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Abstract Electromagnetic excitation in high power
density permanent magnet synchronous motors
(PMSMs) due to eccentricity is a significant concern
in industry; however, the treatment of lateral and tor-
sional coupled vibrations caused by electromagnetic
excitation is rarely addressed, yet it is very important
for evaluating the stability of dynamic rotor vibrations.
This study focuses on an analytical method for ana-
lyzing the stability of coupled lateral/torsional vibra-
tions in rotor systems caused by electromagnetic exci-
tation in a PMSM. An electromechanically coupled
lateral/torsional dynamic model of a PMSM Jeffcott
rotor is derived using a Lagrange–Maxwell approach.
Equilibrium stability was analyzed using a linearized
matrix of the equation describing the system. The sta-
bility criteria of coupled torsional–lateral motions are
provided, and the influences of the electromagnetic and
mechanical parameters on mechanical vibration stabil-
ity and nonlinear behavior were investigated. These
results provide better understanding of the nonlinear
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response of an eccentric PMSM rotor system and are
beneficial for controlling and diagnosing eccentricity.
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1 Introduction

The increasing popularity of permanent magnet syn-
chronous motors (PMSMs) in machinery trains has
increased interest in the electromagnetic excitation they
produce as this may influence machinery vibration [1].
Motors are designed under the assumption of a uniform
air gap around the rotor, but in practice, all motors oper-
ate with the rotor slightly displaced from the motor
centerline, i.e., in an eccentric position. Rotor center
eccentricity can generate a radially unbalanced mag-
netic field, while themotor operates [2]. This will result
in a coupled radial and tangential excitation that pulls
the motor further away from the center, inducing cou-
pled unstable lateral and torsional vibration. In order to
avoid electromechanically coupled resonance caused
by variations in the electrical parameters, the exist-
ing dynamics model should be improved. This requires
analyzing multiple electromechanical coupling effects
determined by mechanical, electrical, and magnetic
parameters. The improved model can provide theoreti-
cal guidance for structural design, optimal control over
electromechanical coupling in the transmission system,
and damping of active vibrations.
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In the past, research on the dynamics considered a
linear theory that did not account for electromechan-
ical coupling. Some high performance PMSM-driven
systems demand low vibration, low acoustic noise, and
high accuracy. However, a growing number of stud-
ies show that electromagnetic coupling-induced vibra-
tion is a major concern [3,4]. Accurate evaluation and
experimental investigation of the dynamic response
indicate that electromechanical coupling and nonlin-
ear vibrations should be considered when describing
vibrations in electromechanical systems [5].

Determining precise electromagnetic excitation is
critical problem when the electromagnetic coupling
dynamics is investigated. The electromagnetic excita-
tion model was studied in the past. It is well known
that electromagnetic excitation can be computed using
finite element method (FEM) [6,7]. However, FEM is
time-consuming and cannot provide insight into the ori-
gin of electromagnetic excitation. Various researches
have focused on theoretically describing electromag-
netic excitation and its effects on rotors dynamics.
Lundström [8] and Chuan [9] established an electro-
magnetic excitation model by considering changes in
the axial eccentricity of a hydro-generator rotor, and
stability of the rotor dynamics and imbalance response
were analyzed. Dorrell [10] proposed a radial elec-
trical electromagnetic excitation model that accounts
for rotor eccentricity in cage induction motors. Zhang
[11] theoretically investigated an electromagnetic exci-
tation model for a motor without a load. Coupling
between the dynamics and electromagnetic excita-
tion due to dynamic and static eccentricity was ana-
lyzed.

Overall, the aforementioned research focused on
large-scale electrical excitation in hydro-generators.
A permanent magnet still produces radial electromag-
netic excitation despite the absence of electrical exci-
tation. The strength of electromagnetic excitation will
increase with the applied load and additional vibra-
tions. Second, an internal combustion engine operates
along a PMSMwith high power density in hybrid elec-
tric vehicle (HEV), which may pick up a multitude
of operational and vibration frequencies from internal
combustion engine. Third, pavement irregularity acts
as an excitation source, which varies with the velocity
of the vehicle. External disturbances apply forces to the
rotor at various frequencies.

Many publications discuss radial electromagnetic
excitation from an electrical perspective. Li [12] and
Dorrell [13,14] investigate the radial force density
for IPM/SPM and fractional-slot brushless permanent
magnet motors due to either magnetic asymmetry or
static rotor eccentricity. FEM was used to account for
the magnetic saturation, and the radial force density
was analyzed by using Maxwell stress tensor. Oth-
ers have presented a radial electrical electromagnetic
excitation model from a dynamics perspective [15,16].
Jiang et al. [15] studied rotor vibration induced byUMP
for switch reluctancemotors, and the dynamic response
of the motor rotor was calculated by using step-by-step
integration. Mao et al. [16] analyzed the influence of
the rotor position error on the longitudinal vibration of
the electric wheel system. FEM was also used for har-
monic analysis of the stator in a low speed, direct drive
PMSM in order to predict the vibration characteristics
and limit vibration and noise, and unbalanced response
of the rotor was analyzed [16].

Electromechanical coupling caused by electromag-
netic excitation mainly primarily focuses on transverse
vibration. However, coupled lateral torsional vibration
arises in real rotor systems. Consequently, electrome-
chanically coupled rotor vibration is a complicated
dynamic phenomenon that can cause serious prob-
lems. Many prior studies [17–20] have addressed lat-
eral/torsional vibration coupling theoretically, which
provides an important reference for solving the lat-
eral/torsional coupling dynamic equation and analyt-
ical method for this research work.

