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Abstract For improved stability of fluid-conveying
pipes operating under the thermal environment, func-
tionally graded materials (FGMs) are recommended
in a few recent studies. Besides this advantage, the
nonlinear dynamics of fluid-conveying FG pipes is an
important concern for their engineering applications.
The present study is carried out in this direction, where
the nonlinear dynamics of a vertical FG pipe conveying
hot fluid is studied thoroughly. The FG pipe is consid-
ered with pinned ends while the internal hot fluid flows
with the steady or pulsatile flow velocity. Based on the
Euler–Bernoulli beam theory and the plug-flowmodel,
the nonlinear governing equation ofmotion of the fluid-
conveying FG pipe is derived in the form of the nonlin-
ear integro-partial-differential equation that is subse-
quently reduced as the nonlinear temporal differential
equation using Galerkin method. The solutions in the
time or frequency domain are obtained by implement-
ing the adaptive Runge–Kutta method or harmonic bal-
ancemethod. First, the divergence characteristics of the
FG pipe are investigated and it is found that buckling
of the FG pipe arises mainly because of temperature of
the internal fluid. Next, the dynamic characteristics of
the FG pipe corresponding to its pre- and post-buckled
equilibrium states are studied. In the pre-buckled equi-
librium state, higher-order parametric resonances are
observed in addition to the principal primary and sec-
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ondary parametric resonances, and thus the usual shape
of the parametric instability region deviates. However,
in the post-buckled equilibrium state of the FG pipe,
its chaotic oscillations may arise through the intermit-
tent transition route, cyclic-fold bifurcation, period-
doubling bifurcation and subcritical bifurcation. The
overall study reveals complex dynamics of the FG pipe
with respect to some system parameters like tempera-
ture of fluid, material properties of FGM and fluid flow
velocity.

Keywords Nonlinear dynamics of pipes ·Functionally
graded material (FGM) · Pulsatile fluid flow · Static
instability of pipes · Parametric instability of pipes

1 Introduction

Fluid-conveying pipes are common elements in many
engineering systems like nuclear power system, petro-
chemical system, marine system, ocean thermal energy
conversion system, rocket and aircraft engine, etc.
Generally, fluid-conveying pipes undergoflow-induced
vibration as well as dynamic instabilities. So, their
dynamic characteristics have been studied substantially
bymany researchers in the past four decades [1–9], and
it has been revealed that the static and dynamic instabil-
ities of a fluid-conveying pipe arise because of the flow-
induced compressive stress. The static instability or
buckling of a fluid-conveying pipe usually occurs when
the pipe is supported through its both ends, and the
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internal fluid flows with the steady flow velocity. The
internal fluid flowwith steady flow velocity also causes
the flutter instability of cantilever pipes [10–15]. How-
ever, in a majority of practical fluid-conveying pipes,
the internal fluid flows with pulsatile flow velocity that
causes dynamic instability of a pipe through the para-
metric resonance [5,16]. This kind of dynamic instabil-
ity is commonly known as parametric instability, and it
is usually characterized through a parametric instabil-
ity region in the two-dimensional domain of frequency
and velocity–amplitude of pulsatile fluid flow [17–24].
Generally, the parametric instability or resonance at the
pre-buckled equilibrium state of a fluid-conveying pipe
appears with the periodic or quasi-periodic oscillations
of the pipe. However, similar dynamic instability at
the post-buckled equilibrium state of a fluid-conveying
pipemay lead to the chaoticmotion of the pipe [25–33].

In many engineering systems like heat exchanger,
steam generator, nuclear reactor, etc., a fluid-conveying
pipe operates in the thermal environment where the
thermally induced compressive stress arises in the pipe
material in addition to the similar stress due to fluid
flow. So, the instability of the pipe occurs at a low flow
velocity of the internal fluid [34]. This shortcoming
can be alleviated using the functionally graded (FG)
pipes. The functionally graded materials (FGMs, [35])
are widely utilized in the design of structural elements
for their operation in the thermal environment [36,37].
FGMs are usually comprised of two isotropic mate-
rials such as metal and ceramic. The composition of
these constituent materials varies smoothly from fully
ceramic to fully metal in the desired direction so that
the properties of FGM change gradually from ceramic
to metal properties in that direction [35]. Although
an FGM is a composite material of two isotropic
constituent materials, it is characterized as a macro-
scopically homogeneous isotropic material. An FGM
can withstand a high temperature due to the ceramic
constituent, and it also possesses sufficient ductility
because of the metallic constituent. Therefore, the sta-
bility of a pipe conveying hot fluid is expected to
improve when it is made of FGM instead of conven-
tional isotropic material. However, a few studies on the
stability analysis of fluid-conveying FG pipes are avail-
able in the literature.Hosseini andFazelzadeh [38] con-
sidered a cantilever FG pipe operating in the thermal
environment and studied its thermo-mechanical stabil-
ity for the internal fluid flowwith the steady flow veloc-
ity. Eftekhari and Hosseini [39] also carried out a simi-

lar study for investigating the stability of a rotating FG
pipe.

In these available studies [38,39], the linear analy-
sis of fluid-conveying FG pipes has been carried out,
and it is reported that the stability of fluid-conveying
pipes improves significantly when the pipes are made
of FGM instead of conventional isotropic material. In
fact, the improved stability of an FG pipe arises mainly
because of its thermal-resistant property and high stiff-
ness. Despite these important material properties of
an FG pipe, it may undergo buckling mainly because
of a high temperature of the internal fluid, and this
static instability of an FG pipe may lead to its complex
dynamic behaviour when the internal hot fluid flows
with the steady or pulsatile flow velocity. So, for prac-
tical applications of fluid-conveying FG pipes, their
dynamic characteristics have to be known in detail. It
shows a detailed study on the nonlinear dynamics of
fluid-conveying FG pipes with respect to the variations
of some system parameters like material composition,
temperature of the internal fluid and fluid flow velocity.
However, a similar study is not yet reported in the liter-
ature to the best knowledge of authors. So, presently a
thorough study on the nonlinear dynamics of a vertical
FG pipe is carried out to explore its dynamic character-
istics for steady or pulsatile flow velocity of the internal
hot fluid. The FG pipe is taken with pinned ends, and
it is considered to be made of metal and ceramic con-
stituents. The overall study is presented in the following
manner.

In Sect. 2, the governing equation of motion of
the fluid-conveying FG pipe is derived in the form
of the nonlinear integro-partial-differential equation.
In Sect. 3, the governing equation of motion is first
expressed in the form of the nonlinear temporal dif-
ferential equation using the Galerkin method. Subse-
quently, the nonlinear temporal differential equation
is expressed in the frequency domain by implement-
ing the harmonic balance method (HBM). In Sect. 4,
the static instability of the FG pipe is fist investigated.
With reference to the static instability, the pre- and post-
buckled equilibrium states of the FGpipe are identified.
Subsequently, the nonlinear dynamic characteristics of
the fluid-conveying FG pipe corresponding to its pre-
and post-buckled equilibrium states are investigated.
In the last part of Sect. 4, the global bifurcation dia-
grams are presented for analysing the complex nonlin-
ear dynamics of the fluid-conveying FG pipe.
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2 System model and governing equation of motion

Figure 1 shows a vertical FG pipe conveying hot fluid.
The FG pipe is composed of ceramic and metal con-
stituents. The inner surface of the FG pipe is made
of fully ceramic to withstand a high temperature of
the internal fluid while the composition of the con-
stituent materials is varied smoothly from ceramic to
metal across the wall thickness of the pipe. The inter-
nal hot fluid flowswith steady or pulsatile flowvelocity,
and the FG pipe is supported through pinned ends. It is
assumed that temperature (Ti ) and pressure (Pin) of the
internal fluid do not vary along the length of the FGpipe
while the outer metal-rich surface of the same FG pipe
is exposed to the room temperature (To = 300 K). The
axis of the FG pipe is represented by the x-axis of the
reference coordinate system (xyz) and the transverse
deflection of the pipe is denoted by the z-direction. The
inner radius, outer radius, wall thickness and length of
the FG pipe are indicated by, ri , ro, h and L , respec-
tively. A slender FG pipe is considered in the present
analysis, and thus it is modelled following the Euler–
Bernoulli beam theory. The bending deflection of the
FG pipe is considered to be restricted to long wave-
lengths in comparison with the mean radius of the pipe.
So, the internal fluid flow is modelled according to the
plug-flow model.

