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Abstract In this paper, the attitude evolution of a
dual-liquid-filled spacecraft with internal energy dis-
sipation is investigated. The dynamic equations of
the spacecraft system are established to study various
trajectories including major axis spin, period-n limit
cycle, and chaotic motion. A criterion is obtained by
Melnikov’smethod to predict the occurrence of chaotic
motion of the system. The effects of systemparameters,
especially liquid parameters, on the chaotic region, are
discussed in detail. The comparison of analytical and
numerical results shows that our criterion can accu-
rately separate the chaotic from nonchaotic region of
the system in parameter space. Therefore, this paper
contributes to avoid the potentially periodic and chaotic
motions of spacecraft.

Keywords Dual-liquid-filled spacecraft · Attitude
evolution · Melnikov’s method · Chaotic criterion

1 Introduction

The mechanism of attitude evolution is an important
problem in the field of spacecraft dynamics. Previ-
ous studies have shown that energy dissipation will
drive a single-body spacecraft fromminor tomajor axis
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spin (MAS) [1,2], and a practical example is the US
Explorer I [3]. However, external perturbations (e.g.,
gravity gradient, atmosphere drag, and geomagnetic
field) and internal perturbations (e.g., liquid sloshing,
vibration of flexible panels, and oscillation of spring–
mass–damper)may lead to the chaoticmotion of space-
craft, which is harmful to the attitude stability. There-
fore, it is necessary to understand when and how chaos
plays a role in the attitude dynamics of spacecraft. Since
spacecraft is normally nonlinear systems, the analytical
solutions for their equations of motion are fundamen-
tally unobtainable. Nevertheless, one can obtain a lot of
physical insight into the behavior of these systems by
using a simpler rigid body with perturbations approxi-
mation for modeling and analyzing the spacecraft [16–
18]. In addition, for a perturbed spacecraft system, the
existence of transversal intersection of its heteroclinic
(homoclinic) orbits provides a necessary condition for
the onset of chaos in the sense of the Smale horseshoe
[2]. Melnikov proposed an analytical technique, called
Melnikov’s method, to detect the transversal intersec-
tions of the heteroclinic (homoclinic) orbits in Poincaré
map of the perturbed system [4]. In this way, we studied
the chaotic dynamics of a dual-liquid-filled spacecraft
undergoing attitude maneuver via a rotor, in which the
rotation rate of the rotor is periodic and the internal
energy dissipation is caused by the viscous damping of
liquids, as shown in Fig. 1.
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Fig. 1 Schematic diagram of the spacecraft system

In recent decades, the chaotic dynamics and con-
trol of spacecraft, especially spacecraft of single body
and dual spin, under various perturbations have been
extensively studied [5–16]. Modern spacecraft often
contains large quantities of liquid fuel to execute sta-
tion keeping and attitudemaneuvers, so that the motion
of the fuel may have a great impact on that of the whole
spacecraft. Therefore, the attitude dynamics of liquid-
filled spacecraft has attracted more and more attention.
In some work associated with liquid-filled spacecraft,
Miller et al. [17] investigated the attitude dynamics of a
spacecraft perturbed by the motion of small oscillating
submasses, a plate of torsional vibration, and a rotor
immersed in a viscous fluid. However, the fluid was
not really considered but merely used to apply damp-
ing to the rotor. Yue [18] studied the chaotic dynamics
of a spacecraft with a small flexible appendage and a
completely liquid-filled cavity by Melnikov’s method.
Nichkawde et al. [19] examined the coupled slosh-
vehicle dynamics of a four-degree-of-freedom multi-
body system in planar motion, in which the sloshing
motion of the liquid was modeled as a simple pendu-
lum. Kuang et al. [20] investigated the attitude motions
of a gyrostat with an axisymmetrical and fluid-filled
cavity in the cases of no torque and small perturba-
tion torque, respectively. Zhou et al. [21] studied the
chaotic dynamics of a damped satellite with a partially
liquid-filled cylindrical tank subjected to external dis-
turbances by means of linearization analysis. To sim-
plify the model, they assumed that the liquid is solidi-
fied and has the same angular velocity as the satellite.