This study focuses on investigating nonlinear cou-
pled lateral and torsional rotor vibrations in a high
power density PMSM used for HEV caused by elec-
tromagnetic excitation. This paper is organized as fol-
lows:Anonlinear electromechanical coupling dynamic
model derived from the Lagrangian–Maxwell theory is
presented in Sect. 2. An autonomous nonlinear ordi-
nary differential equation is subsequently derived by
applying a symplectic transformation. The amplitude–
frequency and phase–frequency characteristics of the
vibration can be determined by solving multiple cou-
pling dynamics in Sect. 3.Numerical algorithms and
analytical methods for their stability analysis are intro-
duced in Sect. 4.
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Fig. 1 PMSM rotor and its
coordinate system
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2 Multiple electromechanical coupling dynamic
model

2.1 Assumptions and definitions

A schematic diagram of a dynamic model describing
a PMSM rotor supported by rigid bearings is shown
in Fig. 1. This model is based on Jeffcott’s model,
which consists of a rigid disk and a massless flexible
shaft. A key motivation for this simplified single-rotor
model is application of PMSMs with high power den-
sity in HEV, which are slender rotating structures that
are used to avoid transmission vibration. These struc-
tures are rather different from typical rotatingmachines
because they typically experience large torsional defor-
mation, significant imbalance, and eccentricity arising
from matching with other machinery.

The equation of motion can be derived under the
following assumptions: (i) Rotational motion along the
x- and y-axes is neglected; (ii) the system is undamped;
(iii) all elastic restoring forces are assumed to be linear;
(iv) the lateral stiffness of the system Kxx and Kyy is
assumed to be equal.

Figure 1a shows the coordinate system used in this
model, where the z-axis is the longitudinal coordinate
of the rotor shaft, and x and y are the lateral coordi-
nates from the rotor axis. Figure 1b shows the cross
section of a rotor rotating at a constant angular speed
�. The shadowed area depicts the stator. Points Or and
O refer to the geometrical centers of the rotor and sta-
tor, respectively. Point C is the center of mass of the
rotor. In this case, l is the length of the rotor shaft and
Rr is the outer radius of the rotor. The eccentricity e
can be static or dynamic. The mass eccentricity of the
rotor is OrC = d.

The angle between the x coordinate and vector
−−→
OOr

is γ , where γ = ωr t + θ + φ0, where � is the shaft
rotational speed, θ is the torsional deflection angle,
and φ0 is the initial deflection angle. km = Kxx =
Kyy is the torsional stiffness. The rotor has mass m
and moment of inertia J . φ0 is assumed to be zero for
simplification.

2.2 Derivation of the multiple electromechanical
coupling model

The rotor rotates around Or , while the rotor center Or

moves with the rotor. If the position of the geomet-
ric center is (x , y), then the position of the center of
mass is

xm = x + d · cos γ, ym = y + d · sin γ (1)

When the rotor is eccentric, cross-coupling in the
coupling channel and the geometric coupling channel
will cause the rotor system to vibrate. The motor is
assumed to be the same as that presented in a prior
study [21]. The Lagrange–Maxwell method is used to
construct the Lagrangian for this system L [22]:

L = T − V + Wm (2)

where T and V are the kinetic and potential energies of
the system, respectively, and Wm is the magnetic field
energy.

Total kinetic T energy is the sum of the translational
kinetic energy and rotational kinetic energy:

T = 1

2
m
(
ẋ − dφ̇ sin φ

)2

+1

2
m
(
ẏ − dφ̇ cosφ

)2 + 1

2
J φ̇2 (3)
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The potential V energy of this system is:

V = 1

2
kmx

2 + 1

2
km y

2 (4)

where km is the bending stiffness coefficient, and φ is
the angular displacement of the rotor.

According to the relationship between the magnetic
conductance of an eccentric air gap in reference [1] and
Eq. (1), the air-gap magnetic conductance is:

�(α, t) = �0

{[
1 + 1

2

(
x2 + y2

)
+ 3

8

(
x2 + y2

)2]

+
[
1 + 3

4

(
x2 + y2

)]
· (x cosα + y sin α)

+
[
1

2

(
x2 − y2

)
+ 1

2

(
x4 − y4

)]
· cos 2α

+
[
xy +

(
xy3 − xy3

)]
· sin 2α

}
(5)

x = e cos γ
kμ·δ0 = X

σ
and y = e sin γ

kμ·δ0 = Y
σ
are substituted

into Eq. (5), yielding the energy stored in the air gap:

Wm = RL

2

∫ 2π

0
� (α, t)

[
Fr (α, t) + FS (α, t)

]2dα

= RL�0

2

∫ 2π

0

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣1+

(
X2+Y 2

)

2σ 2 +
3
(
X2+Y 2

)2

8σ 3

⎤

⎥
⎦

+
⎡

⎣ 1

σ
+

3
(
X2 + Y 2

)

4σ 3

⎤

⎦

·X cosα +
⎡

⎣ 1

σ
+

3
(
X2 + Y 2

)

4σ 3

⎤

⎦

·Y sin α +
⎡

⎣

(
X2 + Y 2

)

2σ 2 +
(
X4 − Y 4

)

2σ 4

⎤

⎦

· cos 2α +
⎡

⎣

(
X2 + Y 2

)

2σ 2 +
(
X4 − Y 4

)

2σ 4

⎤

⎦ · sin 2α
⎫
⎬

⎭

·
[
Fsm cos (ωt−α)+Frm cos

(
ωt+ψ+π

2
−α
)]2

dα

(6)

The dissipative function Fc is relatively simple and can
be written as:

Fc = 1

2
c
(
ẋ2 + ẏ2

)
(7)

where c is the bending damped coefficient.