In the present formulation, the material damping of
the ceramic constituent is ignored but the same for the
metal constituent is considered. Accordingly, the uni-
axial thermo-visco-elastic constitutive relation of FGM
can be written as given in Eq. (1) where the mate-
rial damping is modelled following the Kelvin–Voigt
model [40].

σx =
(
E + E∗ ∂

∂t

)
(εx − αT�T ) ;

�T = T (r) − TR (1)

In Eq. (1), σx and εx are the longitudinal stress and
strain, respectively, at any point in the FG pipe; E ,
E∗ and αT are the storage modulus, viscoelastic dissi-
pation parameter and coefficient of thermal expansion,
respectively; T (r) represents temperature at a radial (r)
point within the wall thickness of the FG pipe; TR is the
reference temperature and it is considered as the room
temperature (TR = To = 300 K). The material proper-
ties of an FGM are usually defined following the rule
of mixture, where the volume fractions of the ceramic
and metal constituents vary in a particular direction

Fig. 1 Schematic diagram of a vertical FG pipe conveying hot
fluid

according to a power-law [35]. Similarly, the material
properties (P(r)) of the present FG pipe vary across its
wall thickness as [41],

P(r) = 〈PmVm(r) + PcVc(r)〉,
Vc =

(
1

2
−
(
r − rm

h

))n

, Vm = (1 − Vc) (2)

where Pc and Pm represent material properties of the
ceramic and metal constituents, respectively; Vc and
Vm denote volume fractions of the ceramic and metal
constituents, respectively; rm representsmean radius of
the pipe and n denotes power-law exponent or graded
exponent of FGM. The material constants of the FG
pipe like storage modulus (E), viscoelastic dissipation
parameter (E∗), coefficient of thermal expansion (αT ),
thermal conductivity (k) and mass density (ρ) can be
estimated using Eq. (2).

Generally, the thermal conductivity (k) of FGM is
a temperature-dependent material constant. However,
this material constant of FGM can be assumed as a
temperature-independent material constant depending
on the constituent materials and temperature range of
interest. According to this assumption, temperature
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(T (r)) at any radial location within the wall thickness
of the FG pipe can be obtained by solving the fol-
lowing one-dimensional steady-state heat conduction
equation.

−1

r

d

dr

(
rk(r)

dT (r)

dr

)
= 0

with T = To at r = ro and T = Ti at r = ri (3)

The solution of Eq. (3) can be obtained as [41],

T (r) = Ti + To − Ti∫ ro
ri

1
rk(r)dr

r∫
ri

1

rk(r)
dr (4)

According to the Euler–Bernoulli beam theory, the
longitudinal displacement (u) at any point in the FG
pipe can be written as,

u(x, z, t) = u0(x, t) − z
∂w0(x, t)

∂x
(5)

In Eq. (5), u0 and w0 denote longitudinal and
transverse displacements, respectively, at any point
on the middle plane (xy-plane at z = 0) of the FG
pipe. According to the von Karman nonlinear strain-
displacement relations, the longitudinal strain (εx ) at
any point within the wall thickness of the FG pipe can
be written as,

εx = ∂u0
∂x

+ 1

2

(
∂w0

∂x

)2

− z
∂2w0

∂x2
(6)

The equations of motion of the FG pipe are derived
by employing extended Hamilton’s principle as,∫ t2

t1

(
δTt − δVp + δWnc

)
dt = 0 (7)

where δ is an operator for the first variation; Tt , Vp

and Wnc represent kinetic energy, potential energy and
work done by the non-conservative forces, respectively,
at an instant of time (t). The analytical expressions of
these quantities (Tt , Vp, Wnc) are given by [1],

Tt = 1

2
mf

L∫
0

[(
V + ∂u0

∂t
+ V

∂u0
∂x

)2

+
(

∂w0

∂t
+ V

∂w0

∂x

)2
]
dx

+ 1

2
mp

L∫
0

[(
∂u0
∂t

)2

+
(

∂w0

∂t

)2
]
dx,

Vp = 1

2

L∫
0

[
(E I )p

(
∂2w0

∂x2

)2

+ (E A)p

(
∂u0
∂x

+ 1

2

(
∂w0

∂x

)2
)2

− (Tth + Tin)

(
∂u0
∂x

+ 1

2

(
∂w0

∂x

)2
)

− g(mf + mp)(x + u0)
]
d

Wnc = −1

2

L∫
0

[
(E∗ I )p

∂

∂t

(
∂2w0

∂x2

)2

+ (E∗A)p
∂

∂t

(
∂u0
∂x

+ 1

2

(
∂w0

∂x

)2
)2
⎤
⎦ dx,

(E I )p =
2π∫
0

ro∫
ri

z2E(r)rdrdθ,

(E∗ I )p =
2π∫
0

ro∫
ri

z2E∗(r)rdrdθ,

(E A)p =
2π∫
0

ro∫
ri

E(r)rdrdθ,

(E∗A)p =
2π∫
0

ro∫
ri

E∗(r)rdrdθ,

mf = ρf

(
πr2i

)
,

mp =
ro∫

ri

2π∫
0

ρ(r)rdrdθ,

Tth =
2π∫
0

ro∫
ri

E(r)αT (r)�T rdrdθ,

Tin = πr2i Pin(1 − 2ν), z = rsinθ (8)

In Eq. (8), ν denotes Poisson’s ratio for the mate-
rial of the pipe; V and ρ f represent velocity and mass
density of the internal fluid, respectively; g denotes
gravitational acceleration. Substituting Eq. (8) in (7),
two coupled governing differential equations ofmotion
of the FG pipe can be obtained. Presently, the longitu-
dinal inertia force is ignored because of its very small
magnitude in comparison with that of the transverse
inertia force, and the two coupled governing equations
of motion are reduced into one equation as given in
Eq. (9). It may be noted here that a similar reduction
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procedure is illustrated in [42,43].

(m f + mp)
∂2w0

∂t2
+ 2mfV

∂2w0

∂x∂t

+ (mf + mp)g
∂w0

∂x
+ (E I )p

∂4w0

∂x4

+ (E∗ I )p
∂5w0

∂x4∂t
+
[
m f V

2 + Tth + Tin

−
(

(mf + mp)g − mf
∂V

∂t

)
(L − x)

− (E A)p

2L

L∫
0

(
∂w0

∂x

)2

dx

− (E∗A)p

L

L∫
0

(
∂w0

∂x

∂2w0

∂x∂t

)
dx

⎤
⎦ ∂2w0

∂x2
= 0 (9)

The pulsatile flow velocity of the internal hot fluid
can be expressed as [1],

V = Vf (1 + λ cos(ωt)) (10)

where Vf , λ and ω represent mean flow velocity,
velocity–amplitude and frequency of pulsatile flow
velocity, respectively.Thegoverning equationofmotion
(Eq. 9) is expressed in the dimensionless form by defin-
ing some dimensionless quantities as given in Eq. (11).
In Eq. (11), the subscript m indicates reference quan-
tities that are taken considering a similar pipe made of
metal constituent only.

