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Abstract Mathematical models and analyses can
assist in designing the control strategies to prevent the
spread of infectious disease. The present paper investi-
gates the bifurcations and dynamics of a plant disease
system under non-smooth control strategy. The gener-
alized Lyapunov approach is employed to perform the
analysis of the plant disease model with non-smooth
control. It is found that the controlled disease system
can have three types of equilibria. The globally asymp-
totically attractor for each of three types of equilibria
is determined by constructing Lyapunov functions and
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using Green’s Theorem. It is shown that the disease
system can exhibit rich dynamic behaviors including
globally stable equilibrium, stable pseudo-equilibrium
and sliding mode bifurcations. The solution of the dis-
ease system can converge to the disease-free equilib-
rium, endemic equilibrium or sliding equilibrium on
discontinuous surfaces. Biological implications of the
obtained results are discussed for implementing the
control strategies to the infectious plant diseases.

Keywords Infectious plant system · Sliding mode
dynamics · Lyapunov function · Global behavior ·
Boundary equilibrium bifurcation

1 Introduction

Rapid development of modern industry has made neg-
ative impacts on the environment and air quality. Pro-
tecting plants is one of the important ways to improve
the environment effectively. Therefore, we need to
study the dynamical behavior of plants from time to
time. Mathematical models and analysis have played
an important role in the understanding and control of
plant diseases. In the process of tree growth and for-
est development, if the external conditions are suitable
for the growth of harmful organisms or the trees are
infected by harmful organisms, then a series of abnor-
mal pathological changes can occur in the organiza-
tion and morphology of trees, which may result in poor
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quality or even the death of trees. This phenomenon
has been referred to as forest disease in the literature.

In general, invasive and noninvasive diseases can
coexist in plants, which undoubtedly makes the treat-
ment complicated. At the same time, the shortage of
treatment resources can seriously affect the implemen-
tation of a control strategy. Limited resources bring
many challenges and difficulties to the control and pre-
vention of plant infectious diseases. How to implement
the best prevention and control measures using lim-
ited resources has become an important technical issue.
Therefore, studying the control strategies for infected
plants under limited resources is of biological signifi-
cance and is meaningful.

If a very few individuals of plants are infected by
an emerging infectious disease, then medical resources
are sufficient for an early-stage treatment. However,
some early symptoms are similar to the viral diseases,
which make us hard to find the infected plants. At the
same time, some infectious plant diseases have dif-
ferent viruses which may be treated differently (see
[2,3,24,25,34]). A serious threat to forest may occur
when the number of the infected plants increases. Dif-
ferent models of viral infections have been proposed
to explain and control the spread of the virus (see
[12,20,21,28,30]).On the other hand, different types of
control strategies are constrained by the limited avail-
ability of medical resources for plant treatment, espe-
cially in the poor areas of some underdeveloped coun-
tries (see [2,9,20,21,23,24,28,39]).

The basic model to be considered in this paper is
the infectious disease model with the classic limited
treatment capacity [7,8,11,27,34,38], i.e.,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= A − μS − βSI,

dI

dt
= βSI − μ1 I − v1 I − H(I ),

dR

dt
= v1 I + H(I ) − μ1R,

(1)

where S, I and R represent the numbers of suscepti-
ble, infective and recovered individuals. A denotes the
recruitment rate of the susceptible individuals. β is the
transmission coefficient. μ represents the death rate of
susceptible plants. μ1 represents the rate of death by
diseases and natural causes. Obviously, μ1 > μ. In
addition, H(I ) = cI

1+b1 I denotes the function of treat-
ment, with c being the maximum recovery rate and b1
representing the effect of the medical resource limita-
tion. And v1 is the natural recovery rate with v1 < c.

It is often impossible to completely eradicate
infected plants, which is either biologically or econom-
ically infeasible. One of the key goals of integrated
disease management is to minimize losses and max-
imize returns. Integrated disease management allows
for a tolerance threshold, called the economic thresh-
old (ET), atwhich the damage to plants can be accepted.
The control strategies are used only when the number
of infected plants reaches ET.

Once plant disease occurs, we expect to control the
number of the infected plants to an economic threshold
within a limited time. (Below the threshold, no action
is required.) In this aspect, the asymptotic behavior
of infinite time would lose its practical significance to
some extent. Therefore, it is necessary to studywhether
the infected plants can be controlled within a limited
time by a threshold control method. The number of the
infected plants was used as a reference index in apply-
ing the control strategy (see [24,34]).When the number
of the infected plants is below the threshold, the disease
is regarded as manageable and the implementation of
control methods is not required. However, if the num-
ber of the infected plants is beyond the threshold level,
then the action of culling the infected plants must be
taken immediately to control the spread of the disease
before the situation becomes catastrophic or unman-
ageable. This control method has been referred to as
the threshold control strategy [24,34], which can be
designed under the framework of discontinuous sys-
tems [2,9,26,29,35,39]. The threshold control method
is easily implemented in practical engineering. We use
the number of infections as a threshold level to deter-
mine whether we need to implement control or not.
When the number of infected plants is less than the
threshold value, no action is required for the plant dis-
ease system.When it is higher than the threshold value,
we need to remove the infected plants at the saturation
treatment rate. It is found that the plant disease sys-
tem can be successfully managed by the proposed non-
smooth control strategy with its trajectory converging
to the pseudo-equilibrium. The non-smooth infectious
disease models were investigated by many researchers
[1,2,6,9,14,16–18,22,25,27,29,34,36,37,39,40].

In the study of the infectious plant system, it is very
natural to askwhether the system has a globally asymp-
totically stable periodic solution after a treatment is
performed for the infectious plant system or additional
control strategies are required to stabilize the plant sys-
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tem. Then three questions will be naturally raised for
the plant disease system:

1. Is there any globally stable solution for the infec-
tious system under the non-smooth control strat-
egy?

2. What are the sliding mode domains of the system
for the existence of equilibriums and their bifurca-
tions?

3. Howmany types of sliding bifurcations can the sys-
tem have?

This paper will address the above-mentioned three
challenging questions for the dynamic behavior of the
infectious plant disease system under non-smooth con-
trol strategy, by using the Lyapunov function and bifur-
cation technique.

In this paper, we apply the non-smooth threshold
control strategy to the infectious model (1) which is
expressed as:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS

dt
= A − μS − βSI,

dI

dt
= βSI − μ1 I − v1 I − cIψ(I )

1 + b1 I
,

dR

dt
= v1 I + cIψ(I )

1 + b1 I
− μ1R,

(2)

where ψ(I ) is a non-smooth control function. Accord-
ing to the analysis of the discontinuous dynamical sys-
tem (2), the dynamic behavior of the third equation can
be determined by the properties of the first two equa-
tions. So we can simplify the analysis by studying the
system governed by the first two equations:
⎧
⎪⎪⎨

⎪⎪⎩

dS

dt
= A − μS − βSI,

dI

dt
= βSI − μ1 I − v1 I − cIψ(I )

1 + b1 I
.

(3)

If the infected plant has a sudden infection after a treat-
ment, then we need to perform multiple controls. By
considering this actual situation, we propose a treat-
ment control function satisfying the following assump-
tion.

(H1) The number of the infected plants is used as a ref-
erence index in implementing the control strat-
egy by setting ψ(I ) = 1 when I > ET, and
ψ(I ) = 0 when I < ET.

The rest of this paper is organized as follows. Section 2
presents some definitions and lemmas for the analysis.

Section 3 discusses the existence of three types of equi-
libria and studies the properties of solutions. The qual-
itative analysis of system (3) is carried out in Sects. 4
and 5. The sliding bifurcations of the infectious system
(3) are investigated in Sect. 6. Section 7 gives a brief
conclusion.

2 Preliminaries

We consider a discontinuous dynamic system:

u̇(t) =
{

fS1(u) u ∈ S1,

fS2(u) u ∈ S2,
(4)

where fS1(u) = (A − μS − βSI, βSI − μ1 I −
v1 I )T , fS2(u) = (A −μS −βSI, βSI −μ1 I − v1 I −

cI
1+b1 I )T . We divide the plane (S, I ) ∈ R2+ into two
regions by controlling the threshold function
⎧
⎪⎪⎨

⎪⎪⎩

S1 = {u ∈ R2+ | H(I ) < 0},
S2 = {u ∈ R2+ | H(I ) > 0},
Π = {u ∈ R2+ | H(I ) = 0}.

(5)

where u = (S, I )T ∈ R2+. We choose the spe-
cial function H(I ) = I − ET; here, ET describes
the threshold value. The dynamic behavior of the
subsystem determined by vector fS1 or fS2 can be
studied by using the Filippov convex method [5,12,
13,23,32] or Utkin’s equivalent control method [15,
19]. Let Θ(u) = 〈H ′(I ), fS1(u)〉〈H ′(I ), fS2(u)〉 =
fS1 H ′(I ) · fS2 H ′(I ), where 〈.〉 represents the standard
scalar product. For brevity, the notation FSi H ′(u) =
〈H ′(I ), fSi (u)〉will be used in the subsequent analysis.

From (5), the sliding mode domain is defined as Π ,
which can be divided into two regions [10,20,24,30]:

(i) Escaping region Πe: if 〈H ′(u), fSi (u)〉 < 0 and
〈H ′(I ), fSi (u)〉 > 0

(ii) Sliding region Πs : if 〈H ′(u), fSi (u)〉 > 0 and
〈H ′(I ), fSi (u)〉 < 0.

The following definitions of the discontinuous sys-
tem (4) are necessary throughout the paper [10,20,24,
30].

