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Abstract Handling loads with small swings is dif-
ficult for a 3-dimensional overhead crane due to its
hard nonlinearity. Moreover, the nonlinear dynamics
increases the complexity of the required feedback, thus
making the closed-loop system sensitive to a variation
in the cable length that negatively influences the damp-
ing feature. To address these problems, a significant
storage function characterized by the desired damping
is constructed based on passivity. Consequently, a non-
linear controller is delivered by enforcing the coupled–
dissipation inequality, thus drastically increasing the
damping of the closed-loop system. In particular, new
coupled–dissipation signals are fabricated to augment
the coupling between the trolley movement and the
payload sway. Due to its very simple structure that
excludes the cable length, the proposed controller is
robust to unknown cable lengths and easy to imple-
ment. In the frame of the Lyapunov theory, LaSalle’s
invariance principle is applied to illustrate the corre-
sponding stability. The effectiveness of the proposed
control on improving the system performance is veri-
fied through simulation results.
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1 Introduction

Overhead cranes are broadly used within the industrial
sector. The operational effectiveness of this manipula-
tion system is extremely valuable to industrial produc-
tivity. However, the overhead crane is lightly damped
due to the flexibility of the cable between the car-
riage and the payload so that the movement of the
carriage may cause unwanted payload oscillations and
pose positioning or even safety problems. For these
reasons, system stresses such as unwanted oscillations
and instability are key issues to solve [1–7]. Note that
the overhead crane is underactuated, where the number
of control inputs is strictly smaller than that of degrees
of freedom, and the control task becomes much more
problematic when the mechanical system is underactu-
ated [8–21].

Researchers have sought to design the automatic
control of flexible structures in the past decades. These
control methods can be roughly grouped into feedfor-
ward and feedback approaches. As regards to feed-
forward techniques, input shaping techniques [22,23]
which alter the reference signal by involving a set
of the impulse have been widely used in reducing
the motion-induced oscillation. Results on trajectory
planning [24–26] based on the load swing dynamics
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have been reported, where reference signals are gen-
erated that anticipate system oscillations before they
occur. Optimal methods [27,28] have been developed
to deal with a minimum time/oscillation control sce-
nario. Although effective in practice, the proper oper-
ation requires a zero initial sway and minimal exter-
nal disturbances. Alternatively, feedback schemes are
the most common to control undesired oscillations and
the final crane position. Gain-scheduling techniques
[29,30] and partial feedback linearization [31,32] have
been proposed using the linearized version of the crane
model, while the stability analysis of the closed-loop
system is discussed near the desired equilibrium with-
out caring about the course of transportation. To attain
robustness enhancement,many researchers have turned
to the slidingmodecontrol [33–36] that offers high anti-
swing and tracking performance in the presence of var-
ious disturbances. Several other methods, such as the
intelligent control methods [37,38] and the finite-time
control methods [39,40], are used in research efforts,
resulting in a good position and swing-free control.

It is noteworthy that nonlinear methods based on
passivity have been developed to ensure a high-
performance control. More recently, to address the
suppression of load swing, energy shaping techniques
improve the passivity of the control system by alter-
ing the dynamical characteristics [41,42]. The inter-
connection and damping assignment passivity-based
control introduces additional terms to enhance the cou-
pling between the carriage and the payload [43,44],
resulting in a increase in damping effect. Different
coupling-based solutions using the Lyapunov tech-
nique are implemented to derive an anti-swing control,
which depends on composite signals simultaneously
containing the trolley displacement and the swing angle
[45,46].

Although it has proven effective at reducing oscil-
lations with these methods, several issues with control
design still exist. For example, the load swing damping
is particularly challenging due to the coupling between
the horizontal components of the load motion. More-
over, different transportation tasks often lead to differ-
ent cable lengths, thus influencing the damping fea-
ture of the control system negatively. To overcome
these problems, motivated by the passivity-based con-
trol [17], we find a constructive procedure to shape the
energy of the system with the desired damping fea-
ture, from which a nonlinear control method is derived
to achieve the damping injection. In particular, new

composite signals making full use of the underactuated
states are designed to augment the interconnection of
the payload sway and the trolley motion.Without com-
plicating the controller structure, the proposed method
has been suggested to account for the nonlinearities
of the underactuated model, which is also affected by
unknown cable lengths. Two analysis tools are used to
verify the stabilization of the control system, namely,
the Lyapunov technique and LaSalle’s invariance prin-
ciple. The beneficial effects of the proposed controller
are evaluated through simulation results. The verifica-
tion process confirms the control scheme possesses bet-
ter attributes when compared with most recently avail-
able methods.