η = w0

L
, ξ = x

L
, τ = ωt

2
,

vf =
(

mf

(E I )m

)1/2

Vf L , γ = mm + mf

(E I )m
gL3,

β = mf

mm + mf
, km = AL2

2I
,

α =
(

I

Em(mm + mf )

)1/2 E∗
m

L2 ,

� =
(
mm + mf

(E I )m

)1/2

L2ω,

eT = EmAαT (Ti − TR)L2/(E I )m,

T in = Tin L
2/(E I )m, (E I )p = ((E I )p/(E I )m

)
,

(E I )
∗
p = (

(E∗ I )p/(E∗ I )m
)
, (E A)p=

(
(E A)p/(E A)m

)
,

kc = (E A)pkm, kcd = ((E∗A)p/(E
∗A)m

)
kmα,

m̄ p = mp/mm, T th = Tth/(Tth)m (11)

In Eq. (11), the material properties of the reference
metal pipe are taken at the room temperature and I
denotes the second moment of the cross-sectional area
(A) of the FG pipe about the y-axis. Using the dimen-
sionless quantities (Eq. 11) in Eq. (9), the dimension-
less governing equation of motion of the FG pipe can
be obtained as,

(
�2/4

) 〈
β + (1 − β)m̄ p

〉
η̈ + (�/2)

〈
(E I )

∗
pα
〉
η̇′′′′

+�
√

βvη̇′ + (E I )pη
′′′′ + γ

〈
β + (1 − β)m̄ p

〉
η′

+ [(v2 + T̄theT + T̄in)

+
〈
(�/2)

√
βv̇ − γ

(
β + (1 − β)m̄ p

)〉
(1 − ξ)

− kc

⎛
⎝

1∫
0

(
η′)2 dξ

⎞
⎠− �kcd

⎛
⎝

1∫
0

η′η̇′dξ

⎞
⎠
⎤
⎦ η′′ = 0,

v = νf [1 + λ cos(2τ)] (12)

In Eq. (12), the overdot (·) or the superscript (′)
denotes first-order differentiation of a quantity with
respect to τ or ξ , and the repetition of overdot (·) or
superscript (′) by n times indicates nth order differen-
tiation of a quantity.

3 Solution method

The governing equation of motion (Eq. 12) is an
integro-partial-differential equation in terms of space
and timecoordinates. It is discretizedusing theGalerkin
method where the normalized eigenfunctions of a sim-
ply supported Euler–Bernoulli beam are taken as the
basis functions. Accordingly, the dimensionless trans-
verse displacement at any point of the FG pipe can be
written as,

η(ξ, τ ) =
N∑
i=1

φi (ξ)qi (τ ) = Φq (13)

In Eq. (13), N is the number of basis functions (φi );
Φ is a vector of basis functions(φi ); q is a vector of
generalized coordinates (qi ). Substituting Eq. (13) in
(12), the discretized governing equation of motion of
the FG pipe can be obtained as,
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�2Mq̈ + �G(λ, τ )q̇ + K(�, λ, τ )q

+�kcd (qTCq̇)Cq + kc(qTCq)Cq = 0,

M = [〈β + (1 − β)m̄ p
〉
/4
]
I,

G =
〈
(α/2) E I

∗
p

〉
� +

(√
βv
)
B,

K = (E I )p� +
(
v2 + T̄theT + T̄in

)

C +
[
(�/2)

√
βv̇ − γ

〈
β + (1 − β)m̄ p

〉]

(C − D) + 〈γ [β + (1 − β)m̄ p
]〉
B,

� =
1∫

0

�T�′′′′dξ , B =
1∫

0

�T�′dξ,

C =
1∫

0

�T�′′dξ, D =
1∫

0

ξ�T�′′dξ (14a)

�i j =
{
0 i �= j
λ4i i = j

, Bi j =
⎧⎨
⎩
0 i = j
2
(−1+(−1)i+ j

)
λiλ j

λ2j−λ2i
i �= j

,

Ci j =
{
0 i �= j
−λ2i i = j

, Di j =
⎧⎨
⎩

4
(
1−(−1)i+ j

)
λ3jλi

(λ2i −λ2j )
2 i �= j

0.5Ci j i = j

(14b)

where Λi j is an element at the i th row and j th column
of the matrix Λ. Similarly, Bi j , Ci j and Di j are the
elements of the matrices B, C and D, respectively; λi
is the i th eigenvalue corresponding to the eigenfunc-
tion φi . The nonlinear temporal differential equation
of motion (Eq. 14a) of the FG pipe is expressed in the
frequency domain using the harmonic balance method
(HBM). A pipe conveying pulsatile fluid usually under-
goes transverse periodic oscillation through the para-
metric resonance at the frequency of 2�n/ i [1], where
�n (n = 1, 2, 3, . . .) denotes natural frequency and i
is a positive integer. Accordingly, the solution (q) of
the temporal differential equation (Eq. 14a) is assumed
following the Fourier series as [1],

q = S X,

S = Q ⊗ IN×N ,Q = {1QcQs} ,

Qc = {cos τ cos 2τ... cosHτ } ,

Qs = {sin τ sin 2τ... sin Hτ } ,

X =
{
(q0)T (qc)T (qs)T

}T
(15)

where H denotes the total number of harmonic terms;
q0, qci and q

s
i are generalized coordinate vectors corre-

sponding to the constant, cosine and sine terms, respec-
tively; IN×N denotes unity matrix of size (N × N ) and
⊗ represents Kronecker product.

A state (q, �, λ) of vibration can be expressed with
respect to a nearby state (q0, �0, λ0) of vibration as
q = (q0 + �q),� = (�0 + ��) and λ = (λ0 + �λ),
where �q, �� and �λ denote increments over q0, �0

and λ0, respectively. Using this incremental form of
a state (q,�,λ) of vibration, the linearized incremen-
tal governing differential equation of motion can be
obtained from Eq. (14a) as,

�2
0M�q̈ + R̄G�q̇ + R̄K�q

= R̄ − R̄��� − R̄λ�λ,

R̄K = K(�0, λ0, τ )

+ kc
〈
(q0)TCq0C + 2Cq0(q0)TC

〉

+ kcd�0

〈
(q0)TCq̇0C + Cq0(q̇0)TC

〉

R̄G = �0G(λ0, τ ) + kcd�0Cq0(q0)TC,

R̄ = −
(
�2

0Mq̈0 + K(�0, λ0, τ )q0

+�0G(λ0, τ )q̇0 + kc(q0)TCq0Cq0

+ kcd�0(q0)TCq̇0Cq0
)

R̄λ = �0
√

βvf cos 2τBq̇0 + 2vvf cos 2τCq

−√βvf�0 sin 2τ(C − D)q0,

R̄� = G(λ0, τ )q̇0 −√βvfλ0 sin 2τ(C − D)q0
+ 2�0Mq̈0 + kcd(q0)TCq̇0Cq0 (16)

Using the assumed solution (Eq. 15), the Galerkin
method is used to express the linearized incremental
governing equation of motion (Eq. 16) in the frequency
domain as,

KJ (X0,�0, λ0)�X = R(X0,�0, λ0)