A point u∗ is termed as a pseudo-equilibrium if it is
an equilibrium of the sliding mode of system (4), i.e.,
FS(u∗) = λ fS1(u

∗) + (1 − λ) fS2(u
∗) = 0, H(I ) = 0

and 0 < λ < 1, where λ = 〈H(I ), fS2 (u)〉
〈H(I ), fS2 (u)− fS1 (u)〉 . The

vector field of the discontinuous system (4) on sliding
modeΠS is defined as :

du(t)
dt = FS(u), u ∈ Πs,where

FS(u) = λ fS1(u) + (1 − λ) fS2(u).
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A point u∗ is called a regular equilibrium of system
(4) if H(I ) < 0, fS1(u

∗) = 0, or H(I ) > 0, fS2(u
∗) =

0.
Similarly, a point u∗ is referred to as a virtual equi-

librium of system (4) if H(I ) < 0, fS2(u
∗) = 0, or

H(I ) > 0, fS1(u
∗) = 0.

In addition, a point u∗ is called a tangent point of
system (4), if u∗ ∈ Πs and [ fS2 H(I )][ fS1 H(I )] = 0.

A point u∗ is called a boundary equilibrium of
system (4) if H(I ) = 0, fS2(u

∗) = 0, or H(I ) =
0, fS1(u

∗) = 0.
Express the solution from a given initial condition

u0 of Eq.(4) as ξ(u0), the ω limit set as ω(u) and, for
G ∈ R2+, AG(t) ≡ {u ∈ R2+|u = ξu0(t) for u0 ∈
G}, ξ(G) ≡ ⋃

t≥0 AG(t) [40]. A function V ∈
C1(R2+) is called a Lyapunov function of system (3)
on G ⊂ R2 if it is nonnegative on G and, for all u ∈ G,
V ′(u) = maxG∈ f (u) < V (u), G >≤ 0, where f (u) is
given by:

f (u) =

⎧
⎪⎪⎨

⎪⎪⎩

{ fS1 (u)} if u ∈ S1,

{α1 fS1 (u) + (1 − α1) fS2 (u) : 0 � α1 � 1} ifu ∈ Π,

{ fS2 (u)} if u ∈ S2.

Lemma 2.1 [4,27] (LaSalle’s Invariance Principle)
Assume that G ⊂ R2+ is an open set satisfying ω(G) =
⋃

u∈G
ω(u) ⊂ ξ(G). If every Filippov solution ui ; u0 ∈

G, of system (3) is unique, and V : R2+ → R+ is a
Lyapunov function of system (3) on ξ(G), then ω(G)

is a subset of the largest positive invariant subset of Λ,
where Λ = {u ∈ G|V ′(u) = 0}.
Lemma 2.2 [4,27] Suppose that G and V : R2+ → R+
satisfy Lemma 2.1 and R2+\G is repelling such that
all solutions stay in R2+\G for only a finite time. If

ω(R2+) = ω(G) is bounded, then ω(R2+) is globally
asymptotically stable.

3 Dynamic properties of the plant disease system
with non-smooth control strategy

Proposition 3.1 (Positivity) Suppose that assumption
H1 holds. Then there is a positive solution u(t) =
(S(t), I (t))T > 0 for system (3) with the initial condi-
tion u(0) = (S(0), I (0))T > 0 for t ∈ [0, T ).

Proof Under the condition of the hypothesis H1, we
know that ψ(0) is continuous at 0 (i.e., the function ψ

is continuous at I = 0). There exists a small positive

number δ satisfying |I | < δ. Then Eq. (3) becomes the
following continuous system:

dI

dt
=
(

βS − μ1 − v1 − cψ(I )

1 + b1 I

)

I. (6)

If I (0) = 0, then from Eq. (6) we know that I (t) =
0, t ∈ [0, T ). If I (0) �= 0, then we can state that I (t) >

0 for all t > 0. Otherwise, let t1 = inf{t | It = 0}, then
t1 > 0 and I (t1) > 0. We can easily find a positive
constant θ1 such that t1 − θ1 > 0 and 0 < I (t) < δ1
for t ∈ [t1 − θ1, t1). Now, multiplying both sides of
Eq.(6) by I −1 for t ∈ [t1 − θ1, t1) and integrating over
the interval t ∈ [t1 − θ1, t1), yields

0=I (t1)=I (t1−θ1)e
∫ t1

t1−θ1
βS(t)−μ1−v1− cψ(I )

1+b1 I (t) dt
> 0,

which is a contradiction to the assumption. Thus,
I (t) > 0 for all t ∈ [0, T ).

By using same argument it can be proved that S(t) >

0. If not, let t1 be the first time when S(t1)I (t1) = 0.
Assume that S(t1) = 0, we know that I (t) � 0 for all
t ∈ [0, t1]. Then, from the first equation of (3), we can
easily know that

d S(t)

dt
|t=t1 = A − μS(t1) − βS(t1)I (t1) = A > 0.

Since S(t) > 0, for S(t1) = 0, we must have dS
dt |t=t1 �

0, which is a contradiction. This completes the proof.

�

Proposition 3.2 Suppose that assumption H1 holds.
Then every solution (S(t), I (t)) of Eq. (3) is uniformly
ultimately bounded.

Proof As discussed in Proposition 3.1, the existence
of the positive solution u(t) to Eq. (3) on [0, T ) as
T → +∞, with u(0) = u0, is a straightforward con-
sequence. Namely, u(t) > 0 for all t ∈ [0, T ). From
Eq. (3), we have

dS

dt
+ dI

dt
= A − μS − μ1 I − v1 I − cψ(I )I

1 + b1 I

� A − 
(S + I ) − cψ(I )I

1 + b1 I
,

(7)

where 
 = min{μ, v1 + μ1}.
From (7), forψ(I ) = 1 or 0, if S+ I > A



holds, then

A − 
(S + I ) − v
cψ(I )I
1+b1 I < 0. Therefore, 0 � S + I �

max{S0 + I0,
A


}, that is, the solution (S(t), I (t)) is

bounded on [0, T ). Using the continuation theorem,we
can conclude that the solution (S(t), I (t)) is bounded
on [0,+∞). The proof is completed.
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By defining the sliding dynamic system as a convex
combination of the two subsystems Si ,

FS(u) = λ fS1(u) + (1 − λ) fS2(u),

we can obtain λ = 〈H ′(u), fS2 (u)〉
〈H ′(u), fS2 (u)− fS1 (u)〉 , with 0 ≤ λ ≤

1.
Equation λ = 1, 0 indicates that the flow is deter-

mined by fS1 or fS2 , respectively. From the definition
of the tangent point, two equations λ = 1, λ = 0 must
be tangent to ΠS . Thus the sliding mode domain can
be defined as ΠS = {u ∈ R2+ | 0 ≤ λ ≤ 1}, which is
equivalent toΠS = {u ∈ R2+ | Θ ≤ 0}. DenoteΠS− =
{u ∈ R2+ | λ = 0} and ΠS+ = {u ∈ R2+ | λ = 1} as
the boundaries of the sliding mode domains, then one
of the vector fields is tangent to the boundary ΠS− or
ΠS+ .

Based on H1, system (3) can be expressed as a con-
tinuous system in S1
⎧
⎪⎨

⎪⎩

dS

dt
= A − μS − βSI,

dI

dt
= βSI − μ1 I − v1 I,

(8)

and in S2 as
⎧
⎪⎪⎨

⎪⎪⎩

dS

dt
= A − μS − βSI,

dI

dt
= βSI − μ1 I − v1 I − cI

1 + b1 I
,

(9)

where S1 = {u ∈ R2+ | I < ET }, S2 = {u ∈ R2+ |
I > ET }, with Π = {u ∈ R2+ | I = ET }.

Thediscontinuity boundaryΠ separating the regions
S1 and S2 is given by Π = {(S, I ) ∈ R2+ | I = ET }.
According to the definitions given in Section 2, the slid-
ing mode domains can be specified as Πs = {u ∈ R2+ |
Θ(S, ET ) � 0}. Based on the definition of sliding
region, from Eqs. (8) and (9), we can write

Θ(S, I )

=
{

(βS − μ1 − v1)I

(

(βS − μ1 − v1)I − cI

1 + b1 I

)}

,

where I − ET = 0. Using Θ(S, ET ) � 0, we have

Θ(S, ET )

= (βS − μ1 − v1)ET ×
(

βSET − (μ1 + v1)ET − cET

1 + b1ET

)

� 0.

(10)

Therefore, from Eq. (10), the sliding domain Πs can
be obtained as
μ1 + v1

β
� S � (μ1 + v1)(1 + b1ET ) + c

β(1 + b1ET )
. (11)

According to Eq.(3), the pseudo-equilibrium of sliding
dynamic system is determined by

FS(S, I ) = λFS1(S, I ) + (1 − λ)FS2(S, I ), (12)

from (12) and H(I ) = I − ET , we have

βSI − μ1 I − v1 I − cλI

1 + b1 I
= 0, (13)

and, by substituting I = ET , we have

λ = (βS − μ1 − v1)
(1 + b1ET )

c
,

which simplifies the first equation of system (3) into
dS(t)
dt = FS(S, I ). From Eq. (3) and by sliding mode

definition in Sect. 2, we have the slidingmode dynamic
system

FS(S, ET ) = A − μS − βSET . (14)

For simplicity, we will use E−
ir (E

+
ir ), E−

iv(E
+
iv), E p,

and E B
j (i = 1, 2, j = 1, 2) to represent the regular

equilibrium (R-E), virtual equilibrium (V-E), pseudo-
equilibrium (P-E), and boundary equilibrium (B-E),
respectively. 
�
Regular equilibrium (R-E): According to Eq. (3), for
the subsystem S1 with I < ET , the equilibriums of
system (3) are the solutions of
⎧
⎪⎨

⎪⎩

dS

dt
= A − μS − βSI,

dI

dt
= βSI − (μ1 + v1)I.

