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Abstract Rolling-element bearings are widely used
in industrial rotating machines, and hence there is a
strong need to accurately predict their influence on
the response of such systems. However, this can be
challenging due to an interaction between the dynam-
ics of the rotor and the bearing nonlinearities, and it
becomes difficult to provide a physical explanation
for the nonlinear response. A novel approach, com-
bining a Jeffcott rotor supported by a detailed bearing
model with the generalised harmonic balance method,
is presented, enabling an in-depth study of the complex
rotor–stator interaction. This allows the quasi-periodic
response of the rotor, due to variable compliance, to
be captured, and the impact of clearance, ring and sta-
tor compliance, and centrifugal loading of the bearing
on the response to be investigated. A strongly nonlin-
ear response was observed due to the bearing, leading
to large shifts in frequency as the excitation ampli-
tude was increased, and the emergence of stable and
unstable operating regions. The variable compliance
effect generated sub-synchronous forcing, which led to
sub-resonances when the ball pass frequency coincided
with the frequency of one of the modes. Radial clear-
ance in the bearing had by far the largest influence on
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the unbalance response, the self-excitation due to vari-
able compliance, and the stability. Introducing outer
ring compliance was found to slightly soften the sys-
tem, and centrifugal loading on the bearing elements
marginally increased the system’s region of instabil-
ity, but neither of these effects had a significant impact
on the response for the investigated bearing. When the
bearingwasmounted on a sufficiently compliant stator,
the system was found to behave linearly.

Keywords Rolling-element bearing · Generalised
harmonic balance · Variable compliance · Clearance ·
Jeffcott rotor

List of symbols

Subscripts

b Bearing
c Cage
e Can be replaced with i or o to refer to

each race
ex Excitation
g Gravity
i,o Inner race, outer race
j Bearing element index
k1, k2 Index of each harmonic in HBM
nl Nonlinear
r,s Rotor, stator
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steel Material property of steel
ub Unbalance
x, y Horizontal and vertical directions

Variables

β Rayleigh damping constant
δ Bearing contact deflections
ε Eccentricity of rotor centre of mass
γ Ratio between cage and inner ring

speed
A,B Hill’s method matrices due to linear

terms
C Damping matrix
f Force vector
K Stiffness matrix
L HBM matrix due to linear terms
M Mass matrix
r Vector of HBM residuals
u Excitation vector
x Displacement vector
z,h, g Complex HBM vectors containing

component at each frequency of x, fnl
and u, respectively

ω Frequency
Ω,Θ Rotation speed, angle
ψ Angular position of bearing cage/

elements
ρ Density of bearing elements
B Bearing width
C Hertzian contact coefficient
c Viscous damping constant
cr Radial bearing clearance
D Ball diameter
dm Diameter between ball centres
E Young’s Modulus of bearing rings
f Force
Fb Bearing self-excitation metric due to

VC
Fc Centrifugal load on each element
g Gravitational constant
I Second moment of area of bearing

rings
K Elemental contact stiffness
k Stiffness
m Component mass
MH Number of harmonics included in

HBM

MT Number of FFT points used in HBM
N Radial ring loads
n Hertzian contact exponent
p,q Numerator, denominator of rational

approximation of ratio between base
frequencies

Q Bearing contact load
R Radius of bearing races
r Relative radial displacement between

rings
T Unbalance transmissibility metric
t Time
u Radial element deflection
v Radial ring deflection
x, y Horizontal, vertical deflection
Z Number of bearing elements

Abbreviations

1X Synchronous component
BPF Ball pass frequency
CoG Centre of gravity
DC 0 Hz component
FFT Fast Fourier transform
GHBM Generalised harmonic balance

method
HBM Harmonic balance method
REB Rolling-element bearing
VC Variable compliance

1 Introduction

Rotating machines are used in a wide variety of appli-
cations, ranging from large-scale power-generation and
aero-engines, to small-scale consumer goods such as
computer hard drives. Vibration in such rotating sys-
tems can lead to performance reduction, malfunction,
or even catastrophic failure. Consequently, there has
been a strong research focus on modelling and under-
standing their dynamic behaviour, and the fundamental
theory is nowwell established. One of the first attempts
to model a simple rotor system was introduced by Jef-
fcott [1] more than a century ago, consisting of a sin-
gle rotor connected to ground via a bearing. The rotor
is assumed to move only in-plane, but is sufficient to
investigate the unbalance response of the rotor, and
can display resonance at certain critical speeds. Con-
sequently, this model has become a useful test case for
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the development of new modelling and analysis tech-
niques.

Every rotating machine is supported by bearings of
some form, which allow free rotation and transfer loads
to the stator. They are a key source of both compliance
and damping in the system and therefore have a large
influence on the response of the rotor [2,3]. Rolling-
element bearings (REB) are one of the most widely
used types of bearing in heavy machinery, because of
their high load capacity and low friction [4]. Every
REB consists of the same key components: multiple
rolling elements, a cage which holds them, and finally
inner and outer races on which the elements roll. The
elements can be either spherical or cylindrical, termed
“ball” and “roller’ bearings, respectively, where balls
are additionally free to pivot about the contact. In most
the basic bearing models, the bearings will be repre-
sented with linear springs and dampers [2,3],enabling
conventional modal analysis. However, due to the com-
plexity of REBs, this is a gross simplification which
has led to the introduction of a large range of more
advanced bearing models [5], most of which are based
on the quasi-static approach originally presented in [6].

Clearance is one of the largest sources of nonlin-
earity in a bearing [7–10], caused by a gap opening
up between the elements and races. Bearings are often
preloaded in some way, to prevent this from occurring,
but this is not always possible. It is simple to incor-
porate axial and radial clearance into existing models
[11,12], and these have beenused to show that the clear-
ance can unload some of the elements [13], amplify
the radial and axial coupling [14], and even introduce
local instability for very loose bearings [15]. Nonlin-
ear dynamic analyses have shown that the clearance can
lead to changes in the resonant frequencies of a rotor
system as well as introduce jump phenomena [16]. In
the extreme case chaotic responses can be observed
[17,18], which are heavily dependent on the applied
axial preload [19]. Although the impact of the bearing
clearance on the rotor response is well recorded in the
literature, there is only a limited physical understand-
ing of the underlying physical mechanisms that drive
these phenomena.

The rings of the bearing are often considered as rigid
[11], but it has been shown that ring compliance can
significantly change the load distribution between the
rolling elements [20] leading to a reduction in the peak
ball load [21,22]. Several different approaches have
been developed to include this effect in bearing mod-

els, including the introduction of springs in series for
each element [22], reduced order models [21,23], and
high-order FE models [24]. However, little is known
about the influence in rotor-bearing systems. It has been
shown that ring flexibility can attenuate the higher har-
monics in the response [25], but this effect is otherwise
often neglected.

If the rotor system operates at high speeds, the
dynamic loads on the bearing elements, including cen-
trifugal loads and gyroscopic moments [6,11], can
significantly change the bearing stiffness [11]. These
loads can lead to a reduction in the bearing stiff-
ness with increasing speed [26] and an increase in the
effective clearance [27]. A few studies have included
such dynamic loads when investigating the nonlinear
dynamics of a rotor system [28–31], but no compari-
son was made between the behaviour with and without
them. Therefore, there is little understanding of the spe-
cific influence of these dynamic loads.

When modelling a rotor system, the structure sup-
porting the bearing, known as the stator, is often
assumed to be rigid. However, in real applications,
the rotor is typically integrated into some larger flexi-
ble system, such as the casing around an aero-engine,
which introduces additional compliance to the system
and potentially modifies the influence of any bearing
nonlinearities. Lim et al. investigated the response of
plate-shaft systems using a linearised analysis andwere
able to accurately predict the vibration transmission
[12,15]. Sinou investigated the nonlinear response of
a flexible rotor, where each bearing was supported
by compliant supports [32], and various nonlinear
effects such as sub- and super-harmonic responseswere
observed. However, the properties of the support struc-
ture were kept constant in these studies and conse-
quently did not provide a physical understanding of
the interaction with the bearing nonlinearities.

The combination of the above bearing features leads
to a strongly nonlinear bearing stiffness,which strongly
influences the response of a rotor-bearing system.How-
ever, the stiffness will also depend on the angular posi-
tion of the elements sowill vary as the cage rotates. This
“variable compliance” (VC) [4] can introduce extra
harmonics into the response of the rotor system [30,33–
35], or even lead to chaotic behaviour [30,36,37]. It has
been shown that VC can be neglected when there is a
large radial load on the bearing [13], in which case
an alternative integral-based model can be used [38–
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40], but this is no longer the case when there is large
dynamic loading from a rotor unbalance [41].

In order to study the effect of different bearing non-
linearities on a rotating system in an isolated manner,
the basic Jeffcott rotor has been, and still is, widely
used in the literature due to its simplicity and ease of
computation [42]. A variety of numerical techniques
have been employed to obtain the vibration response
of such systems, where the most common approach is
time-integration of the equations of motion [19,25,27,
30,34–37]. This approach allows all forms of nonlinear
dynamic response to be captured, including chaos, but
it comes at high computational cost, which somewhat
limits its use. Alternatively, the nonlinear unbalance
response of the rotor system can be obtained by the
harmonic balancemethod (HBM) [10,16,32,43]which
allows periodic responses to be captured very effi-
ciently. However, conventional HBM cannot capture
quasi-periodic responses, and therefore recent studies
have neglected VC to ensure the response remains peri-
odic. The generalised HBM (GHBM) overcomes this
limitation and is able to additionally capture quasi-
periodic responses very efficiently [44–46]. This tech-
nique has been recently applied to a dual-shaft system
with REBs [47].

The effect of rolling-element bearings on the non-
linear dynamic response of a rotor system has been
studied in great detail, but little attention has been paid
to the influence of the different physical mechanisms.
Previous studies have also been limited by the avail-
able numerical techniques, and often only individual
effects were investigated. This paper will combine a
high fidelity rolling-element bearing model with a sim-
ple unbalanced Jeffcott rotor, to study the influence of
the bearing on the nonlinear dynamic response of the
system. The GHBM will be applied in a novel way to
include the effect of variable compliance in the predic-
tion of the nonlinear dynamic response. An extensive
parameter study will be performed to identify the influ-
ence of the different physical effects in the bearing and
provide explanations for the observed behaviour of the
rotor system.

2 Bearing model

To accurately predict the nonlinear dynamic response
of a rotor system supported by rolling-element bear-
ings, a detailed bearing model is required that can cap-

Fig. 1 Bearing dimensions

Table 1 SKF 6002 dimensions. [48]

Symbol Description Value Units

Z Number of balls 9 –

B Ring width 9 mm

D Ball diameter 4.76 mm

dm Diameter between ball centres 23.5 mm

cr Radial clearance 2.5 (C2) µm

20 (C5)

ture its time-varying stiffness, as well as the influence
of features such as clearance, ring compliance, and
dynamic loading on the elements, whilst remaining fast
to evaluate.Thepresentedbearingmodel is basedon the
well-established approach first introduced by Jones [6]
but will be simplified to consider only the case of deep
groove ball bearings. These bearings typically consist
of a single row of spherical elements held in place by a
cage and are designed to resist primarily radial load. If
the bearing is only loaded radially, it can be assumed
without loss of accuracy that the contacts will remain
collinear, since the rings will only move in plane. The
number of bearing elements will be denoted by Z , and
the key dimensions are defined in Fig. 1.