−R�(X0,�0, λ0)�� − Rλ(X0,�0, λ0)�λ,

KJ =
2π∫
0

ST
(
�2

0MS̈ + R̄G(X0,�0, λ0, τ )Ṡ

+ R̄K (X0,�0, λ0, τ )S
)
dτ,

R =
2π∫
0

STR̄(X0,�0, λ0, τ )dτ ,

R� =
2π∫
0

STR̄�(X0,�0, λ0, τ )dτ ,

Rλ =
2π∫
0

STR̄λ(X0,�0, λ0, τ )dτ (17)
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4 Results and discussions

In order to study nonlinear dynamic characteristics of
the vertical FG pipe conveying hot fluid with pulsatile
flow velocity, the dynamic responses of the pipe system
are evaluated with respect to the variations of differ-
ent system parameters like temperature (Ti ) of internal
fluid, graded exponent (n) of FGM, mean flow veloc-
ity (Vf) and amplitude (λ) of pulsatile flow velocity.
For evaluation of dynamic responses of the FG pipe
in the frequency domain, Eq. (17) is solved using the
Newton–Raphson method in conjunction with an arc-
length extrapolation technique [44]. The local stability
of the dynamic responses in the frequency domain is
examined using Floquet theory, where the governing
equation of motion (Eq. 16) is first expressed in the
state-space form, and then the state transition matrix
is computed following a procedure proposed by Fried-
mann et al. [45]. For evaluation of dynamic responses
of the FG pipe in the time domain, Eq. (14a) is solved
using the adaptiveRunge–Kuttamethod.The responses
in the time domain are mainly utilized to clarify the
dynamics of the FG pipe through the construction of
the global bifurcation diagram where the Poincare sec-
tion is selected on the basis of the time period (2π/�)

of pulsatile flow velocity. In all numerical results, the
responses (ηm) at the middle point (ξ = 0.5) of the FG
pipe are presented.

The geometrical properties of the FG pipe are con-
sidered as, ri = 12 mm, ro = 13.5 mm, L = 2 m. The
mass density of the internal fluid is taken as 990 kg/m3,
and the fluid is considered to flow through the FG pipe
with internal pressure (Pin) of 4.4MPa above the atmo-
spheric pressure. The temperature-dependent mate-
rial properties of the metal (Ti–6Al–4V) and ceramic
(ZrO2) constituents of FGM are given in Table 1. It
may be noted here that the thermal conductivity (k) of
these constituent materials insignificantly varies within
the temperature range of interest [36,46], and thus it is
presently taken as the temperature-independent mate-
rial constant for both the constituentmaterials (Table 1).
The Poisson’s ratio of the FGM is considered as 0.3,
while other material properties at a point within the
wall thickness of the FG pipe can be computed using
Eq. (2) and Table 1 after knowing the temperature at
that point from Eq. (4).

In order to achieve sufficient numerical accuracy in
the present results, a convergence study is conducted,
where the nonlinear frequency responses of the FGpipe

are evaluated by increasing the number (N , Eq. 13) of
basis functions in the Galerkin discretization and the
number (H) of harmonic terms in the assumed solution
(Eq. 15). Based on this convergence study, the first five
basis functions (N = 5) in the Galerkin discretization
and the first six harmonic terms (H = 6) in HBM are
considered for evaluation of the present results.

4.1 Verification of the present formulation

In order to verify the present formulation and in-house
code in handling the thermo-elastic coupling in the FG
pipe, the pipe system is considered without internal
fluid while the ceramic and metal constituents are con-
sidered as Si3N4 and SUS304, respectively. The criti-
cal buckling temperature is then computed considering
uniform temperature across thewall thickness of theFG
pipe. These results are presented in Table 2 for the two
cases of temperature-independent and temperature-
dependent properties of the constituent materials. Sim-
ilar results for an identical FG pipe are available in [48],
and these available results are also furnished in Table 2.
It may be observed from Table 2 that the present results
are in good agreement with the similar results available
in [48]. This comparison verifies the present formula-
tion in handling the thermo-elastic coupling in the FG
pipe.

The present implementation ofHBM is verified con-
sidering the FG pipe as an isotropic pipe. The nonlinear
frequency response of this isotropic pipe and the cor-
responding global bifurcation diagram are evaluated
for pulsatile flow velocity of the internal fluid. These
results are presented in Fig. 2a, b together with the sim-
ilar results for an identical fluid-conveying isotropic
pipe analysed in [23]. It may be observed from Fig. 2a,
b that the present results are in good agreement with
the similar results available in [23], and this comparison
study verifies the present formulation in implementa-
tion of HBM.

4.2 Stability of the FG pipe conveying hot fluid with
steady flow velocity

The FG pipe is subjected to the follower compressive
force due to the steady flow velocity (Vf , λ = 0) of
internal fluid. Now, the same FG pipe is also subjected
to the thermally induced compressive force because of
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Table 1 Temperature-dependent material properties of the metal (Ti–6Al–4V) and ceramic (ZrO2) constituents of the FG pipe [36,46,
47]

Material Properties

Ti–6Al–4V E(T ) = (122.14 − 0.055T ) GPa

αT (T ) = (7.2347 − 0.0071277 T − 5.2876 × 10−6 T 2 + 1.2697 × 10−9) × 10−6 K−1

k = 7.8 W m−1K−1, E∗/E = 4 × 10−4, ρ = 4429 Kg m−3

ZrO2 E(T ) = (235.38 − 0.30377 T + 2.6734 × 10−4T 2 − 8.17 × 10−8T 3) GPa

α(T ) = (13.628 − 0.018913 T + 1.2413 × 10−5T 2) × 10−6 K−1

k = 1.8 W m−1 K−1, E∗/E = 0, ρ = 3000 Kg m−3

Table 2 Comparison of
critical buckling
temperatures of FG pipe
(ro = 0.5 mm,ri = 0.5ro,
n = 1)

L/ro Temperature-independent properties
of constituent materials

Temperature-dependent properties
of constituent materials

Present Fu et al. [48] Present Fu et al. [48]

35 312.309 312.308 214.228 214.222

40 239.112 239.111 168.416 168.412

45 188.927 188.927 135.710 135.706

50 153.031 153.031 111.574 111.573

Fig. 2 a Comparison of the
frequency response of an
isotropic pipe conveying
pulsatile fluid with the
similar response of an
identical pipe analysed in
[23], b the corresponding
global bifurcation diagram

high temperature (Ti ) at its inner ceramic-rich surface.
The combined effect of these compressive forces in the
FG pipe on its buckling characteristics is illustrated in
Fig. 3. For different values of the graded exponent (n)

of FGM, Fig. 3 illustrates the variation of flow velocity
(Vf , λ = 0)with temperature (Ti ) corresponding to the
onset of buckling of the FG pipe. For any value of the
graded exponent (n) of FGM, it can be observed from
Fig. 3 that the buckling of the FG pipe may occur at a
low flow velocity (Vf , λ = 0) for high temperature (Ti )
of the internal fluid. It may also be observed fromFig. 3
that the graded exponent (n)of FGMplays an important
role in causing buckling of the FG pipe. For instance, a

high value of the graded exponent (n) of FGM causes
buckling of the FG pipe at a low temperature of the
internal fluid. In fact, the volume fraction of ceramic
constituent in the FGM decreases for a high value of
the graded exponent (n). So, the temperature in the FG
pipe increases alongwith its reduced structural rigidity.

