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Abstract The stability of the straight ahead running
motion of automobiles is studied with proper theoret-
ical tools pertaining to bifurcation theory. The study
is both theoretical and experimental. Four theoretical
models have been employed. They refer, respectively,
to one simple car model, one simple driver model, one
complex car model and one complex driver model. The
existence of bifurcations, namely Hopf bifurcations,
is found for both the simple car/simple driver model
combination and for the complex car/complex driver
model combination. The experimental study refers to
the employment of a driving simulator in which a
human driver controls the complex car model. At the
driving simulator, bifurcations are found which cor-
respond to the ones predicted either with the simple
car/simple driver model combination or the complex
car/complex driver model combination. At the driving
simulator a chaotic motion is found, after a subcritical
Hopf bifurcation has occurred. Apparently, for the first
time in the sector of vehicle systemdynamics, the actual
existence of bifurcations and chaos has been shown for
a real systemwith a human driver in-the-loop. The driv-
ing simulator does not seem introducing factors affect-
ing sensibly bifurcations, so the bifurcations that have
been found appear to be real, i.e. bifurcations could be
found in an actual car running straight ahead.
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1 Introduction

Every common driver feels that a car, running straight
ahead, may become unstable if a disturbance of suf-
ficient level occurs. To describe accurately such an
intuitive fact, an in-depth mathematical reasoning is
needed. Nonlinear models of cars and nonlinear mod-
els of drivers are the only mathematical representations
of reality that may work [24,27,28]. Often, classical
academic books deal with the stability of cars referring
to linearized models [10,25]. This implies that the dis-
turbance is limited. In other words, classical academic
hypotheses on straight running stability of cars can-
not provide any prediction if the disturbance is strong.
Bifurcation theory provides an answer, as shown in
[5–8,18,26,27,34]. To date, a sound experimental sub-
stantiation of bifurcation theory is lacking referring to
straight running stability of cars. The paper aims at
covering this gap, focusing on both mathematical mod-
elling and experimental substantiation.

In the literature, a number of papers have been writ-
ten on bifurcations of road vehicle models [3,8,13,15,
17,22,30,31,35,36]. In [27], a pioneering early repre-
sentation of phase portraits is given. Still today it seems
that the current understanding of bifurcations would
refer to simple vehicle models only, namely single-
track or slightly more complex models. An analysis
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seems lacking on bifurcations occurring for complex
vehicle models. The paper aims at covering this gap.

We will not mention here the bifurcations of truck–
trailer combination or car–trailer combination, because
this would be out of scope.

Referring to driver models, the main contributions
available in the literature [4,12,21,28] deal with both
linear and nonlinear models. Such contributions are
fundamental to establish the basic understanding of
how drivers act and are the basis for this paper. Driver
models with delay seem necessary to produce bifurca-
tions and to describe properly car & driver behaviour
[5,6,18–20,33]. In these papers, bifurcation of vehicle
and driver models refer usually to simple vehicle mod-
els. Such simple models have been preferably used due
to the difficult usage of phase portraits referring tomod-
els with tens of state variables. Bifurcations of complex
car models in combination with complex driver models
seem not studied accurately in the literature. The paper
aims at covering this gap.

Studying straight ahead running stability in the real
world is quite dangerous. It is complicated to apply a
significant disturbance to the vehicle and, especially at
high speeds, loosing control leads directly to life threat-
ening. So a driving simulator seems the only viable
way to study running stability [14,29]. Obviously, driv-
ing simulator is a complex machine that may intro-
duce into the loop some damping or latency effects
that might influence the accuracy and even the cor-
rectness of results. In big driving simulators, latency is
an issue which implies enormous power demand. We
used a mid-size driving simulator which has a mean
latency of less than 20ms, a very low time lag that can
be neglected with respect to driver’s delay [2]. Since
the driving simulator that has been employed does not
seem introducing relevant factors that could influence
the nature of bifurcation, we have decided to use it as
a reliable means to study straight ahead running stabil-
ity.

In the literature, all of the papers that predict bifur-
cations [3,8,13,15,17,22,30,31,35,36] deal with the-
oretical models only. No evidence is provided that
bifurcations do occur with an actual vehicle and an
actual human driver. The paper aims at covering
this gap, at least partially, since an actual human
driver is made interacting with a driving simula-
tor.

The paper is organized as follows. At first, the four
theoreticalmodels are described. Then, the bifurcations

occurring during straight ahead motion are studied and
compared. Then, the driving simulator is introduced
and the results of the tests that have been performed
are summarized and duly commented.