The contribution of this work to the current litera-
ture is mainly in two aspects. Firstly, in the previous

studies, only one liquid-filled cavity is considered in
the spacecraft. However, to meet the requirements of
space missions, spacecraft may need to carry multi-
ple liquids stored in different cavities. Because of the
differences in the properties, such as mass and viscos-
ity, of these liquids, the motion of spacecraft becomes
more complex and its chaotic behaviors are more dif-
ficult to predict. By contrast, we not only obtained an
analytical criterion for predicting the chaotic motion
of the dual-liquid-filled spacecraft but also verified the
validity of the criterion by numerical simulation. Sec-
ondly, because the parameters of the rotor and liquids
are uncoupled in the obtained criterion, it is easy to
modify the criterion to fit the systems with multiple
liquids and rotors. In addition, we also discussed the
comprehensive effects of the parameters of the liquids
on the chaotic region, and the results are of guiding
significance for the systems with multiple liquids.

This paper is organized as follows. In Sect. 2, the
dynamic equations of the spacecraft system are derived
and transferred into dimensionless form. In Sect. 3, the
analytical criterion is obtained by Melnikov’s method.
In Sect. 4, the attitude evolution of the system is
analyzed by the criterion and numerical simulation.
Finally, the conclusions are illustrated in Sect. 5.

2 Dynamic equations of the system

2.1 Model description

The spacecraft under investigation is presented in
Fig. 1, which consists of a main rigid body B1, homo-
geneous liquids filled in spherical tanks B2 and B3, and
a rotor B4. The body-fixed frame F(Cs, e1, e2, e3) is
attached to the center of mass of the entire system Cs .
The rotation axis of the rotor is parallel to the e2 axis.
The mass of the component Bi (i = 1, 2, 3, 4) is mi ,
and its center of mass is located at Ci . The vector from
Cs to Ci , called the position vector of Bi , is denoted
as ρi . In addition, the mass moment of inertia of Bi
about its center of mass is Ji , which can be particularly
expressed as J2 = J2E3 and J3 = J3E3 for the liq-
uids, respectively, where E3 represents a 3× 3 identity
matrix. The inertial angular velocity of B1 in the frame
F is ω1, and the relative angular velocity between B1

and Bi (i = 2, 3, 4) is defined in the frameF asωi , and
thus, the inertial angular velocity of Bi (i = 2, 3, 4)
can be expressed as ω1 +ωi . It is worth noting that the
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motion of each component dose not shift the position
of the center of mass of the whole system.

Due to the complexity of space environment, the atti-
tude evolution of spacecraft will be affected by many
factors, such as gravity gradient, atmosphere drag, and
orbital motion. To simplify our problem, some physical
assumptions are made as follows:

Assumption 1 the spacecraft is in a high orbit
Assumption 2 the mass of the spacecraft is much
less than that of the earth
Assumption 3 the dimensions of the spacecraft rel-
ative to the high orbit around the earth are small
Assumption 4 the spacecraft is fast spinning
Assumption 5 the rotation rate of the rotor is peri-
odic

Assumption 1 means that the atmosphere drag is
negligible.Assumptions 2 and 3 indicate that the orbital
motion is independent of the rotation of the spacecraft
and the gravity gradient can be regarded as a pertur-
bation of the attitude dynamics [22,23]. Assumption 4
demonstrates that for a spacecraft with large rotational
angular momentum, the effect of the gravity gradient
on its chaotic motion can be neglected [24]. Under the
above assumptions, the orbital dynamics and attitude
dynamics of the spacecraft are decoupled and the center
ofmass of the spacecraft is always in orbit. Assumption
5 causes a periodic internal perturbation to the space-
craft [25,26]. Hence, the external perturbations and
orbital dynamics can be neglected, that is, our space-
craft is torque-free and is only subject to the internal
perturbation.

2.2 Dynamic equations

The dynamic equations of the spacecraft are derived
based on Hamiltonian mechanics. According to the
model description, the kinetic energy of the system is

T = 1

2
ωT
1

(
J1 −

4∑
i=1

mi ρ̃i ρ̃i

)
ω1

+1

2

4∑
i=2

(ω1 + ωi )
T Ji (ω1 + ωi ) (1)

where the symbol “∼” represents the skew symmetric
matrix of a vector. Under the aforementioned assump-
tions, the external torques such as gravity gradient and
atmospheric drag are neglected so that the potential

energy of the system is V = 0. Assuming that e1, e2,
and e3 are the principle axes of inertia, the moment
of inertia matrix of the system in the frame F can be
expressed as

Js =
4∑

i=1

Ji − mi ρ̃i ρ̃i = diag(Js1, Js2, Js3). (2)

Then, the Hamiltonian of the system can be written as

H = 1

2
ωT
1 Jsω1 + 1

2

4∑
i=2

ωT
1 Jiωi + ωT

i Ji (ω1 + ωi ).