4.3 Parametric instability of the FG pipe conveying
hot fluid with pulsatile flow velocity

In this section, the dynamic instability of the FG pipe
is investigated when it conveys pulsatile fluid at its
pre-buckled equilibrium state. Generally, the dynamic
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Fig. 3 Variation of the steady flow velocity (Vf , λ = 0) with
temperature (Ti ) corresponding to the onset of buckling of the
FG pipe

instability of a pipe conveying pulsatile fluid arises
through the primary, secondary and combinatory para-
metric resonances [17]. Among these different kinds
of parametric resonances, the most critical one is the
principal primary parametric resonance [49]. So, the
dynamic instability of the FG pipe through its principal
primary parametric resonance is investigated at present
by means of evaluating the corresponding parametric
instability region in the two-dimensional domain of fre-
quency (ω) and amplitude (λ) of pulsatile flow velocity
[50].

For different temperatures (Ti ) of pulsatile fluid,
Fig. 4a–d illustrates the parametric instability regions
corresponding to the principal primary parametric res-
onance at the pre-buckled equilibrium state of the FG
pipe. In these results (Fig. 4a–d), the graded exponent
(n) of FGM is considered as 5. However, similar results
are presented in Fig. 4e–g for different values of the
graded exponent (n) of FGM where a temperature of
the internal fluid is considered as 335K.Here, themean
flow velocity (Vf) of the pulsatile fluid is considered
as 5 m/s. Now, if the internal fluid is considered to
flow with a steady flow velocity as 5 m/s (Vf = 5 m/s,
λ = 0), then buckling of the FG pipe appears at a tem-
perature of 337.5 K (Fig. 3, n = 5). This temperature
can be marked as the critical bulking temperature. Fol-
lowing this critical buckling temperature, four differ-
ent temperatures of the internal fluid are considered for
evaluation of the results in Fig. 4a–d corresponding to
the pre-buckled equilibrium state of the FG pipe. Sim-
ilarly, for the results in Fig. 4e–g, a temperature (Ti )

of the internal fluid is considered as 335 K, and three
different values of the graded exponent (n) of FGM are
taken as 0.8, 1 and 3 in such a manner that the FG pipe
remains at its pre-buckled equilibrium state.

Figure 4a–d illustrates that the parametric instability
region shifts towards low frequency for an increase in
temperature (Ti ). It may be due to the fact that the nat-
ural frequency of the FG pipe decreases for an increase
in temperature (Ti ). However, it may be observed from
Fig. 4a–c that there is no indicative change in the shape
of the parametric instability region for an increase in
temperature (Ti ). But, the parametric instability region
extends towards low amplitude (λ) of pulsatile flow
velocity and the breadth of the same instability region
increases for an increase in temperature (Ti ).Moreover,
it is important to observe from Fig. 4d that the shape of
the parametric instability region changes indicatively
when the temperature (Ti ) of internal fluid is very close
to the critical buckling temperature (Ti = 337.5 K).
These observations indicate that the parametric insta-
bility of the FG pipe at its pre-buckled equilibrium state
is indicatively dependent on the temperature of (Ti )
internal fluid.

However, for a specified temperature (Ti = 335 K)
of the internal fluid, Fig. 4e–g illustrates that the breadth
of the parametric instability region decreases for an
increase in the graded exponent (n) of FGM. Itmay also
be observed fromFig. 4e–g that the parametric instabil-
ity region shifts towards high amplitude (λ) of pulsatile
flow velocity for an increase in the graded exponent (n)

of FGM. This characteristic of the parametric instabil-
ity region arises mainly due to the improved damping
properties of FGM for a high value of its graded expo-
nent (n). In fact, the damping properties of FGMappear
through its metal constituent. The volume fraction of
this metal constituent increases for a high value of the
graded exponent (n), and thus the damping properties
of FGM improve.

4.4 Nonlinear frequency responses of the FG pipe
conveying pulsatile fluid

The present FGM possesses high stiffness because of
its ceramic constituent. So, buckling of the FG pipe
occurs at the room temperature (Ti = 300 K) for very
high velocity (Vf , λ = 0) of the internal fluid (Fig. 3).
Quantitatively, this velocity of the internal fluid ismuch
higher than that appears in the practical piping systems.
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Fig. 4 Regions of
parametric instability
corresponding to the
principal primary
parametric resonance at the
pre-buckled state of the FG
pipe (Vf = 5 m/s) a–d for
different temperatures (Ti
(K), n = 5), and e–f for
different values of the
graded exponent of FGM
(n, Ti = 335 K)

However, from the results in Fig. 3, it is clear that buck-
ling of the FG pipe may arise at a feasible velocity of
the internal fluid for high temperature (Ti ), and thus the
temperature of the internal fluid is presently taken as
the main parameter for identifying buckling of the FG
pipe.With reference to the corresponding critical buck-
ling temperature, the pre- and post-buckled equilibrium
states of the FG pipe are recognized, and the nonlinear
dynamic characteristics of the FG pipe at each of the
two different static equilibrium states are studied for
pulsatile velocity of the internal hot fluid. However, it
is important to note here that the FG pipe becomes very
flexible at a temperature near the critical buckling tem-
perature and the high flexibility of the FG pipe leads to
its complex dynamic characteristics when the internal
fluid flows with pulsatile velocity. In order to illustrate
these dynamic characteristics of the FGpipe separately,
a transition zone is considered at present following the
transition from pre- to post-buckled equilibrium state
of the FG pipe corresponding to the increase in temper-
ature around the critical buckling temperature. Within
this transition zone, a static equilibrium state of the FG
pipe is its pre- or post-buckled equilibrium state at a

temperature that is very close to the critical buckling
temperature.

4.4.1 Nonlinear frequency responses of the FG pipe
at the pre-buckled equilibrium state

For different temperatures (Ti ) of the internal fluid,
Fig. 5a illustrates the frequency responses of the FG
pipe corresponding to the principal primary paramet-
ric resonance. The FG pipe is at the pre-buckled equi-
librium state, and the internal fluid flows with pul-
satile velocity. It may be observed from Fig. 5a that
there is no indicative change in the peak displacement-
amplitude for the variation of temperature (Ti ) of the
internal fluid. But, the resonant frequency decreases
for an increase in temperature (Ti ). It may be due to
the fact that the stiffness of the FG pipe decreases with
an increase in temperature (Ti ). Figure 5b shows sim-
ilar frequency responses of the FG pipe for different
values of the graded exponent (n) of FGM, where the
temperature (Ti ) of internal fluid is taken as 335 K.
It may be observed from this result (Fig. 5b) that the
peak displacement-amplitude decreases indicatively as
the graded exponent (n) of FGM increases. In fact, the
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material damping of FGM increases with an increase
in the graded exponent (n), and it results in superior
attenuation of the peak displacement-amplitude.

