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Abstract An adaptive integral sliding mode control
(AISMC) method with payload sway reduction is pre-
sented for 4-DOF tower cranes in this paper. The
designed controller consists of three parts: The inte-
gral sliding mode control is used to provide the robust
behavior; the adaptive control is utilized to present
the adaptive performance; the swing-damping term is
added to suppress and eliminate the payload swing
angles. Different from existing sliding mode control
methods presenting with chattering phenomenon, the
proposed AISMCmethod is essentially continuous and
chattering free. Moreover, the accurate values of the
system parameters including the payload mass, the
trolley mass, the cable length, the moment of iner-
tia of the jib, the friction-related coefficients are not
required for the designed controller due to the adaptive
control. Lyapunov-based analysis and LaSalle’s invari-
ance principle are employed to support the theoretical
derivationswithout linearizing the nonlinear dynamics.
Experimental results are illustrated to show the supe-
rior control performance of the designed controller.
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1 Introduction

To transfer heavy payloads to the desired location,
different kinds of cranes, mainly including over-
head cranes/container cranes, rotary cranes, and tower
cranes, are widely used in various fields, e.g., factories,
industries, and construction sites [1,2]. Although these
cranes have different operating principles and mechan-
ical structures, they all belong to underactuated sys-
tems due to the fact that the payload cannot be con-
trolled directly, whose control issues are difficult and
still open [3–5]. To improve work efficiency, the trol-
ley/jib is required to get to the destination as quickly and
accurately as possible, and at the same time, the pay-
load swing angles should be kept in a small range [6].
However, the lack of available control inputs and high-
state coupling behaviors make both controller design
and stability analysis very difficult. Therefore, it is of
both theoretical and practical interest to develop auto-
matic controllers for cranes.

Studies on control of crane systems are far-flung
and agelong. However, most of these control methods
are proposed mainly for overhead crane systems [1,7–
18], the number of control methods for tower cranes
is much less than that of overhead cranes. In [19,20],
command shaping-based methods are utilized to sup-
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press and eliminate the payload swing angles for tower
crane systems. However, command shaping is part of
open-loop control methods, and therefore, it is sensi-
tive to external disturbances. By using the gain schedul-
ing feedback method, the oscillation is reduced signif-
icantly and the payload is moved to the desired loca-
tion in reasonable time [21]. However, the proposed
gain schedulingmethod does not consider the effects of
friction forces. Taking input constraints of tower crane
systems into account, Böck and Kugi [22] combine a
suboptimalMPCmethodwith a path-followingmethod
and, on this basis, develop a real-time nonlinear model
predictive path-following controller. In reference [23],
a linear feedback control law is designed for a two
wired hammerhead tower crane, reducing the payload
swingwithout interferingwith human operators, which
ensures that the payload tracks the zero trajectory error
manifold while the time evolution along the trajectory
is determined. By using an iterative method, an opti-
mal method is proposed to optimize the transferring
time [24]. By combining a particle swarm optimiza-
tion (PSO) with a genetic algorithm (GA), a hybrid
evolutionary algorithm (HEA) for recurrent neural net-
work (RNN) control is proposed to improve the control
performance in evolving the RNN [25]. However, it is
difficult to design a learning lawor a gradient-based law
when using RNN. To reduce the payload sway, an H-
infinity-based adaptive fuzzy control law is developed
[26]. The designed controller fully considers the influ-
ences of time delays, uncertainties, and disturbances on
the tower crane systems and does not require accurate
system parameters. Tuan et al. [27] propose two non-
linear control laws: partial feedback linearization and
sliding mode control (SMC). The first control method
requires accurate system parameters, and the second
control method admits strong robustness.