The disease-free equilibrium and the endemic equilib-
rium are expressed as E−

1 (S−
1 , I −

1 ), E−
2 (S−

2 , I −
2 ), with

E−
1 =

(
A

μ
, 0

)

, E−
2 =

(
μ1 + v1

β
,

Aβ − μ(μ1 + v1)

β(μ1 + v1)

)

.

We can easily obtain the following results. The basic
reproduction number isR0 = β A

(v1+μ1)μ
(refer to [31]).

If R0 < 1, the disease-free equilibrium E−
1 is locally

asymptotically stable. On the other hand, if R0 > 1,
the equilibrium E−

2 is locally asymptotically stable.
For subsystem S2 with I > ET , the equilibriums of

system (3) are the solutions of
⎧
⎪⎪⎨

⎪⎪⎩

dS

dt
= A − μS − βSI,

dI

dt
= βSI − μ1 I − v1 I − cI

1 + b1 I
.
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The disease-free equilibrium and the endemic equi-

librium are expressed as E+
1 (S+

1 , I +
1 ) =

(
A
μ
, 0
)
, and

E+
i (S+

i , I +
i )(i = 2, 3) which is determined by

(μ1 + v1)βb1 I 2 + ((μ1 + v1)(β + μb1)

+ cβ − Aβb1)I+((μ1+v1)μ + cμ − Aβ) = 0,

(15)

where

h1 = −
(

Aβb1 − (μ1 + v1)(β + μb1) − cβ

(μ1 + v1)βb1

)

,

l1 = (μ1 + v1)μ + cμ − Aβ

(μ1 + v1)βb1
.

For the convenience of explanation, from Eq. (15), we
simply denote

I +
2 = −h1 + √

Δ1

2
,

I +
3 = −h1 − √

Δ1

2
,

Δ1 = h2
1 − 4l1,

S+
i = A

μ + β I +
i

, i = 2, 3.

IfΔ1 > 0, then the endemic equilibriums of the system
are

E+
2 (S+

2 , I +
2 )

=
(

2A

2μ + β(−h1 + √
Δ1)

,
−h1 + √

Δ1

2

)

,

and

E+
3 (S+

3 , I +
3 )

=
(

2A

2μ + β(−h1 − √
Δ1)

,
−h1 − √

Δ1

2

)

.

The basic reproduction number of system (9) is R1 =
β A

(v1+μ1+c)μ (refer to [31]). We can easily obtain the
following proposition.

Proposition 3.3 [11,25,33] System (9) always has a
unique endemic equilibrium E+

2 (S+
2 , I +

2 ), if R1 > 1.
In addition, ifR1 = 1 and h1 < 0, there exists a unique
endemic equilibrium E+

2 (S+
2 , I +

2 ). On the other hand,
if R1 = 1 and h1 ≥ 0, there is no endemic equilib-
rium. Furthermore, if R1 < 1, h1 < 0 and Δ1 > 0,
there exist two endemic equilibriums E+

2 (S+
2 , I +

2 ) and
E+
3 (S+

3 , I +
3 ). If R1 < 1, h1 < 0 and Δ1 = 0, two

endemic equilibriums E+
2 (S+

2 , I +
2 ) and E+

3 (S+
3 , I +

3 )

coalesce to form an endemic equilibrium of multiplic-
ity 2. Moreover, if R1 < 1, h1 < 0 and Δ1 < 0, then

there is no endemic equilibrium. IfR1 < 1 and h1 ≥ 0,
there is no endemic equilibrium either.

Now we examine the stability of the endemic equi-
librium of system (9). The corresponding characteristic
equation for the endemic equilibrium E+

i (S+
i , I +

i ), i =
2, 3 is given by

λ2 + Q(I +
i )λ + P(I +

i ) = 0, (16)

where

Q(I +
i ) = μ + β I +

i − cb1 I +
i

(1 + b1 I +
i )2

,

P(I +
i ) = Aβ2 I +

i

μ + β I +
i

− (μ + β I +
i )cb1 I +

i

(1 + b1 I +
i )2

.

We can obtain the following proposition from Eq. (16):

Proposition 3.4 [11,25,33] If R1 > 1 and Q(I +
2 ) >

0, the endemic equilibrium E+
2 of Eq. (9) is a stable

node (or focus). If R1 > 1 and Q(I +
2 ) < 0, then E+

2 is
a unstable node (or focus). If R1 > 1 and Q(I +

2 ) = 0,
then Eq. (9) has at least one closed orbit.
Pseudo-equilibrium (P-E): The corresponding slid-
ing mode differential equation of system (3) becomes
Eq. (14). By using the definition of the P-E point, we
know that E p(

A
μ+βET , ET ). The stability of P-E E p

can be investigated based on Eq. (14) on the sliding
segment ΠS.

Theorem 3.1 Assume that in system (3) I +
2 � ET �

I −
2 . Then the pseudo-equilibrium E p

(
A

μ+βET , ET
)

of

the system is locally stable.

Proof Firstly, the sufficient condition on the existence
of the P-E E p of Eq. (14) is investigated below. From
the second equations of Eqs. (8) and (9), we obtain

S−
2 = μ1+v1

β
and S+

2 =
μ1+v1+ c

1+b1 I+2
β

, then S−
2 < S+

2 .
By using the first equations of Eqs. (8) and (9), we have
I +
2 = A

βS+
2

− μ
β
and I −

2 = A
βS−

2
− μ

β
, then I +

2 < I −
2 .

By (11) and (12), under I +
2 � ET � I −

2 , we have

−h1 + √
Δ1

2
� ET � Aβ − μ(μ1 + v1)

β(μ1 + v1)
,

after an easy computation, we can obtain

μ1 + v1

β
� A

μ + βET
� (μ1 + v1)(1 + b1ET ) + c

β(1 + b1ET )
.

Then there exists the P-E E p of system (3) if I +
2 �

ET � I −
2 .
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Secondly, we consider (FS(S, I ))′S = −μ − β I <

0.Wecanobtain that E p(
A

μ+βET , ET ) is locally stable.
The proof is completed. 
�
Boundary equilibrium (B-E): The boundary equilib-
rium of system (3) is governed by the equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A − μS − βSI = 0,

βSI − μ1 I − v1 I − cψ(I )I

1 + b1 I
= 0,

I = ET .

(17)

From the first and second equations of system (17), we
can obtain A

μ+βET = (μ1 + v1 + cψ(I )
1+b1ET ) 1

β
. Now, let

us denote E B
1 as the B-E point for (17) with ψ(I ) = 1,

i.e., ET = I1 (if I1 exists), and E B
2 with ψ(I ) = 0,

i.e., ET = I2 (if I2 exists), then we have boundary
equilibriums:

E B
1 =

(

(μ1 + v1 + c

1 + b1ET
)
1

β
, ET

)

;

E B
2 =

(
μ1 + v1

β
, ET

)

.

4 Global qualitative analysis of the plant disease
subsystems (8) and (9)

In order to ensure that system (3) is asymptotically sta-
ble in each subspace, two cases for the threshold ET
will be discussed. Moreover, the global dynamics of
systems (8) and (9) will be investigated.

Lemma 4.1 If R0 < 1, the disease-free equilibrium
E−
1 ( A

μ
, 0) of system (8) is globally asymptotically sta-

ble (G.A.S).

Proof For the sake of simplicity, we first transfer the
disease-free equilibrium E−

1 to the origin by using x =
S − A

μ
. Then system (8) becomes:

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= −μx − βx I − β A

μ
I,

dI

dt
= βx I − μ1 I − v1 I + β A

μ
I.

(18)

Considering the following Lyapunov function

V (x, I ) = 1

2
x2 + A

μ
I

and based on Eq. (18), we can obtain

dV (x, I )

dt
= − μx2−βx2 I−

(

μ1 I+v1 I−β A

μ
I

)
β A

μ

� 0.

When R0 < 1, we have −μ1 I − v1 I + β A
μ

I � 0.

In other words, the disease-free equilibrium E−
1 is

G.A.S for (8 ) ifR0 < 1. This completes the proof. 
�
Lemma 4.2 Suppose that R0 > 1, the endemic equi-
librium E−

2 (S−
2 , I −

2 ) of system (8) is G.A.S.

Proof In order to apply LaSalle’s Invariance Principle,
we first use x = S − S−

2 , y = I − I +
2 to transfer the

equilibrium E−
2 (S+

2 , I +
2 ) to the origin. We re-organize

Eq. (8) as
⎧
⎪⎨

⎪⎩

dx

dt
= −μx − βx(I −

2 + y) − (μ1 + v1)y,

dy

dt
= βx(I +

2 + y),

(19)

and construct the Lyapunov function as

V (x, y) = x2

2
+ μ1 + v1

β

(

y − I +
2 ln

I +
2 + y

I +
2

)

.

Then based on Eq. (19), we have
dV (x, y)

dt
= −μx2 − βx2(I +

2 + y) � 0.

Furthermore, when R0 > 1, the endemic equilibrium
E−
2 is G.A.S for (8), which implies that Lemma 4.2

holds.
When I > ET , system (3) becomes system (9) and

its global stability behavior is investigated below. 
�
Lemma 4.3 If R1 < 1, the disease-free equilibrium
E+
1 ( A

μ
, 0) of system (9) is G.A.S.

Theorem 4.1 If R1 > 1 and μ1 + v1 − (μ1+v1+c)2

4μ −
μ
4 − (

μ1+v1+c
β

)b1c � 0 , the endemic equilibrium

E+
2 (S+

2 , I +
2 ) of system (9) is G.A.S.