4.4.2 Nonlinear frequency responses of the FG pipe
at the post-buckled state

The pre- or post-buckled equilibrium state of the FG
pipe is presently identified based on the critical buck-
ling temperature that is further dependent on the mean
flow velocity (Vf) of the pulsatile fluid and the graded
exponent (n) of FGM (Fig. 3). So, the pre- or post-
buckled equilibrium state of the FG pipe can be recog-
nized from the results in Fig. 3 for the specified values
of temperature, mean flow velocity and graded expo-
nent of FGM. Accordingly, a post-buckled equilibrium
state of the FG pipe at a temperature (Ti ) of 360 K is
considered for the mean flow velocity (Vf) and graded
exponent (n) of FGM as 5 m/s and 5, respectively. At
this post-buckled equilibrium state of the FG pipe, its
nonlinear frequency response is illustrated in Fig. 6a
for the pulsatile fluid flow with a velocity–amplitude
(λ) of 0.5. It should be noted here that the transverse
deflection of the FG pipe at a post-buckled equilib-
rium state arises either in the positive or in the nega-
tive z-direction. The dynamic characteristics of the FG
pipe do not differ if the post-buckled equilibrium state
appears in the positive z-direction instead of the nega-
tive z-direction. So, in Fig. 6a, the frequency response
of the FG pipe is presented corresponding to a post-
buckled equilibrium state in one of the positive and
negative z-directions. Also, the maximum and mini-
mum transverse displacements (ηm) of the FG pipe
are presented at every frequency of vibration while
the mean point of oscillation is indicated by the black
line (Fig. 6a). The stable and unstable responses of
the FG pipe are denoted by the green and red points,
respectively. It should be noted here that the frequency
response of the FG pipe is computed by implement-
ing the HBM and the stability of solutions is identified
by the aforesaid local stability analysis. For the verifi-
cation of the present code in the local stability analy-
sis, the frequency responses of the FG pipe at differ-
ent frequencies are also computed using the adaptive
Runge–Kutta method. These results are presented in
the same figure (Fig. 6a) with the legend as “Runge–
Kutta method”. It may be observed from Fig. 6a that
the solutions computed by the Runge–Kutta method
lie over the stable solutions obtained through the HBM

and local stability analysis. This comparison verifies
the present code for local stability analysis since the
Runge–Kutta method provides stable solutions.

Figure 6a shows that the FG pipe undergoes princi-
pal primary and secondary parametric resonances since
the corresponding resonant frequencies appear as 2�n

and �n , respectively, with reference to the fundamen-
tal natural frequency of the FG pipe as �n . It may also
be observed that the mean point of oscillation varies
indicatively near a resonant frequency (2�n or �n).
However, Fig. 6b, d also presents similar frequency
responses of the FG pipe for two different tempera-
tures (Ti = 370 K, 380 K). It may be observed from
these results (Fig. 6a, b, d) that a resonant frequency
(2�n or �n) increases with increasing temperature
(Ti ). More importantly, the principal primary paramet-
ric resonance disappears as the temperature of internal
fluid increases (Fig. 6d, Ti = 380 K). Here, the trans-
verse deflection of the post-buckled FG pipe increases
for an increase in temperature of the internal fluid. So,
the nonlinear stiffness of the FG pipe increases result-
ing in the disappearance of the principal primary para-
metric resonance.

Figure 6c–e illustrates the frequency responses of
the FG pipe for three different values of the graded
exponent (n) of FGM. A temperature of the internal
fluid is considered as 380 K, and the FG pipe is at the
post-buckled equilibrium state. Themean flow velocity
and velocity–amplitude of pulsatile fluid flow are taken
as 5 m/s and 0.5, respectively. It may be observed from
these results (Fig. 6c–e) that the resonant frequency
is indicatively dependent on the graded exponent (n)

of FGM. The amplitude of vibration of the FG pipe
decreases as the graded exponent (n) of FGMincreases.
Also, the principal primary parametric resonance dis-
appears since an increase in the graded exponent (n)

results in increased transverse deflection of the post-
buckled FG pipe as well as improved material damping
of FGM.

In order to investigate the effects of the mean flow
velocity (Vf) and velocity–amplitude (λ) of pulsatile
fluid flow on the nonlinear frequency response of the
FG pipe, two different values of the velocity–amplitude
(λ) are considered as 0.1 and 0.5. For each of these
values of the velocity–amplitude (λ), the mean flow
velocity (Vf) is taken either as 2 m/s or as 5 m/s, and
the frequency responses of the FG pipe are evaluated as
shown in Fig. 7a, b. The graded exponent (n) of FGM
and temperature (Ti ) of the internal fluid are considered
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Fig. 5 Frequency responses
of the FG pipe
corresponding to the
principal primary
parametric resonance when
the FG pipe is in its
pre-buckled state; a for
different temperatures (Ti
(K), n = 5), b for different
values of the graded
exponent (n, Ti = 335 K)
(Vf = 5 m/s, λ = 0.5)

Fig. 6 Nonlinear frequency responses of the FG pipe at its post-buckled state, a, b, d for different temperatures (Ti ) (n = 5), and c, d,
e for different values of the graded exponent (n) (Ti = 380 K)

as 5 and 360 K, respectively. It may be observed from
Fig. 7a, b that the FG pipe undergoes principal sec-
ondary parametric resonance for any value (λ = 0.1
or 0.5) of the velocity–amplitude when a low mean

flow velocity (Vf = 2 m/s) is considered. However,
if the mean flow velocity (Vf) increases along with
high velocity–amplitude (λ), both the principal primary
and secondary parametric resonances appear (Fig. 7a).
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Fig. 7 Nonlinear frequency responses of the FG pipe at its post-buckled state (n = 5, Ti = 360 K); a Vf = 2 m/s or 5 m/s, λ = 0.5; b
Vf = 2 m/s or 5 m/s, λ = 0.1

These results indicate that the velocity–amplitude (λ)

of pulsatile fluid flow may have an indicative effect on
the nonlinear frequency responses of the FG pipe when
the pulsatile fluid flows with high mean flow velocity
(Vf).

4.4.3 Nonlinear frequency responses of the FG pipe
at the transition state

The temperature (Ti ) of the internal fluid is gradually
increasedwithin anarrowzone around the critical buck-
ling temperature (337.5 K for n = 5, Vf = 5 m/s,
Fig. 3), and the corresponding changes in the nonlin-
ear dynamic characteristics of the FG pipe are studied.
Figure 8a illustrates the frequency response of the FG
pipe at a temperature (Ti = 337.2 K) that is slightly
lesser than the critical buckling temperature (337.5 K).
This result (Fig. 8a) clearly shows that the FG pipe
primarily undergoes principal primary parametric res-
onance. However, the principal secondary parametric
resonance and higher-order parametric resonances also
appear alongwith the principal primary parametric res-
onance. The corresponding resonant frequencies are
very close to each other, and thus the shape of the para-
metric instability region changes (Fig. 4d) [17]. It is
interesting to observe from the result in Fig. 8a that
dual periodic attractors arise through the principal sec-
ondary and higher-order parametric resonances. The
meanpoint of oscillation corresponding to each of these
dual periodic attractors is also sown in the same figure
(Fig. 8a) by the black line.

For further increase in temperature (Ti = 337.6 K,
Fig. 8b) slightly beyond the critical buckling temper-
ature (337.5 K), multiple stable and unstable dynamic

responses of the FG pipe evolve mainly because of
the primary and secondary parametric resonances.
Although it is difficult to trace the motion of the FG
pipe corresponding to its unstable dynamic responses
at low frequency (Fig. 8b), mainly two local attractors
and one global attractor appear for the stable periodic
motion of the FG pipe. A local attractor appears for the
stable periodic oscillation of the FG pipe with refer-
ence to the post-buckled equilibrium state. The global
attractor continues from the pre-buckled state of the
FG pipe, and the corresponding motion of the FG pipe
appears as the snap-through periodic motion. For fur-
ther increase in temperature (Ti ), Figs. 8c, d and 6a
show that the global attractor disappears and the local
attractors retain. However, the results in Fig. 8b, c show
two critical zones (AB and CD) corresponding to the
unstable dynamic responses of the FG pipe. The char-
acteristics ofmotion of the FG pipewithin these critical
zones (AB and CD, Fig. 8b, c) are investigated in the
next section by means of evaluating global bifurcation
diagrams.