The contributions are summarized as follows:

(1) Our main contribution is that a significant stor-
age function with the desired damping feature is
constructed to introduce new coupled–dissipation
signals that enhance the coupling behavior of the
trolley motion and the payload swing, thus pre-
serving sufficient passivity in the closed-loop sys-
tem.

(2) This paper suggests a nonlinear controller to solve
the positioning and anti-oscillation problem for 3-
dimensional overhead cranes without linearizing
the original nonlinear dynamics so that the con-
troller can achieve improved performance by sup-
pressing the sway angle oscillations not only near
the desired equilibrium but also during the crane
motion.

(3) The proposed controller has a very simple struc-
ture that is independent of the cable length, which
makes it robust to unknown cable lengths that neg-
atively influence the damping feature and easy to
implement.

The following section presents an overview of
the crane system dynamics and control problems. In
Sect. 3, the proposed method is presented for the dissi-
pative reachabilitywith a newstorage function. The sta-
bility of the closed-loop system is explained in Sect. 4.
Section 5 contains simulation results that demonstrate
the improved performance of the control scheme, fol-
lowed by conclusions in Sect. 6.

2 Nonlinear model and problem formulation

The schematic diagram of a 3-dimensional overhead
crane is shown in Fig. 1, where mx , my and m are the
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Fig. 1 Schematic model of a 3-dimensional overhead crane

trolley mass, the trolley and girder masses and the pay-
load mass, respectively; l represents the length of the
suspension cable; g stands for the acceleration due to
gravity; the trolley displacement along the X- and Y-
axes is described by x(t) and y(t), respectively; the
projected swing angles are labeled as θx (t) and θy(t);
and fx and fy are the forces applied to the trolley and
girder, respectively. Considering the generalized coor-
dinate vector q = [qTa , qTu ]T with the actuated state
vector qa = [x, y]T and the unactuated state vector
qu = [θx , θy]T , the dynamic equations of the system
can be stated in the compact form [13]:

M (q) q̈ + C (q, q̇) q̇ + G (q) = U (1)

where M (q) ∈ R
4×4 is the symmetric, positive def-

inite mass matrix, C (q, q̇) ∈ R
4×4 is the centrifugal

Coriolis matrix, G (q) ∈ R
4 is the gravity vector, and

U ∈ R
4 denotes the control vector, so that

M =

⎡
⎢⎢⎣
m11 0 m13 m14

0 m22 0 m24

m31 0 m33 0
m41 m42 0 m44

⎤
⎥⎥⎦ ,C =

⎡
⎢⎢⎣
0 0 c13 c14
0 0 0 c24
0 0 c33 c34
0 0 c43 0

⎤
⎥⎥⎦ ,

G = [
0 0 g3 g4

]T
,U = [uT , 0T2×1]T with u = [ fx , fy]T .

with the terms

m11 = m + mx ,m13 = mlCxCy,m14 = −mlSx Sy,

m22 = m + my,m24 = mlCy,m33 = ml2C2
y ,

m31 = m13,m41 = m14,m42 = m24,m44 = ml2,

c13 = −mlSxCy θ̇x − mlCx Sy θ̇y, c24 = −mlSy θ̇y,

c14 = −mlCx Sy θ̇x − mlSxCy θ̇y, c33 = −ml2SyCy θ̇y,

c34 = −ml2SyCy θ̇x , c43 = ml2SyCy θ̇x ,

g3 = mglSxCy, g4 = mglCx Sy .

where Sx ,Cx , Sy andCy are abbreviations for sin θx (t),
cos θx (t), sin θy(t) and cos θy(t), respectively;

Notice that the following properties hold true, i.e.,

k1‖υ‖22 ≤ υT M (q)υ ≤ k2‖υ‖22 ∀υ ∈ R
4 (2)

where k1 and k2 are positive bounding constants and
‖ · ‖ denotes the Euclidean norm of vectors, and the
matrix Ṁ (q) − 2C (q, q̇) is skew-symmetric,