2 System models

To perform an accurate bifurcation analysis of the car
& driver system, a proper mathematical modelling has
to be done.

2.1 Simple car model

Let us focus on the single-trackmodel shown in Fig. 1a.
The free mechanical degrees of freedom are the lateral
motion and the yaw rotation. The longitudinal motion
is not considered as a degree of freedom because the
longitudinal speed is considered constant. Longitudi-
nal forces Fxi (i = { f, r} f =front, r=rear) are needed
to keep constant the longitudinal speed, their magni-
tude is considered small, and they are neglected. The
lateral axle forces Fyi (i = { f, r} f =front, r=rear) can
be modelled by using the well-known Pacejka Magic
Formula [27] and refer, for this single-track model, to
the whole axle characteristic

Fyi = Di sin(Ci arctan(Biαi − Ei (Biαi

− arctan(Biαi )))) (1)

where αi , i = { f, r} are the front and rear slip angles,
defined as

α f = δ −
(

v + ra

u

)
, αr = −

(
v − rb

u

)
. (2)

where a and b are the distances from the centre of grav-
ity of the front and rear axles, respectively. The coeffi-
cients of theMagic Formula define the shape of the axle
characteristic and the handling properties of the vehi-
cle. Two different configurations of axle characteristics
have been used, one referring to an understeering vehi-
cle and one referring to an oversteering vehicle. The
coefficients that define such configurations are listed in
Tables 1 and 2, respectively. The axle characteristics
and the corresponding handling diagrams are reported
in Figs. 2 and 3. The equations of motion of the single-
track model can be derived using the D’Alembert prin-
ciple, and the following equations are derived

123



Straight running stability of automobiles... 2803

Fig. 1 Simple car model
and simple driver model δ
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Table 1 Magic formula tyre coefficients of understeering vehi-
cle

B C E D

Front 6.92 2.34 0.83 9493.94

Rear 10.31 2.30 1.02 9805.56

Table 2 Magic formula tyre coefficients of oversteering vehicle

B C E D

Front 10.31 2.30 1.02 10872.50

Rear 6.92 2.34 0.83 8562.27

⎧⎪⎪⎨
⎪⎪⎩

v̇ = 1

m
(Fy f + Fyr ) − ur

ṙ = 1

J
(aFy f − bFyr )

(3)

2.2 Simple driver model

For what concerns the simple driver model, the well-
known model developed by Weir [37] is used. The

driver control logic is illustrated in Fig. 1b, where a
general straight path is illustrated. To simplify the com-
putations, the straight path chosen in this work is the
one congruent to the X axis of the global reference sys-
tem, so basically the driver has to nullify the lateral
position coordinate in the global reference system. The
steering action is proportional to the path error com-
puted at a certain distance in front of the vehicle. This
distance L is proportional to the longitudinal speed u
by setting a fixed preview time Tprev , so L = Tprevu.
The coordinates of the preview point in the global refer-
ence systemand its speed components can be computed
starting from the coordinates of the centre of gravity in
the global reference system as follows:

P = (xP )i0 + (yP )j0 = (xG + L cosψ)i0
+(yG + L sinψ)j0 (4)

VP = (ẋP )i0 + (ẏP )j0 = (ẋG − ψ̇L sinψ)i0
+(ẏG + ψ̇L cosψ)j0 (5)

The path error and its time derivative, considering as
reference path theX axis of the global reference system,
have the following expressions:

e = (yre f − yP ) = −yP (6)

ė = (ẏre f − ẏP ) = −ẏP (7)
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Fig. 2 Handling properties
of understeering vehicle
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Fig. 3 Handling properties
of oversteering vehicle
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The steering action of the driver is modelled as a first-
order system with a time constant τ

δ̇ = 1

τ
(−δ + ke + kd ė) (8)

Coupling the vehicle model with the driver model, the
final state-space representation of the car & driver sys-
tem can be obtained⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v̇ = 1
m (Fy f + Fyr ) − ur

ṙ = 1
J (aFy f − bFyr )

δ̇ = 1
τ
(−δ + ke + kd ė)

ẏG = u sin(ψ) + v cos(ψ)

ψ̇ = r

(9)

In Table 3, the vehicle and driver parameters that have
been used in this work are listed.

2.3 Complex car model

To check the results obtainedwith the simple car/simple
driver model combination, the complex car/complex
driver model combination has been used.