The values are shown for a SKF6002 bearing in
Table 1. This particular bearing was chosen as it has
already been examined in the literature by multiple
authors [18,28,34,48] and has known parameters. The
radial clearance is denoted by cr, but this can vary
depending on the bearing. Small clearance corresponds
to the SKF designation C2, whereas large clearance
corresponds to C5.
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2.1 Kinematics

In order to compute the bearing forces, the displace-
ments between all the involved components must be
defined. It will be assumed that the elements remain
evenly distributed around the circumference since they
are adequately constrained by the cage [6].

With reference to Fig. 2a, the angular position of
each ball ψ j is given by [32,34]:

ψ j = ( j − 1)Δψ + ψc (1)

where ψc is the angle through which the cage has
rotated from its initial position. This is zero when the
first element is directly under the bearing centre. The
angle between each adjacent pair of elements is denoted
by Δψ = 2π

Z .
The cage rotation speed ψ̇c linearly depends on the

rotation speed of the inner and outer rings, denoted by
Ωi and Ωo:

ψ̇c = (1 − γ )Ωo + γΩi (2)

where the speed ratio γ relates the shaft speeds to the
cage speed. This is given by [4]:

γ = 1

2

(
1 − D

dm

)

This ratio has a value of γ = 0.40 for the SKF6002
bearing considered in this study. If the rotational speeds
of the rings remain constant, then the cage rotation
speed, ψ̇c, will also remain constant so that ψc = ψ̇ct .
In most applications, either the inner or outer rings will
be fixed to the stator, which means Ωi or Ωo can be set
to zero, respectively.

The bearing deflections xb and yb shown in Fig. 2b
are defined as the inner ring relative to the outer ring.
This means the outer ring can be considered fixed for
the remainder of the derivation of the bearing properties
[11,12]. However, this is without loss of generality,
since the values of xb and yb are equally sensitive to
movements of either ring.

In order to determine the contact deflections at the
j th element, it is necessary to first compute the radial
ring deflection r(ψ) around the bearing which is given
by [12]:

r(ψ) = xb sinψ − yb cosψ − cr (3)

where cr is the radial clearance,which can be positive or
negative, corresponding to a loose or radially preloaded
bearing, respectively. With reference to Fig. 2b, the

(a)

(b)

Fig. 2 Bearing forces and geometry

deflections at the inner, δij , and outer, δoj , contacts can
then be expressed as:

δij = r(ψ j ) − vij − u j (4)

δoj = −voj + u j (5)

where vij and voj are the ring deformations at each con-
tact due to their compliance, and u j is the radial deflec-
tion of each element as depicted in Fig. 2b. The total
contact deflection is given by the sum of (4) and (5):

δ j = δij + δoj = r(ψ j ) −
(
vij + voj

)
(6)

It should be noted that this eliminates the elemen-
tal deflection u j and consequently the deflection δ j
depends only on the ring deflection r(ψ j ) and the
ring compliance deformations vej . With all the contact
deflections defined, the contact forces can now be eval-
uated.
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Table 2 SKF 6002 contact parameters. [48]

Symbol Description Value Units

Ci Stiffness constant of
inner contact

1.939 × 1010 Nm−3/2

Co Stiffness constant of
outer contact

2.055 × 1010 Nm−3/2

n Hertzian exponent 1.5 –

2.2 Contact forces

The contacts between the balls and the races are
assumed to be Hertzian, so that the ball loads Qe can
be computed from [19]:

Qe
j = Ce

[
δej

]n
+ (7)

where the subscript e denotes the race under consid-
eration and can be replaced with either i for the inner,
and o for the outer race.

The constantCe is theHertzian contact stiffness con-
stant of the race and [·]+ denotes saturation to positive
values and ensures that there are no attractive contact
forces. The local stiffness of each Hertzian contact can
then be found from the relationship:
∂Qe

j

∂δe
= Cen

[
δej

]n−1

+ (8)

The values of the inner and outer race contact stiff-
ness parameters for the SKF6002 bearing considered
in this paper were obtained from [48] and are given in
Table 2.

2.3 Equilibrium

The interaction between the two rings and the elements,
considering a wide range of effects, can be described
by enforcing the radial equilibrium of the j th ball and
the rings:

Qi
j − Qo

j + Fc
j = 0 (9)

Qe
j − N e

j = 0 (10)

where Qe
j are the contact loads, N

e
j are the radial loads

reacted by the rings, and Fc are the centrifugal loads
on each element as shown in Fig. 2b.

Now that the contact loads and stiffnesses have been
defined, attention can move onto determining the load
and stiffness at each element.

2.4 Elemental load and stiffness

The last step before computing the bearing loads and
stiffness is to solve for the unknown deflections u j ,
vij , and voj , when then allows the bearing loads to be
computed. In this section, it will be demonstrated how
to solve for these unknowns, so that it is then possible
to express the contact loads as a function of the ring
deflection r(ψ j ) only:

Qe = he (r(ψ))

where the subscript j has been neglected for brevity.
This notation will be maintained for the remainder of
this section. The function he(r) defines what will be
referred to as the “elemental compliance model”. This
expression can be substituted into the equilibrium rela-
tion (9) and differentiated with respect to r to give:

K = h′
i (r(ψ)) = h′

o (r(ψ))

which is the total elemental stiffness and is the stiffness
of the inner contact, outer contact, and rings in series
with each other. It can be observed that this property is
the same at either ring.

In the following sections, different types of elemen-
tal compliance model will be derived, based upon dif-
ferent assumptions.

2.4.1 Simplified model

If the centrifugal loads are neglected so that Fc = 0,
it can be seen from (9) that the inner and outer contact
loads must be equal. In this case the contacts can be
combined, so that the contact loads can be computed
directly:

Q = Qi = Qo = C [δ]n+ (11)

where the parameter C is the combined Hertzian coef-
ficient of the inner and outer race contacts given by
[4]:

C =
(
C

− 1
n

i + C
− 1

n
o

)− 1
n

and δ is the total contact deflection from (6). If it is
assumed that ring compliance is negligible so ve = 0,
then it can be seen from (6) that δ = r .

The elemental stiffness can be found by differenti-
ating (11) this relation with respect to r :

K = ∂Q

∂r
= ∂Q

∂δ
= Cn [δ]n−1+ (12)
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ve

Δψ

Re Re

t

B

ve

Δψ

Re Re

t

B

Fig. 3 Ring compliance model from [22]

Thus, (11) and (12) yield a fully defined elemen-
tal compliance model, which will be fast to evaluate.
However, this model may give inaccurate results if the
ring compliance or centrifugal loading become signif-
icant, in which case a more complex solution process
is required. This will be introduced in the following
sections.

2.4.2 Ring compliance

If ring compliance is to be included in the model, the
value of the ring deflections ve in Eq. 6 is an unknown
to be found. A simplified ring compliance model based
on the recently presented work by Leontiev et al. [22]
will be used here, where each ring is divided into Z seg-
ments of angle Δψ , one for each element in the bear-
ing. Each segment is then allowed to deflect radially
by a uniform amount ve, which leads to a deformation
pattern similar to the one shown in Fig. 3. Under this
assumption, the radial load N e can then be computed
[22]:

N e =
[
E Aev

e

Re
+ E Ieve

(Re ∓ ve)3

]
Δψ (13)

where E is the Young’s Modulus, A is the area and I is
the second moment of area of the outer ring. The first
term in (13) is due to circumferential compression of
the ring, and the second is due to the change in radius
of the curvature where the negative sign applies for
the case of the inner ring (e = i), and the positive sign
applies for the case of the outer ring (e = o). The race
radius Re can be calculated from:

Re = dm ∓ (D + cr)

2

Differentiating Eq. 13 with regards to the radial dis-
placement ve leads to an expression for the ring stiff-
ness for the segment:

∂N e

∂ve
=

[
E Ae

Re
+ E Ie

(Re∓ve)3

(
1 ∓ 3ve

Re∓ve

)]
Δψ(14)

Since the effect of inner and outer ring compliance
will be qualitatively very similar, it will be assumed
that only the outer ring is compliant in this work, and
consequently the inner ring deflections vi will be set to
zero but the outer ring deflections vo must be computed.
The outer ring cross-section will be approximated as
rectangular with width B, and an effective thickness
t , as shown in Fig. 3, which will be varied during the
analysis. It will be assumed to be made of steel with
Young’s modulus Esteel = 200GPa.

The contact loads will still be equal as in 2.4.1 since
centrifugal loads are being neglected. This means the
contact loads can be computed from (11), except that
the total contact deflection δ from (6) now has a con-
tribution from the compliance of the outer ring:

δ = r − vo

There is no contribution from the inner ring as it is
assumed to be rigid.

In order to solve for the value of vo, Eqs. (11) and
(13) describing the contact and ring forces, respec-
tively, can be substituted into (10) to enforce ring equi-
librium. This leads to a nonlinear algebraic equation in
vo which can be solved numerically using the Newton–
Raphson method:

[
vo

]
k+1 = [

vo
]
k +

[
Q − N o

∂Q
∂δ

+ ∂No

∂vo

]
k

. (15)

where the terms in the denominator can be found from
(12) & (14), respectively. Starting from an initial guess[
vo

]
0 = 0 only a few iterations were needed until the

equilibrium equation in (10) was satisfied to a tolerance
of 1 × 10−8 N.

Once the ring deflections and contact loads have
been found, the stiffness can be computed from:

K =
([

∂Q

∂δ

]−1

+
[
∂N o

∂vo

]−1
)−1

(16)

where there is now a contribution from the ring compli-
ance. Equation 16yields amuchmore accurate estimate
of the contact stiffness than Eq. 12 when the rings are
compliant.
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2.4.3 Centrifugal loading

The rotation of the cage during operation generates an
outward centrifugal load Fc on each element, given by
[11]:

Fc = 1

12
ρπD3dmψ̇2

c (17)

where ρ is the ball density, and ψ̇c is the rotation
speed of the cage from (2). In this investigation it
will be assumed that the balls are made of steel with
ρ = ρsteel = 7800 kg m−3.

The influence of centrifugal loads will only be con-
sidered for the case with rigid rings for which ve = 0,
so that the influence of the centrifugal loads can be
studied in isolation. This has the additional benefit that
it simplifies the analysis. However, it is possible that in
real applications both effects could be significant.

In order to find the contact loads, the inner and outer
contacts can no longer be combined as the contact loads
will be unequal. Instead, Eq. (7) must be used, where
the contact deflections δe from (4) & (5) reduce to:

δi = r − u

δo = u

since the rings are assumed rigid so vi = vo = 0.
In order to solve for u, Eqs. (7) and (17) can be

substituted into the equilibrium relation in (9) to yield
an algebraic problem in the elemental deflection u. This
can also be solved using a Newton–Raphson approach:

[u]k+1 = [u]k +
⎡
⎣Qi + Fc − Qo

∂Qi

∂δi
+ ∂Qo

∂δo

⎤
⎦
k

. (18)

where the derivatives in the denominator are given in
(8). This relation is iterated until the equilibrium equa-
tion in (9) is satisfied to a tolerance of 1×10−8 N. The
initial guess [u]0 was set to the elemental deflection in
case of no centrifugal loading:

[u]0 = C
1
n
o

C
1
n
i + C

1
n
o

[r ]+

Once the elemental deflection has been found, the
contact stiffness at each ring is simply determined by
the stiffness of the Hertzian contacts in series with each
other:

K =
([

∂Qi

∂δi

]−1

+
[
∂Qo

∂δo

]−1
)−1

(19)

Equation (19) gives a much more accurate estimate
of the contact stiffness when the centrifugal loading on
the elements is significant.