Proof We first use x = S − S+
2 , y = I − I +

2 to trans-
fer the equilibrium E+

2 (S+
2 , I +

2 ) to the origin. Then,
system (9) is transformed to the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −μx − βx(I+

2 + y) − (μ1 + v1 + c

1 + b1 I+
2

)y,

dy

dt
= βx(I+

2 + y) +
(

c

1 + b1 I+
2

− c

1 + b1(I+
2 + y)

)

× (I+
2 + y),

(20)

or
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −μx − βx(I +

2 + y) − βS+
2 y,

dy

dt
= β(xy + x I +

2 + S+
2 y) − (μ1 + v1)y

+
(

cI +
2

1 + b1 I +
2

− c(I +
2 + y)

1 + b1(I +
2 + y)

)

,

(21)
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where βS+
2 y − (μ1 + v1)y = cy

1+b1 I +
2
, S+

2 =
μ1+v1+ c

1+b1 I+2
β

.
Consider the following smooth Lyapunov function

V2(x, y) = V 1
2 (x, y) + V 0

2 (x, y)

(x + y)2

2
+ x2

2

+
μ1 + v1 + c

1+b1 I +
2

β

(

y − I +
2 ln

I +
2 + y

I +
2

)

,

whereV 0
2 (x, y)= x2

2 +
μ1+v1+ c

1+b1 I+2
β

(

y−I +
2 ln

I +
2 +y

I +
2

)

,

V 1
2 (x, y) = (x+y)2

2 .
For brevity, the right-hand side of Eqs. (20) or (21)

is simply expressed as v(x, y).

v01(x, y) =
( −μx − βx(I +

2 + y) − (μ1 + v1 + c
1+b1 I +

2
)y,

βx(I +
2 + y) + ( c

1+b1 I +
2

− c
1+b1(I +

2 +y)
)(I +

2 + y)

)

and

v02(x, y) =
⎛

⎜
⎜
⎝

−μx − βx(I +
2 + y) − βS+

2 y,

β(xy + x I +
2 + S+

2 y) − (μ1 + v1)y + (
cI +

2
1+b1 I +

2

− c(I +
2 +y)

1+b1(I +
2 +y)

)

⎞

⎟
⎟
⎠

.

From this, we can calculate ∇V2(x, y)v = ∇V 0
2 (x, y)

v01 + ∇V 1
2 (x, y)v02 as

∇V 0
2 (x, y)v01 =

⎛

⎝x,

μ1 + v1 + c
1+b1 I +

2

β

y

I +
2 + y

⎞

⎠

×
( −μx − βx(I +

2 + y) − (μ1 + v1 + c
1+b1 I +

2
)y,

βx(I +
2 + y) + ( c

1+b1 I +
2

− c
1+b1(I +

2 +y)
)(I +

2 + y)

)

and

∇V 1
2 (x, y)v02 = (x + y, x + y)

×

⎛

⎜
⎜
⎝

−μx − βx(I +
2 + y) − βS+

2 y,

β(xy + x I +
2 + S+

2 y) − (μ1 + v1)y + (
cI +

2
1+b1 I +

2

− c(I +
2 +y)

1+b1(I +
2 +y)

)

⎞

⎟
⎟
⎠

.

Then

∇V2(x, y)v = ∇V 0
2 (x, y)v01 + ∇V 1

2 (x, y)v02

= −μx2 − βx2(I +
2 + y) +

⎛

⎝
μ1 + v1 + c

1+b1 I +
2

β

⎞

⎠

×
(

c

1 + b1 I +
2

− c

1 + b1(I +
2 + y)

)

y

− μx2 − (μ1 + v1)xy

−
(

c(I +
2 + y)

1 + b1(I +
2 + y)

− cI +
2

1 + b1 I +
2

)

x

− (μ1 + v1)y2 − μxy

−
(

c(I +
2 + y)

1 + b1(I +
2 + y)

− cI +
2

1 + b1 I +
2

)

y.

Using the differential mean value theorem, there exist
τ, ν such that K (y + I +

2 ) − K (I +
2 ) = K ′(τ )y, f0(y +

I +
2 ) − f0(I +

2 ) = f ′
0(ν)y, where K (y + I +

2 ) =
c

1+b1(I +
2 +y)

, f0(y + I +
2 ) = c(I +

2 +y)

1+b1(I +
2 +y)

, K ′(y + I +
2 ) =

−b1c
(1+b1(I +

2 +y))2
, f ′

0(y + I +
2 ) = c

(1+b1(I +
2 +y))2

. Then we

have

∇V2(x, y)v < −μx2 − βx2(I+
2 + y)

−
⎛

⎝
μ1 + v1 + c

1+b1 I +
2

β

⎞

⎠× K ′(τ )y2

− μx2 − (μ1 + v1)xy

− ( f ′
0(ν))yx − (μ1 + v1)y2 − μxy − ( f ′

0(ν))y2

< −μ

(

x +
(

f ′
0(ν) + μ1 + v1

)
y

2μ

)2

− μ

(

x + μy

2μ

)2

−
⎡

⎣μ1 + v1 − (μ1 + v1 + f ′
0(ν))2

4μ
− μ

4
+ f ′

0(ν)

+
⎛

⎝
μ1 + v1 + c

1+b1 I +
2

β

⎞

⎠ K ′(τ )

⎤

⎦ y2.

We know that −b1c � K ′(τ ) < 0, 0 < f ′
0(ν) � c

for all −I +
2 � τ, ν < ∞. It is easy to obtain that

μ1 + v1 − (μ1+v1+c)2

4μ − (μ)
4 −

(
μ1+v1+c

β

)
b1c > μ1 +

v1 − (μ1+v1+c)2

4μ − μ
4 −

(
μ1+v1+ c

1+b1 I+2
β

)

b1c � 0 .

Furthermore, when R1 > 1, and μ1 + v1 −
(μ1+v1+c)2

4μ − μ
4 −

(
μ1+v1+c

β

)
b1c � 0 , E+

2 is G.A.S for
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Fig. 1 Trajectory of the plant disease system (9) with the state
variables S(t) and I (t); A = 3, v1 = 0.2, β = 1, b1 = 0.1,
c = 0.3, μ = 1, μ1 = 1.1

(9). The numerical results of Theorems 4.1 are shown
in Fig 1. The proof is completed. 
�

By setting A = 3, v1 = 0.2, β = 1, b1 = 0.1,
c = 0.3,μ = 1,μ1 = 1.1, it is straightforward to check
that all the conditions of Theorem 4.1 are satisfied.

R1 = β A

(v1 + μ1 + c)μ

= 3 × 1

(0.2 + 1.1 + 0.3) × 1
≈ 1.875 > 1

and

μ1 + v1 − (μ1+v1 + c)2

4μ
− μ

4
− (

μ1 + v1 + c

β
)b1c

= (1.1 + 0.2) − (1.1 + 0.2 + 0.3)2

4 × 1
− 1

4

− (1.1 + 0.2 + 0.3) × 0.1 × 0.3

1
� 0.

Hence, the endemic equilibrium E+
2 (S+

2 , I +
2 )of system

(9) is G.A.S (see Fig. 1).

5 Global qualitative analysis of the plant disease
system (3) with non-smooth control strategy

Theorem 5.1 Assume that assumption H1 holds. If
R0 < 1, then the disease-free equilibrium E−

1 is glob-
ally asymptotically stable.

Proof The details of the proof are given in “Appendix
A.”

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

I(t
) S2 region

oE1
-

S1 region

I=ET

Fig. 2 Trajectory of the plant disease system (9) with the state
variables S(t) and I (t); A = 2, v1 = 0.2, β = 0.2, b1 = 1,
c = 5, μ = 1.2, μ1 = 1.4

By letting A = 2, v1 = 0.2,β = 0.2, b1 = 1, c = 5,
μ = 1.2, μ1 = 1.4, ET = 2.5, it is easy to check that
the conditions of Theorem 5.1 are satisfied. Hence, the
disease-free equilibrium E−

1 (S−
1 , 0) of system (3) is

G.A.S (see Fig. 2). 
�

Theorem 5.2 Assume that assumption H1 holds. If
R1 < 1 < R0 and h1 � 0, then

(i) the pseudo-equilibrium E p of system (3) is globally
asymptotically stable if 0 < ET < I −

2 , or
(ii) the endemic equilibrium E−

2 is globally asymptot-
ically stable if I −

2 � ET .

Proof The proof is given in “Appendix A.”
By setting A = 3, v1 = 0.2, β = 1, b1 = 1,

c = 5, μ = 1, μ1 = 1.1, when the first control value
ET = 0.9, it is easy to find that the conditions of Theo-
rem 5.2(i) are satisfied. Hence, the pseudo-equilibrium
E p of system (3) is G.A.S (see Fig. 3a). When the
second control value ET = 3.1, the conditions of The-
orem 5.1(ii) are satisfied. Hence, the endemic equilib-
rium E−

2 (S−
2 , I −

2 ) of system (3) is G.A.S (see Fig. 3b).

�

Corollary 5.1 Assume that assumption H1 holds. If
R1 < 1 < R0 and h1 < 0 and Δ1 < 0, then

(i) the pseudo-equilibrium E p of system (3) is globally
asymptotically stable if 0 < ET < I −

2 , or
(ii) the endemic equilibrium E−

2 is globally asymptot-
ically stable if I −

2 � ET .
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Fig. 3 Trajectory of the plant disease system (9) with the state
variables S(t) and I (t); A = 3, v1 = 0.2, β = 1, b1 = 1, c = 5,
μ = 1, μ1 = 1.1. a ET = 0.9, b ET = 3.1

Proof A similar procedure to that of Theorem 5.1 can
be used to prove this Corollary 5.1, and we omit it here
for brevity. 
�

By setting A = 363, v1 = 0.2, β = 0.5, b1 = 1,
c = 14,μ = 12,μ1 = 13., when the third control value
ET = 2.6, it is easy to find that the conditions ofCorol-
lary 5.1(i) are satisfied. Hence, the pseudo-equilibrium
E p of system (3) is G.A.S (see Fig. 4a). When the
fourth control value ET = 4.5, the conditions ofCorol-
lary 5.1(ii) are satisfied. Hence, the endemic equilib-
rium E−

2 (S−
2 , I −

2 ) of system (3) is G.A.S (see Fig. 4b).
Next, we consider the case of R1 > 1. Under

which, the system (9) has a unique endemic equilib-
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(a)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

I(t
)

S2 region

S1 region

E2
-

I=ET

(b)

Fig. 4 Trajectory of the plant disease system (9) with the state
variables S(t) and I (t); A = 363, v1 = 0.2, β = 0.5, b1 = 1,
c = 14, μ = 12, μ1 = 13. a ET = 2.6, b ET = 4.5

rium E+
2 (S+

2 , I +
2 ). The basic reproduction number is

found to be R0 = β A
(v1+μ1)μ

> R1 = β A
(v1+μ1+c)μ .