Figures 8d and 9 illustrate the nonlinear frequency
responses of the FG pipe for two different values of the
graded exponent (n = 5 and 8) of FGM. A temper-
ature (Ti ) of the internal fluid is taken as 350 K, and
the FG pipe is at the post-buckled equilibrium state. It
may be observed from these results (Figs. 8d, 9) that
the snap-through motion of the FG pipe disappears for
an increase in the graded exponent (n) of FGM. So,
the graded exponent of FGM may be treated as a tun-
ing parameter for reducing complexity in the dynamic
characteristics of the FG pipe at its post-buckled equi-
librium state.
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Fig. 8 Nonlinear frequency
responses of the FG pipe for
different temperatures near
the critical buckling
temperature (n = 5,
Vf = 5 m/s, λ = 0.5); a
Ti = 337.2 K, b
Ti = 337.6 K, c
Ti = 339 K, d Ti = 350 K

For a decrease in the mean flow velocity (Vf) of
pulsatile fluid, the corresponding changes in the non-
linear frequency response of the post-buckled FG pipe
are illustrated in Figs. 8c and 10a. A temperature (Ti )
of the internal fluid is considered as 339 K and the
graded exponent (n) of FGM is taken as 5. It may
be observed from these results (Figs. 8c, 10a) that
the critical zones (AB and CD) corresponding to the
unstable dynamic responses of the FG pipe do not
appear when the mean flow velocity (Vf) decreases.
Also, the peak displacement-amplitude corresponding
to the snap-through periodic motion of the FG pipe
decreases. If the amplitude (λ) of pulsatile flow veloc-
ity decreases instead of the mean flow velocity (Vf),
then the snap-through motion, as well as the unsta-
ble dynamic responses, of the FG pipe may not appear
(Figs. 8c, 10b). These observations imply indicative
effects of the mean flow velocity (Vf) and velocity–
amplitude (λ) of pulsatile fluid flow on the nonlinear
dynamics of the FG pipe especially when the temper-

Fig. 9 Nonlinear frequency response of the FG pipe at its post-
buckled state (Vf = 5 m/s, λ = 0.5, Ti = 350 K, n = 8)

ature of the internal fluid is very close to the critical
buckling temperature.
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4.5 Global bifurcation diagrams

In Figs. 8c, d, the unstable dynamic responses of the FG
pipe are observed in two zones (AB and CD). The cor-
respondingmotion of the FG pipe is investigated in this
section by evaluating global bifurcation diagrams with
respect to frequency (�) or amplitude (λ) of pulsatile
flow velocity.

4.5.1 Global dynamics of the FG pipe with respect to
the frequency of pulsatile flow velocity

For the critical zone AB in Fig. 8b, the global bifur-
cation diagram with respect to the frequency (�) of
pulsatile flow velocity is illustrated in Fig. 11a. The
frequency response of the FG pipe within this critical
zone (AB, Fig. 8c) is also shown in Fig. 11b. Figure 11c
shows a similar global bifurcation diagram correspond-
ing to the critical zones AB and CD in Fig. 8c. The
frequency responses of the FG pipe in the neighbour-
hood of the critical zones AB and CD (Fig. 8c) are
shown in Fig. 11d. It may be observed from Fig. 11a, b
that two periodic attractors corresponding to the stable
periodicmotion of the FGpipe appear at low frequency,
and these periodic attractors retain up to the cyclic-fold
bifurcation at point A (� =0.34). For further increase
in frequency (�), the chaotic motion of the FG pipe
arises as it is identified through the phase plot and
Poincaremap at a frequency (�)of 0.3403 (Fig. 12c, d).
This chaotic motion of the FG pipe develops through
the intermittent transition route, and the correspond-
ing transient responses of the FG pipe are shown in
Fig. 12a, b. The intermittent transition route appears
due to the nonexistence of stable periodic attractor
beyond the cyclic-fold bifurcation at pointA (Fig. 11b).
It is observed that this chaotic motion of the FG pipe
mainly involves period-2, period-4 and period-6 attrac-
tors, where period-m attractor represents the periodic
motion of the FG pipe with a frequency of �/m. The
period-demultiplying and symmetry-breaking bifurca-
tions are also observedwithin this chaoticmotion of the
FG pipe. However, the chaotic motion of the FG pipe
continues up to a frequency (�) of 0.64 (Figs. 11a,
12e), and dual chaotic attractors (Fig. 12f, g) evolve
for further increase in frequency (�).

As the frequency of pulsatile flowvelocity increases,
each of the dual chaotic attractors, first, reduces to
period-2 attractor through period-demultiplying bifur-
cation, and then the periodic motion (period-2) of the

FG pipe undergoes the sequence of inverse symmetry-
breaking (� = 0.81), symmetry-breaking (� = 0.86)
and inverse symmetry-breaking (� = 1.275) bifur-
cations (Fig. 11a). The phenomenon of symmetry-
breaking bifurcation can be observed from Fig. 12h–j,
where single period-2 attractor (Fig. 12h, � = 0.85)
reduces to dual period-2 attractors (Fig. 12i–j,� = 0.9)
for an increase in frequency (from� = 0.85 to 0.9). For
further increase in frequency (�), a local chaotic attrac-
tor appears within a narrow frequency range (� = 1.92
to 2.085, Fig. 11a) and it reduces to the local peri-
odic attractors through the period-demultiplying bifur-
cation.

For an increase in temperature (Ti ) of the internal
fluid, the critical zone AB shifts towards high fre-
quency (�) (Fig. 11a, c) and appears within a nar-
row frequency range. The chaotic motion of the FG
pipe arises at any frequency within this critical zone
AB as shown in Fig. 13a at a frequency (�) of 2.
However, as the frequency (�) of pulsatile flow veloc-
ity increases, this chaotic attractor reduces to period-2
attractor through the sequence of period-demultiplying
(� = 2.05 to 2.09) and inverse symmetry-breaking
(� = 2.18) bifurcations. The local periodic attractors
also evolve through the period-demultiplying bifurca-
tion (� = 2.57, Fig. 11c). For further increase in fre-
quency (�), these local periodic attractors reduce to
the chaotic attractor through the subcritical bifurca-
tion (point C, Fig. 11c, d). The corresponding chaotic
motion of the FG pipe is illustrated in Fig. 13b, c at a
frequency (�) of 4.77. For a little increase in frequency
(�), the period-demultiplying bifurcation arises where
themotion of the FG pipe primarily involves period-16,
period-8 and period-4 attractors as shown in Fig. 13d–i.
However, this period-demultiplying bifurcation yields
period-2 attractor for further increase in frequency (�).

4.5.2 Global dynamics of the FG pipe with respect to
the amplitude of pulsatile flow velocity

In order to investigate the effect of velocity–amplitude
(λ) of pulsatile fluid flow on the complex dynamic
response of the FG pipe, global bifurcation diagrams
with respect to the velocity–amplitude (λ) of pulsatile
fluid flow are illustrated in Fig. 14a–d for four different
temperatures (Ti = 337.6 K, 337.8 K, 338 K, 338.2
K). The mean flow velocity (Vf) of pulsatile fluid flow
and the graded exponent (n) of FGM are taken as 5
m/s and 5, respectively. The frequency (�) of pulsatile
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Fig. 10 Nonlinear
frequency responses of the
FG pipe (n = 5,
Ti = 339 K) for different
values of the mean flow
velocity (Vf ) and pulsation
velocity–amplitude (λ); a
Vf = 4 m/s, λ = 0.5, b
Vf = 5 m/s, λ = 0.3

Fig. 11 Global bifurcation diagrams with respect to the fre-
quency (�) of pulsating flow velocity of the internal hot fluid
(n = 5, Vf = 5 m/s, λ = 0.5); a, b for critical zone AB in

Fig. 8b (Ti = 337.6 K), and c, d for critical zones AB and CD
in Fig. 8c (Ti = 339 K)
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Fig. 12 Responses of the FG pipe at different frequencies
(n = 5, Vf = 5 m/s, λ = 0.5, Ti = 337.6 K); transient responses
at a � = 0.3402, b � = 0.3403; phase plots at c � = 0.3403, e

� = 0.64, f � = 0.66, g � = 0.66, h � = 0.85, i � = 0.9, j
� = 0.9; Poincare map at d � = 0.3403

fluid flow is considered as 1.23 in such a manner that
this frequency (� =1.23) lies within the critical zone
AB at all temperatures (Ti = 337.6 K, 337.8 K, 338 K,
338.2 K).