υT {
Ṁ (q) − 2C (q, q̇)

}
υ = 0 ∀υ ∈ R

4 (3)

and it satisfies

G(q) = ∂P(q)

∂q
(4)

where P(q) is the potential energy defined as

P(q) = mgl(1 − CxCy) (5)

The control objective is to drive the trolley to the
desired position, meanwhile suppressing the payload
swings to zero in the sense that

lim
t→∞(qTa , qTu ) = (qTd , 0T2×1) (6)

where qd = [xd , yd ]T indicates the desired position
along the X- and Y-axes.

Considering the payload is always beneath the
trolley during the crane motion, the cable angle is
assumed to be within a reasonable scope (see also
[13,25,32,42,44] and references therein)

− π

2
< θx (t), θy(t) <

π

2
(7)

Before developing the control synthesis, consider
the storage function E as the total energy of the
system

E(t) = 1

2
q̇T M (q)q̇ + P(q) (8)

By taking the time derivative of E(t) and using rela-
tionship (1), (3) and (4), it can be obtained

Ė(t) = q̇Ta u (9)

which shows the passive operator from the control input
u to the actuated generalized velocities q̇a(t). It can
be seen that the passivity takes only the actuated state
velocities as the passive output.

In general, the actuated trolley motion damps out
the system energy alone with the basis passivity-based
control, if one applies the storage function as the total
energy of the system. Note that the feedback becomes
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more effective in improving the closed-loop perfor-
mance if more states are available for feedback. Thus,
the storage function will be exploited to derive a non-
linear controller that achieves damping injection in the
next section.

3 Main results

Methods based on passivity have proven effective
in enhancing the transient behavior of underactuated
cranes. Motivated by this, we aim to construct a
new storage function with desired damping properties,
which facilitates the subsequent control design.

3.1 Coupled–dissipation signals

The traditional passivity analysis for underactuated
systems, typical to the overhead cranes, is based on
damping properties of form (9), which does not include
any additional damping with respect to the payload
sway due to the underactuated feature. Moreover, it is
common to add parameter-related terms to increase the
damping, which, on the other hand, makes the resulting
controller complicated, thus falling short on handling
a parameter variation. To overcome these problems, a
new coupled–dissipation signal is defined to augment
the coupling between the carriage and the payload by
including the payload swing-related terms, such that

χ := qa + λlφ(qu) + λaϕ(qu) (10)

where λa = diag[λax , λay] and λl = diag[λlx , λly] is
the positive gainmatrix andϕ(qu)=[ϕx (qu), ϕy(qu)]T
and φ(qu) = [φx (qu), φy(qu)]T are additional dissi-
pation terms to qu yet to be determined.

Accordingly, the energy of the control system is
expected to be damped out mainly along the gener-
alized velocity signal

χ̇ = q̇a + λl φ̇(qu) + λaϕ̇(qu) (11)

To bring the output of the system to the desired equi-
librium, an error signal is introduced correspondingly

eχ := χ − qd (12)

As proven in the analysis that follows, the closed-
loop performance including the oscillation suppression
and the robustness to unknown cable lengths will be
drastically improved by a simple nonlinear feedback
depending on the coupled–dissipation signal, without
affecting the asymptotic stability of the desired equi-
librium.

3.2 Storage function construction and controller
design

Before determining the response of the control sys-
tem, the crane system is reformulated by introduc-
ing a new state vector ξ = q + ξφ with ξφ =[ [λlφ(qu)]T 0T2×1

]T
,where the swing angle is attached

to the velocity of the overhead support unit to increase
the coupling of the payload and the trolley motion, thus

M (q) ξ̈ + C (q, q̇) ξ̇ + G (q) + N (q, q̇) = U (13)

where C ξ̇ = Cq̇ and N = −M ξ̈φ .
Then, the focus is put on constructing an additional

storage function Ea in the new variables such that it
causes the passivity of the system to q̇u . Recognizing
(9) represents a damping-in-actuator oscillatory man-
ner, for the crane as underactuated system; a negative
feedback term with respect to q̇u similar to the terms in
(9) should be included to provide sufficient damping.
With this, one may write the additional energy function
Ea from the condition