(3)

Denoting the angular momentum vector of the system
as hs = [ hs1 hs2 hs3 ]T . Since the components of hs
canonically conjugate those of ω1, one can obtain

hs =
(

∂H
∂ω1

)T

= Jsω1 +
4∑

i=2

Jiωi (4)

and ω1 can be explicitly expressed as

ω1 = J−1
s

(
hs −

4∑
i=2

Jiωi

)
. (5)

Taking the derivative of hs with respect to time yields

ḣs + ω̃1hs = Me (6)

whereMe is the external torque vector (here,Me = 0).
Since ω̃1hs = −h̃sω1, Eq. (6) can be simplified to be

ḣs = h̃sJ−1
s

(
hs −

4∑
i=2

Jiωi

)
. (7)

The angular momentum vectors of the liquids can be
written as

hi = Ji (ω1 + ωi ), i = 2, 3, (8)

and the time derivative of Eq. (8) yields

ḣi = Ji (ω̇1 + ω̇i ) = Mi , i = 2, 3 (9)

123



2254 Y. Liu et al.

where Mi = −ciωi is the damping torque acting on
the liquid Bi , in which ci is the viscous damping coef-
ficient; then, one can obtain

ω̇i = −ω̇1 − ciJ
−1
i ωi , i = 2, 3. (10)

Substituting the time derivative of Eq. (5) in Eq. (10)
gives

[
ω̇2

ω̇3

]
=

[
Js − J2 −J3

−J2 Js − J3

]−1

×
[−ḣs + J4ω̇4 − c2JsJ

−1
2 ω2

−ḣs + J4ω̇4 − c3JsJ
−1
3 ω3

]

=
⎡
⎢⎣ (Js − J2 − J3)−1

(
−ḣs + J4ω̇4 − c2(Js − J3)J

−1
2 ω2 − c3ω3

)
(Js − J2 − J3)−1

(
−ḣs + J4ω̇4 − c2ω2 − c3(Js − J2)J

−1
3 ω3

)
⎤
⎥⎦ . (11)

The angular velocity of the rotor on account of
Assumption 5 can be written as

ω4 = [ 0 �0 + �sin(Ω1t) 0 ]T (12)

where �0 is a constant term and �sin(Ω1t) is a time-
varying term with the amplitude � and frequency Ω1.
Then, the time derivative of ω4 is given by

ω̇4 = [ 0 �Ω1 cos(Ω1t) 0 ]T , (13)

and accordingly, the rotor torque is simple harmonic.
In practice, such a torque may arise under malfunction
of the control system or from an unbalanced rotor [9];
besides, the periodic torque can be generated actively
and then be used to stabilize the attitude trajectory or
change the evolution type of spacecraft by adjusting
the amplitude and frequency [26].

Equations (7) and (11–13) are the dynamic equations
governing the attitude evolution of the system.

2.3 Nondimensionalization

To analyze the dynamic behavior of the system in
parameter space expediently, Eqs. (7) and (11–13) are
expressed in dimensionless form. Without loss of gen-
erality, we assume that Js1 < Js3 < Js2. Moreover,
a small disturbance parameter ε is required for the
application of Melnikov’s method. The relative sizes
of spacecraft parameters are assumed to be

J4 = O(ε), J2 = O(
√

ε), J3 = O(
√

ε),

ω2 = O(
√

ε), ω3 = O(
√

ε) (14)

and all other quantities are O(1), that is, the rotor and
liquids are small with respect to the entire spacecraft
and the relative angular velocities of the liquids are also
small. Then, we define τ = ht/Js3 as dimensionless

time, in which h is the magnitude of hs ; hence, the
derivative with respect to τ can be expressed as

(·)′ = d(·)
dτ

= Js3
h

d(·)
dt

(15)

and other dimensionless quantities are introduced as
follows:

ε = J42
Js3

, γ̂1 = Js1
Js3

, γ̂2 = Js2
Js3

,

η̂2 =
√

εJ2
J42

, η̂3 =
√

εJ3
J42

,

ĉ2 = c2
h

, ĉ3 = c3
h

, �̂0 = Js3
h

�0,

�̂ = Js3
h

�, Ω̂1 = Js3
h

Ω1,

ĥs = hs
h

, ω̂1 = Js3
h

ω1,

ω̂2 = Js3√
εh

ω2, ω̂3 = Js3√
εh

ω3

(16)

where J42 is the component of J4 on the e2 axis and
all dimensionless quantities except ε and τ are denoted
with a hat. Thus, the dimensionless moment of inertia
matrices of the system and liquids can be expressed as

Ĵs = Js
Js3

= diag(γ̂1, γ̂2, 1), Ĵ2 = J2
Js3

= √
εη̂2E3,

Ĵ3 = J3
Js3

= √
εη̂3E3. (17)
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Substituting Eq. (16) in Eqs. (7) and (11–13) yields

