressure may make opinions to reach an
agreement in the presence of stubbornness and compe-
tition.

Remark 5 It is well-known that for BCmodels, we can
only explain its convergence, and it is difficult to pre-
dict the value of the final opinion [24–29]. But, for

our model, we give the value of the final opinion in
Theorems 1 and 2. It implies that it is easier to mathe-
matically analyze our model than BC models. Further-
more, our model also considers more factors to explain
clustering phenomenon. These show that ourmodel not
only captures themain features of opinion evolution but
also allows mathematically rigorous analysis, which is
in line with the requirement of mathematical modeling.

Proof Firstly, in order to proof Theorem 2,we first give
a lemma.

Lemma 7 Assume A ∈ R
n×n and A = AT ≥ 0.

The graph G(A) is connected and the diagonal matrix
S =diag[s1, s2, . . . , sn] ≥ 0 and S �= 0. If ρ(k) is
increasing and unbounded, then

lim
k→∞(S + ρ(k)L)−1 = 1

∑n
i=1 si

1n1Tn , (19)

where L is the Laplacian matrix of the nonnegative
matrix A.

Lemma 7 is a direct extension of Theorem 1 of the
literature [39]. The specific proof is omitted here.

According to the proof of Lemmas 4–6, one can
easily obtain that Lemmas 4–6 still hold when A ≥ 0 is
a symmetric matrix, and the graph G(A) is connected.
It implies that

lim
k→∞ x(k) = lim

k→∞ x(k)

= lim
k→∞(S + ρ(k)L)−1Sx+. (20)

Furthermore, according to the definition of �, we have

lim
k→∞(S + ρ(k)L)−1

= lim
k→∞ �(�S� + ρ(k)�L�)−1�

= �( lim
k→∞(�S� + ρ(k)�L�)−1)�

= �( lim
k→∞(S + ρ(k)�L�)−1)�. (21)

Combining Lemma 7 with �S = S and noting that
si = 0 when i ∈ V2, one can obtain
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Fig. 1 Network topology in Example 1

lim
k→∞ x(k) = �(

1
∑n

i=1 si
1n1Tn )�Sx+

= 1
∑n

i=1 si
�(1n1Tn )Sx+

=
∑n

i=1 si x
+
i∑n

i=1 si
�

=
∑

i∈V1 si x
+
i∑

i∈V1 si
�. (22)

So, according to (22) and the definition of �, when
∑

i∈V1 si x
+
i �= 0, system (4) achieves bipartite con-

sensus and all agents are divided into two clusters, i.e.,
the stubborn agent set and the non-stubborn agent set.
When

∑
i∈V1 si x

+
i = 0, limk→∞ x(k) = 0, i.e., opin-

ions reach consensus. �

Remark 6 By Theorems 1 and 2, one can find that for
system (4), the final opinions depend on the prejudices
of stubborn agents. The non-stubborn agents do not
contribute to the formation of the final opinions, which
means that the stubborn agents will grasp the progress
of the situation. This is also in line with our intuition,
because compared with the non-stubborn agents, it is
more difficult to influence opinions of the stubborn
agents. This is also consistent with the results of the
literature [13,38,39,57,58].

In Theorems 1 and 2, graph G(A) is the signed
graph, i.e., some elements of A are negative . In fact,
according to the proof of lemmas and theorems, our
results still hold when A ≥ 0. Hence, we have the fol-
lowing corollary.

Corollary 2 For system (4), we assume A ≥ 0 and
G(A) satisfies Assumption 1. If ρ(k) is increasing and
bounded, then

lim
k→∞ x(k) = (S + ρ∗L)−1Sx+, (23)

0 50 100 150 200
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0.4

0.6

0.8

1

Fig. 2 Opinion evolution in Example 1 when ρ(k) = 5 − 1/k

where ρ∗ = limk→∞ ρ(k). In particular, if ρ(k) is
increasing and unbounded and A = AT, then

lim
k→∞ x(k) =

∑n
i=1 si x

+
i∑n

i=1 si
1n . (24)

In other words, system (4) will reach consensus.

Remark 7 Recently, opinion dynamics with the initial
prejudices and peer pressure has been investigated in
[39]. It is worth mentioning that it is assumed that A =
AT ≥ 0 in [39]. It means that G(A) is an undirected
graph. Under this assumption, authors have pointed out
that if ρ(k) is increasing and G(A) is connected, then
opinions will converge to the constant opinions. Note
that for (23), we do not require A = AT; so Corollary 2
shows that our results further extend the findings of
[39].