X ,Y , andφ are defined as generalized displacements
in a fixed coordinate system. Substituting L and Fc into
the Lagrange–Maxwell equations yields:

m
d2X

dt2
+ c

dX

dt
+ km X − f1

σ
X − 3

(
X3 + XY 2

)

2σ 3

− X

2σ
( f2 cos 2ωt + f3 sin 2ωt)

− Y

2σ
( f2sin2ωt − f3 cos 2ωt)

− X

σ 3 ( f2 cos 2ωt + λ3 sin 2ωt)

+ Y 3

σ 3 ( f2 sin 2ωt − f3 cos 2ωt)

− 3
(
X2 + Y 2

)
Y

2σ 3 ( f2 sin 2ωt − f3 cos 2ωt)

= mdφ̇2 cosφ + mdφ̈ sin φ

m
d2Y

dt2
+ c

dY

dt
+ kmY − f1

σ
Y − 3

(
X2Y + Y 3

)

2σ 3

− X

2σ
( f2 sin 2ωt − λ3 cos 2ωt)

+ Y

2σ
( f2 cos 2ωt + f3 sin 2ωt)

+ X3

σ 3 ( f2 sin 2ωt − f3 cos 2ωt)

+ Y 3

σ 3 ( f2 cos 2ωt + f3 sin 2ωt)

− 3
(
X2 + Y 2

)
X

2σ 3 ( f2 sin 2ωt − f3 cos 2ωt)

= mdφ̇2 sin φ + mdφ̈ cosφ

J
d2φ

dt2
− M

(
φ̇
)+
[

1 + X2 + Y 2

2σ 2 +3
(
X2 + Y 2

)2

8σ 4

]

T1

−
(
X2 − Y 2

4σ 2 T2 − XY

2σ 2 · T3
)

· sin 2ωt

+
[
X2 − Y 2

4σ 2 T3 + XY

2σ 2 · T2
]

· cos 2ωt

−
(
X4 − Y 4

4σ 2 T2 − X3Y + XY 3

2σ 4 · T3
)

· sin 2ωt

+
[
X4 − Y 4

4σ 2 T3 + X3Y + XY 3

2σ 4 · T2
]

· cos 2ωt
= md

(
Ÿ cosφ − Ẍ sin φ

)
(8)

Equation (8) is a nonlinear differential equationwith
periodic coefficients describing vibrations in the sys-
tem. The coefficients f1, f2, f3, T1, T2, and T3 are
determined from the electromagnetic parameters and
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the operation state of the motor, which are defined as
follows:⎧
⎨

⎩

f1 = πRL�0
2σ

(
F2
sm + F2

rm − 2FsmFrm sinψ
)

f2 = πRL�0
2σ

(
F2
sm−F2

rm cos 2ψ−2FsmFrm sinψ
)

f3 = πRL�0
2σ

(
F2
rm sin 2ψ − 2FsmFrm cosψ

)

⎧
⎨

⎩

T1 = πRL�0FsmFrm cosψ

T2 = πRL�0
(
F2
rm cos 2ψ + FsmFrm sinψ

)

T3 = πRL�0
(
FsmFrm cosψ − F2

rm sin 2ψ
)

When a permanent magnet synchronous motor oper-
ates in the steady-state, a voltage, and power equation
can be obtained from the three-phase symmetric elec-
tric vector [23], as defined in Eq. (10). These six elec-
tromagnetic coefficients describe the electromagnetic
field and operating conditions of themotor and are cou-
pled as defined in Eq. (9):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U sin θ = Iq Xq + Id R1

U cos θ = E0 − Id Xd + Iq R1

E0 = 4.44 f KdpN�δ0K�

mE0U
Xd

sin θ + mU2

2

(
1
Xq

− 1
Xd

)
sin 2θ = Pem

(9)

whereU is the effective voltage, Xd and Xq are the dq-
axis synchronous reactance (a surface-type permanent
magnet synchronousmotor is used, thus Xd = Xq). R1

is the stator winding resistance, E0 is the fundamental
back electromotive force produced by the permanent
magnetic air gap, θ is the power angle, and ψ is the
power factor angle. Id = I1 sinψ , and Iq = I1 cosψ

The lateral vibration in multiple electromechani-
cal coupling equations is related to torsional vibration
parameters, while the torsional vibration is related to
transverse vibration parameters. The coefficients in the
electromechanical coupling equations are determined
by the structural parameters and the electromagnetic
field of the PMSM. This illustrates the electromechan-
ical coupling inherent in this dynamic model.