All of the aforementioned control methods have the
disadvantages of approximation treatment and assump-
tion to the original tower crane dynamics. When exter-
nal and internal disturbances exist, the state variables
may move far away from the equilibrium point, lead-
ing to much difference between the original dynam-
ics and the simplified one. In this case, the control
performance will be deeply affected and might even
lead to instability [28]. To solve this problem, based
on energy shaping, Sun et al. [29] design an adap-
tive sway reduction (ASR) control law for 4-DOF
tower cranes without simplifying crane dynamics. The
adaptive sway reduction control scheme can achieve

accurate slew/translation positioning and rapid pay-
load swing suppression. In practice, the working con-
dition of tower cranes is poor with severe external
disturbances, parametric uncertainties and unmodeled
uncertainties. The sliding mode control (SMC) method
admits strong robustnesswith respect to external distur-
bances and uncertainties. Therefore, Tuan and Lee [30]
propose an adaptive SMCmethod for 3D tower cranes.
By combining the SMCwith themodel-reference adap-
tive control (MRAC), the adaptive and robust perfor-
mances of the control system are improved. However,
the adaptive SMCmethod has the problemof chattering
because the control input is discontinuous. Moreover,
it presents a complex structure, and hence, is difficult
to be applied in practice.

In this paper, we design an adaptive integral slid-
ing mode control (AISMC) method with payload sway
reduction for 4-DOF tower cranes, where external
disturbances, unmodeled uncertainties and paramet-
ric uncertainties are present. The designed controller
employs an integral sliding mode control to present
robustness; an adaptive control is employed to present
adaptive performance. To avoid chattering problem
of traditional SMC method, an integral sliding sur-
face (ISS) [31,32] is used to eliminate the reaching
phase. Different from other existing adaptive sway
reduction control method [29], the designed controller
can eliminate the reaching phase for compensation
of the matched uncertainties during the entire system
response and improves unmatched uncertainties. The
asymptotic stability of the equilibrium point and the
state convergence are demonstrated by Lyapunov tech-
niques and LaSalle’s invariance theorem. To verify the
effectiveness and robustness of the designed controller,
experimental results are provided.

Themain contributionof this paper canbe concluded
as follows:

1. The designed AISMC law only involves the posi-
tioning errors, the velocity errors and the payload
swing angular velocity signals, and does not require
the prior knowledge about the dynamics of the
tower crane systems. Therefore, it is model free.

2. It is the first SMCmethod for tower cranes that can
prove the state convergence on the sliding surface
without any approximations to the original dynamic
equations.

3. The proposed method is essentially continuous and
chattering free.
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4. The designed controller admits strong robustness
with respect to parametric uncertainties, unmod-
eled uncertainties, and external disturbances.

This paper is organized as follows. The dynamics of
4-DOF tower crane systems are described in Sect. 2. In
Sect. 3, main results including AISMC method design
and stability analysis are provided. Section 4 provides
the experimental results. In Sect. 5, some concluding
remarks are given.

2 Dynamics of tower crane systems

The dynamics of a 4-DOF tower crane (see Fig. 1) are
expressed as follows:
(
mp

(
S21C

2
2 + S22

)
l2 + 2mpxlC2S1 + J

+ (
Mt + mp

)
x2

)
ϕ̈ − mpl S2 ẍ

−mpl
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2 ϕ̇θ̇1 + mpl
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]
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−mpl
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+mpl
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− 2mpl
2C2

(
ϕ̇C1C2 + θ̇1S2

)
θ̇2 = 0 (3)

mpl (C2x + l S1) ϕ̈ − mpl S1S2 ẍ
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(
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ϕ̇2

+mpl
2θ̈2 + 2mpl

2C1C
2
2 ϕ̇θ̇1

+mpl
2θ̇21 S2C2 + mpglC1S2 = 0 (4)

where Mt and mp stand for the trolley mass and the
payload mass, respectively, l denotes the cable length,
S1, S2,C1,C2, S21, and S22 represent the abbreviations
of sin θ1, sin θ2, cos θ1, cos θ2, sin (2θ1), and sin (2θ2),
respectively, g is the gravity acceleration constant, J
denotes the moment of inertia of the jib, x and ϕ rep-
resent the trolley translation displacement and the jib
slew angle, respectively, θ1 and θ2 denotes the payload
swing angles, Fϕ and Fx represent the slew control
torque and the translation control force, respectively,
Frϕ and Frx stand for the friction torque and force,
respectively, which can be obtained by [6,11,12,29]:

Frϕ = Rϕ1 tanh
(
εϕϕ̇

) + Rϕ2 |ϕ̇| ϕ̇ (5)

Frx = Rx1 tanh (εx ẋ) + Rx2 |ẋ | ẋ (6)

where Rϕ1, Rϕ2, Rx1, Rx2, εϕ , and εx denote the
friction-related parameters. εϕ , and εx hardly change
for different payload mass, hence, can be determined
by offline tests and regarded as known constants
[11,12,29].