4 Numerical example

In the section, we will give two examples to observe
the state evolution of systems in order to verify our
obtained results.

Example 1 Consider a network with ten agents. The
network topology is shown in Fig. 1. Note we assume
that each node has a self-loop in this paper. So, for
the sake of convenience, we omit these self-loops in
Figs. 1, 6 and 7. The red node represents the stub-
born agent, and the green node is the non-stubborn
agent. According to Fig. 1, one can find that the
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Fig. 3 Opinion evolution when G(A) is assumed to be a undi-
rected graph and ρ(k) = k/2 in Example 1
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Fig. 4 System (4) reach consensus in Example 1
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Fig. 5 Opinion evolution when G(A) is a directed graph and
ρ(k) = k/2 in Example 1

Fig. 6 Network topology of G1(A) in Example 2

Fig. 7 Network topology of G2(A) in Example 2

graph G(A) satisfies the conditions of Theorem 1.
Let S =diag[2, 4, 2, 6, 2, 0, 0, 0, 0, 0], the initial pref-
erence x+ = [0.8,−0.2,−0.8, 0.6, 0.4,−0.3, 0.7,
−0.5, 0.9,−0.7] and the peer pressure ρ(k) = 5 −
1/k. Figure 2 gives the opinion evolution of sys-
tem (4). According to Fig. 2, opinions finally con-
verge to multiple clusters. Furthermore, if we assume
that G(A) is an undirected graph and ρ(k) = k/2,
then the conditions of Theorem 2 is satisfied. Note∑10

i=1 si x
+
i = 3.6 �= 0, it implies that opinions

will finally form two clusters, i.e., bipartite con-
sensus. By Fig. 3, one can find this point. If we
let x+ = [−0.5, 0.8, 0.2,−0.6, 0.5,−0.3, 0.7,−0.4,
0.6,−0.7], then ∑10

i=1 si x
+
i = 0, then system (4) will

reach consensus. You can see Fig. 4.

Remark 8 In fact, in Example 1, for the digraph G(A)

showed in Fig. 1, if we let ρ(k) = k/2, we have found
that opinions also derive bipartite consensus. Figure 5
shows this point. Is this accidental? So we have done a
lot of simulation experiments,we found that ifAssump-
tion 1 holds andρ(k) is increasing and unbounded, then
system (4) will reach bipartite consensus or consensus.
This is in line with the conclusion of Theorem 2. The
following Example 2 further shows this point. How-
ever, unfortunately, we cannot explain it theoretically.
This will be the focus of our future work. In other
words, in the future work, we will try to delete the
condition A = AT in Theorem 2.
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Fig. 8 Opinion evolution when G1(A) is a directed graph and
ρ(k) = √

k in Example 2
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Fig. 9 Opinion evolution when G1(A) is a directed graph and
ρ(k) = k/2 in Example 2
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Fig. 10 Opinion evolution when G1(A) is a directed graph and
ρ(k) = ek in Example 2
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Fig. 11 Opinion evolution when G2(A) is a directed graph and
ρ(k) = √

k in Example 2
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Fig. 12 Opinion evolution when G2(A) is a directed graph and
ρ(k) = k/2 in Example 2
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Fig. 13 Opinion evolution when G2(A) is a directed graph and
ρ(k) = ek in Example 2
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Example 2 In this example,we consider two the signed
networks G1(A) and G2(A) which are showed in
Figs. 6 and 7, respectively. Similar to Example 1, the
red node represents the stubborn agent, and the green
node is the non-stubborn agent. According to Figs. 6
and 7, one can find that the graphs G1(A) and G2(A)

all satisfy Assumption 1. Let ρ(k) = √
k, k/2, ek ,

respectively. The stubbornness and prejudice are set
randomly. The opinion trajectories for this example are
shown in Figs. 8, 9, 10, 11, 12, 13.According to Figs. 8,
9, 10, 11, 12, 13, for the digraphG1(A) andG2(A), the
system (4) finally reaches bipartite consensus or con-
sensus.

5 Conclusion

In this paper, firstly, a novel opinion dynamics model
has been proposed in which “stubbornness,” “compe-
tition” and “peer pressure” are simultaneously consid-
ered. Then, the convergence of model has been investi-
gated.Wehave found that if the peer pressure is increas-
ing and bounded, opinions usually form multiple clus-
ters in our model. Meanwhile, if the peer pressure is
increasing and unbounded, our model will reach bipar-
tite consensus even consensus. This shows that as the
peer pressure increases indefinitely, the differences of
opinion may decrease. Finally, two numerical exam-
ples have been given to illustrate the effectiveness of
our results.
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