The angular displacement of the PMSM rotor is
φ = ωt + θ . ω is the angular frequency of the arma-
ture current, and θ is the relative angular displacement
between the rotor pole center line and the synthetic
magnetic potential. When the motor does not exhibit
a synchronous oscillation, dθ

dt can be considered to
change slowly, i.e., φ̇ = (ω + θ̇

) = �, and φ̈ = �̇

It is assumed that Z = X + iY , Z̄ = X − iY , and
introducing the following parameters

k2 = km
m

− f1
mσ

, 2μ = c

m
, k21 = f1

m
,

k22 = f2
m

, k23 = f3
m

N1 = T1
J

, N2 = T2
J

,

N3 = T3
J

, B = M

J
, q = me

2J

The second equation in Eq. (8) is multiplied by i and
added to the first equation. If the damping force and
electromagnetic force are small relative to the elastic
force, the small terms can be moved to the right side
of the equations, and a small parameter ω can be intro-
duced into these equations. Ultimately, the coupling
equations can be simplified as follows:

d2Z

dt2
+ k2Z

= ε

[
−2n Ż + 1

2σ

(
k22 − jk23

)
ei2ωt · Z̄

+ 3k21
2σ 3 Z

2 Z̄ + 1

4σ 3

(
k22 + jk23

)
e−i2ωt · Z3

+ 3

4σ 3

(
k22 − jk23

)
ei2ωt · Z̄2 · Z

+ r
(
�2 − j�̇

)
ei�t
]

d2�

dt2
= ε

[
B − N1 − N1

2σ 2 Z Z̄ − 3N1

8σ 4 Z
2 Z̄2

− 1

8σ 2 (N3 − i N2)

· e−i2ωt · Z2 − 1

8σ 2 (N2 + i N3) e
i2ωt · Z̄2

− 1

8σ 4 (N3 − i N2)

·e−i2ωt · Z3 Z̄ − 1

8σ 4 (N3 + i N2) e
i2ωt · Z Z̄3

−iq

(
d2 Z̄

dt2
ei�t − d2Z

dt2
e−i�t

)]
(10)

These differential equations define the multiple elec-
tromechanical coupling dynamics model; they are non-
linear differential equations with periodic coefficients.
The differential equations are described by parametric
vibrations in nonlinear vibration theory.

Equation (8) shows that f1 can define the unbalanced
electromagnetic force in the absence of vibration. Fig-
ure 2 shows the variation in the critical speed of the
motor as a function of the electromagnetic force f1
and four different values of magnetic circuit saturation
coefficients. One can see that the critical speed rapidly
decreases as the unbalanced electromagnetic force f1
increases. An unbalanced electromagnetic force causes
the critical speed to vary over a larger range. The critical
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speed can even decrease to zero when the unbalanced
electromagnetic force reaches a certain value. This is
equivalent to the case where the unbalanced electro-
magnetic force on the rotor shaft is equal to the elastic
restoring force.

3 Solving of multiple coupling dynamics

In order to focus on the electromagnetic vibration
excited by the electromagnetic force, it is assumed that
d= 0. It is easy to design the normal operating speed of
the rotor system such that it produces resonance. The
primary parametric resonance was investigated in this
paper.

It is useful to express the position of the rotor in polar
coordinates during analysis. In light of this, a multiple
electromechanical dynamics equation can be written in
polar coordinates using the transformation

Z = Aei(ωt+β) (11a)

Ż = i Aωei(ωt+β) (11b)
dφ

dt
= � (11c)

The new variables A andβvary slowly over time. Equa-
tions (11a) and (11c) can be written as

⎧
⎨

⎩

Ż = dA
dt e

i(ωt+β) + A
(
iω + i dβdt

)
ei(ωt+β)

˙̄Z = dA
dt e

−i(ωt+β) − A
(
iω + i dβdt

)
ei(ωt+β)

(12)

Equation (11b) can be substituted into Eq. (12),
yielding the following equation:

dA

dt
ei(ωt+β) + i A

dη

dt
ei(ωt+β) = εi A (k − ω) ei(ωt+β)

(13)

where (k − ω)in Eq. (13) is known as a small parame-
ter, and thus, a small parameter ε can be added. Equa-
tion (11b) can be rewritten in the following form:

Z̈ = jk
dA

dt
ei(ωt+β) − Akωei(ωt+β)

−Ak
dβ

dt
(k − ω) ei(ωt+β) (14)

Substituting Eqs. (11) and (14) into the first equation
in Eq. (10) yields

jk
dA

dt
ei(ωt+β) − Ak

dβ

dt
ei(ωt+β)

= ε
[
Ak (ω − k) ei(ωt+β) − i2μAkei(ωt+β)

+ 1

2σ

(
k22 − ik23

)
Aei(ωt−β) + 3k21

2σ 3 A
3Aei(ωt+β)

+ 1

4σ 3

(
k22 + ik23

)
A3ei(ωt+3β)

+ 1

4σ 3

(
k22 − ik23

)
A3ei(ωt−β) (15)

dA
dt and dβ

dt can be solved by taking the real part of Eqs.
(10) and (15), respectively. The standard nonlinear dif-
ferential equations can be obtained by substituting Eq.
(14) into the second equation in Eq. (10) as follows:

dA

dt
= − ε

[

2μA sin2 (ωt + β) + Ak22
2σk

cos (ωt − β)

· sin (ωt + β) + Ak23
2σk

sin (ωt − β)

· cos (ωt + β) + 3A3k22
4σ 3k

cos (ωt − β)

· sin (ωt + β) + 3A3k23
4σ 3k

sin (ωt − β)

· sin (ωt + β) + 3A3k21
2σ 3k

cos (ωt − β)