ĥ
′
s = Dĥs − εD(η̂2ω̂2 + η̂3ω̂3 + ω̂4) (18)

where

D(ĥs) =
⎡
⎢⎣ 0 −ĥs3/γ̂2 ĥs2

ĥs3/γ̂1 0 −ĥs1
−ĥs2/γ̂1 ĥs1/γ̂2 0

⎤
⎥⎦

and√
εω̂

′
2 = (Ĵs − Ĵ2 − Ĵ3)−1

(
−ĥ

′
s + εω̂

′
4

−√
εĉ2(Ĵs − Ĵ3)Ĵ

−1
2 ω̂2 − √

εĉ3ω̂3

)
=

(
Ĵs − √

ε(η̂2 + η̂3)E3

)−1

(
−ĥ

′
s + εω̂

′
4 − ĉ2(Ĵs − √

εη̂3E3)ω̂2/η̂2

−√
εĉ3ω̂3

)
(19)

√
εω̂

′
3 = (Ĵs − Ĵ2 − Ĵ3)−1

(
−ĥ

′
s + εω̂

′
4 − √

εĉ2ω̂2

−√
εĉ3(Ĵs − Ĵ2)Ĵ

−1
3 ω̂3

)
=

(
Ĵs − √

ε(η̂2 + η̂3)E3

)−1 (
−ĥ

′
s + εω̂

′
4

−√
εĉ2ω̂2 − ĉ3(Ĵs − √

εη̂2E3)ω̂3/η̂3

)
(20)

ω̂4 = [ 0 �̂0 + �̂sin(Ω̂1τ) 0 ]T (21)

ω̂
′
4 = [ 0 �̂Ω̂1 cos(Ω̂1τ) 0 ]T (22)

Now, the dynamic equations of the system have been
transformed into a form suitable for the application of
Melnikov’s method.

3 Application of Melnikov’s method

3.1 Solutions for the unperturbed system

Melnikov’s method is an analytical technique to obtain
the criterion for predicting the chaotic motion of the
perturbed system based on unperturbed space phase.
To apply themethod, the unperturbed space phasemust
have a structure that includes heteroclinic connections
between pairs of saddle points or orbits homoclinic to
a single saddle point [17,18]. Let ε = 0, our system
becomes unperturbed and its dynamic equations are
given by

ĥ
′
s = Dĥs =

⎡
⎢⎣ (γ̂2 − 1)ĥs2ĥs3/γ̂2

(1 − γ̂1)ĥs1ĥs3/γ̂1
(γ̂1 − γ̂2)ĥs1ĥs2/(γ̂1γ̂2)

⎤
⎥⎦ (23)

ω̂2 = −η̂2Ĵ
−1
s ĥ

′
s/ĉ2 =

⎡
⎢⎣−η̂2ĥ′

s1/(ĉ2γ̂1)
−η̂2ĥ′

s2/(ĉ2γ̂2)
−η̂2ĥ′

s3/ĉ2

⎤
⎥⎦ (24)

ω̂3 = −η̂3Ĵ
−1
s ĥ

′
s/ĉ3 =

⎡
⎢⎣−η̂3ĥ′

s1/(ĉ3γ̂1)
−η̂3ĥ′

s2/(ĉ3γ̂2)
−η̂3ĥ′

s3/ĉ3

⎤
⎥⎦ (25)

and ω̂4 and ω̂
′
4 are unchanged from Eqs. (21) and (22).

Obviously, the phase space of the unperturbed system
is determined once the solutions for ĥs are obtained.
Utilizing hyperbolic trigonometric functions, the solu-
tions along the heteroclinic orbits are given by

ĥs =
⎡
⎣α1Q1sech(Ω̂2τ)

α2Q2sech(Ω̂2τ)

α3tanh(Ω̂2τ)

⎤
⎦ (26)

where

Q1 =
√

γ̂1(γ̂2 − 1)/(γ̂2 − γ̂1),

Q2 =
√

γ̂2(1 − γ̂1)/(γ̂2 − γ̂1),

Ω̂2 =
√

(γ̂2 − 1)(1 − γ̂1)/(γ̂1γ̂2)

and αi = ±1 satisfying
∏3

i=1 αi = −1 [1]. These
permutations describe four heteroclinic orbits that can
be seen from Fig. 2.