For simplicity, (1) and (2) are written in the follow-
ing compact form:

M (q) q̈r + N
(
q, q̇, q̈

) = u (7)

where qr
�= [ϕ x]T ∈ R2, q

�= [ϕ x θ1 θ2]T ∈
R4, u
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Fϕ Fx

]T ∈ R2, M (q) ∈ R2×2, and
N

(
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) ∈ R2 represent the following matrix and
vector:
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Without loss of generality, the following assumption
is reasonable.

Assumption 1 For cranes working in practice, the
payload is always beneath the trolley and the jib, and
therefore, the payload swing angles always satisfy
[2,6,11,29]:
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− π

2
≤ θ1 ≤ π

2
, − π

2
≤ θ2 ≤ π

2
(8)

3 Main results

3.1 Adaptive integral sliding mode controller design

Motivated in part by the static torquemethodology [32–
34], by introducing a positive diagonal matrix H, (7)
can be represented as:

u = Hq̈r + (M (q) − H) q̈r + N
(
q, q̇, q̈

)

= Hq̈r + P
(
q, q̇, q̈

)
(9)
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(
q, q̇, q̈

) =
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(
q, q̇, q̈

)
is the auxiliary func-

tion, whose detailed expression is given as follows:
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(10)

swith Y =
[
Y11 Y12 Y13 Y14 Y15 Y16
Y21 Y22 Y23 Y24 Y25 Y26

]T
∈ R6×2

standing for the regress vector, which can be calculated

online, and ω =
[

ω11 ω12 ω13 ω14 ω15 ω16

ω21 ω22 ω23 ω24 ω25 ω26

]T
∈

R6×2 being the uncertain parameter vector. Y and ω

are explicitly defined in the following forms:

Y =
[
Y11 Y12 ϕ̈ x2ϕ̈ + 2x ẋ ϕ̇ tanh

(
εϕϕ̇

) |ϕ̇| ϕ̇
Y21 ẍ x ϕ̇2 tanh (εx ẋ) |ẋ | ẋ Y26

]

ω =
[
mpl2 mpl J − H11 Mt + mp Rϕ1 Rϕ2

mpl Mt + mp − H22 Mt + mp Rx1 Rx2 mpl

]

Y11 = (
S21C

2
2 + S22

)
ϕ̈ − C1C2S2 θ̈1 + S1 θ̈2 + S21C

2
2 ϕ̇θ̇1

+ S1S2C2 θ̇
2
1 + C2

1 S22ϕ̇θ̇2 + 2C1S
2
2 θ̇1 θ̇2

Y12 = 2xC2S1ϕ̈ − S2 ẍ + C2x θ̈2 + 2C1C2x ϕ̇θ̇1

− S2
(
2ϕ̇S1 + θ̇2

)
x θ̇2 + 2S1C2ϕ̇ ẋ

Y21 = −S2ϕ̈ + C1C2 θ̈1 − S1S2 θ̈2 − C1S2 θ̇1 θ̇2

Y26 = −C2
(
S1

(
ϕ̇2 + θ̇21 + θ̇22

) + 2ϕ̇θ̇2
)

The control objectives are for the trolley and the
jib to reach their desired positions (pϕ and px ), while
suppressing and eliminating the payload swing (θ1 and
θ2) rapidly. To do this, the following integral sliding
surface is defined as the sliding vector s [31,32]:

s = ė + 2�e + �T�

∫ t

0
e (τ ) dτ (11)

where e = [e1 e2]T = [
ϕ − pϕ x − px

]T ∈ R2

denotes the error vector, � =diag(	11,	22) ∈ R2×2

represent the positive diagonal gain matrix.
From (9) and (11), the adaptive integral slidingmode

control method is designed as:

u = YTω̂ − H
(
�T�e + 2�ė + Kss

)
(12)

where Ks ∈ R2×2 denotes the positive SMC gain
matrix, ω̂ is the estimation ofω , which can be obtained
by the following adaptive law:

˙̂ω = −H−1σYs (13)

where σ ∈ R6×6 stands for the positive diagonal
matrix.