Table 3 Simple car/simple driver model data

Mass m (kg) 1938

Moment of inertia J (kg m2) 3992

Front axle distance from centre of gravity a (m) 1.628

Rear axle distance from centre of gravity b (m) 1.636

Delay time τ (s) 0.2

Preview time Tprev (s) 0.5

Proportional gain k (rad/m) 0.02

Derivative gain kd [rad/(m/s)] 0

Obviously, the parameters of the complex vehicle
model were chosen to match the ones of the simple
vehicle model. In other words, the simple model is a
simplified representation of the complex model both in
terms of dynamics and parameter values.

The description of the complex car model is pro-
vided in the manual of the software Vi-Grade [2]. Basi-
cally, the car model is a 14-degrees-of-freedom multi-
bodymodel, in which the bodies are the vehicle chassis
and the four wheels. The car body has six degrees of
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Fig. 4 Vi-Grade vehicle
modelling framework

freedom, and each wheel has two degrees of freedom:
one corresponding to the rolling rotation and one cor-
responding to the relative displacement between the
wheel and the car body. Two reference systems are
used, one global, fixed with respect to the ground, and
one local, fixed with the vehicle, with the origin fixed
at the mid point of the front axle, the longitudinal axis
is parallel to the vehicle centreline, the normal axis is
orthogonal to the ground and directed upwards. The lat-
eral axis is a right-hand reference systemwith the other
mentioned axes. The reference systems are represented
in Fig. 4. The directions of both the lateral and vertical
axes of the simple car/simple drivermodel combination
are reversed with respect to the corresponding axes of
the complex car/complex driver model combination in
Fig. 1. In the sequel, the results will be reported using
the reference systems of the simple car/simple driver
model combination. In Table 4, the main parameters of
the complex car model are listed. Camber angles are
positive if the wheels are inclined towards the chassis.
The steering ratio and the wheel angles are referred to
the equilibrium position of the car running straight at
constant speed.Due to the rolling and pitchingmotions,
these quantities can vary, and the software takes into
account such phenomenon. The vehicle that is mod-
elled is a rear wheel drive E segment passenger car
equipped with a limited slip differential. In order to
make the complex car model more similar to the simple
car model, the differential is changed to a simple open
differential. The modelling of the tyre is done by using
the complete Pacejka Magic Formula, whose coeffi-
cients correspond to the parameters in Tables 1 and 2.
The aerodynamic forces have been reduced, in order
to have the possibility to reach very high longitudinal
velocities, actually, at such speeds bifurcations occur.
The road on which the complex car model runs is flat.

Table 4 Vi-Grade vehicle model: data

Chassis mass (mc) 1691 kg

Chassis inertia moment (Jc) 3340 kg m2

Front tire-hub mass (m f ) 52 kg

Front tire-hub inertia moment (J f ) 1.35 kg m2

Rear tire-hub mass (mr ) 40 kg

Rear tire-hub inertia moment (Jr ) 1.04 kg m2

Fuel mass (m f uel ) 63 kg

Fuel mass longitudinal position (x f uel ) −2.8 m

Centre of gravity distance from the front axle (a) 1.628 m

Centre of gravity distance from the front axle (b) 1.636 m

Wheelbase (l) 2.97 m

Front track (t f ) 2.97 m

Rear track (tr ) 2.97 m

Steering ratio 14.54

Toe angle front left (static) −0.36 deg

Toe angle front right (static) 0.36 deg

Toe angle rear left (static) 0.165 deg

Toe angle rear right (static) −0.165 deg

Camber angle front left (static) −0.35 deg

Camber angle front right (static) −0.35 deg

Camber angle rear left (static) −0.9 deg

Camber angle rear right (static) −0.9 deg

2.4 Complex driver model

The Virtual Driver provided by the Vi-Grade software
has been used as it seems more accurate with respect
to the single-point preview driver model (simple driver
model). The Virtual Driver logic is based on an MPC
control logic. MPC stands for Model Predictive Con-
trol, and it is a control algorithm that optimizes a con-
trol variable in order to minimize a cost function over
a finite-time horizon. In order to have a better expla-
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nation of the driver control logic, the reader is invited
to consult the Vi-Grade manual [2]. The time horizon
used in the complex driver model is similar as the pre-
view time of the simple driver model. We had to find
an empirical matching between the few parameters of
the simple driver model and the many parameters of
the complex driver model.