· sin (ωt + β)

dβ

dt
= −ε [(ω − k) + 2n sin (ωt + β) · cos (ωt + β)

+ k22
2σk

cos (ωt − β) · cos (ωt + β)

+ k23
2σk

sin (ωt − β) · cos (ωt + β)

+3A2k22
4σ 3k

cos (ωt − β) · cos (ωt + β)
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+3A2k23
4σ 3k

sin (ωt − β) · cos (ωt + β)

+3A2k21
2σ 3k

cos2 (ωt + β)

d2�

dt2
= ε

[
B − N1 − N1

2σ 2 A
2 − 3N1

8σ 4 A
4

−
(

A2

4σ 2 + A4

4σ 4

)
(N3 cos 2η + LN2 sin 2η)

(16)

The right side of dA
dt ,

dβ
dt , and

d�
dt in Eq. (16) contains

the small parameter, and thus, A, β, and � are slowly
varying functions. We use the average method from
nonlinear vibration theory to transform the standard
nonlinear differential equations [1]. The approximate
solution of Eq. (16) is

⎧
⎨

⎩

A = a + εF1 (t, a, η, ρ)

β = η + εF2 (t, a, η, ρ)

� = ρ + εF3 (t, a, η, ρ)

(17)

where F1 (t, a, η, ρ), F2 (t, a, η, ρ), and F3 (t, a, η, ρ)

are the small periodic functions. At the same time, the
derivative of new variables a, η, and ρ satisfies

⎧
⎨

⎩

da
dt = εY1 (a, η, ρ) + ε2Y ∗

1 (t, a, η, ρ, ε)
dη
dt = εY2 (a, η, ρ) + ε2Y ∗

2 (t, a, η, ρ, ε)
dρ
dt = εY3 (a, η, ρ) + ε2Y ∗

3 (t, a, η, ρ, ε)

(18)

A first-order approximate solution can be obtained by
substituting Eqs. (17) and (18) into (16):

da

dt
= − ε

[

μa + k22
(
σ 2 + a2

)
a

4kσ 3 sin 2η

+k23
(
σ 2 + a2

)
a

4kσ 3 cos 2η

]

dη

dt
= − ε

[

(ω − k)+ 3k21a
2

4kσ 3 + k22
(
σ 2 + 2a2

)

4kσ 3 cos 2η

−k23
(
σ 2 + a2

)
a

4kσ 3 sin 2η

]

dρ

dt
= ε

[
B − N1 − N1

2σ 2 a
2 − 3N1

8σ 4 a
4

−N3

4

(
a2

σ 2 + a4

σ 4

)
cos 2η

−N2

4

(
a2

σ 2 + a4

σ 4

)
sin 2η

]
(19)

When the vibration is unsteady, the amplitude a, phase
angle η, and angular velocity � change with time, and
vice versa, when the vibration is steady. da

dt = dη
dt = 0

defines the condition for steady-state vibration, yield-
ing

μa + k22
(
σ 2 + a2

)
a

4kσ 3 sin 2η

+k23
(
σ 2 + a2

)
a

4kσ 3 cos 2η = 0

(ω − k) + 3k21a
2

4kσ 3 + k22
(
σ 2 + 2a2

)

4kσ 3 cos 2η

−k23
(
σ 2 + a2

)
a

4kσ 3 sin 2η = 0

L − N1 − N1

2σ 2 a
2−3N1

8σ 4 a
4 − N3

4

(
a2

σ 2+ a4

σ 4

)
cos 2η

−N2

4

(
a2

σ 2 + a4

σ 4

)
sin 2η = 0 (20)

The amplitude–frequency and phase–frequency dur-
ing steady-state vibration can be studied using Eq. (20).
The transient vibration can be studied using Eq. (19).
For example, the transition from resonance to tran-
sience in the resonance region can be studied. Second-
and higher-order terms were neglected during the sub-
sequent analysis. This simplifies Eq. (20) as follows:

μa + k22a

4kσ
sin 2η + k23a

4kσ
cos 2η = 0

(ω − k) + 3k21a
2

4kσ 3 + k22
4kσ

cos 2η − k23a

4kσ
sin 2η = 0

B − N1 − N1

2σ 2 a
2 − N3a2

4σ 2 cos 2η − N2a2

4σ 2 sin 2η = 0

(21)

Calculation and analysis can be carried out separately
in the two cases using Eqs. (20) and (21).

4 Effects of changes in system parameters on rotor
response

sin 2η and cos 2ηcan be solved using the first and sec-
ond forms of Eq. (21). The equation describing the
amplitude is obtained using sin2 2η + cos2 2η = 1:

a =

√√
√√√−4σ 2

3k1

⎡

⎣σ (ω − k) k ±
√
k22 + k43

16
− μ2σ 2k2

⎤

⎦

(22a)
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Table 1 Prototype parameters

Parameter terms Symbol Value Unit Parameter terms Symbol Value Unit

Phase m 3 Pitch/pole ration αp 0.85

Pole pairs p 4 Outer radius of rotor Ro 79.5 mm

Slot number Qs 48 Inner radius of rotor Rs 55.5 mm

Parallel branch N 6 Length of stator core l 85 mm

Remanence air-gap length Br 1.28 T Rated current (peak) Irated 200 A

δ0 1.5 mm Inertia of machine rotor J1 0.067 kgm2

Magnet thickness hm 8 mm Inertia of mechanical rotor J2 0.12 kgm2

tan 2η = 4σ 3μkk22 − 3k21k
2
3a

2 − 4(ω − k)σ 3kk23
4σ 3μkk22 + 3k21k

2
3a

2 + 4(ω − k)σ 3kk23
(22b)