Ėa = [λaϕ̇(qu)]T u (14)

To view the nonlinearity between the cable angle
and the control input, a transformation action is imple-
mented, where the vector of the new coordinates ξ is
partitioned as coupling state vector ξa = qa +λlφ(qu)
and unactuated state vector qu . Thus, (13) can be
decomposed into

M11ξ̈a + M12q̈u + C12q̇u + N1 = u (15)

M21ξ̈a + M22q̈u + C22q̇u + G2 + N2 = 0 (16)

wherein

M11 =
[
m11 0
0 m22

]
, M12 =

[
m13 m14

0 m24

]

M21 =
[
m31 0
m41 m42

]
, M22 =

[
m33 0
0 m44

]

C12 =
[
c13 c14
0 c24

]
,C22 =

[
c33 c34
c43 0

]
, G2 =

[
g3
g4

]

N1 = −
[

λlx φ̈xm11

λly φ̈ym22

]
, N2 = −

[
λlx φ̈xm31

λlx φ̈xm41 + λly φ̈ym42

]
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Substitute (16) into (15), resulting in

u = M12q̈u + C12q̇u

− M11M
−1
21 (M22q̈u + C22q̇u + G2)

(17)

Consequently, applying (17) to (14) yields

Ėa =[λaϕ̇]T
[
M12q̈u + C12q̇u

−M11M
−1
21 (M22q̈u + C22q̇u + G2)

] (18)

To obtain Ea , one needs to rearrange (18) as

	̇1 = − [λaϕ̇]T M11M
−1
21 (M22q̈u + C22q̇u + G2)

(19)

	̇2 = [λaϕ̇]T (M12q̈u + C12q̇u) (20)

For completeness, one would have the task of con-
ducting two separate analysis of (19) and (20), both of
which are simplified by setting

ϕ̇x (qu) = Sx Sy θ̇y − CxCy θ̇x , ϕ̇y(qu) = −Cy θ̇y (21)

and given

λax (mx + m) = λay(my + m) (22)

the additional storage function Ea follows directly from
the combination of the integral of (19) and (20) (refer
to ‘Appendix A’), such that

Ea =λax (mx + m)

[
1

2
l
(
C2
y θ̇

2
x + θ̇2y

)

+g(1 − CxCy)

]

− 1

2
ml

[
λax (CxCy θ̇x − Sx Sy θ̇y)

2 + λayC
2
y θ̇

2
y

]

(23)

which is locally positive definite (refer to ‘Appendix
B’) and takes the zero value when

[
qTu , q̇Tu

] = 04×1.
Now, consider the significant storage function given

by

El = 1

2
ξ̇
T
M(q)ξ̇ + P(q) + Ea (24)

which, in view of (2), (5) and (57), is positive definite.

The derivation of (24) can be computed as

Ėl = ξ̇
T

(
M ξ̈ + 1

2
Ṁ ξ̇

)
+ q̇TG + Ėa

= ξ̇
T

(
U − N − G − C ξ̇ + 1

2
Ṁ ξ̇

)
+ q̇TG + Ėa

= χ̇T (u − N1) + [λaϕ̇]T N1 − q̇Tu N2 (25)

where (3), (4), (13), (14) and ξ̇
T
G = q̇TG are applied.

For asymptotic stabilization, the last two terms in
(25) must be subject to:

[λaϕ̇]T N1 − q̇Tu N2 ≤ 0 (26)

that is,

λlx [ml + λax (m + mx )](CxCy θ̇x − Sx Sy θ̇y)φ̈x

+λly[ml + λay(m + my)]Cy θ̇y φ̈y ≤ 0 (27)

which will be satisfied provided that

φ̈x (qu) = Sx Sy θ̇y − CxCy θ̇x , φ̈y(qu) = −Cy θ̇y (28)

Also, (25) suggests the simple feedback

u = −kd χ̇ − kpeχ + N1 (29)

where kp = diag[kpx , kpy] and kd = diag[kdx , kdy]
are positive control gains and the additional damping
terms to qu in the coupled–dissipation signal are deter-
mined from (21) and (28), such that

φ(qu) = [− ∫ t
0 Sx (τ )Cy(τ )dτ − ∫ t

0 Sy(τ )dτ
]T

(30)

ϕ(qu) = [−SxCy −Sy
]T

(31)

It is important to note that, different from the tradi-
tional strategies dependent merely on position control,
the proposed system responds to the full degrees of
freedom, which decisively increases the passivity of
the system in the transient positions of the crane. The
control scheme that is independent of the cable length
has a simpler structure thanmost existingmethods and,
hence, can be robust to unknown cable length, which
is a major factor that influences the damping feature
of the control system. This anti-sway strategy using a
simple feedback is illustrated in the block diagram of
Fig. 2.