2.5 Perturbation method

When simulating a dynamical system, in order to eval-
uate the stability of an equilibrium position or the sta-
bility of a limit cycle, a perturbation has to be gener-
ated. In this paper, two strategies have been used to
perturb the car & driver dynamical system. The first
one is simply an initial lateral displacement. It has been
used to evaluate the stability of straight running. The
second strategy applies a lateral impulse force to the
vehicle. The second strategy has been introduced since
the first one does not work properly for the complex
or human driver model. Actually, during tests at the
driving simulator, we found that recovering a sudden
lateral displacement applied to the vehicle resulted in a
simple task for the driver. In fact, no input energy was
associated with such a disturbance that was just a re-
positioning of the vehicle in a displaced initial position
on the road. The driver did not feel any lateral accelera-
tion, and this was perceived as an unrealistic situation.
In other words, the initial condition at the driving sim-
ulator, as it is comes from the first strategy, was not
associated with an actual disturbance by the driver. So
we decided to adopt the second strategy.

The perturbation scheme and impulse force shape
are reported in Fig. 5. The magnitude of the force has
been fixed and equal to Fdist = −10,000 N , congruent
with the global reference system defined in the previ-
ous section. The parameter chosen to vary the magni-
tude of the perturbation has been the arm of the force
with respect to the vehicle centre of gravity. Increasing
the arm of the external force results in an increasing
moment acting on the system, thus giving bigger per-
turbation.
The first perturbation strategy has been applied both
to the simple car/simple driver model combination and
to the complex car/complex driver model combination.
This allowed to compare the numerical results.
The second perturbation strategy was adopted during
experiments at the driving simulator. We did not want
to compare quantitatively the perturbed motion at the
driving simulator with the two ones coming from theo-
reticalmodels. Thatwould be impossible since the state
variables describing the human driver are unknown.We
only needed to compare qualitatively the results at the
simulator and the results from the two theoretical mod-
els. We did want primarily to check stability, so we had
just to perturb somehow the steady motion.

3 Bifurcation analysis: combination of simple car
model and simple driver model

In this section, we take into account the simple
car/simple driver model combination. To evaluate the
dynamical behaviour, bifurcation theory has been used
[11,16,32]. We perform our analysis for different val-

Fig. 5 a Impulse force
perturbation. b Impulse
force shape
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Fig. 6 Combination of
simple car model and
simple driver
model—understeering
configuration: bifurcation
analysis varying
longitudinal speed. Data in
Tables 1 and 3

(a) State-space bifurcation diagram
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Fig. 7 Combination of
simple car model and simple
driver model—oversteering
configuration: bifurcation
analysis varying
longitudinal speed. Data in
Tables 2 and 3

(a) State-space bifurcation diagram (b) Maximum value of the lateral position

ues of the longitudinal speed, that is taken as a bifur-
cation parameter.

Bifurcation diagrams have been produced using
MatCont [9]: in Figs. 6a, 7a, we report a three-
dimensional projection of the bifurcation diagram of
our five-dimensional simple system. Solid blue lines
indicate stable equilibria or stable limit cycles, and
dashed red lines indicate unstable equilibria or unsta-
ble limit cycles. A bifurcation speed is found in either
cases. At longitudinal speeds lower than the bifurcation
one, an unstable limit cycle exists in the state space. The
unstable limit cycle repulses the state-space trajecto-
ries. The motion of the vehicle can be repulsed towards
the straight running equilibriumor candiverge, depend-
ing on the initial state-space condition. The ampli-
tude of the unstable limit cycle increases as the speed
decreases, so, at lower speeds, the perturbation caus-
ing instability has to be very high, as common sense
suggests.

In Figs. 6a and 7b, projections of the bifurcation
diagrams are reported in the plane lateral position–
longitudinal speed. To visualize better the trend of the
limit cycles, the maximum value of the lateral position
is reported. In both understeering case and oversteer-

ing case, the simple car/simple driver model predicts
a stability loss of the desired trajectory, due to a sub-
critical Hopf bifurcation. In the oversteering case, the
stability loss occurs at a longitudinal speed of nearly 20
m/s. In the understeering case, the stability loss occurs
at a longitudinal speed of nearly 100 m/s. Passed those
values, the equilibria are unstable and the driver is not
able to find another stable motion, so such types of
bifurcations are catastrophic.

We check now the existence of a bifurcation speed
by resorting to time history simulations.