3.2 Melnikov criterion

The general form of Melnikov’s method considers the
following systems:

x′ = f (x) + ε g(x, τ ), x = [ x1 x2 ] ∈ R
2 (27)

where f (x) is a Hamiltonian vector field and ε g(x, τ )

is a small periodic perturbation which is not neces-
sarily Hamiltonian. Apparently, it is only suitable for
systems whose Poincaré map is planar rather than our
three-dimensional system about ĥs . However, the refer-
ences [17,18,27] introduce an extension of Melnikov’s
method, and the Melnikov integral is given by

M±(τ0) =
∫ +∞

−∞
∇Ĥ0[y0(τ )] · {f [y0(τ )]

+g[y0(τ ), τ + τ0]}dτ (28)

where Ĥ0 = 1
2 ĥ

T
s J

−1
s ĥs is the dimensionless Hamilto-

nian of the unperturbed system, ∇ = ∂/∂ĥs is a gradi-
ent operator, y0(τ ) is the solution for the heteroclinic
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orbits of the unperturbed system, and f [y0(τ )] = Dĥs
and g[y0(τ ), τ + τ0] = −D(η̂2ω̂2 + η̂3ω̂3 + ω̂4) are
the unperturbed and perturbed parts of the system [see
Eq. (18)], respectively. Note that

∇Ĥ0 · f = ĥ
T
s J

−1
s Dĥs = [ ĥs1/γ̂1 ĥs2/γ̂2 1 ]

×
⎡
⎢⎣ (γ̂2 − 1)ĥs2ĥs3/γ̂2

(1 − γ̂1)ĥs1ĥs3/γ̂1
(γ̂1 − γ̂2)ĥs1ĥs2/(γ̂1γ̂2)

⎤
⎥⎦ = 0;

(29)

thus, the Melnikov integral can be simplified to

M±(τ0) =
∫ +∞

−∞
∇Ĥ0[y0(τ )] · g[y0(τ ), τ + τ0]dτ

= −
∫ +∞

−∞
ĥ
T
s J

−1
s D(η̂2ω̂2 + η̂3ω̂3 + ω̂4)dτ .

(30)

Next, we also need to replace τ that appears explicitly
by τ + τ0 in terms of Melnikov’s method, and ω̂4(τ )

can be rewritten as

ω̂4(τ + τ0) = [0 �̂0 + �̂sin(Ω̂1τ)cos(Ω̂1τ0)

+�̂ cos(Ω̂1τ) sin(Ω̂1τ0) 0]T . (31)

Substituting Eqs. (23–26) and (31) in Eq. (30), theMel-
nikov integral becomes

M±(τ0) = M1(τ0) + M2(τ0) + M3(τ0) (32)

where

M1(τ0) = −Q2
1(γ̂2 − γ̂1)

2

γ̂ 2
1 γ̂ 2

2

(
η̂22

ĉ2
+ η̂23

ĉ3

)

×
∫ +∞

−∞
sech4(Ω̂2τ)dτ

M2(τ0) = −Q2
1(1 − γ̂1)

2 + Q2
2(γ̂2 − 1)2

γ̂ 2
1 γ̂ 2

2

(
η̂22

ĉ2
+ η̂23

ĉ3

)

×
∫ +∞

−∞
sech2(Ω̂2τ)tanh2(Ω̂2τ)dτ

M3(τ0) = α1α3Q1�̂(1 − γ̂1) cos(Ω̂1τ0)

γ̂1γ̂2

×
∫ +∞

−∞
sech(Ω̂2τ)tanh(Ω̂2τ)sin(Ω̂1τ)dτ

The integrals in Eq. (32) can be evaluated symbolically
by Mathematica. After integrating, the Melnikov func-
tion of our system is given by

M±(τ0) = 2

3Ω̂2γ̂
2
1 γ̂ 2

2

[
3α1α3π(1 − γ̂1)γ̂1γ̂2Q1Ω̂1�̂

2Ω̂2

sech

(
πΩ̂1

2Ω̂2

)
cos(Ω̂1τ0) − �c

]
(33)

where

�c = (η̂22/ĉ2 + η̂23/ĉ3)[2(γ̂2 − γ̂1)
2Q2

1Q
2
2

+(1 − γ̂1)
2Q2

1 + (γ̂2 − 1)2Q2
2].