Remark 1 Such an analysis presents a systematic
approach that may be suitable for underactuated
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Fig. 2 Block diagram of the control system

mechanical systems of a similar structure with over-
head cranes, such as boom cranes, rotary cranes, crane
systems with double pendulum and so on.

Remark 2 Note that the structure of the proposed con-
troller is similar to that of the traditional proportional
integral derivative (PID) control, so onemight select k p

and kd in the same way as the PID control. The param-
eters λa and λl give more flexibility to the response of
the control system in the sense that larger values will
increase the damping to the sway angle but may cause
the overshoot of the carriage.

4 Stability analysis

Theorem 1 Proposed controller (29) regulates the
trolley to its destination while simultaneously elimi-
nating cargo swings, that is

lim
t→∞(q, q̇) = (xd , yd , 0, 0, 0, 0, 0, 0) (32)

Proof Consider theLyapunov candidate function given
by

V = El + eTχ kpeχ (33)

The derivative of (33) along (29) is then

V̇ = − χ̇T kd χ̇ − λly
[
ml + λay(m + my)

]
C2
y θ̇

2
y

− λlx [ml + λax (m + mx )] (CxCy θ̇x − Sx Sy θ̇y)
2

(34)

which implies, for any bounded V (0),

V (t) ≤ V (0) ⇒ V (t) ∈ L∞ (35)

Apparently, V is always nonnegative and nonin-
creasing. This leads to

χ̇ ,χ , eχ , qa, q̇a, q̇u,φ(qu),ϕ(qu), u ∈ L∞ (36)

To justify the asymptotic stability of the closed-loop
system, a compact setΓ of all points such that V̇ (t) = 0
is defined,where the largest invariant set inΓ is denoted
as Ω . It is readily seen from (34) that in Ω

χ̇ = q̇a + λl φ̇(qu) + λaϕ̇(qu) = 0 (37)

q̇u = 0 (38)

which, by definition (21), further implies

q̇a + λl φ̇(qu) = 0 (39)

As a consequence of (28), (38) and (39), it appears

q̈a + λl φ̈ = 0 (40)

q̈u = 0 (41)

q̈a = 0 (42)

Inserting (38), (41) and (42) into (1), one has

[
SxCy −Cx Sy

]T = 0, (43)

u = 0 (44)

With (7), (38), (39) and (43) in mind, it reveals

qu = 0 (45)

q̇a = 0 (46)

In the sequel, it remains to analyze the behavior of
qa . Collecting (29), (37), (38) and (44) produces

qa − qd = λlφ(qu) (47)

Imposing the approximation of sin(qu) ≈ qu and
cos(qu) ≈ 1 that is valid for small load oscillations on
the crane system, (16) can be reduced to a second-order
oscillation damped system (see also [44,46])

l q̈u + q̈a + gqu = 0 (48)

The small angle approximation also simplifiesφ(qu)
to qu , which indicates, from (48), that

φ(qu) = −1

g
(l q̇u + q̇a) (49)

Finally, from (38), (46), (47) and (49), one has either

qa = qd (50)

Based on (38), (45), (46) and (50), the largest invari-
ant setΩ contains only the interested endpoint. To con-
clude, the asymptotic stability of the closed-loop sys-
tem is guaranteed by LaSalle’s invariance principle.
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5 Simulations

In this section, the response of the crane model is sim-
ulated to evaluate the effectiveness of the suggested
controller. In this study, the model is considered with
the parametersm = 100 kg,mx = 200 kg,my = 800 kg,
l = 1m and g = 9.8 m/s2.Without loss of generality, the
initial values of the generalized coordinates are chosen
such that [x(0), y(0), θx (0), θy(0)] = [0, 0, 0, 0].