In Fig. 8, the dynamical response of the simple
car/simple driver model combination in understeering
configuration is shown. Due to a small perturbation, the
dynamical behaviour of the system changes its nature
as the longitudinal speed is increased. The starting lat-
eral position is equal to y0 = 0.1 m. Increasing the
speed, the response is less and less damped, but sta-
ble, till a certain bifurcation speed, if such a speed
is passed, the response is unstable. The system has
two low-frequency eigenmodes at 0.35 Hz and 1 Hz;
increasing the speed, the magnitude of the component
at 1 Hz increases because this is the eigenmode that
causes instability.
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Fig. 8 Combination of simple car model and simple driver model—understeering configuration: estimation of the bifurcation longitu-
dinal speed by applying a small initial condition (first perturbation strategy). Data in Tables 1 and 3
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Fig. 9 Combination of simple car model and simple driver model—understeering configuration. A slight increase of disturbance
(second perturbation strategy) causes instability, u = 70 m/s. Data in Tables 1 and 3

The simulations mentioned above have been done
providing to the system a perturbation of low magni-
tude. It is important to investigate how the behaviour
of the system changes by increasing the magnitude of
the perturbation. The perturbation strategy is now the
second one described in the previous section, and an
impulse force is applied at a certain distance from the
centre of gravity. Let us consider Fig. 9. We want to
see whether the stability depends on the amplitude of
the disturbance. The analysis has been done at 70 m/s,

a velocity for which the response to a small perturba-
tion is stable. If the perturbation is sufficiently high,
the response is unstable. The driver is able to restore
the straight running condition till a certain threshold,
which is shown in Fig. 9. The impulse force starts after
1 s and lasts 1 s. We do not show the threshold for other
speeds here because no additional information could
be provided.

The simulations presented in Fig. 8 and in Fig. 9
have been done considering the understeering configu-
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Fig. 10 Combination of simple car model and simple driver model—oversteering configuration: estimation of the bifurcation longitu-
dinal speed by applying a small initial condition (first perturbation strategy). Data in Tables 2 and 3
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Fig. 11 Combination of simple car model and simple driver model—oversteering configuration. A slight increase of disturbance
(second perturbation strategy) causes instability, u = 15 m/s. Data in Tables 2 and 3

ration. The corresponding investigations for oversteer-
ing configuration are reported in Figs. 10 and 11. The
qualitative behaviour is equal to the one observed with
understeering configuration. The main difference is the
speed range at which the system loses stability, which
is lower with respect to the one of understeering con-
figuration. Similar theoretical results concerning the
subcritical Hopf bifurcation as a source of instability
for the car & driver system have been obtained in other
papers [5–7,19,20].

In Fig. 12, different bifurcations are obtained by
varying the driver parameters. In Fig. 12a, it can be
noted that increasing the lag or delay time of the driver,
the bifurcation speed decreases. In Fig. 12b, the Lya-
punov coefficient is given as function of the propor-
tional gain of the driver. The Lyapunov coefficient
describes the type of Hopf bifurcation. If the coefficient
is positive, the Hopf bifurcation is subcritical; if it is
negative, the Hopf bifurcation is supercritical. It can
be seen that simply varying the proportional gain, the
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Fig. 12 Combination of
simple car model and simple
driver model. Influence of
driver parameters. Data in
Tables 1 and 3

(a) Delay time of the driver as function of
the bifurcation speed
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(b) Hopf type bifurcation depending on
Lyapunof coeff. as function of driver con-
trol gain

Fig. 13 Combination of
complex car model and
complex driver model.
Understeering
configuration. Estimation of
the maximum value of the
lateral position in the
bifurcation diagram from
simulations

(a) Unstable limit cycle (b) Stable limit cycle

Hopf bifurcation changes its nature from supercritical
to subcritical. This is consistent with and substantiates
what was found in [6], i.e. either subcritical or super-
critical bifurcation may occur, given a car, depending
on the driver parameters.

Since many different bifurcations may occur, we
wanted to investigate whether withmore complex vehi-
cle systems, bifurcations phenomena do exist.

4 Bifurcation analysis: combination of complex
car model and complex driver model

A bifurcation diagram produced by MatCont [9] (like
the one in Fig. 6a) cannot be obtained for the combina-
tion complex car/complex driver model. Actually, the
equations describing the complex driver model are not
available for commercial reasons.

Nevertheless, a bifurcation diagram is reported in
Fig. 13a which corresponds to the one of Fig. 6b
(understeering case). In Fig. 13a, the moment arm
corresponds to the lateral displacement excitation of

Fig. 6b. We found unstable limit cycles whose ampli-
tudes decrease as speed increases. Such amplitudes
have been obtained, at each speed, by performing sim-
ulations with increasing moment arm (actually we did
produce a motion with increasing initial lateral posi-
tion, initial yaw and so on). We found the threshold
above which the vehicle becomes unstable. The impor-
tant result is that the complex car/complex drivermodel
has, qualitatively, a performance similar to the perfor-
mance of the simple car/simple driver mode.