According to S−
2 = μ1+v1

β
and S+

2 =
μ1+v1+ c

1+b1 I+2
β

,

we have S−
2 < S+

2 , and by using the first equations
of Eqs. (8) and (9), we can obtain I −

2 = A
βS−

2
− μ

β

and I +
2 = A

βS+
2

− μ
β
, then, I +

2 < I −
2 . Based on Lem-

mas 4.1–4.3 and Theorem 4.1, we have the following
results

Theorem 5.3 Assume that assumption H1 holds. If
R1 > 1, then the function
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V (S, I ) = (S − S−
2 )2

2
+ μ1 + v1

β

(

I − I −
2 − I −

2 ln
I

I −
2

)

is a Lyapunov function on R2+ for system (3) and the
endemic equilibrium E+

2 is globally asymptotically sta-
ble if I +

2 < I −
2 � ET .

Proof Notice that the conditions of Lemma 2.1 and
Lemma 2.2 introduced in Sect. 2 are all satisfied. By
performing the analysis, we can have the following
results:
(1) If (S, I ) ∈ S1, then

< ∇V (S, I ), fS1(S, I ) >=
− μ(S − S−

2 )2 − β(S − S−
2 )2 I � 0.

(2) If (S, I ) ∈ {(S, I ) ∈ Π; if I = ET }, then
< ∇V (S, I ), fS1(S, I ) >=< V ′

S, V ′
I >< f11, f12 >

= V ′
S f11 + V ′

I f12 = −μ(S − S−
2 )2 − β(S − S−

2 )2 I

� 0,

where f11 = A −μS −βSI, f12 = βSI −μ1 I −v1 I .
Similarly,

< ∇V (S, I ), fS2(S, I ) >=< V ′
S, V ′

I >< f21, f22 >

= V ′
S f11 + V ′

I f22 = V ′
S f11 + V ′

I f12

+ V ′
I f22 − V ′

I f12 � V ′
I f22 − V ′

I f12

= − cI

1 + b1 I

S−
2 (I − I −

2 )

I
,

� 0,

where I = ET > I −
2 , f11 = f21 = A − μS −

βSI, f22 = βSI −μ1 I − v1 I − cI
1+b1 I . Then, we have

< ∇V (S, I ), fS2(S, I ) >< 0. Hence,

sup
0≤α1≤1

<∇V (S, I ), α1 fS1 (S, I ) + (1 − α1) fS2 (S, I )>=0.

(3) If (S, I ) ∈ S2, due to S−
2 = μ1+v1

β
, S−

2 =
μ1+v1+ c

1+b1 I+2
β

, S−
2 < S+

2 , then

< ∇V (S, I ), fS2(S, I ) >=< V ′
S, V ′

I >< f21, f22 >

= V ′
S f11 + V ′

I f22

= V ′
S f1 + V ′

I f12 + V ′
I f22 − V ′

I f12

� V ′
I f22 − V ′

I f12

= − cI

1 + b1 I

S−
2 (I − I −

2 )

I
.

If I > ET , we can obtain

< ∇V (S, I ), fS2(S, I ) >< 0.
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I=ET control line

Fig. 5 Trajectory of the plant disease system (3) with the state
variables S(t) and I (t); A = 3, v1 = 0.2, β = 1, b1 = 0.1,
c = 0.3, μ = 1, μ1 = 1.1, ET = 1.3076

Hence, according to Lemmas 2.1–2.2, we know that
the invariant subset is ω1(R2+) = {(S, I )|V (S, I ) �
V (

μ1+v1
β

, ET )} ⊂ S1∪(
μ1+v1

β
, ET ), which is a subset

of Ω1. By considering the sliding mode behavior and
the neutral stability ofLotka–Volterra cycles (see [4]) in
S1,ω1(R2+) can be shown as∇V (S, I ), which indicates
that ω1(R2+) is closed. Therefore, ω1(R2+) is the global
attractor for system (3) and the proof is completed. 
�

By letting A = 3, v1 = 0.2, β = 1, b1 = 0.1, c = 0.3,
μ = 1, μ1 = 1.1, ET = 1.3076, it is straightforward
to check that all the conditions of Theorem 5.3 are sat-
isfied. Hence, the endemic equilibrium E+

2 is globally
asymptotically stable if I +

2 < I −
2 < ET . The numeri-

cal results of Theorem 5.3 are shown in Fig. 5.

Lemma 5.1 If R1 > 1, 0 � b1 <
β
c , then there is no

closed orbit in regions Si (i = 1, 2).

Proof By defining the Dulac functionD1 = 1
I for sub-

system S1, we have

f11(S, I )D1 = A

I
− μS

I
− βSI

I
;

f12(S, I )D1 = βS − v1 − μ1;
∂( f11D1)

∂S
+ ∂( f12D1)

∂ I
=

A
I − μS

I − βSI
I

∂S

+ ∂βS − v1 − μ1

∂ I
= −μ

I
− β,

then, we can obtain ∂( f11D1)
∂S + ∂( f12D1)

∂ I < 0.
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Similarly, for subsystem S2, we have

f21(S, I )D1 = A

I
− μS

I
− βSI

I
;

f22(S, I )D1 = βS − v1 − μ1 − c

1 + b1 I
;

∂( f21D1)

∂S
+ ∂( f22D1)

∂ I
= ∂( A

I − μS
I − βSI

I )

∂S

+ ∂(βS − v1 − μ1 − c
1+b1 I )

∂ I

= −μ

I
− β + cb1

(1 + b1 I )2
.

Again from Propositions 3.1 and 3.2, and 0 � b1 <
β
c ,

we can obtain that

∂( f21D1)

∂S
+ ∂( f22D1)

∂ I

= −μ

I
−β+ cb1

(1 + b1 I )2
� −μ

I
−β+ β

(1+b1 I )2

� 1

I (1+b1 I )2
(−μ(1+b1 I )2−β I (1+b1 I )2 − 1)<0.

∂( f21D1)
∂S + ∂( f22D1)

∂ I < 0. Hence, there is no closed orbit

in regions Si (i=1,2) if R1 > 1 and 0 � b1 <
β
c . The

proof is completed. 
�
Lemma 5.2 Assume that assumption H1 and the con-
dition 1) of Proposition 3.4 hold. If 0 � b1 <

β
c , then

there is no closed orbit for system (3) containing part
of the sliding domain Πs .

Proof From the sufficient condition on the existence
of the pseudo-equilibrium of Theorem 3.1, we know
that the pseudo-equilibrium of Eq. (14) is stable in the
sliding domain S−

2 � Sp � S+
2 or I +

2 � ET � I −
2 . It

is easy to know that there is no closed orbit for system
(3) containing part of I +

2 < ET < I −
2 . Next, we will

prove that system (3) has no closed orbit containing part
of the sliding domain Πs if ET > I −

2 or ET < I +
2 .

Without loss of generality, if ET > I −
2 , by using

the sliding mode dynamics (14), it is easy to show that
F ′

S = −μ−βET < 0. Then, the solution moves from
the right side to the left side in domain Πs . Moreover,
the solution of Eq.(3) starting from the point ET

2 cannot
touch the domain Πs again.

By using the condition 1) of Proposition 3.4, it is
easy to know that the endemic equilibrium E−

2 of Eq.
(9) is a stable node or focus. Then the trajectory of
system (3) intersects with the horizontal isocline l1,
where l1 is defined at {(S, I )|S = μ1+v1

β
, I < ET },

3 3.5 4 4.5 5 5.5 6 6.5 7
8

8.5

9

9.5

10

10.5

11

11.5

12

S

I

S2

Q

S1

Ep

I=ET+θ

I=ET−θ

P

P2=P+b1(θ)

P1=P+a1(θ)

Q2=Q−b2(θ)

Π s

Γ2

Γ1

Q1=Q−a2(θ)

Fig. 6 Limit cycle Γ

at the first point N1, then the second point N2. Hence
we conclude that point N2 locates on between the tan-
gent point ET

2 and the endemic equilibrium E−
2 . If not,

the solution of system (3) may either coincide with the
tangent point ET

2 or intersect with the domain Πs at
a certain point to the right side of tangent point ET

2 .
If the previous hypothesis is true, then the trajectory
exists a closed orbit which is tangent to the domainΠs .
The closed orbit is denoted by Υ . Then any solution
of system (3) starting from a point out of the closed
orbit Υ cannot cross the cycle Υ , and certainly can-
not tend to the endemic equilibrium E−

2 , which con-
tradicts to the stability of the endemic equilibrium E−

2 .
If the latter assumption is true, it indicates that there
exists an unstable node or focus E−

2 , which also con-
tradicts to the statement that E−

2 is a stable equilibrium.
Hence the orbit of system (3) starting from the tangent
point ET

2 cannot entre the domainΠs , then the solution
approaches the endemic equilibrium E−

2 .
Secondly, if ET < I +

2 , the proof process is similar
to that for ET > I −

2 . Therefore, there is no closed
orbit of system (3) containing part of the sliding domain
Πs . Hence, if R0 > 1, and under the condition 1) of
Proposition 3.4, there is no closed orbit of system (3)
containing part of the sliding domain Πs . The proof is
completed. 
�

Theorem 5.4 Assume that assumption H1 and the
condition 1) of Proposition 3.4 hold. When 0 � b1 <
β
c , the system (3) has a globally asymptotically stable
pseudo-equilibrium E p if I +

2 < ET < I −
2 .
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Proof First we can prove that there is no closed tra-
jectory in regions Si (i = 1, 2) and there exists no
closed orbit for system (3) containing part of the sliding
domain Πs . If so, it is a contradiction to Lemmas 5.1
and 5.2.