2.5 Time-varying load and stiffness

Once the contact loads Qe
j and elemental stiffnesses K j

have been evaluated using the appropriate elemental
compliance model from Sect. 2.4, the total load on the
inner ring, f ib, and outer ring, f

o
b , can be computed. The

contributions from each element can be summed up,
taking their angular position into account (see Fig. 2a):

feb(xb, ψc) =
[
f ex
f ey

]
=

Z∑
j=1

Qe
j

[
sinψ j

− cosψ j

]
(20)

where xb = [
xb yb

]T
is the bearing deflection vector.

It should be noted that the total ring load, feb , depends
on cage position and rotational speed due to variable
compliance and centrifugal loading, respectively.

The bearing stiffness matrix Kb can be found in a
similar way by summing up all the previously intro-
duced contributions from each element:

Kb(xb, ψc) =
[
kxx kxy
kyx kyy

]
=

[
∂ f ex
∂x

∂ f ex
∂y

∂ f ey
∂x

∂ f ey
∂y

]

=
Z∑
j=1

K j

[
sin2 ψ j − sinψ j cosψ j

− sinψ j cosψ j cos2 ψ j

]
(21)

With expressions for the total load feb , and stiffness
Kb, available, the bearingmodel is now fully described.
However, both the load and stiffness depend on the
cage angle ψc and will therefore vary over time which
is known as “variable compliance” (VC). As an exam-
ple, the variation of the horizontal, vertical, and cross-
stiffnesses with cage angle has been plotted in Fig. 4, in
the case that a constant vertical load is applied; the hor-
izontal stiffness is typically at a maximum when there
are elements either side of the bearing centre as shown
in Fig. 4a, and the vertical stiffness is at a maximum
when there is a ball directly under the bearing centre
shown in Fig. 4b. The cross-stiffness is zero at both of
these cage angles, because the elements are then sym-
metrically distributed either side of the vertical plane.
However, it becomes non-zero at all other cage angles
when the symmetry is broken. For this particular bear-
ing, the horizontal stiffnesswas found to vary by around
20%, and the vertical stiffness by around 2%, so these
effects are significant.
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(a)

(b)

(c)

Fig. 4 Variation of bearing stiffness with cage position

Due to the cyclic-symmetry of the cage, an ele-
ment will pass a particular location at a frequency
ωBPF = Zψ̇c, which is known as the “ball pass fre-
quency” (BPF). This is also the VC frequency at which
the bearing load and stiffness will oscillate, which can
lead to a harmonic forcing on the structures connected
via the bearings, even without any external excitation.
To identify the impact of this often neglected excita-
tion source on the rotor-dynamic response, a particular
focus will be placed on this behaviour during simula-
tion.

2.6 Average load and stiffness

Although the VC can be significant, the compliance
oscillations are often ignored in the first instance, by
computing the average load and stiffness in each direc-
tion. This decouples the influence of the bearing dis-

Fig. 5 Comparison of continuous load distributions and discrete
element loads

placement xb, from the influence of the cage angle ψc,
on the bearing load and stiffness [39,40].

The average properties can be computed by consid-
ering the case of an infinite number of elements where
the discrete ball locations ψ j are replaced with a con-
tinuous domain ψ in the equations from Sects. 2.3 to
2.4.3. Denoting the deflection at each angle by r(ψ),
the load and stiffness per unit angle around the bearing
can then be computed from:

Q̄e (ψ) = Z

2π
he (r (ψ))

K̄ (ψ) = Z

2π
h′
e (r (ψ))

where he (r) is the elemental compliance model being
used from Sect. 2.4.

A comparison of this continuous load distribution,
denoted by the shaded area, and the discrete element
loads, shown by the arrows, is plotted in Fig. 5, for
the same applied load. It can be observed that the load
is more unevenly distributed when there are discrete
elements, with those at the bottom of the bearing being
most highly loaded in this particular example.

Using a Sjovall integral formulation [38], the aver-
age ring load f̄eb can then be computed as follows:

f̄eb(xb) =
[
f̄ ex
f̄ ey

]
=

∫ 2π

0
Q̄e (ψ)

[
sinψ

− cosψ

]
dψ (22)

and similarly the average stiffness matrix becomes:

K̄b(xb) =
[
k̄xx k̄xy
k̄yx kyy

]
=

⎡
⎣ ∂ f̄ ex

∂x
∂ f̄ ex
∂y

∂ f̄ ey
∂x

∂ f̄ ey
∂y

⎤
⎦

=
∫ 2π

0
K̄ (ψ)

[
sin2 ψ − sinψ cosψ

− sinψ cosψ cos2 ψ

]
dψ

(23)
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The resulting average stiffnesses are shown in Fig.
4. With this formulation the average load and stiffness
is independent of the cage positionwhich simplifies the
computation, but it comes at the cost of lost accuracy.
However, this formulation still allows a dependence
on cage speed, which will be the case when there is
significant centrifugal loading.

2.7 Bearing damping

REBs also introduce some damping to the system.
Energy can be dissipated through material damping in
the elements and rings, friction at the contacts, or vis-
cous losses in the lubricant. However, REBs are typi-
cally quite lightly damped components, so these effects
are not as significant as those already introduced in
this paper. For this reason, instead of a physical damp-
ing model, a simple viscous damping term feb,d will be
added. The damping load on the inner ring is given by:

feb,d =
[
f ex
f ey

]
d

= ±cb

[
ẋb
ẏb

]
= ±Cbẋb

where Cb = cbI, and the positive sign is for the inner
ring and the negative sign for the outer ring. The con-
stant cb is the viscous damping coefficient andwas arbi-
trarily set to 400Nsm−1 throughout, which is compara-
ble to experimentally measured values for similar sized
bearings [49].

This completes the derivation of the detailed bearing
model, incorporating the effect of clearance, ring com-
pliance centrifugal loads, and variable compliance. In
the next section, the bearing model will be combined
with a Jeffcott rotor model.

3 Jeffcott rotor

In order to assess the significance of the different
bearing nonlinearities on a rotor-dynamic system, the
response of a rigid Jeffcott rotor will be considered, as
shown in Fig. 6. The rotor is assumed to spin at a con-
stant speedΩ and is supported by the SKF6002 bearing
with the parameters from Tables 1 and 2 . Gyroscopic
effects were not included. The bearing is connected
to ground via linear spring and viscous damping ele-
ments, representing a generic support structure, similar
to the configuration considered by Saito [16]. The hor-
izontal and vertical deflections of the rotor centroid are

Fig. 6 Jeffcott rotor mounted on a REB

Table 3 Baseline Jeffcott rotor parameters

Symbol Description Value Units

mr Rotor mass 6 kg

ks Stator stiffness ∞ Nm−1

βs Stator Rayleigh damping 1 × 10−4 –

g Acceleration due to gravity 9.81 ms−2

denoted by xr and yr, respectively, in Fig. 6 whilst the
stator deflection is expressed by xs and ys. The rota-
tion angle of the rotor is denoted by Θ = Ωt . When
the supports are rigid, the damping ratio is around 2%
purely due to the bearing damping.

All the relevant parameters for the computation are
summarised in Table 3.

3.1 Equations of motion

Describing the rotor and stator motion with vectors

xr = [
xr yr

]T
and xs = [

xs ys
]T
, respectively, the

equations of motion of the rotor and stator can be writ-
ten as:

Mrẍr + Cb (ẋr − ẋs) + f ib(xr − xs, ψ̇ct) = fex(t) (24)

Csẋs + Ksxs
− Cb (ẋr − ẋs) − fob (xr − xs, ψ̇ct) = 0

(25)
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whereMr = mrI,Cs = csI, andKs = ksI. The vectors
f ib and f

o
b are the nonlinear bearing forces from (20), and

the terms involvingCb are due to the bearing damping.
The vector fex contains the external forces on the rotor.
Equations (24) and (25) can then be combined to the
general form:

Mẍ + Cẋ + Kx + fnl (x, t) = u(t) (26)

whereM, C, and K are the global mass, damping, and

stiffness matrices, respectively, x = [
xrT xsT

]T
is the

global position vector and u = [
fTex 0

]T
is the global

excitation vector. The time dependence of the nonlin-
ear forces fnl is being introduced by the variable com-
pliance discussed in Sect. 2.5. To obtain the nonlin-
ear dynamic response of the rotor system in the time
domain, the equations ofmotion canbe integrated using
an ODE solver such as ode15s in MATLAB.

3.2 External forces

The rotor in Fig. 6 is excited by a small mass unbal-
ance, which will be expressed in terms of an offset ε

between the rotor centre of gravity (CoG) and centroid,
leading to an unbalance force fub = mrεΩ

2. The rotor
also experiences a static downward load mrg due to its
self-weight. The total force on the rotor fex in (24) can
therefore be written as:

fex(t) = fg + �
(
fubeiΩt

)
(27)

where fg = [
0 −mrg

]T
is due to the self-weight and

fub = fub
[
1 −i

]T
represents the unbalance force.

3.3 Performance metrics

To quantify the vibration behaviour of the rotor, three
different performance metrics will be used.

The first will be the synchronous transmissibility,
denoted by Tx & Ty , defined as the ratio between the
unbalance force and the load transmitted to the stator.
Mathematically, this can be written as:

Tx =
{
f ox

}
1X

fu
Ty =

{
f oy

}
1X

fu
where only the synchronous component of the stator
load is included, denoted by the subscript 1X, since the
unbalance excitation must be synchronous by defini-
tion. For a rotor mounted on rigid bearings, this metric

would be unity; if the magnitude is less than unity, it
indicates attenuation of vibrations; and if it is greater
than unity, it suggests amplification The transmissibil-
ity will remain independent of the forcing amplitude if
a system is linear, but this will no longer be true when
nonlinearity is present in the system.

The second metric assesses the self-excitation due
to the variable compliance effect in the bearing. This
may excite both the rotor and stator, and in turn impact
the overall dynamic behaviour. The performancemetric
used here will be the load transmitted to the stator at
the BPF:

Fb
x = {

f ox
}
BPF Fb

y =
{
f oy

}
BPF

If the bearing had an infinite number of elements, or
the average loads from Sect. 2.6 were used, this forcing
would be 0 and hence no response would be expected
at this frequency. However, if the time-varying loads
from Sect. 2.5 are used, the load will vary as the cage
rotates, leading to additional harmonic forcing and this
metric will be non-zero.

The last metric is the position of the centre of the
rotor orbit. This is given by the 0Hz component of the
horizontal x , and vertical y components of the rotor
response, denoted by the subscript DC:

x̄ = {x}DC ȳ = {y}DC
For a linear system, this would not vary with exci-
tation frequency or amplitude, since the response to
static loads on the structure would be independent of
the dynamic response. However, this is no longer true
for nonlinear systems.