We see in Fig. 13b that a stable limit cycle occurs
after a supercriticalHopf bifurcation just before 80m/s.

We do not show the bifurcation diagram for the over-
steering case, the analysis qualitativelymatches the one
obtained with the simple car/simple driver model com-
bination .

We check now the existence of a bifurcation speed
by resorting to time history simulations.

Referring to the understeering configuration, Fig. 14
shows the behaviour of the car& driver system as speed
increases. For longitudinal speeds lower than 75 m/s,
the system is asymptotically stable, and the straight
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Fig. 14 Combination of complex car model and complex driver model—understeering configuration: estimation of the bifurcation
longitudinal speed by applying the second perturbation strategy. Data in Table 4 and in [2]
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Fig. 15 Combination of complex car model and complex driver model—understeering configuration. A slight increase of disturbance
(second perturbation strategy) causes instability, u = 70 m/s. Data in Table 4 and in [2]

running condition is reached after the disturbance is
vanished. Increasing the speed, the lateral motion of
the car’s centre of gravity is less damped. The time
response has a frequency content with only one main
component at 0.2 Hz. For longitudinal speeds equal
or higher than 78 m/s, the system is not asymptotically
stable, and actually, it continues oscillating with a main
component of the frequency spectrum at 0.18 Hz. The
motion is not periodic, but it looks chaotic. At a longi-
tudinal speed equal to 100m/s, the spectrum of the yaw

rate has the main component of the spectrum at a fre-
quency of 0.14 Hz. Other components with significant
amplitudes are present at higher frequencies. The irreg-
ularity of the time series and the shape of the frequency
spectrum indicate that the motion is fully chaotic. The
amplitude of this chaotic motion is not very high, hav-
ing a range of ±0.15 m of lateral displacement with
respect to the reference straight path. Nevertheless, if
this motion would be replicated in a real environment,
the human driver would be negatively influenced. In
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Fig. 16 Combination of complex car model and complex driver model. Understeering configuration. A slight increase of disturbance
(second perturbation strategy) causes instability, u = 90 m/s. Data in Table 4 and in [2]

Fig. 17 Combination of
complex car model and
complex driver model.
Oversteering configuration.
Estimation of the
bifurcation longitudinal
speed. Data in Table 4 and
in [2]
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[20], a chaotic motion was found after a Hopf bifurca-
tion for a simple vehicle model; this occurrence is here
confirmed for a complex car model.

After having estimated the bifurcation speed, the
response due to different magnitudes of perturbation
is analysed. Simulations have been performed at 70
and 90 m/s; such values of longitudinal velocity occur
before and after the bifurcation speed, respectively. The
results are reported in Figs. 15 and 16. Note that the
scale of the vertical axis in these figures is much wider

that the one of Fig. 14. In both of the tests, there is a
threshold value of the perturbation that makes the type
of response changing form stable to unstable (red curve
in the figures). On the other hand, in both of the cases
small perturbations are absorbed by the system (blue
curves), either coming back to an equilibrium (Fig. 15)
or to a small-amplitude attractor (Fig. 16).

For the oversteering case, in Fig. 17 the simulations
obtained by providing a small perturbation to the sys-
tem and increasing the longitudinal speed are reported.
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Fig. 18 Danisi Engineering dynamic driving simulator

The bifurcation speed is in between 30 and 35 m/s, due
to the change in the stability properties of the straight
running equilibrium. After the bifurcation, no stable
motions have been appreciated. The bifurcation is thus
a catastrophic bifurcation. The presence of oscillations
leads us to classify the bifurcation as a subcritical Hopf.

Referring to the oversteering case, we do not report
here, for the sake of space, the graphs corresponding to
Figs. 14, 15 and 16. No relevant qualitative information
would have been produced.

Summarizing the results of this section, we have
found that stability can be lost during straight running
by increasing the speed for the complex car /complex
driver model combination. Furthermore, the presence
of unstable limit cycles has been confirmed. Addition-
ally, a chaotic motion has been highlighted.