Next, two simulation groups are addressed. In the
first group, the performance of the proposed controller
is comparedwith that of two other nonlinear controllers
to verify the enhancement. In the second group, to
assess the robustness of the proposed controller, sim-
ulations are conducted with a variation of the position
command, the cable length as well as external distur-
bances.

5.1 Simulation group 1

To confirm the good performance, the proposedmethod
is comparedwith the partial feedback linearization con-
troller (PFLC) [44] and the nonlinear energy-based
regulation controller (NEBRC) [42].1 To stress the
active damping capabilities of the composite signal,
the bounded constraint is not taken into account, that
is, the saturator in [42] is neglected here. In this group,
the simulation is conducted in which the trolley is com-
manded to move from 0 m location to 5 m location and
3 m location in the X–Y plane.

To increase the convergence rate, the response to the
tested cranemovement is simulated as the control gains
are systematically varied. A range of acceptable control
gains is obtained for the three control methods, where
ka = 15, ke = 1 and kt = 1.3 for PFLC, k = 2.2,
λ = 1, kvx = 0.01, kvy = 0.01, kpx = 185, kpy = 565,
kdx = 455 and kdy = 1385 for NEBRC and λlx = 12,
λly = 8, λax = 6, λay = 2, kpx = 458, kpy = 556,
kdx = 788 and kdy = 1288 for the proposed method.

Thehighperformanceof these controllers is affirmed
in Fig. 3, where the trolley was driven to move toward
the desired position with reasonable settling time and
the residual oscillations were yielded at zero. The sim-
ulation results for the compared controllers are summa-
rized in Table 1, where the subscripts ‘xr,’ ‘yr,’ ‘xmax,’

1 For brevity, explicit expressions for the compared controllers
are omitted here.
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Fig. 3 Results for the comparedmethods in group 1 (dotted line:
the desired location; solid line: the proposedmethod; dashed line:
the PFLC [44]; dot-dashed line: theNEBRC [42]): a X-direction;
b Y -direction

‘ymax,’ ‘xres’ and ‘yres’ indicate the reach time, the
maximum amplitude of the sway while in transit and
the maximum amplitude of the residual sway in the
X–Y plane, respectively. Comparing the response, the
proposed controller can diminish the oscillation more
efficiently within similar settling time.

5.2 Simulation group 2

To evaluate the enhanced robustness of the proposed
controller, simulations are performed under the follow-
ing conditions, while the controller gain combination
remains the same with those in the previous group.
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Table 1 Results for simulation group 1

Controllers txr (s) tyr (s) θxmax (◦) θymax (◦) θxres (◦) θyres (◦)
Proposed controller (29) 8.12 8.03 5.45 3.23 0 0

PFLC method [44] 9.12 8.64 9.34 5.56 0 0

NEBRC method [42] 9.47 8.79 11.33 7.06 0 0
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Fig. 4 Results for the proposedmethod in group 2-case 1 (dotted
line: the desired location; solid line: xd = 3 m, yd = 1 m; dashed
line: xd = 7 m, yd = 5 m): a X-direction; b Y -direction

Case 1 The desired locations are changed to 3 m
and 7 m in the X-direction and 1 m and 5 m in the
Y-direction.
Case 2 The cable length is changed to 3 m from
1 m.
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Fig. 5 Results for the compared methods in group 2-case 2
(solid line: the proposed method; dashed line: the PFLC [44];
dot-dashed line: the NEBRC [42]): a X-direction; b Y -direction

Case 3 Sinusoid disturbances are applied to the
payload between 14 and 15 s, the impulsive dis-
turbances with the opposite phase are induced at
time 10 and 11 s, respectively, and random distur-
bances are applied between 18 and 19 s, all with an
amplitude of 2 deg.
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Fig. 6 Results for the proposedmethod in group 2-case 3 (dotted
line: the desired position; solid line: simulation results): a X-
direction; b Y -direction