3.4 Summary

Amodel of a Jeffcott rotor supported by nonlinear bear-
ings has been introduced. The presented physical bear-
ing model allows the impact of a wide range of bearing
parameters on the dynamic response of the system to
be assessed, including the clearance, centrifugal load-
ing, or ring compliance, whilst incorporating the vari-
able compliance effect. However, due to the nonlinear
nature, advanced numerical methods are required to
analyse the frequency response in an efficient way.

4 Numerical methods

The equation of motion in (26) for the Jeffcott rotor
has a nonlinear form, preventing the use of standard
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linear solution techniques to compute the response.
Time domain solvers, such as ode15s in MATLAB,
are widely used to solve such nonlinear equations, and
although they are a powerful tool for capturing all forms
of response, convergence issues can make them very
slow and computationally expensive. Alternatively, the
nonlinear response can be analysed much more effi-
ciently in the frequency domain using the harmonic
balance method (HBM) [50]. Due to its high efficiency,
standard HBM has been used successfully to compute
the nonlinear dynamic response of rotor-bearing sys-
tems [32,43] under the assumption that the response
of the system will be periodic with the fundamental
frequency equal to the rotation speed Ω .

However, if the VC effect from Sect. 2.5 is to be
included in the analysis, as is the intention of this study,
an additional periodicity is being introduced via the
bearing stiffnessmatrixwhich varies at theBPF.Unless
the BPF happens to be comensurate with the shaft
rotation frequency, the response will in fact be quasi-
periodic, for which conventional HBM is inadequate.
Instead of resorting to computationally expensive time-
integration, an alternative approach is to apply the
GHBM which can capture quasi-periodic responses
and has already been applied to rotor dynamic systems
[44,46].

To the authors’ knowledge no attempts have been
made in the literature to date to study the combined
effect of unbalance and VC on a rotor-bearing system
using harmonic balance. This paper will introduce a
new approach to achieve this using GHBM, which will
be discussed in the following sections.

4.1 Generalised harmonic balance method

For a nonlinear dynamic rotor system with unbal-
ance and VC excitation, two base frequencies will be
present, (i) the rotation speed ω1 = Ω , arising from
the synchronous excitation, and (ii) the ball pass fre-
quency ω2 = ωBPF. These base frequencies are both
proportional to the rotor speed Ω:

ω1 = Ω ω2 = ωBPF = Zψ̇c = ZγΩ

Unless the speed ratio γ happens to be rational, the
ratio between the two base frequencies ω1 and ω2 will
be irrational. The nonlinear response will consequently
contain components at the fundamental harmonics of

Fig. 7 Set of harmonics included in GHBM
(
MH

1 = 5,
MH

2 = 3
)

each base frequency, and at various linear combina-
tions of each base frequency. Mathematically, each fre-
quency component ωk1,k2 can be expressed as:

ωk1,k2 = (k1ω1 + k2ω2)

where k1 and k2 are integers, representing the harmonic
coefficients. The total quasi-periodic response of the
rotor-bearing system can then be approximated by [51]:

x(t) =
∑

k1,k2∈P

�
(
x̃k1k2e

i(k1ω1+k2ω2)t
)

(28)

where the complex vectors x̃k1k2 contain the harmonic
component in x at the frequency ωk1,k2 . In the GHBM,
the set of frequencies specified by the set of integers P
must be somehow truncated. There are several strate-
gies for achieving this [51]. For this rotor-dynamic
problem, the approach taken in [10]was used, since this
includes the most frequencies so is the most thorough.
In this case, the set P includes all integers |k1| ≤ MH

1
and |k2| ≤ MH

2 for which the frequency ωk1,k2 is pos-
itive. This set is depicted in Fig. 7 for the case of
MH

1 = 5, MH
2 = 3.

This leads to a total of MH
tot included harmonics,

given by [51]:

MH
tot = (2MH

1 + 1)(2MH
2 + 1) + 1

2

Typically, the larger the values of MH
1 , MH

2 , the greater
the accuracy, at the expense of computational cost.

The truncated series of the total response x(t) from
(28) and its derivatives can then be combined with the
equation ofmotion in (26), and upon equating the terms
at each frequency ωk1,k2 , M

H
tot equations of the follow-

ing form are obtained:
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[
−ω2

k1,k2M + iωk1,k2C + K
]
x̃k1k2 + f̃k1k2 = ũk1k2

(29)

where the excitation term ũk1k2 is known explicitly, but
the term arising from the nonlinear forces f̃k1k2 remains
unknown. It will be shown how to compute f̃k1k2 in the
following section.

The complex vectors x̃ containing the component
at each harmonic can then be assembled into a single
vector z defined as:

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃0,0
�(

x̃1,0
)

�(
x̃1,0

)
�(

x̃0,1
)

�(
x̃0,1

)
...

�(
x̃k1,k2

)
�
(
x̃MH

1 ,MH
2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similar vectors h and g can be formed from both f̃ and
ũ, respectively, allowing the equation of motion from
(29) to be written in its final vector form [51]

r(z,Ω) = L(Ω)z + h (Ω, z) + g (Ω) = 0 (30)

where r(z,Ω) is the residual to be minimised, L con-
tains the linear parts of themodel, h (Ω, z) contains the
nonlinear terms, and g (Ω) contains the excitation. The
matrix L is block-diagonal and given by [46,51,52]:

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

L0,0 0 . . . . . . 0
0 L1,0 . . . . . . 0
...

... L0,1 . . .
...

...
...

...
. . .

...

0 . . . . . . . . . LMH
1 ,MH

2

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

with L0,0 = K, and for all other k1 and k2

Lk1,k2 =
[
K − ω2

k1,k2
M −ωk1,k2C

ωk1,k2C K − ω2
k1,k2

M

]

It is now necessary to specify how to compute the
nonlinear vector h, comprised from the nonlinear pha-
sors f̃k1k2 .

4.2 Alternating frequency-time

The most common approach to compute the nonlinear
forces is to use the alternating frequency/time (AFT)
method [46], where the displacements in the frequency

Fig. 8 Depiction of hyper-time for the Jeffcott rotor

domain are converted to the time domain in which
the nonlinear forces can be evaluated, before convert-
ing them back to the frequency domain to yield f̃k1k2 .
This can then be substituted into the harmonic bal-
ance Eq. (29). One way this can be achieved for quasi-
periodic problems is to introduce a multi-dimensional
time domain (or hyper-time) [45], so that the response
can be written as:

x(t1, t2) =
∑

k1,k2∈P

�
(
x̃k1k2e

i(k1ω1t1+k2ω2t2)
)

(32)

Applying this concept to a rotor-bearing systemwith
unbalance and VC, means that along the domain t1
the rotor spins at a speed Ω = ω1 whilst the cage
is fixed. Conversely, the cage rotates along the domain
t2 at speed ψ̇c = ω2

Z , with the rotor held fixed. This idea
is depicted in Fig. 8, where the x axis represents t1 with
the rotor rotation, whilst the y-axis represents t2 with
the cage rotation. The true time domain, t , where both
the rotor and cage will rotate but at different speeds,
is represented by a diagonal line in hyper-time where
t = t1 = t2.

The whole AFT process can now be summarised as
[46]:

x̃k1,k2
IFFT−−→ x(t1, t2) → fnl(x(t1, t2), t2)

FFT−−→ f̃k1,k2

where the fast Fourier transform (FFT) and inverse
fast Fourier transform (IFFT) operations are carried out
over both t1 and t2. It should be noted that the nonlinear
force fnl has an explicit dependence on t2 and not t1.
This is because the nonlinear bearing forces vary with
cage angle, which varies with t2 only, according to the
definition of hyper-time.
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4.3 Frequency response

The equation of motion in multi-harmonic terms can
then be used to compute the frequency response char-
acteristic for a range of frequencies. For nonlinear sys-
tems,more than one solutionmay be present for a given
frequency, requiring the use of a continuation algorithm
to obtain the full response curve.A linear predictorwith
a pseudo arc-length corrector [53] has been used in this
case to compute the quasi-periodic response of the Jef-
fcott rotor, where the continuation parameter was the
rotor speed Ω .

4.4 Stability

In nonlinear systems, some portions of the nonlinear
frequency response curve can become unstable. The
stability can be assessedwithHill’smethod [52], which
yields approximate values of the Floquet exponents
λ using a standard HBM formulation. If these are in
the right half-plane, then the solution is unstable, and
vice versa. It was demonstrated in [52] that, under the
assumption that the perturbation varies slowly with
time, the Floquet exponents for a periodic response can
be computed from the following quadratic eigenvalue
problem:

Aλ2 + Bλ + ∂r
∂z

= 0 (33)

The terms involvingA andB arise from the linear parts
of the model, whilst the HBM Jacobian ∂r

∂z contains
additional contributions from the nonlinearities. The
matrix A is block-diagonal and given by A = I ⊗ 2M
[52]. ThematrixB is of a very similar form to thematrix
L in (31) [52]:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B0 0 . . . . . . 0
0 B1 . . . . . . 0
...

... B2 . . .
...

...
...

...
. . .

...

0 . . . . . . . . . BMH

⎤
⎥⎥⎥⎥⎥⎥⎦

where B0 = C but for all other k:

Bk =
[

C −2ωkM
2ωkM C

]
(34)

where ωk denotes the kth frequency component
included in the HBM problem, and MH is the number
of harmonics included.

Hill’s method is only valid for periodic responses,
but there is no direct equivalent when the response is
quasi-periodic, so it is not possible to directly apply
Hill’s method to the solution found from GBHM in
Sect. 4.1. However, it is possible to make the “adjusted
HBM” approximation [51], where the two base fre-
quencies are adjusted to be commensurate so that the
response becomes periodic. Applying this approach to
the Jeffcott rotor in this paper, the ratio between theBPF
and rotor speed γ Z was approximated as the ratio of
two integers p and q (to an accuracy of 1 × 10−4), such
that Zγ ≈ p

q . This means that the two base frequencies
ω1 = Ω andω2 = ωBPF = ZγΩ are no longer incom-
mensurate. Using this approximation, each frequency
component in the solution from GHBM can be written
as:

ωk1,k2 = k1ω1 + k2ω2

= (k1 + k2Zγ ) Ω

≈ (k1 + k2
p

q
)Ω

≈ (k1q + k2 p)
Ω

q

It can be observed that the base frequency of adjusted
HBM is given by ω0 = Ω

q , and each approximated
frequency component ωk can therefore be written as:

ωk = (k1q + k2 p)ω0

The approximate frequencies ωk can then be substi-
tuted into (34) to compute the value of the matrix B.
They can then also be used to compute the adjusted
HBM Jacobian ∂r

∂z , allowing the approximate Flo-
quet exponents to be found by solving (33). Note
that Jacobian was evaluated at the solution vector
z found from GHBM; the solution was not recom-
puted using adjusted HBM. This approach couples the
improved accuracy of GHBM for computing the fre-
quency response, with the ability of adjusted HBM
to assess the stability in an efficient manner, without
resorting to time-integration.