The boundarywidth of the parametric resonance region
can be obtained as follows:

k −
√
k22 + k43
16σ 2k2

− μ2 < ω < k +
√
k22 + k43
16σ 2k2

− μ2

(23a)

�ω = 2

√
k22 + k43
16σ 2k2

− μ2 (23b)

Meanwhile, the angular velocity can be determined
from the third equation in Eq. (21):

T = N1 + N1

2σ 2 a
2 + N3a2

4σ 2 cos 2η + N2a2

4σ 2 sin 2η (24)

Rotational equation equilibrium is defined when the
following equation is satisfied:

B − T = 0 (25)

In general, the mechanical parameters will not change
during operation, and thus, the resonance region and
amplitude shape will not change. However, the electro-
magnetic parameters k2 and k3 will vary with changes
in load and other electromagnetic parameters, and thus,
the region and shape of the parameter resonance deter-
mined by k2 and k3 will change.

A high power density PMSM and rotor were sim-
ulated with the computational parameters listed in
Table 1. The characteristic curves describing
amplitude–frequency [Eq. (22a)] and phase–frequency
[Eq. (22a)] of multiple electromechanical coupling
parameters are shown in Fig. 3. The parametric res-
onance amplitude curve has two branched curves AB
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Fig. 3 Amplitude–frequency and phase–frequency characteris-
tic curves for various values of the periodic coefficients (cosψ =
0.5)

and CD. As the excitation frequency ω increases, the
amplitude curves vary along the F–D–E–B route. The
amplitude jumps to point E when the excitation fre-
quency increases to point D, indicating the parametric
resonancewas excited. The amplitude decreases gradu-
ally as the excitation frequency ω continues increasing
along the EB branch to point B, and then, the parame-
ter vibration disappeared completely. On the contrary,
when the excitation frequency ω decreased to a small
value, the amplitude curve varies along B–E–A–C–F.
The parametric resonance was excited, and the ampli-
tude increases gradually when the excitation frequency
decreases to point B. The amplitude is maximized at
point A and suddenly drops to point F, and resonance
in the coupling parameters completely disappeared.
This amplitude jump phenomenon occurs at resonance,
resulting in catastrophic failure of the system.

One can see that the phase–frequency curve is invari-
ant outside the boundary of the parameter resonance
area, and it begins to change when the excitation fre-
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Fig. 4 Comparison of the amplitude–frequency characteristics
in three operating states

quencyω varies within the resonance boundary. In par-
ticular, the phase–frequency curve exhibits jumpmuta-
tion when the excitation frequency equals to resonance
point. If the motor rotor operates within the parameter
resonance area for a long time, fatigue damage accu-
mulates in the rotor.

From the view of control, the PMSM can be used
to regulate the stator armature current by controlling
the inner power factor angle. Thus, the internal power
factor angle determines different control states for the
PMSM. The parametric resonance amplitude curves
were compared with three different PMSM operating
states, which is shown in Fig. 4. It can be seen that the
amplitude and resonance region width for cosψ = 0.3
is a factor 2 to 3 larger than that for cosψ = 0.5
and cosψ = 0.6. Consequently, the inner power fac-
tor angle plays a critical role in determining the res-
onance amplitude and width of the resonance region.
This will stimulate resonance in the coupling parame-
ters resonance if the internal power factor angle control
is unreasonable.

Figure 4 shows that the internal power factor angle
does not change the inclination of the resonance curve,
but it has a great influence on the width of the reso-
nance region.We then plot the resonance region bound-
ary width �ω in Fig. 5 while varying the inner power
factor angle. �ω has a tendency to decrease and then
increase when cosω varies from -1 to 1, and the mini-
mum value corresponds to cosψ = 0.6. The minimum
resonance region boundary width �ω is about 10% of
the maximum value. cosψ < 0 indicates the PMSM

Fig. 5 Resonance zone boundary width�ω in various operating
states

operates in the field enhanced area, and vice versa,
when cosψ > 0. In order to expand the speed range, a
high power density PMSM (e.g., the motor used in an
electric vehicle) is usually controlled in the field weak-
ened area. Moreover, we find that the appropriate min-
imum value can be found in the field weakened area.
This is similar to the aforementioned resonance in the
coupling parameters and is more likely to arise when
the internal power factor angle control is unreasonable.

From the perspective of design, the number of turns
in the coil multiplied by the current (NI, i.e., ampere-
turn) is an important design parameter. Ampere-turn
is the unit of magnetic potential in a magnetic cir-
cuit.According toAmpere’s law, themagnetic potential
F = ∮Hdl reflects the ability of a current to generate a
magnetic field. If compared with the power supply in a
circuit, this can be understood as a “magnetic source.”
The resonance region boundary width�ω correspond-
ing to variation in ampere-turn is shown in Fig. 6,which
shows that �ω increases first and then decreases as NI
increases, and there exists a minimum value. The dif-
ference between the minimum and maximum value is
nearly a factor 3. Therefore, NI has a great influence
on resonance and this parameter should be considered
carefully when designing a motor.