Then we need to prove that there is no closed tra-
jectory which contains the regions Si (i = 1, 2) and
the sliding domain Πs . If not, we assume that there is
a closed orbit Γ of system (3), which passes through
the discontinuous manifold Π and encloses the sliding
domain Πs . Additionally, the pseudo-equilibrium E p

locates on Πs , and the closed orbit has period T (see
Fig.6). P and Q are the intersection points of Γ and Π

(i.e., the line I = ET ). Meanwhile, P1 = P + a1(θ)

and Q1 = Q−a2(θ) represent the intersection points of
Γ and the line I = ET −θ . Similarly, P2 = P +b1(θ)

and Q2 = Q − b2(θ) are the intersection points of Γ

and the straight line I = ET + θ , where θ > 0 is
sufficiently small. Moreover, a1(θ), a2(θ), b1(θ) and
b2(θ) are continuous with respect to θ and lim

θ→0
ai (θ) =

lim
θ→0

bi (θ) = 0 for i = 1, 2.

The Γ1 and segment P1Q1 locate in the region S1.
Similarly, theΓ2 and segment P2Q2 locate in the region
S2 . Furthermore, the dynamics of the disease system
with non-smooth control strategy in region S1 are rep-
resented by f11 and f12. Let ∂S1 denote the boundary
of S1. By using Green’s Theorem, we have

∫ ∫

S1

∂(D1 f11)

∂S
+ ∂(D1 f12)

∂ I
dσ

=
∫ ∫

S1

∂(D1 f11)

∂S
dσ +

∫ ∫

S1

∂(D1 f12)

∂ I
dσ

=
∮

∂S1
(D1 f11)dI −

∮

∂S1
(D1 f12)dS

=
∫

Γ 1
D1 f11dI +

∫

−−−→
Q1P1

D1 f11dI

−
(∫

Γ 1
D1 f12dS +

∫

−−−→
Q1P1

D1 f12dS

)

=
∫

Γ 1
(D1 f11 · f12 − D1 f12 · f11)dt

−
∫

−−−→
Q1P1

D1 f12dS

= −
∫

−−−→
Q1P1

D1 f12dS,

(22)

where dS = f11dt, dI = f12dt , and there is no change
of ET in the segment Q1P1, then we can obtain

∫

−−−→
Q1P1

D1 f11dI =
∫ ET −θ

ET −θ

D1 f11dI = 0.

Similarly, the dynamics in S2 is represented by f21 and
f22. By Green’s Theorem, we can find a D1 function
satisfying
∫ ∫

S2

∂(D1 f21)

∂S
+ ∂(D1 f22)

∂ I
dσ

= −
∫

−−−→
P2Q2

D1 f22dS.

(23)

Suppose that S20 ⊂ S2. Let

ξ =
∫ ∫

S20

∂(D1 f21)

∂S
+ ∂(D1 f22)

∂ I
dσ

=
∮

∂S20
(D1 f21dI − D1 f22dS) < 0.

(24)

From Lemma 5.1, and based on Eq. (24), we have

0 > ξ > −
(∫

−−−→
Q1P1

D1 f12dS +
∫

−−−→
P2Q2

D1 f22dS

)

.

(25)

Then we take the limit θ → 0 of the sum of (22) and
(23) as

lim
θ→0

(

−
∫

−−−→
Q1P1

D1 f12dS −
∫

−−−→
P2Q2

D1 f22dS

)

= lim
θ→0

[∫ P+a1(θ)

Q−a2(θ)

(βS − (μ1 + v1))dS

−
∫ P+b1(θ)

Q−b2(θ)

(

βS − (μ1+v1))− c

1+b1ET

)

dS

]

= b1
1 + b1ET

(Q − P) > 0.

(26)

From Fig. 6, we can easily see that Q > P . Then
Eq. (26) holds, which contradicts to (25). Thus there is
no closed orbit containing the sliding domainΘ and the
sliding equilibrium E p. Therefore, E p ∈ Θ is globally
asymptotically stable if I +

2 < ET < I −
2 . The numer-

ical results of Theorems 5.4 are shown in Fig. 7. The
proof is completed. 
�

By setting A = 3, v1 = 0.2, β = 1, b1 = 0.1,
c = 0.3, μ = 1, μ1 = 1.1, and ET = 1.1, it is easy
to calculate the following parameters involved in the
conditions of Theorem 5.4.

R1 = β A

(v1 + μ1 + c)μ
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Fig. 7 Trajectory of the plant disease system (3) with the state
variables S(t) and I (t); A = 3, v1 = 0.2, β = 1, b1 = 0.1,
c = 0.3, μ = 1, μ1 = 1.1, ET = 1.1
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Fig. 8 Trajectory of the plant disease system (3) with the state
variables S(t) and I (t); A = 3, v1 = 0.2, β = 1, b1 = 0.1,
c = 0.3, μ = 1, μ1 = 1.1, ET = 0.9046

= 3 × 1

(1.1 + 0.2 + 0.3) × 1
≈ 1.875 > 1.

I +
2 = −h1+√

Δ1
2 = 0.9046, then ET = 1.1 > I +

2 =
0.9046. I −

2 = Aβ−μ(μ1+v1)
β(μ1+v1)

= 1.3076, then ET =
1.1 < I −

2 = 1.3076.

Q(I +
2 ) = μ + β I +

2 − cb1 I +
2

(1 + b1 I +
2 )2

= 1 + 0.9046 − 0.3 × 0.1 × 0.9046

(1 + 0.1 × 0.9046)2
> 0,

and

0 � b1 <
β

c
⇐⇒ 0 < 0.1 <

10

3
.

Accordingly, the conditions of Theorem 5.4 are satis-
fied and thus the pseudo-equilibrium E p of system (3)
is G.A.S (see Fig. 7).

Theorem 5.5 Assume that assumption H1 and the
condition 1) of Proposition 3.4 hold. When 0 � b1 <
β
c , the equilibrium E+

2 (S+
2 , I +

2 ) of system (3) is glob-
ally asymptotically stable if ET � I +

2 < I −
2 .

Proof A similar procedure to that of Theorem 5.4 can
be used to prove this theorem, and we omit it here for
brevity. The results ofTheorems5.5 are shown inFig. 8.


�
Now, we summarize the main results in Table 1.
Next we analyze the sliding bifurcation of system

(3). According to the definition in Sect. 2, the tangent
points ET

i (E B
i ) on sliding segment Πs of the system

coincide with the boundary equilibriums.

6 Sliding bifurcations of the disease system

This section discusses the regular/virtular equilibriums
of boundary curves and the coexistence of virtual equi-
libriums for subsystems S1 and S2.

6.1 Bifurcations of regular/virtular equilibrium

System (3) can exhibit multiple equilibriums and slid-
ing modes, which will be explored in this subsection.
At first, μ and ET are chosen as bifurcation parame-
ters to construct the bifurcation diagram, and the other
parameters are same as those in Fig. 9a. Based on the
solutions of equilibriums found in Sect. 3, we define
the following lines to divide the first quadrant of the
relevant parameter plane.

L1 = {
(μ, ET ) | ET = I −

1 = 0
}
,

L2 =
{

(μ, ET ) | ET = I −
2 = Aβ − μ(μ1 + v1)

β(μ1 + v1)

}

,

L3 =
{

(μ, ET ) | ET = I +
3 = (−h1 − √

Δ1)

2

}

,

L4 =
{

(μ, ET ) | ET = I +
2 = (−h1 + √

Δ1)

2

}

.

L5 = {(v1, ET ) | ET = 0} ,
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Table 1 Main results of system (3)

Parameter values Control conditions Equilibriums Main results

R0 < 1 0 < ET E−
1r , E−

2v, E+
1v, E+

2v Theorem 5.1

R1 < 1 < R0, h1 � 0 0 < ET < I −
2 E−

1v, E−
2v, E+

1v, E+
2v, E p Theorem 5.2(i)

I −
2 � ET E−

1v, E−
2r , E+

1v, E+
2v Theorem 5.2(ii)

R1 < 1 < R0, h1 < 0 and Δ1 < 0 0 < ET < I −
2 E−

1v, E−
2v, E+

1v, E+
2v, E p Corollary 5.2(i)

I −
2 � ET E−

1v, E−
2r , E+

1v, E+
2v Corollary 5.2 (ii)

1 < R1, 0 � b1 <
β
c , Q(I +

2 ) > 0 I −
2 � ET E−

1v, E−
2r , E+

1v, E+
2v Theorem 5.3

I +
2 < ET < I −

2 E−
1v, E−

2v, E+
1v, E+

2v, E p Theorem 5.4

ET � I +
2 E−

1v, E−
2v, E+

1v, E+
2r Theorem 5.5

L6 =
{

(v1, ET ) | ET = Aβ − μ(μ1 + v1)

β(μ1 + v1)

}

,

L7 =
{

(v1, ET ) | ET = (−h1 − √
Δ1)

2

}

,

L8 =
{

(v1, ET ) | ET = (−h1 + √
Δ1)

2

}

,

L9 = {(A, ET ) | ET = 0} ,

L10 =
{

(A, ET ) | ET = Aβ − μ(μ1 + v1)

β(μ1 + v1)

}

,

L11 =
{

(A, ET ) | ET = (−h1 − √
Δ1)

2

}

,

L12 =
{

(A, ET ) | ET = (−h1 + √
Δ1)

2

}

.