4.5 Summary

The proposed application of the GHBM, in combina-
tion with the pseudo arc-length continuation and Hill’s
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method for stability, provides, for the first time, an effi-
cient way to study the nonlinear unbalance response of
a rotor-bearing system whilst including the VC effect.
This therefore represents amore complete and accurate
method for computing the nonlinear dynamic response
of a rotor-bearing system than previous approaches.

5 Results

The previously introduced model of the Jeffcott rotor
from Sect. 3 supported by the nonlinear time-varying
bearing model from Sect. 2 will be analysed in detail
using theGHBMapproach presented in Sect. 4, in order
to obtain a better understanding of the rotor-bearing
interaction. In particular, the impact of the VC and the
nonlinear bearing stiffness on the rotor response will
be investigated.

Initially, the results from a baseline configuration
will be presented and discussed in detail to highlight
the underlying mechanisms that drive the nonlinear
response. This will be followed by a study of the effect
of the individual bearing parameters on the response.

5.1 Baseline

The input parameters of the baseline model are given
in Tables 1, 2 and 3. Centrifugal loads were neglected,
and both rings and the stator were assumed to be rigid,
in order to keep the complexity of the base line to amin-
imum. The clearance was set to the C2 level given in
Table 1, corresponding to a radial clearance of 2.5µm.

5.1.1 Validation of GHBM

In a first step the novel implementation of the GHBM
for rotating systems from Sect. 4.1 had to be validated,
to ensure that the predictions were accurate. For this
purpose, the solution from GHBM was compared to
the solution from time-integration of the equations of
motion in (26), with use of ode15s in MATLAB.

The number of harmonics MH for each frequency
ω1,2 in the GHBM computation was chosen so that the
dominant peaks in the spectrum of the response could
be captured, across a rangeof speeds andunbalance lev-
els, ensuring the results would be sufficiently accurate.
The set of included harmonics was the same as shown
in Fig. 7. The number of discrete time points MT

1,2 was

Table 4 Harmonic balance parameters

Symbol Description Value

MH
1 No. of harmonics in ω1 = Ω 5

MH
2 No. of harmonics in ω2 = ωBPF 3

MT
1 No. of FFT points over t1 40

MT
2 No. of FFT points over t2 24

ω2
ω1

Ratio between base frequencies 3.5885

p,q Rational approximation of freq. ratio 750, 209

set to be 4× the minimum dictated by the Nyquist fre-
quency for each ω1,2, in order to minimise aliasing,
leading to theGHBMparameters in Table 4. It is impor-
tant to note that the multi-dimensional FFT/IFFT oper-
ations were evaluated overMT

1 ×MT
2 = 40×24 = 960

points; leading to accurate results with relatively few
points over each dimension [51]. The rational approx-
imation of the ratio between the base frequencies Zγ

used in adjustedHBMfor stability analysis is also given
in Table 4.

The resulting rotor orbits from time-integration and
GHBM are shown in Fig. 9 for three rotation speeds
Ω and three unbalance levels ε. The two methods pro-
vide identical results for the first two excitation lev-
els and show a very similar behaviour at the highest
excitation level, although small differences are visible.
Both approaches accurately capture the clearly quasi-
periodic nature of the response, which leads to the rotor
never retracing exactly the same orbit. This is due to the
time dependence introduced by the VC effect, which is
in agreement with results from [41]. Based on the com-
parison of the solutions fromGHBMand time solution,
it can be concluded that GHBM,with the selected num-
ber of harmonics, is indeed able to capture the quasi-
periodic response of the rotor system accurately.

Both solutions where found on a Windows PC with
an 8-Core i7 processor and 32GB of memory using
MATLAB 2018b, where approximately 16sec of com-
putation time were needed to compute the solution at a
given frequency using ode15s, whilst only 2sec were
needed using the GHBM approach. This 8× increase
in computational speed, in combination with the abil-
ity to apply continuation to the analysis, highlighted the
great potential the GHBM has for quasi-periodic rotor-
dynamic problems, and all of the following results will
be consequently based on the GHBM approach.

123



2586 A. H. Haslam et al.

Fig. 9 Comparison of the orbits obtained from integrating the ODE and GHBM

5.1.2 Stiffness

The dynamic response of the rotor system is heav-
ily dependent on the bearing stiffness, which in turn
depends on the rotor deflection, and the cage angle of
the bearing. In order to evaluate the nonlinear stiff-
ness characteristic of the baseline bearing, independent
of the cage angle, the average bearing stiffness from
Sect. 2.6 has been computed for different horizontal
and vertical rotor positions and the results are shown
in Fig. 10.

The variation of the average horizontal stiffness k̄xx
with rotor position was computed by varying the hori-
zontal rotor position, whilst maintaining vertical equi-
librium. It can be observed in the top graph of Fig. 10a
that the stiffness increases monotonically as the rotor
moves away from the centre, x = 0, in either direction.
This is due to an increase in the size of the loaded zone,

as well as the hardening characteristic of the Hertzian
contacts. The variation of the cross-stiffness k̄xy with
horizontal rotor motion x is shown in the bottom graph
of Fig. 10a. The cross-stiffness is zero when the rotor is
in the centre, due to the symmetry of the system, but as
the rotor moves horizontally away from the centre, the
load distribution becomes asymmetric and the cross-
stiffness becomes non-zero. As the rotor displaces even
further, the coupling stiffness, k̄xy , tends back to zero,
since the influence of the self-weight becomes negligi-
ble compared to the large horizontal rotor deflection,
and the load distribution becomes symmetric about the
x-axis once more.

The average vertical stiffness k̄yy is plotted in Fig.
10b where the rotor was moved vertically whilst main-
taining horizontal equilibrium. The position where the
rotor is in vertical equilibrium with its self-weight is
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Fig. 10 Variation of the average bearing stiffnesswith rotor posi-
tion for the baseline system

marked with a diamond. The rotor sags by approxi-
mately 6µm due to the self-weight.

When the rotor moves further downwards, the ver-
tical stiffness increases due to an increase in the size of
the loaded zone and Hertzian contact stiffening. How-
ever, when the rotor moves upwards from its equilib-
riumposition, the stiffness initially reduces as the effect
of the self-weight is removed. When the rotor is near
the central position y = 0, there is a dead-band where
the stiffness is zero, which is due to the radial clearance.
If the rotor deflects even further upward, the stiffness
increases once more as the elements at the top of the
bearing become loaded. There is no such dead-band in
the horizontal stiffness, since the presence of the self-
weight ensures that there is always some contact. The
cross-stiffness k̄xy remains zero if the rotor moves ver-
tically because the load distribution remains symmetric
about the y-axis and has therefore not been plotted.

The dependence of the time-varying stiffness from
Sect. 2.5 on the cage angle was computedwith the rotor
in its equilibrium position. These results are shown in
Fig. 11, and it is clear that the stiffness strongly depends
on the cage angle, and can vary quite differently in each
direction. In the vertical direction it reaches its maxi-

Fig. 11 Variation of the stiffnesswith cage angle for the baseline
system

mumwhen a ball is directly under the rotor,whilst in the
horizontal direction the maximum stiffness is reached
when there are balls either side. It is important to note
that the variation in stiffness is larger in the horizontal
than the vertical direction. The horizontal stiffness has
its main contribution from the elements at the edges
of the loaded zone since these contact loads have the
greatest horizontal component, and the overall stiffness
is consequently very sensitive to their angular position
since their contribution is proportional to sin2 ψ j . The
vertical stiffness on the other hand ismainly determined
by the elements underneath the rotor, which have a
small angle ψ j . Their contribution to the vertical stiff-
ness is proportional to cos2 ψ j , but this is much less
sensitive to variations in ψ j .

The cross-stiffness is zero when the balls are posi-
tioned symmetrically about the vertical plane, but non-
zero otherwise. This occurs when ψc = 0 or π

Z . The
strong change in stiffness behaviour around ψc = π

Z
corresponds to a region where there is an extra element
in the loaded zone. There is a non-smooth transition
when an element enters or leaves the load zone.

The results show that the stiffness varies consider-
ably as the rotor deflects leading to a highly nonlinear
characteristic. In addition, the stiffness varies as the
cage rotates, leading to the time-dependent VC effect,
which can further excite the rotor.
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Fig. 12 Frequency response of the baseline system

5.1.3 Frequency response

With the accuracy of the GHBM implementation con-
firmed, and an understanding of the bearing stiffness
behaviour obtained, the frequency response of the base-
line rotor was computed for increasing levels of rotor
unbalance, leading to the results in Fig. 12. The dis-
placement of the centre of the rotor orbit (x̄, ȳ) is shown
in the left hand column, the unbalance transmissibility
(Tx , y) across the bearing in the central column, and the
self-excitation due to VC (Fb

x , F
b
y ) in the right hand

column. The dashed lines denote where the periodic
solution is unstable.

It can be observed that there are distinct resonances
in the horizontal (x) and vertical (y) directions. At low
excitation levels, the horizontal resonance is at 213Hz
and the vertical resonance is higher at 376Hz, which is
consistent with the different stiffnesses in each direc-
tion discussed in the previous section. At resonance,
the vertical position of the centre of the rotor orbit
approaches the line ȳ = 0. The horizontal position
x̄ is always zero, and only becomes non-zero when
the quasi-periodic solution loses stability. It can also
be observed the forcing due to VC has resonances at
speeds well below the primary resonances.

In order to condense and highlight the most impor-
tant information contained in the frequency plots in
Fig. 12 the variation of the resonance frequency,
Ωmax, the peak horizontal and vertical transmissibil-
ities, |Tx |max and

∣∣Ty∣∣max, and the vertical position of
the orbit centre ȳmax can be plotted over the unbalance
level, ε, leading to Fig. 13. Similarly, the maximum
forcing amplitude at the BPF due to VC, and the fre-
quency at which this occurs can be plotted over the
unbalance level, ε, leading to Fig. 14.

Synchronous transmissibility The unbalance transmis-
sibility in the central column of Fig. 12 shows that the
horizontal peaks start to lean to the right as the unbal-
ance level is increased due to the horizontal stiffness
increasing as the rotor oscillateswith larger amplitudes,
as shown in Fig. 10a. Interestingly, the vertical reso-
nance leans to the left at low unbalance levels due to
the initial reduction in stiffness as the rotor enters the
dead-band region in Fig. 10b. At higher unbalances,
the rotor deflects so much that it passes through to the
other side of the dead-band, so that the effective stiff-
ness is actually increased and the peak starts to lean to
the right. This softening/stiffening effect of the nonlin-
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Fig. 13 Unbalance transmissibility of the baseline system at
resonance

ear bearing is in agreement with the literature [32] and
highlights the strongly nonlinear nature of the problem.

The stiffening effect of the bearings is so strong that
“jump phenomena” start to appear at the higher unbal-
ance levels, where the periodic solution becomes unsta-
ble under the peak, denoted by the dotted lines. Addi-
tionally, both resonant peaks become unstable for cer-
tainmediumexcitation levels, before regaining stability
at higher unbalance levels. Using time-integration, the
systemwas found to respond chaotically in these unsta-
ble regions which is in good agreement with the liter-
ature [18,28,30,34,48,54]. These unstable regions are
clearly identifiable in Fig. 13, where they are marked
as dashed lines.