As can be seen from (12), the payload swing-related
information is not included in the control input. To
solve this problem, the final controller is proposed as

u = YTω̂−H
(
�T�e+2�ė+Kss

) −Kh
(
θ̇21 + θ̇22

)
s

(14)

From (9), (11), and (14), it is concluded that

ṡ = ë+�T�e+2�ė

= H−1
(
YTω̂−YTω

)
−H−1Kh

(
θ̇21 + θ̇22

)
s − Kss

= H−1YTω̃ − H−1Kh

(
θ̇21 + θ̇22

)
s − Kss (15)

where ë = q̈r is used for the deduction, ω̃ = ω̂ − ω is
the online estimate error vector.
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Fig. 1 Schematic figure of
tower crane systems

Table 1 Performance
indices of Experiment 2

Controllers LQR controller ASR controller Proposed controller

θ1max [◦], θ2max[◦] 5.92, 6.51 5.4, 5.5 4.38, 2.96

θ1res [◦], θ2res [◦] 1.76, 5.78 0.21, 0.26 0.01, 0.28

Fϕ max[N], Fxmax [N] 37.1, 67.9 28.6, 66.9 27.49, 62.8

δϕ[m], δx [m] 0.08, 0.06 0.02, 0.02 0.02, 0.03

3.2 Stability analysis

Theorem 1 The proposed control method (13) and
(14) can guarantee the trolley and the jib to reach their
desired position and suppress and eliminate the pay-
load swing angles simultaneously, in the sense that

lim
t→∞

[
ϕ x θ1 θ2 ϕ̇ ẋ θ̇1 θ̇2

]T

= [
pϕ px 0 0 0 0 0 0

]T (16)

if the following conditions are satisfied

∣∣θ̇1
∣∣ < α,

∣∣θ̇2
∣∣ < β (17)

where α and β are positive constants.

Remark 1 In practice, to guarantee smooth transporta-
tion and safety, the accelerations of the jib and the trol-
ley usually satisfy ϕ̈, ẍ < g [35], where g denotes
gravitational acceleration. Under such circumstances,
the payload swing angles are usually kept within
θ1max, θ2max ≤ 10◦; Moreover, the angular velocities

are kept within permitted ranges [35–37]. Therefore,
conditions (17) are reasonable.

Proof The following Lyapunov candidate function is
constructed as:

V (t) = 1

2
sTs + 1

2
ω̃Tσ−1ω̃ (18)

��
Its time derivative is calculated as

V̇ (t) = sT ṡ + ω̃Tσ−1 ˙̃ω
= sT

(
H−1YTω̃ − H−1Kh

(
θ̇21 + θ̇22

)
s − Kss

)

− ω̃σ−1σ H−1Ys

= −
(
θ̇21 + θ̇22

)
sTH−1Khs − sTKss

≤ 0 (19)

To prove Theorem 1, let �
�= {

s| V̇ (t) = 0
}
, and

then define � as the largest invariant set contained in
�. Thus, the following conclusions hold in �:
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Fig. 2 Experiment 1:
Experimental results of the
proposed method

(a)

(b)

s = 0 (20)

Next, we will further illustrate that e = 0 and ė = 0
in �.

From (20), it can be easily concluded that

ė1 + 2	11e1 + 	2
11

∫ t

0
e1 (τ ) dτ = 0 (21)

Taking time derivative of (21), yields

ë1 + 2	11ė1 + 	2
11e1 = 0 (22)

By means of Hurwitz criterion [38,38,39], it is easy
to demonstrate that

lim
t→∞ e1 = 0, lim

t→∞ ė1 = 0, lim
t→∞ ė1 = 0
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Fig. 3 Experiment 1:
Experimental results of the
LQR method

⇒ lim
t→∞ ϕ = pϕ, lim

t→∞ ϕ̇ = 0, lim
t→∞ ϕ̈ = 0 (23)

In a similar way, it can be obtained that

lim
t→∞ e2 = 0, lim

t→∞ ė2 = 0, lim
t→∞ ė2 = 0

⇒ lim
t→∞ x = px , lim

t→∞ ẋ = 0, lim
t→∞ ẍ = 0 (24)

Applying (20) into (13) yields

˙̂ω = 0 → ω̂ = χ → P̂
(
q, q̇, q̈

) = λ (25)

where χ = [χ1 χ2]T ∈ R2, λ = [λ1 λ2]T ∈ R2, λ1
and λ2 are constants yet to be determined.