The transversal zeros of theMelnikov function indicate
the existence of Smale horseshoes and chaos according
to the Smale–Birkhoff theorem introduced in [2]. Since
the cosinoidal term varies with τ0 and the constant term
�c > 0, zeros will occur whenever the amplitude of
the cosinoidal term is greater than�c; namely, theMel-
nikov criterion for predicting the onset of chaos of the
system in parameter space is

3π(1 − γ̂1)γ̂1γ̂2 Q1Ω̂1�̂

2Ω̂2
sech

(
πΩ̂1

2Ω̂2

)
> �c. (34)

4 Analysis of the Melnikov criterion and
numerical simulations

4.1 Classes of trajectories of the system

The trajectory of the spacecraft is generated by Eqs.
(18–22), and its type is governed by the dimensionless
system parameters (ε, γ̂1, γ̂2, ĉ2, ĉ3, η̂2, η̂3, �̂0,

�̂, Ω̂1). The function ode45 of MATLAB that imple-
ments a Runge–Kutta method with a variable time step
is used to solve these dynamic equations. The absolute
and relative tolerances are set to 10−9 in all simula-
tions. Considering that the magnitude of ĥs is equal to
1 and the e2 axis is the major axis of the spacecraft, the
initial conditions of the system are set to

ĥs = [cos(π/60) 0 sin(π/60)]T,

ω̂2 = [−0.02 0 0]T,

ω̂3 = [0 0 −0.01]T, ω̂4 = [0 0.10 0]T
(35)

Figure 2 shows three types of trajectories of the sys-
tem whose corresponding system parameters are listed
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Fig. 2 Typical trajectories
of the system
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Table 1 Dimensionless system parameters used in Figs. 2 and 3

Parameter (a) PMAS (b) NMAS (c) Period-1 (d) Period-2 (e) Period-3 (f) Chaos

ε 0.04 0.04 0.04 0.04 0.04 0.04

γ̂1 0.60 0.60 0.90 0.90 0.90 0.90

γ̂2 1.40 1.40 1.05 1.05 1.05 1.05

ĉ2 0.10 0.10 0.10 0.10 0.10 0.10

ĉ3 0.12 0.12 0.12 0.12 0.12 0.12

η̂2 0.20 0.20 0.20 0.20 0.20 0.20

η̂3 0.16 0.16 0.16 0.16 0.16 0.16

�̂0 0.10 0.10 0.10 0.10 0.10 0.10

�̂ 0.30 1.20 0.50 1.00 5.10 2.00

Ω̂1 0.15 0.15 0.15 0.04 0.15 0.15

in Table 1. In each subplot, the red dot represents the
initial position of ĥs , the two red circles passing through
the ĥs3 axis are the heteroclinic orbits given byEq. (26),
and the blue curve describes the trajectory of ĥs on the
surface of momentum sphere.

The first type of trajectory that decays to the posi-
tive or negative major axis spin (PMAS or NMAS) is
shown in Fig. 2a, b, where the trajectory spirals out-
ward from the start point of ĥs , crosses the heteroclinic
orbits, and eventually reaches the stable center on the
ĥs2 axis corresponding to themajor axis e2. The second
type of trajectory that ends up in a period-1, period-2,
or period-3 limit cycle around the ĥs2 axis is shown
in Fig. 2c–e, where the blue band is the limit cycle.
Note that we only show the steady-state structure of

the period-3 limit cycle without previous unstable part.
The third type of trajectory that is chaotic is shown in
Fig. 2f, where the curve dose not settle down into a reg-
ular pattern like the others. In fact, a chaotic trajectory
contains an infinite number of unstable periodic orbits.

The time history of ĥs corresponding to the above
trajectories is shown in Fig. 3. A large number of sim-
ulations illustrate that the first type of trajectory can
reach PMAS or NMAS in a relatively short time and
that for the second type of trajectory, it takes longer and
longer for the trajectory to stabilize to a period-n limit
cycle as n increases. As for the chaotic trajectory, even
if the simulation time is very long, it will not stabilize
to any regular structure and will eventually fill almost
surface of the momentum sphere.
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Fig. 3 Time history of the components of ĥs corresponding to the trajectories of Fig. 2

4.2 Analysis of the Melnikov criterion in parameter
subspaces

Thedimensionless parameters (γ̂1, γ̂2, η̂2, η̂3, ĉ2, ĉ3,
�̂, Ω̂1) that appear in the Melnikov criterion deter-
mine the hypersurface separating chaotic from non-
chaotic region of the system. When the criterion and
the restriction on the moment of inertia (0 < γ̂1 <

1 < γ̂2 < 1+ γ̂1) are satisfied, the system may exhibit
chaotic behavior. By fixing some of these parameters,
the surface generated by the rest is studied in a series of
parameter subspaces, as shown in Figs. 4, 5, 6 and 7.
The region surrounded by the surface in each subplot
is chaotic. The values of the fixed system parameters in
each case are listed in Table 2. Note that the ranges of
γ̂1 and γ̂2 are (γ̂2 −1, 1) and (1, 1+ γ̂1), respectively,
when they are treated as variables.