The two solid lines L2 and L4 divide theμ− ET space
into three parts. When I −

2 > ET > I +
2 (i.e., the region

Γ 3
1 , in Fig. 9a), the equilibria E−

2 and E+
2 are virtual

(denoted by E−
2v and E+

2v , respectively), and E p exists.
When ET � I +

2 (i.e., region Γ 2
1 , see Fig. 9a), the

equilibrium E+
2 is regular, while E−

2 is virtual (denoted
by E+

2r and E−
2v , respectively), and E p does not exist.

When ET � I −
2 (i.e., the region Γ 1

1 , see Fig. 9a), the
equilibrium E−

2 is regular, while E+
2 is virtual (denoted

by E−
2r and E+

2v , respectively), and E p does not exist.
The equilibria of system (3) include those of S1 or

S2, which may be regular or virtual equilibrium.
From inequality (11), we can see that, with an

increase of the threshold level ET , the sliding seg-
ment Πs reduces and may intersect with the boundary
of the attraction region Π . As a result, a part of Π may
be either in the attraction region or out of the attraction
region.

In practice, the main aim of infectious control is to
make the total density of infectious or the other harmful
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Fig. 9 Bifurcation set of system (3) with respect to μ and ET ,
v1 and ET ; a v1 = 0.2, β = 1, μ1 = 1.1, b1 = 0.1, c = 0.3,
A = 30, b μ = 1, μ1 = 1.1, β = 1, b1 = 0.1, c = 0.3, A = 30
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plants to stabilize at a desired level ET or to prevent the
possibility ofmultiple infectious outbreaks by applying
appropriate control strategies. To achieve this goal, we
can choose that the pseudo-equilibrium point is glob-
ally stable, and all the other equilibria of subsystems S1
and S2 are virtual. Therefore, we select a set of param-
eters for the only coexistence of pseudo-equilibrium
as shown Figs. 12b, 13b for controlling the infectious
plants. Some bifurcations occur in Figs. 10, 11. We
change parameters v1 and ET and fix the other param-
eters to construct the bifurcation diagram, as shown in
Fig. 9b. The lines in Fig. 9 are defined as L5 − L8.
We also introduce the following lines to divide the first
quadrant in the parameter plane.

L13 = {(c, ET ) | ET = 0} ,

L14 =
{

(c, ET ) | ET = Aβ − μ(μ1 + v1)

β(μ1 + v1)

}

,

L15 =
{

(c, ET ) | ET = (−h1 − √
Δ1)

2

}

,

L16 =
{

(c, ET ) | ET = (−h1 + √
Δ1)

2

}

,

L17 = {(β, ET ) | ET = 0} ,

L18 =
{

(β, ET ) | ET = Aβ − μ(μ1 + v1)

β(μ1 + v1)

}

,

L19 =
{

(β, ET ) | ET = (−h1 + √
Δ1)

2

}

,

L20 =
{

(β, ET ) | ET = (−h1 − √
Δ1)

2

}

,

L21 = {(b1, ET ) | ET = 0} ,

L22 =
{

(b1, ET ) | ET = Aβ − μ(μ1 + v1)

β(μ1 + v1)

}

,

L23 =
{

(b1, ET ) | ET = (−h1 − √
Δ1)

2

}

,

L24 =
{

(b1, ET ) | ET = (−h1 + √
Δ1)

2

}

.

Parameters A, c and ET are changed to build the
bifurcation diagrams shown in Fig. 10. The lines in
Fig. 10 are determined by L9 − L16. We let parameters
β and ET , b1 and ET change to construct Fig. 11,
where the lines are governed by L17 − L24. If one or
more parameters changes, boundary focus bifurcation
and boundary node bifurcation can happen, which will
be discussed in Sect. 6.2.
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Fig. 10 Bifurcation of system (3) with respect to A and ET ,
c and ET ; a v1 = 0.2, β = 1, b1 = 0.1, c = 0.3, μ = 1,
μ1 = 1.1, b v1 = 0.2, μ = 1, β = 1, b1 = 0.1, μ1 = 1.1,
A = 30

6.2 Boundary equilibrium (B-E) bifurcation

This subsection addresses the boundary node bifur-
cation, and boundary focus bifurcation of system (3)
with non-smooth control strategy. The boundary equi-
librium bifurcation is characterized by the collision of
regular equilibrium, pseudo-equilibrium, and tangent
point at the discontinuity surface when a bifurcation
parameter reaches a certain critical value.

Remark 1 [24,25] The B-E bifurcation occurs at E B
i if

fsi (E B
i ) is invertible (the eigenvalues of det( fsi (EB)

have nonzero real parts and 〈H ′(E B
i ), fsi (E B

i )〉 �=
0, i = 1, 2). These bifurcations have been classified
as boundary node and boundary focus in [19].
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Fig. 11 Bifurcation of system (3) with respect to β and ET , b1
and ET ; a v1 = 0.2, μ1 = 1.1, b1 = 0.1,μ = 1, c = 0.3,
A = 30, b v1 = 0.1, β = 1, μ1 = 1.1,μ = 1, c = 0.3, A = 30

Theorem 6.1 System (3) exists B-E bifurcation if the
boundary equilibrium is visible.

Proof System (3) may have boundary equilibrium
E B
1 (S∗

B1, I ∗
B1) and E B

2 (S∗
B2, I ∗

B2) if I ∗
B1 and I ∗

B2 exist.
For the boundary equilibria E B

1 and E B
2 , by simple cal-

culations we have

fs1 H(E B
1 )

= (βS∗
B1 − μ1 − v1)I ∗

B1

=
(

β
(μ1 + v1)(1 + b1 I ∗

B1) + c

(1 + b1 I ∗
B1)β

− μ1 − v1

)

I ∗
B1

=
(

c

(1 + b1 I B
1 )

)

I ∗
B1 > 0
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Fig. 12 Boundary node bifurcation for the infectious system
under non-smooth control strategy (3) for the parameters v1 =
0.1, β = 2, μ = 2, μ1 = 2.2, c = 2.2, A = 4, b1 = 0.5, a
ET = 0.081, b ET = 0.312, and c ET = 0.713

and

fs2 H(E B
2 )

= (βS∗
B2 − μ1 − v1 − c

(1 + b1 I ∗
B2)

)I ∗
B2

=
(

β
μ1 + v1

β
− μ1 − v1 − c

(1 + b1 I ∗
B2)

)

I ∗
B2

= − cI ∗
B2

(1 + b1 I ∗
B2)

< 0

and from the regular equilibrium of Eqs. (8) and (9),
we know that det( fsi

(E B
i )) has complex eigenvalues

with nonzero real part −Q(I ∗
Bi )/2, i = 1, 2, if E B

i is
a saddle (a node, or a focus). According to Remark 1,
a B-E bifurcation occurs at E B

i , i = 1, 2. The proof is
completed. 
�

Boundary node bifurcation (BNB) As shown in
Fig. 12, the stable node point E+

2 and a tangent point
ET
1 collide together, when the parameter is changed

from the critical value ET = 0.081 to ET = 0.713.
The BNB occurs at E B

1 , where the critical value ET =
0.081. A stable node E+

2 and a tangent point ET
1 coex-

ist, as shown in Fig. 12a, when ET < I +
2 . They collide

at ET = 0.312 (see Fig. 12b) and are replaced by a P-E
point EP when I +

2 < ET < I −
2 , a tangent point ET

1
and a virtual point E+

2v when I −
2 � ET (see Fig. 12c

with ET = 0.713 for more details). From Fig. 12b, it is
easy to notice that all the trajectories of the two regions
of system (3) and the nonlinear threshold boundary
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Fig. 13 Boundary focus bifurcation of the infectious system
with non-smooth control strategy (3) for the parametersv1 = 0.2,
β = 1, μ = 0.3, μ1 = 0.8, c = 1.8, A = 1.8, b1 = 1.5, a
ET = 0.081, b ET = 0.553, and c ET = 1.021

can asymptotically converge to the pseudo-equilibrium
point E p when appropriate control parameters are cho-
sen.

Boundary focus bifurcation (BFB) If the P-E point,
tangent point, and R-E point collide as the parameter
ET reaches a threshold value, BFB may occur. For
example, when parameter ET reaches the first eco-
nomic threshold value ET = 1.021, the R-E point E−

2
and tangent point ET

1 can collide (see Fig. 13c). The
boundary equilibrium E B

1 is an attractor as shown in
Fig. 13b when I −

2 � ET � I +
2 . A stable focus E+

2 and
a tangent point ET

1 coexist for I +
2 � ET , see Fig. 13a

with ET = 0.081. They collide at ET = 0.553
to turn into a P-E point and a tangent point ET

1 for
ET � I −

2 (see Fig. 13C), with ET = 1.021. Through
this bifurcation, a stable focus becomes a stable P-
E point. Another BFB occurs when parameter ET
reaches the second critical value ET = I −

2 . A stable
focus E−

1 and a tangent point ET
2 coexist for ET < I +

2 .
They collide at ET = I −

2 to evolve into a P-E point
E p and a tangent point ET

2 for ET > I −
2 .

In addition, this paper only discusses sliding bifurca-
tion (boundary node and boundary focus bifurcations).
Numerical simulations have also found the boundary-
saddle bifurcation (see Ref.[26]) which is not given
in this paper as it is hard to prove the existence of
boundary-saddle bifurcation theoretically.