The response of the proposed controller for differ-
ent move distances is demonstrated in the simulation
results of Fig. 4, where a precise and fast load transit is
guaranteed with sufficient oscillation damping and no
residential sway angle. To avoid exciting large oscil-
lation amplitudes when the desired position at a dis-
tance is issued to the system, one can impose bounds
on the position control signal eχ to achieve a soft trol-
ley start, which in turn costs a delay in the response
of the carrier position. The robust capability to dif-
ferent cable length is demonstrated in the simulation
results of Fig. 5, where the proposed controller set-

tled the system in less time in terms of smaller swing
amplitudes, while obvious overshoot and residential
oscillation have occurred to the compared methods. It
can be seen that the cable length contributes much to
the dynamics of the system, which confirms the fact
that the cable length essentially determines the system
natural frequency and greatly influences load swing.
Thus, the expected performance of the proposed con-
troller is valuable since the change of the cable length
will make the transportation task inefficient in practi-
cal applications. As exhibited in Fig. 6, the proposed
controller can perform satisfactorily in the sense that
the disruptive oscillations were eliminated in a small
time duration. This merit brings much convenience for
the application of the proposed controller in practi-
cal, since the effects of environmental disturbances,
such as wind, must be considered. In conclusion, the
presented method can achieve precise positioning and
swing elimination simultaneously and shows satisfac-
tory robustness.

6 Conclusion

In this paper, a significant storage function is con-
structed by modifying the energy of the crane system,
where the damping injection is achieved with a sim-
ple feedback. In particular, new composite signals are
introduced to strengthen the internal coupling between
the trolley movement and the payload sway, thus sig-
nificantly enhancing the transit performance of the con-
trol system. Due to the simple structure of the proposed
controller and the improved passivity, the closed-loop
system shows robustness to unknown cable lengths and
external disturbances. The asymptotical stability is rig-
orously guaranteed by LaSalle’s invariance principle.
The expected improvement of the system performance
is validated by simulation results.
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A Integration of (19) and (20)

More precisely, (19) and (20) can be written as

	̇1 = − λay ϕ̇y(my + m)
[
l(CySy θ̇2x + θ̈y) + gSyCx

]
Cy

−
[

λax ϕ̇x (mx + m)

CxCy
+ λay ϕ̇y(my + m)Sx Sy

CxC2
y

]

×
[
l(C2

y θ̈x − 2CySy θ̇x θ̇y) + gCySx
]

(51)

	̇2 =ml
[
λay ϕ̇y(Sy θ̇

2
y − Cy θ̈y) + λax ϕ̇x (SxCy θ̇

2
y

+SxCy θ̇
2
x + 2Cx Sy θ̇x θ̇y + Sx Sy θ̈y − CxCy θ̈x )

]
(52)

Substituting (21) into (51) and (52) yields

	̇1 = λay(my + m)
[
l(CySy θ̇

2
x + θ̈y) + gSyCx

]
θ̇y

−
[
l(C2

y θ̈x − 2CySy θ̇x θ̇y) + gCySx
]

×
[
[λax (mx + m) − λay(my + m)] Sx Sy

CxCy
θ̇y

−λax (mx + m)θ̇x
]

(53)

	̇2 = − 1

2
ml

d

dt

[
λax (CxCy θ̇x − Sx Sy θ̇y)

2 + λayC
2
y θ̇

2
y

]

(54)

thus, in view of (22), leading to

	1 = λax (mx + m)

[
1

2
l(C2

y θ̇
2
x + θ̇2y ) + g(1 − CxCy)

]

(55)

	2 = −1

2
ml

[
λax (CxCy θ̇x − Sx Sy θ̇y)

2 + λayC
2
y θ̇

2
y

]

(56)

B Positive definiteness of Ea

Considering (23) coincides with

Ea = 1

2
λax l(mS2xC

2
y + mxC

2
y )θ̇

2
x

+ 1

2
λax l

[
(mx + m) − mS2x S

2
y − mx + m

my + m
mC2

y

]
θ̇2y

+ λaxmlCxCy Sx Sy θ̇x θ̇y + λax (mx + m)g(1 − CxCy)

(57)

and the fact mx < my ⇒ mx + m < my + m, one
arrives at

Ea ≥1

2
λax l

[
mx (C

2
y θ̇

2
x + θ̇2y ) + m(Cx Sy θ̇y + CySx θ̇x )

2
]

+ λax (mx + m)g(1 − CxCy) ≥ 0 (58)

This completes the proof.
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