From (23)–(25), we are led to

Fϕ = λ1, Fx = λ2 (26)

By using (23), (24), and (26), one can reduce (1) into

− lC1C2S2θ̈1+l S1S2C2θ̇
2
1+lC1S

2
2 θ̇1θ̇2−lC1C

2
2 θ̇1θ̇2

+ l S1θ̈2 + lC1θ̇1θ̇2 + px
(
C2θ̈2 − S2θ̇

2
2

)
= λ1

mpl

(27)

where S22 = 1 − C2
2 is used.

Integrating (27) with respect to time, it is obtained
that

− lC1C2S2θ̇1 + l S1θ̇2 + pxC2θ̇2 = λ1

mpl
t + λ3 (28)

where λ3 denotes a constant. If λ1 
= 0, then,
−lC1C2S2θ̇1 + l S1θ̇2 + pxC2θ̇2 → ∞ as t → ∞,
which contradicts to (17). Hence,

λ1 = 0, Fϕ = 0 (29)

Substituting (23), (24), and (26) into (2) yields

C1C2θ̈1 − C1S2θ̇1θ̇2 − S1C2θ̇
2
1 − S1S2θ̈2

−C1S2θ̇1θ̇2 − C2S1θ̇
2
2 = λ2

mpl
(30)

The integral of (30) with respect to time can be
obtained that

C1C2θ̇1 − S1S2θ̇2 = λ2

mpl
t + λ4 (31)

where λ4 denotes a constant. Similar to (31), we are led
to

λ2 = 0, Fx = 0,

(
C1C2θ̈1 − C1S2θ̇1θ̇2 − S1C2θ̇

2
1− S1S2θ̈2 − C1S2θ̇1θ̇2 − C2S1θ̇22

)
= 0

(32)

After some arrangements, (3) and (4) can be reduced
into

lC2θ̈1 − 2l θ̇1S2θ̇2 + gS1 = 0 (33)

l θ̈2 + l θ̇21 S2C2 + gC1S2 = 0 (34)

It can be obtained from (33) and (34) that

lC1C2θ̈1 − 2lC1S2θ̇1θ̇2 − l S1S2θ̈2
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Fig. 4 Experiment 1:
Experimental results of the
ASR method

(a)

(b)

− l S1C2θ̇
2
1 + l S1C

3
2 θ̇

2
1 + gC1S1C

2
2 = 0 (35)

From (35) and (33), the following equation holds:

S1
(
C2θ̇

2
2 + lC3

2 θ̇
2
1 + gC1C

2
2

)
= 0 (36)

→ S1 = 0, θ1 = 0, θ̇1 = 0

where Assumption 1 is used.
Inserting (29) and (36) into (35), one has

C2θ̇2 = λ3

px
(37)

Integrating (37) with respect to time, we have

S2 = λ3

px
t + λ5 (38)

where λ5 stands for a constant yet to be determined.
Noting that S2 is bounded, and therefore,

λ3 = 0, S2 = λ5 → θ̇2 = 0, θ̈2 = 0 (39)
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Fig. 5 Experiment 2:
Experimental results of the
proposed method

(a)

(b)

Substituting (39) into (34), it is concluded that

gC1S2 = 0 → S2 = 0, θ2 = 0 (40)

By collecting the conclusions of (23), (24), (36),
(39), and (40), we know that the largest invariant set �
only contains the equilibrium point

[
ϕ x θ1 θ2 ϕ̇ ẋ θ̇1 θ̇2

]T = [
pϕ px 0 0 0 0 0 0

]T

By using LaSalle’s invariance principle [38,39],
Theorem 1 is proven.