5 Driving simulator

To validate the theoretical results, we performed exper-
imental tests using a professional dynamic driving sim-
ulator. Thedriving simulator, shown inFig. 18, has been
provided by Danisi Engineering [1]. The simulator has
9 degrees of freedom, and it can rotate and translate to
reproduce as accurately as possible the accelerations
of the vehicle. The vehicle dynamics fidelity and the
driving experience has been validated by professional
drivers. This is due to low latency of the simulator,
less than 20 ms. Results obtained using the driving
simulator can be found in real driving conditions with
high probability. The vehicle model implemented in
the simulator has 14 degrees of freedom and corre-
sponds to the complex car model we presented previ-
ously.
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Fig. 19 Experimental results. Understeering configuration. Chaotic motion, u = 90 m/s. Data in Table 4
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Fig. 20 Experimental results. Understeering configuration. A slight increase of disturbance (second perturbation strategy) causes
instability, u = 80 m/s. Data in Tables 1 and 4
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Fig. 21 Experimental results. Understeering configuration. A slight increase of disturbance (second perturbation strategy) causes
instability, u = 110 m/s. Data in Tables 1 and 4

6 Driving simulator experimental tests

The tests have been divided into two different sets; the
first set considers the understeering vehicle, and the
second set considers the oversteering vehicle. The loop
is closed by an actual human driver. The tests follow
the same scheme used in the previous sections. First,
the bifurcation speed has been estimated by increasing
the longitudinal speed, while the system is excited by a
low-magnitude perturbation (that is, the irregularity of
the road surface). Secondly, the presence of an unsta-
ble limit cycle has been investigated by doing multiple
tests at constant speed with perturbations of increasing
amplitude.

The first vehicle configuration is understeering. The
longitudinal speed has been increased till 120 m/s, and
no unstable behaviour has been observed. The results
corresponding to a longitudinal speed of 90 m/s are
reported in Fig. 19. It can be noted that it is present
a low-amplitude chaotic motion, as it was observed
doing simulations with the complex car/complex driver

model combination. Unfortunately, in this case it is not
possible to establish a speed range inwhich the bifurca-
tion occurs, since the perturbation (irregularity of the
road surface) is always present. Thus, understanding
whether the chaotic motion is caused by the road irreg-
ularity or by the driver inability to follow a straight path
requires a deeper investigation, using a different setup
in the driving simulator. This is left to a forthcoming
research which involves an accurate modelling of ply-
steer and conicity [23]. Understanding this difference
can be important at a practical level, but the aim of this
paper is to have a broad overview on the existence of
bifurcations.

To investigate the existence of an unstable limit
cycle, in Figs. 20 and 21 experimental tests obtained
by varying the perturbation magnitude at two differ-
ent constant speeds are reported. Keeping constant the
longitudinal speed and varying the magnitude of per-
turbation provided to the system, the response of the
car & driver system passes from being stable to being
unstable. Considering the state variables trends during
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Fig. 22 Experimental results.Understeering configuration. Esti-
mation of the unstable limit cycle amplitude. Data in Tables 1
and 4

the impulse force application (that starts at 1 s and fin-
ishes at 2 s), it can be noted that, at the very beginning,
the difference between the two responses is not high,
but it is sufficient to change the type of the subsequent
time history.

This suggests the presence of an unstable limit cycle.
Considering the resume of all the experimental tests

reported in Fig. 22, it can be seen that the boundary
between stable and unstable tests follows the trend of
the amplitude of the unstable limit cycle seen with sim-
ulations in the previous sections, referring both to the
simple car/simple model and to complex car/complex
model.

From the tests at the simulator, we argue that an
understeering vehicle driven by a human is not always
stable, but its dynamical response depends on the mag-
nitude of the perturbation.

The second vehicle configuration is oversteering. To
estimate the bifurcation speed, the longitudinal speed
has been increased from 15 m/s, with low longitudinal
acceleration in order to make negligible the longitudi-
nal tire forces. In principle, longitudinal acceleration
influences the whole system dynamics. However, in
our case, acceleration remained always small so that
such an influence could be neglected. The results are
reported in Fig. 23, where the longitudinal speed time
history is presented. The dynamical response of the
system can be divided in two kinds: one characterizing
longitudinal speeds lower than 50 m/s and the second
for higher speeds. The first dynamical response is sim-
ilar to the low-amplitude chaotic motion seen with the
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Fig. 23 Experimental tests. Oversteering configuration. Estimation of the bifurcation speed and evaluation of the chaotic motion after
the bifurcation. Data in Tables 2 and 4
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Fig. 24 Experimental results. Oversteering configuration. Esti-
mation of the unstable limit cycle amplitude. Data in Tables 2
and 4