It can also be observed in Fig. 12 that cross-
resonances start to appear at higher unbalance levels.
At the horizontal resonance frequency, a peak starts
to appear in the vertical response. In this case the
cross-stiffness becomes non-zero as the rotor oscil-
lates horizontally, which excites the rotor in the vertical
direction. As the unbalance level is further increased,
this cross-resonance becomes larger and the primary
vertical resonance becomes smaller. Eventually, the
cross-resonance forms the dominant part of the verti-
cal response, leading to a single resonancewith circular
orbits and equal motion in the horizontal and vertical
directions. In this regime, the effect of the self-weight of

the rotor is negligible compared to the dynamic loads,
so the resonance frequencies and amplitudes are iden-
tical in both directions as clearly shown in Fig. 13. The
resonance frequency more than doubles for the highest
load case and the peak response increases significantly
in this regime. This can be attributed to the fact that
the effective damping ratio is given by ζr ≈ cb

2mωn
,

where the bearing damping cb is constant but the effec-
tive natural frequencyωn increases due to the nonlinear
bearing stiffness, and therefore the effective damping
ratio is reduced.

Another feature to observe in Fig. 12 are the
small sub-resonances in the horizontal transmissibil-
ity around 180Hz, which only appear at the highest
excitation levels. This is approximately half of the ver-
tical natural frequency, so is therefore evidence of 2×
components in the response.

Centre of rotor orbit The position of the centre of the
rotor orbit is shown in the left hand column of Fig. 12.
The horizontal position x̄ remains near zero, since the
system is symmetric in the vertical plane, but the verti-
cal position ȳ varies considerably, which can be more
clearly seen in Fig. 13. At higher unbalance levels,
the rotor moves upward towards the centre position at
resonance, because the self-weight becomes negligible
compared to the dynamic loads, and no longer impacts
the rotor motion.

Self-excitation due to variable compliance Due to the
novel use of the GHBM in this paper, the forcing due to
VC could be computed and is shown in the right hand
column of Fig. 12. There are prominent peaks in the
forcing in both the vertical and horizontal directions,
when the BPF coincides with the natural frequency ωn

of the underlying linear system of either the vertical or
horizontal mode. Themathematical relation is given by
Ω = ωn

γ Z .
The frequency of maximum forcing varies very lit-

tle with the excitation level, but the magnitude of the
peaks reduce slightly at very high excitation levels as
Fig. 14 clearly shows. The latter indicates an influ-
ence of the unbalance forces even at these lower speeds
and suggests that the VC phenomenon is most relevant
for small unbalance levels. Surprisingly, the forcing is
greater in the vertical direction, despite the fact that
the horizontal stiffness was found to be more sensi-
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Fig. 14 VC forcing of the baseline system at resonance

Table 5 Configurations for each section of the parameter study

Section Clearance Outer ring Centrifugal
loads

Stator

5.1 C2 Rigid No Rigid

5.2.1 Varied Rigid No Rigid

5.2.2 C2 Flexible No Rigid

5.2.3 C2 Rigid Yes Rigid

5.2.4 C2 Rigid No Flexible

tive to cage position (see Fig. 11). This effect could be
attributed to the variations in cross-stiffness which can
also excite the rotor in the vertical direction.

The results from the baseline configuration show
that the REB leads to a highly nonlinear unbalance
response. In addition, the VC effect introduces further
sub-synchronous forcing, leading to sub-resonances
at low frequencies. In order to identify which of the
bearing features particularly influence the observed
behaviour, a parameter study will be presented next.

5.2 Parameter study

The influence of four key bearing features on the Jeff-
cott rotor response will be further investigated. In each
section, the parameter of interest will be varied whilst
keeping all others fixed at the baseline values, which
is outlined in Table 5. For each parameter, the impact
on the stiffness will be discussed initially to support
the understanding and interpretation of the frequency
response.

5.2.1 Clearance

The clearance is one of the largest sources of nonlinear-
ity in a bearing, so the radial clearance cr was chosen
for the first parameter study. It was increased from its
nominal C2 value of 2.5µm to the C5 level of 20µm,
and decreased to 0µm corresponding to a perfect fit.
In addition, the effect of a radial preload on the bearing
was considered by setting cr to −2.5µm.

Stiffness The horizontal and vertical stiffness variation
was computed in the same way as outlined in Sect. 5.1.
The results for the average horizontal stiffness in Fig.
15a show a high sensitivity to the clearance level.

The preload case (cr = −2.5µm) has a higher over-
all stiffness level as the loaded zone encompasses the
whole of the bearing as shown in Fig. 16. The stiff-
ness initially reduces as the rotor moves away from
the centre as the loaded zone initially decreases in size
due to loss of preload on the lightly loaded side of the
bearing. At larger displacements the stiffness starts to

(a)

(b)

Fig. 15 Variation of the average bearing stiffnesswith rotor posi-
tion for different clearance levels
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Fig. 16 Variation of elemental stiffness distribution in equilib-
rium position for different clearance levels

increase again since the effect of the stiffeningHertzian
contact dominates. For the cases of a loose bearing
(cr > 0µm), the size of the loaded zone is smaller as
seen in Fig. 16. This means the overall stiffness level is
reduced. However, the loaded zone increases in size as
the rotor moves horizontally, so the stiffness increases
monotonically.

The cross-stiffness in Fig. 15a is near zero for the
preloaded case but reaches higher valueswhen the bear-
ing is loose. This can be attributed to the load distri-
bution becoming more asymmetric as the rotor moves
horizontally. It is interesting to note that the maximum
cross-stiffness is reached at a greater deflection as the
clearance is increased, but themaximumvalue does not
seem to be affected, although it is always larger than
in the preload case. As was found in the baseline case,
the cross-stiffness tends back to zero for very large dis-
placements.

The radial clearance has a very similar effect on the
vertical stiffness, as shown inFig. 15b. Themost notice-
able difference is that for the loose bearings, a dead-
band around the centre of the bearing where the stiff-
ness is zero; the size of the dead-band depends directly
on the clearance level. For the preload case, it can also
be observed that the vertical stiffness is very close to
the horizontal stiffness in Fig. 15a. This is because the
radial preload dominates over the self-weight, so the
bearing stiffness is nearly axisymmetric.

In order to understand if the clearance changes the
sensitivity of the bearing stiffness to cage angle, the
stiffness in the rotor equilibrium position is plotted
over a range of cage angles ψc in Fig. 17. It can be
seen that larger clearances lead to a greater sensitiv-
ity to cage angle. To explain this behaviour, Fig. 18

Fig. 17 Variation of the bearing stiffness with cage angle for
different clearance levels

shows the number of loaded elements that are in con-
tact as the cage rotates. When the bearing is preloaded,
all elements remain in contact at all times, leading to
a bearing stiffness independent of cage angle, whilst
increasing clearance leads to a smaller and a changing
number of loaded elements.

Although the variation in the vertical and cross-
stiffnesses increases as the bearing clearance is
increased, this is not the case for the horizontal stiffness.
The level of horizontal stiffness variation is similar for
all of the cases with bearing clearance (cr ≥ 0µm) and
only reduces when the bearing is radially preloaded
(cr = −2.5µm). This highlights a complex interaction
between the clearance level and VC, since the varia-
tions in stiffness as the cage rotates are not only deter-
mined by the number of loaded elements at each cage
angle, but also the angular positions of each element.

The clearance appears to have a significant impact
on the stiffness of the bearing, and consequently it is
expected to also have a strong impact on the frequency
response of the system.

Frequency response The frequency responsewas com-
puted for all clearance levels, but only the condensed
variation of the response at resonance is shown in
Fig. 19. Considering first the linear response at low
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Fig. 18 Variation of number of loaded elements with cage angle
for different clearance levels

unbalance levels, ε, it can be seen that the resonance
frequencies in both directions,Ωmax, are reduced when
the bearing is loose, and increased when the bearing
is preloaded. This behaviour can be attributed to the
changes in the bearing stiffnesses observed in Fig. 15.

At higher excitation levels the resonance frequen-
cies become much more dependent on the clearance.
For the preload case (cr = −2.5µm), some soften-
ing can be observed as the excitation increases, which
is followed by a hardening effect, consistent with the
more complex stiffness variation in Fig. 15. The reso-
nance frequencies of the vertical and horizontal mode
are similar for all unbalance levels, due to similar stiff-
ness values in each direction.

For the smaller clearance case (cr = 2.5µm), the
resonance frequencies Ωmax, increase with the excita-
tion level, which is consistent with the hardening effect
shown in Fig. 15. At very large clearance (cr = 20µm)
the vertical mode shows a softening behaviour. This is
because the size of the dead-band in the vertical bear-
ing stiffness is increased, so the rotor does not deflect
enough to reach the stiffening regime. If the unbalance
level was increased even further, it would eventually
display a stiffening effect.

An unstable region appears for all clearance cases,
indicated by a dashed line, which is caused by the dead-
band in the stiffness characteristic. As the clearance is
increased, these unstable regions are shifted to higher
excitation levels. This can be attributed to a smoother
change in stiffness at the edges of the dead-band so
that the system must be excited harder to initiate insta-
bility. If the excitation level is further increased, the
system is once more stabilised by the addition of the
radial preload as observed in [19]. In summary, these
results show that the bearing instability due to increas-
ing excitation levels is strongly influenced by the radial

(a)

(b)

Fig. 19 Variation of unbalance transmissibility at resonance
with clearance

clearance, but that it can be potentially controlled by
applying a preload.

The peak transmissibility curves shows significantly
lower values for increasing clearance. Since the damp-
ing in the system is kept constant, this increase in
response amplitude can be directly linked to the change
in resonance frequency, which is quite apparent from
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Fig. 19. As the resonance frequency reduces, the effec-
tive damping ratio increases due to the simple relation-
ship of ζr ≈ cb

2mωn
.

It can also be observed from the bottom graphs in
Fig. 19 that the centre of the rotor orbit at lowunbalance
levels moves downward as the clearance is increased.
This is because the rotor must sag more for the bear-
ing to become loaded, in order to resist the self-weight
and reach equilibrium.However, the orbit centremoves
upward towards 0 in all cases at high unbalance levels,
since the influence of the unbalance loading starts to
negate the impact of the self-weight.

The variation of the VC forcing at resonance can
be seen in Fig. 20 for different excitation and clear-
ance levels. The magnitude of the forcing generally
increases with the radial clearance, which can be
attributed to the increased sensitivity of the stiffness
to the cage position, as shown in Fig. 17.

When the bearing is preloaded, there is no VC forc-
ing at all, since the stiffness does not vary with the
cage angle. The frequency of the maximum forcing
reduces with clearance, which is consistent with the
above-mentioned reduction in bearing stiffness. The
VC forcing generally remains constant for most of the
excitation range, both in frequency and amplitude.Only
at very large excitation levels in the vertical direction,
some variations can be observed, where smaller clear-
ance values (cr = 2.5µm) lead to a small drop in VC
forcing, whilst a large clearance (cr = 20µm) leads to
an increase in forcing. This is likely due to some inter-
action with the unbalance excitation. Another interest-
ing point to note is that the vertical forcing is higher for
low clearance (cr = 2.5µm), whereas the horizontal
forcing is greater for larger clearance (cr = 20µm).
This is likely affected by the significant changes in
the cross-stiffness shown in Fig. 17. Based on these
results it can be observed that radial clearance gen-
erally amplifies the significance of VC, and that non
negligible forces can be generated by it.