System (9) was found to have standard periodic tra-
jectory lying entirely in area S2(Ref. [11]). System
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Fig. 14 Grazing bifurcation of the infectious system with non-
smooth control strategy (3) for the parameters v1 = 0.2, β = 2,
μ = 0.15, μ1 = 0.3, c = 5, A = 2, b1 = 1, a ET = 0.082, b
ET = 0.213, and c ET = 0.6101

(3) with non-smooth control strategy under investiga-
tion may have a new periodic trajectory in sliding area
Πs (i.e., sliding periodic trajectory) which has isolated
points only in common with Πs (i.e., crossing periodic
trajectory). A crossing periodic trajectory may pass
through the boundary of the sliding area Πs . Accord-
ingly, the orbits associated with periodic solutions will
be a crossing loop.

Grazing bifurcation(GB) As discussed in refs. [25,
33], a standard periodic trajectory could collide, and
this type of bifurcation was referred to as GB. Sys-
tem (3) with non-smooth control strategy has a stable
periodic trajectory in region S2, as shown in Fig. 14a
for ET = 0.082, and also has two tangent points ET

1
and ET

2 which locate on the boundary of the sliding
mode. The continuous system given by Eq. (9) has an
unstable R-E point E+

2r while system (8) has one unsta-
ble V-E point E−

2v . When the parameter ET increases
and passes through the value of 0.082, a GB occurs as
shown in Fig. 14a. The standard periodic trajectory of
system (3) under non-smooth control strategy collides
with its T-E point ET

2 . With a further increase of ET ,
the loop becomes a sliding loop, where a segment of
sliding region is a part of the cycle, see Fig. 14b for
ET = 0.213.

Specifically, as the bifurcation parameter ET is
increased to 0.6101, the stable periodic loopdisappears,
and P-E point EP appears. At the same time, the regu-
lar equilibrium point E+

2r of the continuous system (9)
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becomes a V-E point E+
2v , and the regular/virtual equi-

librium point bifurcation occurs at ET = 0.6101, as
displayed in Fig. 14c. Meanwhile, Fig. 14c also shows
that the P-E point of the discontinuous dynamical sys-
tem cannot coexist with the regular equilibrium point.

7 Discussion and conclusion

This paper has investigated the plant disease system
with non-smooth control strategy through studying the
global dynamics and sliding bifurcations. By applying
Filippov convex method, we first obtained the sliding
dynamic system of the plant disease system with non-
smooth control strategy and then studied the sliding
mode dynamics and the local sliding bifurcations (see
Figs. 9, 10, 11).

It was shown from the boundary node bifurcation
diagram (Fig. 13b) that all the solutions of the two
regions and can asymptotically converge to the pseudo-
equilibrium point E p when the appropriate control
parameters were selected.

The main results demonstrate that for the prevention
and treatment of plants, the appropriate threshold ET
(i.e., ET < ET0) can be decided by using the pro-
posed treatment strategy. That is to say, if the number
of infected plants is larger than the economic thresh-
old ET0, we should take treatment immediately to the
infected plants. Accordingly, the plant disease can be
controlled at the early stage (as shown in Figs.12, 13).
Meanwhile, the non-smooth control strategy can be
applied to control the new emerging infectious disease.

In practice, our analysis suggests that the measure
to reduce the disease plant density of infected plants is
effective for controlling disease if the system parame-
ters and the initial conditions are appropriately chosen.
Based on the control measure, minimizing the number
of the infected plants by disease plant density plays a
leading role in controlling the disease and reducing the
loss of the production.

It should be mentioned that the model discussed in
the present paper can be extended to study the SIR epi-
demic [11,25]. This paper only considered the dynam-
ics of system (3) when I = ET . Under the condition
I
S < ET and by considering the other nonlinear factors
induced from the practical protectivemeasures, such as
cutting out the weak or dying trees, removing the bot-
tom branches of the seriously ill plants to reduce the
spread of the disease, and creating mixed forests with

different composition, the dynamic behavior of system
(3) under such situations is not yet fully understood,
which would be the topic of our future research.
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Appendix A

The proof of Theorem 5.1 Notice that h1 =
−(

Aβb1−(μ1+v1)(β+μb1)−cβ
(μ1+v1)βb1

), if h1 < 0 then we have
Aβb1−(μ1+v1)(β+μb1)−cβ > 0. By simple calcu-
lations, we can obtain Aβ

(μ1+v1)μ
> 1+ β

b1μ
+ cβ

(μ1+v1)μ
,

which is a contradiction with R0 < 1. Then from
Proposition 3.3, we know that If R1 < R0 < 1 and
h1 ≥ 0, there is no endemic equilibrium for system (9).
Then we consider Lyapunov function

V (S, I ) = (S − S−
1 )2

2
+ A

μ
I

(1) If (S, I ) ∈ S1, then

< ∇V (S, I ), fS1(S, I ) >= −μ(S − S−
1 )2

− β(S − S−
1 )2 I − (μ1 I + v1 I − β A

μ
I )

β A

μ
� 0.

(2) If (S, I ) ∈ {(S, I ) ∈ Π; if I = ET }, then
< ∇V (S, I ), fS1(S, I ) >=< V ′

S, V ′
I >< f11, f12 >

= V ′
S f11 + V ′

I f12

= −μ(S − S−
1 )2 − β(S − S−

1 )2 I

−
(

μ1 I + v1 I − β A

μ
I

)
β A

μ

� 0,

where f11 = A −μS −βSI, f12 = βSI −μ1 I −v1 I .
Similarly,

< ∇V (S, I ), fS2(S, I ) >=< V ′
S, V ′

I >< f21, f22 >

� −μ(S − S−
1 )2 − β(S − S−

1 )2 I

− (μ1 I + v1 I − β A

μ
I )

β A

μ
,

� 0,
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where I = ET > I −
2 , f21 = A − μS − βSI, f22 =

βSI − μ1 I − v1 I − cI
1+b1 I . Then, we have

< ∇V (S, I ), fS2(S, I ) >< 0.

Hence,

sup
0≤α1≤1

< ∇V (S, I ), α1 fS1(S, I )

+ (1 − α1) fS2(S, I ) >= 0.

(3) If (S, I ) ∈ S2, then

< ∇V (S, I ), fS2(S, I ) >=< V ′
S, V ′

I >< f21, f22 >

� −μ(S − S−
1 )2 − β(S − S−

1 )2 I

− (μ1 I + v1 I − β A

μ
I )

β A

μ
,

� 0,

If I > ET , we can obtain

< ∇V (S, I ), fS2(S, I ) >< 0.

Hence, according to Lemmas 2.1, 2.2, we know that
the invariant subset is ω0(R2+) = {(S, I )|V (S, I ) �
V ( A

μ
, ET )} ⊂ S1 ∪ ( A

μ
, ET ), which is a subset of Ω0.

E−
1 is globally asymptotically stable for system (3) and

the proof is completed. 
�
The proof of the case (i) of Theorem 5.2 Asimilar pro-
cedure to that of Theorem 5.4 can be used to prove this
theorem, and we omit it here for brevity. 
�
The proof of the case (ii) of Theorem 5.2 By using
Proposition 3.1, if R1 < 1 < R0 and h1 � 0, then
we know that there is no endemic equilibrium for the
subsystem (9). We consider Lyapunov function

V (S, I ) = (S − S−
2 )2

2

+μ1 + v1

β

(

I − I −
2 − I −

2 ln
I

I −
2

)

(1) If (S, I ) ∈ S1, then

< ∇V (S, I ), fS1(S, I ) >=
− μ(S − S−

2 )2 − β(S − S−
2 )2 I � 0.

(2) If (S, I ) ∈ {(S, I ) ∈ Π; if I = ET }, then
< ∇V (S, I ), fS1(S, I ) >=< V ′

S, V ′
I >< f11, f12 >

= V ′
S f11 + V ′

I f12 = −μ(S − S−
2 )2 − β(S − S−

2 )2 I

� 0,

where f11 = A −μS −βSI, f12 = βSI −μ1 I −v1 I .
Similarly,

< ∇V (S, I ), fS2(S, I ) >=< V ′
S, V ′

I >< f21, f22 >

= V ′
S f11 + V ′

I f22 = V ′
S f11 + V ′

I f12

+ V ′
I f22 − V ′

I f12 � V ′
I f22 − V ′

I f12

= − cI

1 + b1 I

S−
2 (I − I −

2 )

I
,

� 0,

where I = ET > I −
2 , f21 = A − μS − βSI, f22 =

βSI − μ1 I − v1 I − cI
1+b1 I . Then, we have

< ∇V (S, I ), fS2(S, I ) >< 0.

Hence,

sup
0≤α1≤1

< ∇V (S, I ), α1 fS1 (S, I ) + (1 − α1) fS2 (S, I ) >= 0.

(3) If (S, I ) ∈ S2, then

< ∇V (S, I ), fS2(S, I ) >=< V ′
S, V ′

I >< f21, f22 >

= V ′
S f11 + V ′

I f22

= V ′
S f11 + V ′

I f12 + V ′
I f22 − V ′

I f12

� V ′
I f22 − V ′

I f12

= − cI

1 + b1 I

S−
2 (I − I −

2 )

I
.

If I > ET , we can obtain

< ∇V (S, I ), fS2(S, I ) >< 0.

Hence, according to Lemmas 2.1, 2.2, we know that
the invariant subset is ω1(R2+) = {(S, I )|V (S, I ) �
V (

μ1+v1
β

, ET )} ⊂ S1∪(
μ1+v1

β
, ET ), which is a subset

of Ω1. Then E−
2 is globally asymptotically stable if

I −
2 � ET , and the proof is completed. 
�
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