4 Experimental results

In this section, to validate the practical control perfor-
mance of the designed controller, a series of experi-
mental tests are carried out. The physical parameters
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Fig. 6 Experiment 2:
Experimental results of the
LQR method

of the experimental test bed are set as

Mt = 3.5 kg, J = 6.8 kgm2, g = 9.8m s−2

Unless otherwise noted, the payload mass and the
cable length are set as

mp = 1 kg, l = 0.5 m

The initial jib slew angle and the trolley translation
position are chosen as

pϕ(0) = 0◦, px (0) = 0.1 m

The target jib slew angle and the trolley translation
position are selected as

pϕ = 45◦, px = 0.5 m

Experiment 1 Comparative study: To better exhibit
the superior control performance of the designed con-
troller, we compare it with the LQR method [39] and
the adaptive sway reduction (ASR) controlmethod [29].
The detailed expressions of the LQR method and the
ASR control method are given as follows.

(1) LQR controller

Fϕ = −k1ϕe1 − k2ϕϕ̇ − k3ϕθ2 − k4ϕθ̇2 (41)

Fx = −k1xe2 − k2x ẋ − k3xθ1 − k4x θ̇1 (42)

where k1ϕ , k2ϕ , k1x , k2x are positive control gains, and
k3ϕ , k4ϕ , k3x , k4x are negative control gains.

(2) ASR controller

Fϕ = −kpϕe1 − kdϕϕ̇ + ηTϕω̂ϕ − khϕ

(
θ̇21 + θ̇22

)
ϕ̇

− βϕ

[(
pϕ + τϕ

) − ϕ2 + ϕ̇e1
]

[(
pϕ + τϕ

)2 − ϕ2
]2 (43)

Fx = −kpxe2 − kdx ẋ + ηTx ω̂x − khx
(
θ̇21 + θ̇22

)
ẋ

− βx
[
(px + τx ) − x2 + ẋe2

]
[
(px + τx )

2 − x2
]2 (44)

where kpϕ , kdϕ , kpx , kdx , khϕ , khx , βϕ , βx are positive
control gains, τϕ and τx are the maximum overshoot
amplitudes for ϕ and x , respectively, and the update
law for ω̂ϕ , ω̂x is designed as follows:

˙̂ωϕ
�= −�ϕηϕϕ̇, ˙̂ωx

�= −�xηx ẋ (45)

where �ϕ ∈ R2×2, �x ∈ R2×2 are positive diagonal
matrices, and the vectors ηϕ , ηx , ωϕ , ωx are defined as

ηϕ
�= [tanh(εϕϕ̇) |ϕ̇|ϕ̇]T, ωϕ

�= [Rϕ1 Rϕ2
�= [ω1 ω2]

(46)

ηx
�= [tanh(εx ẋ) |ẋ |ẋ]T, ωx

�= [Rx1 Rx2] �= [ω3 ω4]
(47)

By trial-and-error method, the control gains for the
LQR method are k1ϕ = 31.0, k2ϕ = 51.2, k3ϕ =
−106.8, k4ϕ = −7.8, k1x = 31.7, k2x = 50.5,
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Fig. 7 Experiment 2:
Experimental results of the
ASR method

(a)

(b)

k3x = −101.7, k4x = −10.4. The control gains
for the ASR controller are set as kpϕ = 26, kdϕ =
3.5, kpx = 72.1. kdx = 13, �ϕ = diag(1.2, 1.5),
�x = diag(2, 10), βϕ = βx = 0.01, τϕ = τx =
0.005. After careful tuning, the control gains for the
designed controller are selected as � =diag(10, 10),
H =diag(0.869, 0.622), σ =diag(1.0, 2.0) × 104,
Kh =diag(5.6, 4.1), Ks =diag(2.3, 3.2). The initial
vector of the estimation of ω is set as 0. The following
performance indices are introduced to better present

the superior control performance of the designed con-
troller:

a. θ1max, θ2max:maximumpayload swing amplitudes.
b. θ1res, θ2res: residual payload swings defined asmax-

imum payload swing amplitudes after the trolley
and the jib stop.