5 Stability analysis of multiple coupling dynamics

The stability of the multiple electromechanically cou-
pled vibration system in the steady state can be ana-
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Fig. 6 Resonance zone boundary width �ω for various values
of NI

lyzed by using Eqs. (19), which can be rewritten in the
following form:

da

dt
= f1 (a, η, ρ)

dη

dt
= f2 (a, η, ρ)

dρ

dt
= f3 (a, η, ρ) (26)

In the perturbed system, a, η, and ρ expressed as

a = a0 + a1, η = η0 + η1, ρ = ρ0 + ρ1 (27)

where a0, η0, and ρ0 denote the steady-state motion of
the system. These parameters are roots of the steady-
state equation group as shown inEq. (20). a1, η1, andρ1
denote small values relative to the motion in the steady
state. According to the stability criterion of a nonlinear
system [4], substituting Eqs. (27) into (26) and then
expanding it to a series form yield the following varia-
tional equation:

da1
dt

= d11a1 + d12η1 + d13ρ1

dη1
dt

= d21a1 + d22η1 + d23ρ1

dρ1
dt

= d31a1 + d32η1 + d33ρ1 (28)

The coefficient matrix is:

∣∣di j
∣∣ =

∣
∣∣∣∣∣∣
∣

∂ f 01
∂a

∂ f 01
∂η

∂ f 01
∂ρ

∂ f 02
∂a

∂ f 02
∂η

∂ f 02
∂ρ

∂ f 03
∂a

∂ f 03
∂η

∂ f 03
∂ρ

∣
∣∣∣∣∣∣
∣

(29)

where the superscript 0 indicates the value of partial
derivative when a = a0, η = η0, and ρ = ρ0.

d11 =
(

a

σ 2 + 3a3

2σ 4

)
N1 − N3

2

(
aσ 2 + 2a2

σ 4

)
· Q1

+N2

2

(
aσ 2 + 2a2

σ 4

)
· Q2

d12 = −N3

2

(
a2σ 2 + a4

σ 4

)
· Q2

−N2

2

(
a2σ 2 + a4

σ 4

)
· Q1, d13 = ∂T

∂�
,

Q1 = 4kσ 3
[
(ω − ka) k22

(
σ 2 + a2

)+ nk23
(
σ 2 + 2a2

)]

(
σ 2 + a2

) (
σ 2 + 2a2

) (
k42 + k43

) ,

Q2 = 4kσ 3
[
(ω − ka) k23

(
σ 2 + a2

)+ nk22
(
σ 2 + 2a2

)]

(
σ 2 + a2

) (
σ 2 + 2a2

) (
k42 + k43

) ,

d21 = 2na2

σ 2 + a2
, d22 = 2a (ω − ka)

(
σ 2 + a2

)

σ 2 + 2a2
, d23 = 0,

d31 = ∂ka
∂a

+ 4a (ω − ka)
(
σ 2 + a2

)

σ 2 + 2a2
,

d32 = 2n
(
σ 2 + 2a2

)

σ 2 + a2
, d33 = 0

According to the Routh–Hurwitz criterion, the suf-
ficient and necessary condition for stability of the mul-
tiple electromechanical coupling dynamic equations is
that the roots of Eq. (30) have a negative real part:

λ3 + b1λ
2 + b2λ + b3 = 0 (30)

That is, b1 > 0, b3 > 0, and b1b2 − b3 > 0, where:

b1 = − (d11 + d22 + d33) ,

b2 = d11d33 + d11d22 + d22d33

− d32d23 + d12d21 + d13d31

b3 = d11d23d32 + d12d21d33 + d13d22d33

− d11d22d33 − d12d23d31 − d13d21d32

Thus, the following equations are the necessary and
sufficient conditions for stability:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
a (ω − ka)

∂ka
∂a + 4 (ω−ka)2

ν2

(1+2ν2)
+ 2n2ν2

(
1+2ν2

)2

(1+ν2)
3

]
· N > 0

2n − N > 0

N 2 − 2nN − 2a(ω−ka )
(
1+ν2

)

(1+2ν2)
∂ka
∂a − 8(ω−ka )2ν2

(
1+ν2

)3

(1+ν2)
2
(1+2ν2)

2

+ 2n2ν2
(
1+2ν2

)3

(1+ν2)
2
(1+2ν2)

2 > 0

(31)

where N = ∂T
∂�

, ka = k − 3k1a2

4kσ 3 , and ν = a
σ
.
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Fig. 7 Stability of the
characteristic curve for
amplitude frequency
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Figure 7 shows the stability of the multiple elec-
tromechanical coupling steady-state parameters in three
electromagnetic states. With regard to the right branch
curve, ∂ka/∂a < 0 and ω− ka > 0. If N < 0, Eq. (31)
shows that the right branch curve is unstable for small
amplitude when the amplitude exceeds a certain value.
As can be seen in Fig. 7, line BC in the right branch
curve is stable and large amplitude line AB and small
amplitude line CD are unstable. With regard to the left
branch curve, ∂ka/∂a < 0, ω − ka < 0. If N < 0, the
first equation in Eq. (31) does not satisfy the stability
condition. If N > 0, the second equation in Eq. (31)
does not satisfy the stability condition. Consequently,
we can reach the conclusion that entire left branchof the
curve is unstable. For example, points P1 and P2 repre-
sent two different amplitudes corresponding to a single
frequency for specific parameters. It is expected that
point P2 is unstable and cannot be physically reached
by the system.