It may be observed from Fig. 14a–d that two peri-
odic attractors arise at low velocity–amplitude (λ)

of pulsatile fluid flow. As the velocity–amplitude (λ)

increases at low temperature (Fig. 14a–b), the peri-
odic attractors reduce to the chaotic attractor through
the intermittent transition route (Fig. 15a–c). For fur-
ther increase in velocity–amplitude (λ), one periodic
attractor arises (Fig. 14a, b) corresponding to the snap-
throughmotion (period-2) of the FG pipe. However, for
a little increase in temperature (Ti = 338 K, 338.2 K,
Fig. 14c, d), chaotic attractor arises through the period-

doubling bifurcation instead of the intermittent transi-
tion route (Fig. 14b, c). For an increase in velocity–
amplitude (λ) at low temperature (Ti = 337.6 K),
the snap-through motion may not fall into the chaotic
motion again (Fig. 14a). But, it may appear (Fig. 14b,
c) for a little increase in temperature (Ti = 337.8 K,
338 K) where the chaotic attractor appears through the
sequence of symmetry-breaking and period-doubling
bifurcations. The symmetry-breaking bifurcation is
illustrated through the phase plots in Fig. 15d–f, where
single period-2 attractor (Fig. 15d, λ = 0.35) reduces
to dual periodic attractors (Fig. 15e, f, λ = 0.38) at
a temperature (Ti ) of 337.8 K. The period-doubling
bifurcation is also illustrated through the phase plots in
Fig. 15f–i, where the period-2 attractor (15f, λ = 0.38)
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Fig. 13 Responses of the FG pipe at different frequencies
(n = 5, Vf = 5 m/s, λ = 0.5, Ti = 339 K); phase plots at a
� = 2, b � = 4.77, d� = 4.785, e � = 4.79, f � = 4.8,

Poincare map at c� = 4.77, amplitude–frequency spectrums at
g � = 4.785, h � = 4.79, i � = 4.8

mainly reduces to period-4, period-8 and period-16
attractors (Fig. 15g–l) at a temperature (Ti ) of 337.8
K. For further increase in temperature (Ti = 338.2 K),
the nonlinear stiffness of the post-buckled FG pipe
increases because of its increased transverse deflection.
So, the periodic attractors remain up to a high value of
velocity–amplitude (λ) before the appearance of the
chaotic attractor (Fig. 14d).

5 Conclusions

In this theoretical study, the nonlinear dynamics of a
vertical FG pipe conveying hot fluid is studied. The FG
pipe is comprised of ceramic and metal constituents.
The inner surface of the FG pipe is made of fully

ceramic to withstand a high temperature of the internal
fluid, and the composition of the constituent materi-
als is smoothly varied from ceramic to metal across
the wall thickness of the pipe. A slender FG pipe with
pinned ends is considered while the internal hot fluid
flows with the steady or pulsatile flow velocity. The
nonlinear governing equation of motion of the FG pipe
system is derived based on the Euler–Bernoulli beam
theory and plug-flow model. The Galerkin method is
used to discretize the governing equation ofmotion that
is subsequently solved either byHBmethod or by adap-
tive Runge–Kutta method for evaluation of dynamic
responses of the FG pipe in the frequency or time
domain.

The internal fluid is first considered to flow with
steady flowvelocitywhile the graded exponent of FGM
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Fig. 14 Global bifurcation diagrams with respect to the pulsation velocity–amplitude (n = 5,Vf = 5 m/s, � = 1.23) at different
temperatures, a Ti = 337.6 K, b Ti = 337.8 K, c Ti = 338 K, d Ti = 338.2 K

and temperature of fluid are varied. It is found that buck-
ling of the FGpipe arisesmainly because of the temper-
ature of internal fluid while the internal fluid flows with
the feasible steady flow velocity. The corresponding
critical buckling temperature changes slightly for the
variation in the value of the graded exponent of FGM.
However, with reference to the critical buckling tem-
perature, the pre- and post-buckled equilibrium states
of the FG pipe are identified, and the nonlinear dynam-
ics of the FG pipe is studied for pulsatile flow velocity
of the internal hot fluid. In the pre-buckled equilibrium
state of the FG pipe, it mainly undergoes principal pri-
mary parametric resonance due to pulsatile flow veloc-
ity of the internal hot fluid. The corresponding para-

metric instability region shifts towards low velocity–
amplitude of pulsatile fluid flow for an increase in tem-
perature of the internal fluid or a decrease in the graded
exponent of FGM.However, in addition to the principal
primary parametric resonance, the principal secondary
parametric resonance and higher-order parametric res-
onances may appear when the temperature of the inter-
nal fluid is very close to the critical buckling tempera-
ture. The resonant frequencies of these parametric res-
onances are very close to each other, and thus the usual
shape of the parametric instability region deviates for a
temperature of the internal fluid near the critical buck-
ling temperature.
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Fig. 15 Responses of the FG pipe (n = 5, Vf = 5 m/s,
� = 1.23) at different pulsation velocity–amplitudes; time
response plots at a λ =0.2025 (Ti = 337.6 K), b λ = 0.203
(Ti = 337.6 K), phase plots at c λ = 0.203 (Ti = 337.6 K),
d λ = 0.35 (Ti = 337.8 K), e λ = 0.38 (Ti = 337.8 K),

f λ = 0.38 (Ti = 337.8 K),g λ = 0.4 (Ti = 337.8 K), h
λ = 0.402 (Ti = 337.8 K), i λ = 0.403 (Ti = 337.8 K),
amplitude–frequency spectrums at j λ = 0.4 (Ti = 337.8 K),
k λ = 0.402 (Ti = 337.8 K), l λ = 0.403 (Ti = 337.8 K)

In the post-buckled equilibrium state of the FG pipe,
it mainly undergoes principal primary and secondary
parametric resonances because of the pulsatile flow
velocity of the internal hot fluid. However, the prin-
cipal primary parametric resonance may disappear at a
high temperature of the internal fluid or for a low value
of the graded exponent of FGM. If the temperature of
the internal fluid decreases towards the critical buck-
ling temperature, the snap-through periodic motion of
the FG pipe may appear in addition to the principal
primary and secondary parametric resonances. For fur-
ther decrease in temperature so that the FGpipe is in the

post-buckled equilibrium state and temperature of the
internal pulsatile fluid is very close to the critical buck-
ling temperature, the chaotic motion of the FG pipe
may arise. It is observed that this chaotic motion of the
FG pipe evolves through the cyclic-fold bifurcation,
intermittent transition route, period-doubling bifurca-
tion and subcritical bifurcation. The overall analysis
reveals that temperature of the internal pulsatile fluid is
the primary concern for complex dynamic responses of
the FG pipe while the graded exponent of FGMmay be
utilized as a tuning parameter to alleviate the static and
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dynamic instabilities, as well as the associated complex
dynamic responses, of the FG pipe.
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