c. Fϕ max, Fx max:maximumcontrol torque/force ampli-
tudes.

d. δϕ , δx : positioning errors after the trolley and the
jib stop.
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Fig. 8 Experiment 3:
Experimental results of the
proposed method with
respect to initial payload
swing

(a)

(b)

The experimental results of the suggested method,
the LQR method and the ASR method are provided in
Table 1 and Figs. 2, 3 and 4. It is seen that all three con-
trollers drive the trolley and the jib to their desired posi-
tions accurately. Although the proposed controller con-
sumes more transportation time than the LQR method,
it suppresses the payload swing within a smaller range
than the LQR controller and the ASR controller. In
terms of the proportion, θ1max and θ2max of the sug-
gested method account for only 73.98% and 45.47% of

those corresponding to the LQR controller and 81.11%
and 53.82% of those corresponding to the ASR con-
troller, respectively. Moreover, the maximum control
efforts of proposed method are smaller than the LQR
method and the ASR controller. In addition, in the pro-
cess of transportation, the payload continues swinging
back and forth for the LQR controller and the ASR
controller, while the payload is much more steady for
the suggested controller. The evolution of parameters
estimation is shown in Figs. 2b and 4b, which clearly
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Fig. 9 Experiment 3:
Experimental results of the
proposed method with
respect to external
disturbances

(a)

(b)

shows that all the estimations converge in about 6 s for
both the proposed controller and the ASR controller.

Experiment 2 Uncertainty/changed payload mass/
cable length: In this group, the LQR method and the
ASR method are still chosen as the comparison meth-
ods. To illustrate the influence of system uncertainty
to the proposed control method and the comparison
methods, the payload mass is changed from 1 to 0.5 kg,
and the cable length is changed from 0.5 to 0.3 m. The

designed controller, the LQR controller, and the ASR
controller still use the nominal payload mass and the
cable length, namely, 1 kg and 0.5 m, respectively.

Experiment 3 The experimental results are shown in
Figs. 5, 6 and 7. By comparing Figs. 5 with 2, although
there is much difference between the actual values
and nominal values of the cable lengths and the pay-
load masses, the designed controller’s control perfor-
mance, especially the trolley and the jib positioning
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effects, are almost the same whereas that of the LQR
method and the ASRmethod degrades significantly (see
the payload swing curves in Figs. 6 and 3, 7 and 4,
respectively). These experimental results demonstrate
the strong robustness of the designed controller over
uncertain system parameters.

Experiment 4 External disturbances: In this group,
to further examine the strong robustness of the pro-
posed controller with respect to external disturbances,
the following two cases are considered:

Case 1 Initial payload swing is added to disturb the
control system, as can be seen from the marked place
in Fig. 8.

Case 2 External disturbances are incorporated to the
payload swing in purpose twice, as can be seen from
the marked places in Fig. 9.

The control gains for the above two cases are kept the
sameas those inExperiment 2. It canbe seen fromFig. 8
that the undesirable initial payload swing is quickly
eliminated. Moreover, the overall control performance
of the proposed controller is little affected by the ini-
tial payload swing in comparison with Fig. 2. One can
observe from Fig. 9 that the system is re-stabilized
quickly after external disturbances are added on the
payload, which shows strong robustness of the pro-
posed control method.

5 Conclusion

In this paper, we consider the control problem of 4-
DOF tower crane systems subject to parametric uncer-
tainties, unmodeled uncertainties, and external distur-
bances, and propose a robust adaptive integral sliding
mode control (AISMC)method. By using integral slid-
ing surface (ISS), the proposed AISMC law is essen-
tially continuous, avoiding the chattering problem of
traditional SMC law, and thus, it can be conveniently
applied to some practical engineering. Moreover, the
state variables are proven to the equilibrium point when
they are in the manifold without linearizing the dynam-
ical equations of tower cranes or neglected nonlinear
terms, providing theoretical support of the proposed
controller’s superior control performance. Experimen-
tal results also verify the effectiveness and robustness
of the designed controller. In our future work, to ascer-
tain the important parameters in the 4-DOF tower crane

systems, the global sensitively will be elaborately ana-
lyzed.
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