One may validate the results obtained from the ana-
lytical method with the results obtained by numeri-
cally solving Eq. (10). The fourth-order Runge–Kutta
methodwas used to solve Eq. (10) in order to determine
the temporal response of the system, as illustrated in
Fig. 7b. Four points B, C , P1, and P3 identified with
cross-marks on the frequency response curves shown in
Fig. 7b are chosen for comparison. The numerical cal-

culation results of the four points are shown in Fig. 8.
Take point B as an example, the amplitude of the peri-
odic response obtained by numerically integrating Eq.
(10) is found to be 0.7517,while the amplitude obtained
by using analytical method is observed to be 0.7164 in
Fig. 8a. Hence, the error in the response amplitude is
found to be 4.92%. Similarly, after investigation, one
finds that the errors for other three points P1, P3, and
C are nearly 4.6%. From the steady-state response, one
may note that the result obtained by numerically solv-
ing Eq. (10) is found to be consistent with that deter-
mined using the analytical method. The error in the
amplitude can be substantially reduced by using the
higher-order method of multiple scales and the high-
order terms in Eq. (20). However, incorporating higher-
order terms will increase the computational complex-
ity of the problem. The first-order method of multiple
scales and Eq. (21) were used in order to avoid this
complexity.

To illustrate the effect of coupling between lateral
and torsional vibration, Fig. 9 shows the amplitude–
frequency characteristic curves without considering
lateral/torsional coupling. By comparing Figs. 7 and 9,
it can be seen that the amplitude–frequency curve
is obviously different. In addition, when transverse–
torsional coupling is considered, there are three insta-
bility regions, while there is only one instability
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Fig. 8 Time history for the
points B, C , P1, and P3 as
marked in Fig. 7b
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Fig. 9 Amplitude–frequency characteristic curves without con-
sidering lateral/torsional vibration coupling

region when transverse–torsional coupling is consid-
ered. Therefore, coupling between lateral and torsional
vibration has a great influence on the vibration of the
rotor system.

Stability analysis of the rotational equilibrium is
shown in Fig. 10. This figure shows that the electro-
magnetic torque T is a function of amplitude a, in
accordance with Eq. (19). As mentioned above, there
are two resonance branches (left and right), and thus,
the electromagnetic torque T will also exhibit two
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Fig. 10 Rotation stability at equilibrium

branch curves (T1 and T2) in Fig. 10, respectively.
Regarding the stability of the right branch line T1, the
segment CF is stable, while segment AC is unstable.

Curves B1, B2, and B3 represent three kinds of load
curves. The two load curves intersect the electromag-
netic torque curve T1 at a stable points D and E . The
motor can run stably at a certain speed in these two
situations. On the contrary, the two load curves also
intersect the electromagnetic torque curve T1 at unsta-
ble points I and J , meaning that the PMSM is not stable
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in these two situations. When the load curve is steeper,
e.g., when the slope of the B3 curve is larger than that
of T1, curve B3 intersects the electromagnetic torque
curves T1 and T2 at the unstable points, and thus, the
motor is unstable in this load condition.

6 Conclusions

Nonlinear coupling between lateral and torsional vibra-
tions in a high power density PMSM rotor caused
by electromagnetic excitation was investigated in this
study. A multiple electromechanical coupling dynamic
model of an eccentric PMSM rotor was derived using
Lagrange–Maxwell theory. An average method was
used to determine steady-statemotion of the rotor under
the influence of electromagnetic excitation. Stability
analysis was performed using the Routh–Hurwitz cri-
terion and a numerical scheme with the Runge–Kutta
method. The effect of design and control parameters on
the dynamic behavior of the system was characterized.
We arrive at the following important results:

• A significant reduction in the magnitude of the crit-
ical speed was observed as the unbalanced electro-
magnetic excitation induced by electromechanical
coupling increased. One can conclude that electro-
magnetic excitation acting on the rotor produces
negative stiffness. Consequently, the natural fre-
quency decreased below a certain threshold, lead-
ing to resonance and unstable motion.

• The conditions for stable resonance were deter-
mined. The resonance curve for the coupling
parameters contains two branch curves. The left
branch is stable, while the right branch is only par-
tially stable. Parametric resonance can be stimu-
lated when the excitation frequency increases to a
certain degree and range. In particular, an ampli-
tude jump phenomenon arises within the resonant
area. Numerical calculations were used to validate
the analytic results.

• The phase–frequency curve is invariant outside the
boundary of the parameter resonance area. When
the excitation frequency was set equal to the res-
onance point, the phase–frequency curve exhibits
jump mutation. If the motor rotor operates within
the parameter resonance area for a long time, the
rotor may experience fatigue damage.

• The control and design parameters of the motor
have great influence on the resonance amplitude

and width of the resonance region for the rotor sys-
tem. Parametric resonancewill occur, and thewidth
of the resonance region will change if control over
the internal power factor angle is unreasonable or
the value of NI in the motor is inappropriate.

• The operating conditions and external load condi-
tions on a high power density PMSM have greater
influence on the stability of the multiple electrome-
chanical coupling dynamics. The electromagnetic
state of themotor and the rate of change in the exter-
nal load may cause the system to enter the unstable
operating area.

The results provide a theoretical basis for design and
control of electromechanical systems that use PMSMs.
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