In Fig. 4, one can see that the chaotic region in
each case shrinks and eventually disappears with the
increase in Ω̂1 or γ̂1 but enlarges with the increase in
�̂. In addition, for a determined value of �̂, the maxi-
mum of Ω̂1 which can lead to the chaotic motion of the
spacecraft is larger in the case of γ̂2 = 1.05. Figure 5
shows that the chaotic region in each case will decrease
to zero as Ω̂1 increases or γ̂2 decreases. Moreover, for
the same value of γ̂2, the chaotic region in the case
of γ̂1 = 0.60 is significantly greater than that in the

case of γ̂1 = 0.90. From Figs. 4 and 5, we can con-
clude that reducing the amplitude � and increasing the
frequencyΩ1 of periodic rotation of the rotor can effec-
tively avoid the onset of chaoticmotion. Figures 4 and 5
also demonstrate that the when the spacecraft becomes
nearly symmetric, the chaotic motion is almost impos-
sible to occur. It can be explained by the parameter
Ω̂2 of heteroclinic orbits given in Eq. (26). Since Ω̂2

tends to zero as γ̂1 → 1 or γ̂2 → 1, the heteroclinic
orbitswill disappear,which in turn implies a nonchaotic
behavior.

It can be observed from Fig. 6 that the chaotic region
in each case enlarges rapidly when ĉ2 is less than about
0.05 and then expands slowly; namely, the chaotic
region is sensitive to the liquid with small damping
coefficient. The surface vertically descents at ĉ2 = 0.5
becausewe impose ĉi < 0.5 (i = 2, 3). Comparing the
two cases, we can see that the chaotic region of a nearly
symmetric spacecraft, i.e., the case b), is significantly
less than that of the case a).

As shown in Fig. 7, the chaotic region in each case
monotonously shrinks on the axis of η̂2, but on the axis
of Ω̂1, it first rises to a critical value and then gradually
declines to zero. Since J2 = √

εη̂2Js [see Eq. (16)], the
above result demonstrates that increasing the moment
of inertia of the liquid is useful to avoid the chaotic
motion of the spacecraft. The comparison of the two
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Fig. 4 Surface separating
chaotic from nonchaotic
region in γ̂1 − �̂ − Ω̂1
parameter space

Fig. 5 Surface separating
chaotic from nonchaotic
region in γ̂2 − �̂ − Ω̂1
parameter space

Fig. 6 Surface separating
chaotic from nonchaotic
region in ĉ2 − �̂ − Ω̂1
parameter space

cases indicates that the maximum of Ω̂1 resulting in
the chaotic motion in the case a) is much greater than
that in the case b), while η̂2 has the opposite result.
There are similar results for the ĉ3 and η̂3.

These above results indicate that the weight of
each system parameter to the occurrence of chaotic
motion of spacecraft may significantly alter in different
cases. Therefore, determining the key parameters in the
required conditions by an analytical criterion will con-
tribute to the design and control of spacecraft, which is
difficult to achieve by numerical simulation.

After analyzing each parameter of the liquids sep-
arately, the comprehensive effect of these parameters

on the chaotic region is considered. Inspection of Eq.
(34) reveals that the term associated with the liquids is
η̂22/ĉ2 + η̂23/ĉ3, and thus, we define

η̂eq =
√

η̂22 + η̂23,

1

ĉeq
= 1

ĉ2
+ 1

ĉ3

(36)

as the dimensionless equivalent moment of inertia and
dimensionless equivalent viscous damping coefficient
of the liquids B2 and B3, respectively. Figure 8a shows
the Melnikov curve in η̂eq − �̂ − Ω̂1 parameter space

Fig. 7 Surface separating
chaotic from nonchaotic
region in η̂2 − �̂ − Ω̂1
parameter space
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Table 2 Dimensionless
system parameters used in
Figs. 4, 5, 6, 7

Parameter Fig. 4 Fig. 5 Fig. 6 Fig. 7
(a) (b) (a) (b) (a) (b) (a) (b)