understeering configuration, possibly caused by road
irregularities or by the driver.When the speed of 50m/s
is passed, the chaotic motion gets bigger amplitudes.
The different types ofmotion can be seen by comparing
the frequency spectra at low and high forward veloci-
ties, reported in Fig. 23. It is clear how the amplitudes
of the frequency components increase in all the fre-
quency domain when the speed is higher than 50 m/s.
Analysing the time response, beats-like behaviour can
be seen, caused by the presence of two main harmonic
components with similar frequency: one at 0.38Hz and
the second at 0.42 Hz. At 50 m/s, a supercritical Hopf
bifurcation occurs. The human driver is able to control
the vehicle after the bifurcation speed, although it is
not able to stabilize the system to the follow a straight
path, since the motion is chaotic.

In Fig. 24, the results of the experimental tests per-
formed to investigate the presence of the unstable limit
cycle are reported. It can be seen that also in this
oversteering configuration an unstable limit cycle is
always present. At a given speed, the amplitude of the
cycle of the oversteering vehicle is almost half than
that of the understeering vehicle (compare Fig. 24 with
Fig. 22). Tomake unstable an oversteering car, themag-
nitude of the perturbation that has to be provided is
lower.

7 Conclusion

The paper deals with the safety of road vehicles during
straight ahead running. Both an understeering car and

an oversteering car are considered. The study is both
theoretical and experimental. Different mathematical
models of cars and drivers are considered.

The combination of a simple car model with a sim-
ple driver model allowed to establish a link between
this paperwith previous theoretical studies presented in
the literature.Wemanaged to confirm theoretically that
bifurcations during straight aheadmotion can be found.
Such bifurcations are often of the Hopf kind. They
are either sub- or, less frequently, supercritical. The
existence of bifurcations, namely Hopf bifurcations, is
found for both the simple car/simple driver model com-
bination and for the complex car/complex driver model
combination. This qualitative correspondence seems an
original contribution produced in the paper. Such a cor-
respondence is extremely useful for interpretation of
the simulations performed by a complex car/complex
driver model combination. The amplitudes of the limit
cycles and the bifurcation speeds are different between
the simple car/simple drivermodel combination and for
the complex car/complex driver model combination.
This, of course, depends on both the car model and the
driver model. With such a comparison, we have some-
how substantiated the previous papers in the literature
that predicted bifurcations resorting to simple models
only.

The experimental study involved the employment of
a driving simulator in which a human driver controlled
the complex car model. The driving simulator does not
seem introducing negative effects able to influence the
occurrence of bifurcations; actually, the latency of the
simulator is more than one order of magnitude smaller
than the driver’s time lag. Tests at the simulator seem
to be the only possible way to study experimentally
the running safety of cars. At the driving simulator,
bifurcationswere foundwhich correspondqualitatively
to the ones predicted either with the simple car/simple
driver model combination or the complex car/complex
driver model combination. This is the main result of
the research presented in the paper.

The correspondence that was found between the-
oretical results and experimental results was reason-
able but not quantitatively accurate. In fact, especially
the simple driver model seems inadequate to capture
the actual human driver behaviour. Additionally, the
driver adapts to the car behaviour, so some differ-
ences were found between subsequent runs. The the-
oretical prediction made in the literature with a sim-
ple car/simple driver model combination, referring to a
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chaotic motion occurring after a subcritical Hopf bifur-
cation, was experimentally substantiated at the driving
simulator. The nature of bifurcations that have been
found seems real, i.e. they could be found on an actual
car running straight ahead.

It is a common belief that understeering vehicles
are (globally) stable independently from the driving
velocity. Our study shows that this is not the case when
the driver is in the loop. Actually, we found that the
vehicle & driver system may become unstable, even at
low speeds, if a sufficient disturbance is provided. This
result is confirmed both by theoretical results (using
either simple or complex models) and by experiments
with the driving simulator. Additionally, in the over-
steering case, at speeds higher than the bifurcation one,
the motion is heavily chaotic.

The studyhas disclosed awealth of possible behaviours
of cars, all useful to provide designers information on
proper design of chassis systems, namely tyres, sus-
pensions, steering, powertrain and, even, in general,
vehicle architecture.

The study will evolve in the future into considering
more complex driving manoeuvres like running into a
bend or lane change. The existence or not of subcritical
Hopf bifurcations should be carefully investigated for
automated or autonomous vehicles.
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