It has been shown that bearing clearance has a large
influence on the rotor response. It controls whether
there is a stiffening or softening effect in the response,
strongly impacts the bearing stability, and it amplifies
the VC forcing that a bearing experiences.

5.2.2 Ring compliance

The influence of ring compliance on the dynamic
response of the Jeffcott rotor will be investigated next.

(a)

(b)

Fig. 20 Variation of VC forcing at resonance with clearance

For this purpose, the outer ring of the bearing will be
made compliant, and its thickness t will be varied from
25mm down to 2.5mm to control its stiffness.

Stiffness The average stiffness variation with regards
to the rotor position is shown in Fig. 21. It can be seen
that reducing the ring thickness, and hence increasing
the ring compliance, leads to only a small reduction
in bearing stiffness which applies in both the horizon-
tal and vertical direction. The ring compliance has a
tendency to reduce the maximum elemental load, as
depicted in Fig. 22, which agrees with results from the
literature [21,22]. When the rotor moves very far in
either direction, the contact loads and hence stiffnesses
increase, which in turn makes the rings the dominant
sources of compliance leading to a slight increase in
stiffness reduction for softer rings.

123



2594 A. H. Haslam et al.

(a)

(b)

Fig. 21 Variation of the average bearing stiffnesswith rotor posi-
tion for different levels of ring compliance

Fig. 22 Elemental stiffness distribution in equilibrium position
for different levels of ring compliance

The cross-coupling reduces very slightly as the rings
are made more compliant, as can be observed in Fig.
21a. This stiffness termmainly arises from a transfer of
load from themost heavily loaded elements underneath
the rotor to the adjacent ones, making the load distribu-
tion around the bearing asymmetric. However, the ring
compliance distributes the loads between the elements

Fig. 23 Variation of the bearing stiffness with cage angle for
different levels of ring compliance

more evenly so that the load distribution remains more
symmetric as the rotor moves horizontally.

The sensitivity of the bearing stiffness to cage angle
is plotted in Fig. 23 for different ring thicknesses. It
can be observed that the central lobes around ψc = π

Z
are wider when the rings are more compliant. The ring
compliance transfers more load to the elements at the
edge of the loaded zone as shown in Fig. 22, so that
these elements remain loaded for a wider range of cage
angles. This can be confirmed by examining the num-
ber of loaded elements which is shown in Fig. 24.

The peak horizontal stiffness kxx at ψ = π
Z is actu-

ally increased as the rings are made more compliant,
which is again because more load is transferred to the
elements at the edges of the loaded zone by the ring
compliance, so they add a greater contribution to the
horizontal stiffness. On the other hand, the horizontal
stiffness ψ = 0 is reduced as the rings are made more
compliant, due to the general softening effect of the
ring compliance. This means that the horizontal stiff-
ness varies over a greater range as the rings are made
more compliant.

The vertical stiffnesses kyy varies over a smaller
range as the rings are made more compliant. However,
the mean vertical stiffness also reduces with ring com-
pliance, so that the vertical stiffness, like the horizontal
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Fig. 24 Variation of number of loaded elements with cage angle
for different levels of ring compliance

stiffness, actually varies over a greater range when nor-
malised by its average value.

In summary it can be observed, that the bearing stiff-
ness is reduced very slightly as the rings are mademore
compliant, but this becomes more significant as the
rotor deflects further. The bearing stiffness becomes
slightly more sensitive to cage position, which partic-
ularly applies to the horizontal stiffness.

Frequency response As with the previous cases, the
frequency response was computed for different ring
compliance levels, and the variation of the synchronous
response at resonance is shown in Fig. 25. The reso-
nance frequencies for the horizontal and vertical mode
reduce slightly as the rings are made more compliant,
but the effect only becomes of relevance at higher exci-
tation levels. This is consistent with the larger stiff-
ness reduction due to the ring compliance in Fig. 21.
The peak response very much mirrors the frequency
behaviour, which can once more be linked to the effec-
tive damping ratio in the system. The vertical position
of the rotor, ymax, in Fig. 25 is slightly lower at reso-
nance for more compliant rings due to an overall reduc-
tion in the bearing stiffness.

The stable region of the system is unchanged by
ring compliance since the unstable regions appear at
the same excitation levels as in the baseline case. This
indicates that the ring compliance does not impact the
stability of the system and further supports the con-
clusions from Sect. 5.2.1 that the instability is mainly
driven by the bearing clearance.

The variation of the VC forcing due to ring compli-
ance is plotted in Fig. 26. The magnitude of the forcing
increases slightly as the rings are mademore compliant
which is consistent with the larger stiffness variations

(a)

(b)

Fig. 25 Variation of unbalance transmissibility at resonance
with ring compliance

with cage position shown in Fig. 23. There is a drop
in forcing at high excitation levels for all levels of ring
compliance, due to an interaction with the unbalance
excitation. The frequency of maximum forcing drops
as the rings are made more compliant, since the lin-
earised natural frequency of the system is reduced by
the ring compliance.
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(a)

(b)

Fig. 26 Variation of VC forcing at resonance with ring compli-
ance

Generally it can be said that the ring compliance
leads to a small drop in the resonance frequency, which
becomes more significant at higher amplitudes. It does
not seem to affect the instability of the system, and its
effect on the VC behaviour of the bearing is relatively
small.

5.2.3 Centrifugal loading

No other studies in the literature were found to focus
on the effect on the rotor-dynamic response of cen-
trifugal loading on the bearing elements, and conse-
quently their impact was investigated in some detail.
The ball density ρ was set to the true value for steel
(ρsteel = 7800 kg m−3), and then doubled and quadru-
pled in order to artificially scale the centrifugal loads.
The baseline case corresponding to neglecting centrifu-
gal loads was also considered by setting ρ = 0 kg m−3.

(a)

(b)

Fig. 27 Variation of the average bearing stiffnesswith rotor posi-
tion at Ω = 600Hz for different levels of centrifugal loading

Stiffness The stiffness computation was performed at
a speed of Ω = 600Hz to ensure the centrifugal
loads will be strong enough to influence the bearing
behaviour. The resulting average horizontal stiffness,
kxx , in Fig. 27a shows only a small dependence on the
centrifugal load,where higher centrifugal loading leads
to a slightly softer behaviour. Looking at the load distri-
bution plot in Fig. 28 it can be seen that higher centrifu-
gal loads have a tendency to slightly unload the contacts
at the edge of the loaded zone and hence reduce their
contribution to the horizontal stiffness.With increasing
horizontal rotor displacement, the reduction in stiffness
becomes smaller, since the elastic loads dominate over
the centrifugal loads.

The cross-stiffness variation is shown in the bottom
graph of Fig. 27a and is increased very slightly by the
introduction of centrifugal loads. As the rotor moves
horizontally, the more lightly loaded side of the bear-
ing is further unloaded by the centrifugal loading on the
elements, which increases the asymmetry of the load
distribution around the bearing (see Fig. 28), thereby
slightly increasing the cross-stiffness.
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Fig. 28 Elemental stiffness distribution in equilibrium position
at Ω = 600Hz for different levels of centrifugal loading

The average vertical stiffness in Fig. 27b shows
that the dead-band around the centre of the bearing
is wider with centrifugal loads, leading to an increase
in the effective clearance. This can be attributed to an
unloading of the inner contacts due to the centrifugal
forces, leading to a larger displacement of the inner
race before it comes into contact with the elements. As
an interesting side effect, the rotor equilibrium position
is slightly lower when centrifugal loads are introduced.
Although the effective clearance is increased, the stiff-
ness in the equilibrium position is counter-intuitively
increased very slightly. This can be related to load dis-
tribution being more focused on the elements under-
neath the bearing (see Fig. 28), which provide the great-
est contribution on the vertical stiffness.

The stiffness variation with the cage position is
shown Fig. 29. It can be seen that the bearing stiffness
is much more sensitive to cage position when centrifu-
gal loads are included. For the horizontal stiffness, kxx
the lobe of the baseline case around ψc = π

Z , where
an extra element becomes loaded, is replaced by a flat
region with a much lower stiffness. This behaviour can
be attributed to a decrease in the number of loaded ele-
ments due to the centrifugal loading, as shown in Fig.
30 where higher centrifugal loads lead to wider areas
of reduced element contact. As a result the load distri-
bution is distorted in the presence of centrifugal loads
(see Fig. 28), and consequently the cagemust rotate fur-
ther for the next contact to enter the loaded zone. This
effect also amplifies the cross-stiffness in this regime.
Themaximumhorizontal stiffness values aremuch less
affected by the cage position.

The vertical stiffness is also heavily affected by
the cage position, with a similar flat section around

Fig. 29 Variation of the bearing stiffness with cage angle at
Ω = 600Hz for different levels of centrifugal loading

Fig. 30 Variation of number of loaded elements with cage angle
at Ω = 600Hz for different levels of centrifugal loading

ψc = π
Z . Themaximumvertical stiffness, which occurs

at ψc = 0 and ψc = 2π
Z , is increased by the centrifugal

loads which once more can be linked to the previously
discussed more focussed load distribution in this case
(see Fig. 28).

In summary the centrifugal loading has a very lim-
ited influence on the bearing stiffness, but it signifi-
cantly increases the sensitivity towards cage position,
potentially leading to greater self-excitation due to VC.

Frequency response The variation of the peak fre-
quency responses in Fig. 31 shows that the centrifugal
loads have a very small influence on the rotor response.
As the centrifugal loading level is increased, there is a
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(a)

(b)

Fig. 31 Variation of unbalance transmissibility at resonance
with centrifugal loading

very slight reduction in the resonance frequencies for
both modes, which is consistent with the drop in stiff-
ness shown in Fig. 27. This reduction in the resonance
frequency becomes less significant at the highest exci-
tation levels where the elastic forces at the contacts
start to dominate. Although the resonance frequencies

themselves are not affected much, the unstable regions
at medium excitation levels are influenced by the cen-
trifugal loading. Particularly for the vertical mode in
Fig. 31b, larger centrifugal loads lead to a loss of sta-
bility at smaller unbalance levels. This effect is driven
by the centrifugal loads increasing the effective clear-
ance which has previously been shown to destabilise
the system (see Sect. 5.2.1).

The stability of the horizontal mode in 31a is unaf-
fected, as the self-weight of the rotor prevents the cen-
trifugal loads from increasing the effective clearance in
this direction.

The behaviour of the VC forcing with regards to
the centrifugal loading can be seen in Fig. 32 where
an increase in the centrifugal load leads to an increase
in the VC forcing. The increase in forcing is smaller
than might be expected from the relatively significant
changes in bearing stiffness shown in Fig. 29. This
is due to the VC resonances occurring at lower fre-
quencies around 100Hz, where the centrifugal loads
are much less significant than the results in Fig. 29 at
600Hz. It should be kept in mind that this is applica-
tion specific, and consequently this effect may be quite
strong for other rotors and bearings.

Another feature of the increasing centrifugal load-
ing was a quite strong downward motion of the equi-
librium position of the rotor with increasing rotational
speed (see Fig. 33). This could be once more attributed
to the speed dependent increase in clearance due to the
centrifugal ball loading.