γ̂1 – – 0.60 0.90 0.60 0.90 0.60 0.90

γ̂2 1.05 1.40 – – 1.40 1.05 1.40 1.05

ĉ2 0.10 0.10 0.10 0.10 – – 0.10 0.10

ĉ3 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

η̂2 0.20 0.20 0.20 0.20 0.20 0.20 – –

η̂3 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Fig. 8 Effect of the
equivalent dimensionless
liquid parameters a η̂eq, and
b ĉeq on the chaotic region

whose color shades from blue to red with the increase
in η̂eq. Note that η̂2 and η̂3 both change within the
interval [0,1.4] with the step size of 0.05. Figure 8b
shows the Melnikov curve in ĉeq − �̂ − Ω̂1 param-
eter space whose color shades from blue to red with
the increase in ĉeq. Note that ĉ2 and ĉ3 both change
within the interval [0.001,0.5]with the step size of 0.02.
From Fig. 8, one can see that the chaotic region tends
to zero with the increase in η̂eq and rapidly enlarges
with ĉeq ∈ [0.001, 0.01], which is coincided with the
results in Figs. 6 and 7. These results illuminate that
the probability of chaotic motion of the spacecraft can
be reduced availably by increasing the sum of squares
of the moments of inertia J 22 + J 23 or reducing the
sum of reciprocals of the viscous damping coefficient
1/c2 + 1/c3 of the liquids.

Since the parameters of the rotor and liquids in Eq.
(34) are uncoupled, it is easy to modify the criterion
to fit the system with multiple liquids and rotors. For a
spacecraft containing multiple liquids and rotors, its
analytical criterion will have a similar form to Eq.
(34), in which the term associated with the liquids
Bk (k = 1, 2, . . . , l) will be

∑l
k=1 η̂2k/ĉk . In this case,

the dimensionless equivalent parameters of the liquids
are given by

η̂eq =
(

l∑
k=1

η̂2k

)1/2

,

1

ĉeq
=

l∑
k=1

1/ĉk

(37)

and the chaotic region will still have the same rela-
tionship with η̂eq and ĉeq. Therefore, the conclusions
on the dimensionless equivalent parameters of liquids
have wide applicability.

4.3 Comparison of the Melnikov criterion with
numerical simulations

Numerical simulations are performed to verify the
validity of the Melnikov criterion. The trajectories of
the system need to be classified in terms of their steady-
state structures. To avoid the extensive time consump-
tion of enumerated procedure and the artificial error in
the classification of trajectories, the largest Lyapunov
exponent (LLE) is used to determine the types of tra-
jectories. The trajectory of our system will decay to
MAS if LLE < 0, end up in a period-n limit cycle if
LLE = 0, and be chaotic if LLE > 0 [2].
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Fig. 9 Comparison of
analytical and numerical
results

We used a method proposed in [28] for estimating
LLE from small datasets, which directly follows from
the definition of LLE and is fast, easy to implement, and
robust to changes in quantities. The method is imple-
mented by MATLAB, and the initial conditions are the
same as Eq. (35). In addition, the default values of the
system parameters used in each subplot are given in
Eq. (38), which means that if a parameter is not treated
as a variable or is not declared separately in a subplot,
its value equals to that in Eq. (38). Finally, we used
1.2× 105 time steps with the step size of 0.1 and inter-
cepted the last 2000 steps to reconstruct the phase space
of system.

γ̂1 = 0.90, γ̂2 = 1.05, η̂2 = 0.20, η̂3 = 0.16,

ĉ2 = 0.10, ĉ3 = 0.12 (38)

Figure 9 shows the comparison of analytical and
numerical results. In each subplot, the red U-shaped
curve represents the Melnikov criterion, the dark dots
(•) are trajectories that decay to PMAS, the green dots
(• ) are trajectories that end in NMAS, the blue circles
( ) are limit-cycle trajectories, and the red crosses (× )
are chaotic trajectories. It can be seen that theMelnikov
criterion can provide a good estimate of not only the
chaotic but also periodic regions, which is helpful to
avoid such two types of motion of the spacecraft.

5 Conclusions

The attitude evolution of a dual-liquid-filled space-
craft with energy dissipation subjected to internal peri-
odic perturbations is studied, and an analytical criterion
for predicting the occurrence of its chaotic motions
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is obtained, of which validity is verified by numer-
ical simulation. The individual and comprehensive
effects of system parameters on the chaotic region are
investigated by using the criterion, which yields many
valuable results: (1) the chaotic motion of spacecraft
is almost impossible to occur if the components of
moment of inertia approach each other, (2) the chaotic
region is very sensitive to the liquid with small damp-
ing coefficient, (3) the chaotic region monotonically
varies with the dimensionless equivalent liquid param-
eters η̂eq and ĉeq, and (4) the criterion can provide a
good estimate of not only the chaotic but also periodic
regions. These results can be easily applied to the sys-
tem containing multiple liquids and rotors with wide
applicability. Therefore, ourworkprovides a useful tool
to analyze and predict the chaotic behavior of liquid-
filled spacecraft for avoiding the potentially problem-
atic chaotic motion.
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