The inclusion of the centrifugal loading into the
bearing model shows very small effect on the actual
dynamic response of the Jeffcott rotor, but it slightly
destabilises the system and can lead to a different equi-
librium position, potentially impacting the safe opera-
tion of the rotor.

5.2.4 Stator compliance

The final parameter study focused on the effect of a
flexible stator. For this purpose the support stiffness ks
of the symmetric stator was varied over a wide range.
The limiting case of a rigid stator, as in the baseline
configuration, was also considered by setting ks = ∞.

Stiffness The overall stiffness of the bearing including
the previously stator stiffness, ks can be seen in Fig. 34.
Not surprisingly as the stator compliance is increased,
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(a)

(b)

Fig. 32 Variation of VC forcing at resonance with centrifugal
loading

Fig. 33 Variation ofmean vertical rotor positionwith centrifugal
loading for different speeds with ε = 1 × 10−8 m

the vertical and horizontal stiffnesses reduce consider-
ably and become less and less dependent on the dis-
placement since the linear stator compliance starts to
dominate. This has the additional consequence that the
cross-stiffness is also reduced and leads to a gener-
ally more linear behaviour of the bearing. However, it

(a)

(b)

Fig. 34 Variation of the average bearing stiffnesswith rotor posi-
tion for different levels of stator compliance

should be noted that the dead-band in the vertical stiff-
ness remains, since this purely depends on the clearance
of the bearing,which is not affected by the support stiff-
ness.

Figure 35 shows the variation of the overall bearing
stiffness with cage angle. As the stator becomes more
compliant, the sensitivity of the stiffness to the cage
position is reduced in all directions, since the stator
compliance dominates the behaviour, which is axisym-
metric and independent of the cage position.

In summary, considerable changes to the stiffness
behaviour of the bearing can be observed when the sta-
tor compliance is increased. The rotor support becomes
much softer and more linear.

Frequency response Given the strong changes in the
bearing support stiffness due to stator compliance, a
significant change in the frequency response would be
expected. Figure 36 shows that as the stator becomes
more compliant, the resonance frequencies reduce and
the linear regime extends to higher excitation ampli-
tudes. For the softest case of ks = 10MNm−1, there is
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Fig. 35 Variation of the bearing stiffness with cage angle for
different levels of stator compliance

no change in the resonance frequency even at the high-
est excitation level, which is in agreement with the full
linearisation of the stiffness characteristic in Fig. 34.
This also means that the peak transmissibility remains
constant.

Stator compliance has the additional consequence
that the mean rotor position, ymax, does not move
upward so much at resonance, since static response of
the linearised system is unaffected by the unbalance
response.

The unstable regions in Fig. 36 move to higher
unbalance levels as the stator becomes more compliant
with the lowest stiffness level ks = 10MNm−1 leading
to a totally stable system. Previous results in Sect. 5.2.1
have shown that the instability predominantly depends
on the clearance and its effect on the stiffness behaviour
(dead-band). As the support gets softer, the transition
from the dead-band region to the contact zone in Fig.
34b becomes smoother and smoother, hence stabilising
the system.

The maximum VC forcing is shown in Fig. 37. It
reduces considerably when the stator becomes compli-
ant since the stator compliance dominates, making the
system less sensitive to the cage position (see Fig. 35).
The frequency of maximum forcing also reduces sig-
nificantly with increasing stator compliance, since the
overall system is softer.

(a)

(b)

Fig. 36 Variation of unbalance transmissibility at resonance
with stator compliance

Increasing stator compliance has a significant effect
on the rotor-dynamic response, by linearising the sys-
tem and reducing the resonance frequency. In addition,
the system is also stabilised, and VC effects become
less relevant.
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(a)

(b)

Fig. 37 Variation of VC forcing at resonance with stator com-
pliance

6 Discussion

The presented study on the influence of a nonlinear
rolling-element bearing on the unbalance response of
a Jeffcott rotor has highlighted the relative importance
of different features from a modelling perspective.

When there is a static load on the bearing, it can
no longer be considered symmetric, leading to differ-
ent stiffnesses in the horizontal and vertical directions.
In the case investigated in this paper, the vertical stiff-
ness was approximately 2× higher than the horizontal
direction due to the weight of the rotor, which agrees
with the literature [55]. This asymmetry leads to a split-
ting of the resonance frequencies, where the vertical
mode has a higher frequency (376Hz) than the hori-
zontal mode (213Hz). The frequency response showed
an extremely nonlinear behaviour, where the vertical
mode initially decreases in frequency as the unbalance

load is increased, before eventually increasing signifi-
cantly,whereas the resonant frequencyof the horizontal
mode increases monotonically. At the highest excita-
tion levels, the two modes converged towards a single
resonance frequency of 674Hz.

At medium unbalance levels, the response of the
horizontal and vertical modes can become unstable,
which was attributed to the radial clearance. At very
high unbalance levels the influence of the self-weight
is negligible, so that the rotor exhibits circular orbits
around the centre. This also means the effect of the
clearance becomes negligible so that the response can
regain stability.

A particular feature of this investigation was the
introduction of VC to investigate its effect on the rotor
response. The GHBM proved to be an effective tool
to study rotor-bearing systems which display quasi-
periodic responses due to VC. It was shown that VC
leads to sub-synchronous excitation, which generates
extra resonances at lower frequencies, where the VC
frequency coincides with the natural frequency of the
horizontal and vertical modes of the underlying linear
system. The forcing due to VC is generally insensi-
tive to unbalance level, as it is driven purely by the
cyclic-symmetry of the bearing. The resulting forcing
amplitude was in the range 10N to 40N, and is deter-
mined by the sensitivity of the bearing stiffness is to
cage position.

Clearance was found to have the largest influence
on the bearing characteristic and is the greatest source
of bearing nonlinearity. When the bearing is loose, the
response in the horizontal direction displays harden-
ing behaviour, whereas the vertical response displays
an initial softening then hardening behaviour. If the
bearing is radially preloaded, both modes increase in
frequency significantly (by around 300Hz) and dis-
play softening then hardening behaviour. Clearance
was identified as the main driver of instability in the
system, due to the sudden change in stiffness when the
clearance gap is closed. These unstable regions cover
a wider range of unbalance levels as the clearance is
increased, but can be controlled by radially preloading
the bearing. It was also observed that bearing clear-
ance magnifies the variation in compliance as the cage
rotates, leading to a 8× increase in VC forcing.

Ring compliance is rarely included in bearing mod-
els, but the results in Sect. 5.2.2 showed that this phe-
nomenon can lead to a small reduction in bearing stiff-
ness (up to 7% in the vertical direction). The reduc-

123



2602 A. H. Haslam et al.

tion in stiffness becomes more significant as the bear-
ing is more highly loaded (where there can be up to a
16% drop in stiffness), so it is particularly important
that attention is paid to how the rings are supported in
applications where the vibration levels are high. Ring
compliance can also increase the self-excitation from
the VC effect somewhat (by up to 5N), but was not
found to change the overall softening/hardening char-
acteristic of the nonlinearity.

Centrifugal loading on the bearing elements was
found to have a very small effect on the rotor-dynamic
response in Sect. 5.2.3, leading to a very small reduc-
tion in resonant frequency (up to 2%) and no change to
the nonlinear stiffness characteristic. For very heavy
balls, the unstable region extended to higher unbal-
ance levels due to an increase in effective clearance,
but this corresponded to non-physical ball densities.
The most significant effect of the centrifugal loading
was that the rotor drifts downward as the rotor speed
is increased (up to 15% of the static deflection), which
can strongly affect rotor and disc clearances in high
accuracy applications. Centrifugal loading was found
to slightly increase the self-excitation due to VC (by
around 2N), due to the increase in effective clearance.

The results in Sect. 5.2.4 show that increasing the
level of stator compliance reduces the resonant fre-
quency of both modes, and more importantly, the sys-
tem becomes more linear because the influence of the
bearing is reduced. Additionally the instability induced
by the bearing clearance disappears when the supports
are very soft, and the self-excitation from VC becomes
negligible. As a result it is acceptable to model a rela-
tively stiff bearing on a soft support as a linear sys-
tem, as long as the support stiffness is significantly
softer than the bearing stiffness; in this case, the system
behaved linearly once the stator stiffness was approxi-
mately 1

5 of the vertical bearing stiffness.
In summary it can be said that support stiffness and

bearing clearance are the two most important features
that need to be considered when attempting to accu-
rately model the response of a rotor-dynamic system.
The effect of the centrifugal loading on the bearing
elements is only relevant for high precision or high
speed applications, and ring compliance can generally
be neglected as long as the bearing housing is signifi-
cantly stiff and the rotor remains reasonably well bal-
anced. VC can generate significant sub-synchronous
excitation forces in the bearing, which may not directly
impact the rotor dynamics due to their low frequency

nature, but may lead to unexpected resonances on the
rotor or support structure.

7 Conclusions

Developing a deep understanding of the dynamic
response of a rotor is of fundamental importance, due to
their wide application in engineering structures. Bear-
ings forma fundamental part of such rotatingmachines,
potentially introducing significant nonlinearity to the
system. To ensure accurate predictions, a sufficiently
detailed bearing model was introduced to capture the
main nonlinear and time-varying aspects of the bearing
behaviour. The bearingmodelwas coupledwith a novel
implementation of the generalised harmonic balance
method, enabling a detailed study of the rotor-dynamic
behaviour of a Jeffcott rotor. The approach allowed the
interaction of bearing clearance, centrifugal loads, ring
compliance, and support stiffness with VC to be stud-
ied for the first time, providing much better physical
insight into the quasi-periodic rotor response.

The systemwas found to have distinct horizontal and
vertical resonances due to the asymmetry introduced by
the rolling-element bearing, both of which were highly
dependent on the forcing level. The responsewas found
to be highly nonlinear, with both softening and stiff-
ening behaviour present. In addition, zones of stabil-
ity loss could be identified, which strongly depended
on the bearing parameters. The presented application
of GHBM was able to capture the sub-synchronous
self-excitation from the VC effect, which led to sub-
resonances where the ball pass frequency coincided
with the frequency of the horizontal and verticalmodes.
Such phenomena could not be captured with a lin-
earised bearing model.

A systematic parameter study showed that bear-
ing clearance has by far the largest influence on the
dynamic response of the rotor, leading to strong nonlin-
ear effects and controlling the stability of the system.
It was also found to amplify the self-excitation due
to the VC effect. Only the addition of a soft support
compliance around the bearing was found to limit this
nonlinear behaviour by linearising the system. Ring
compliance and centrifugal loading had only a small
impact on the nonlinear dynamic response of the rotor,
suggesting that they may generally be neglected in the
analysis, although they may become of relevance for
heavily unbalanced machines and high accuracy appli-
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cations, respectively. A much improved understanding
of the different physicalmechanismswithin the bearing
was developed.

The results from this work have highlighted the need
to use a bearing model that can at least capture the
radial clearance. However, if the support structure is
very low, a linearised analysis is sufficient. The results
also showed that the VC can lead to significant forc-
ing at lower frequencies, which may excite rotor sub-
structures, such as bladed discs, or any other stationary
sub-systems. The current study could be extended to
consider the effect of axially preloading the bearing,
which is very common in industrial applications, or to
include a physical bearing damping model to investi-
gate the influence of different energy dissipationmech-
anisms.
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