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Abstract This study is concerned with a double pen-
dulum and its regular behaviour associated with low
energy levels and the influence of the associated ini-
tial conditions on the frequency of normal modes. The
case of nonlinear oscillations described by the exact
equations of motion is examined. A global qualitative
insight is provided via energy diagrams and Poincaré
maps. Then, the case of linear oscillations, their normal
modes and associated frequencies is analysed. Further,
quantitative insights via two approaches (Lindstedt–
Poincaré method and harmonic balancing) are also
achieved to determine analytically the influence of ini-
tial amplitudes on the existence and frequency of non-
linear normal modes. These results are compared with
the one corresponding to the linear normal modes as
well as with the corresponding numerical solutions of
the exact equations of motion.
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1 Introduction

A classical pendulum is one of the paradigms of vibra-
tion theory, as its behaviour is associated with rich and
interesting dynamic behaviour. One can distinguish a
simple or physical pendulum. A simple (mathemati-
cal) pendulum consists of a point mass m attached to a
hinged weightless rod of lengthm or a mass suspended
by a weightless non-deformable string/rope. A physi-
cal pendulum consists of a rigid body that is pivoted at
a certain point, and one of its realization is a uniform
massive rod of length l and mass m pivoted at one end.
Pendula that move in a vertical plane are character-
ized by two equilibria: lower (stable) and upper (unsta-
ble). For small deviations from the lower equilibrium,
these oscillations are harmonic and can be described
by sine or cosine functions. Its period is constant—it
does not depend on the initial conditions, i.e. on the
energy level E , but it does depend on the system nat-
ural frequency ωn . (In case of the simple pendulum,
this parameter is ω2

n = g/ l, while in the case of the
uniform massive rod, it corresponds to ω2

n = 1.5g/ l).
As the energy level increases but stays in the domain
−ω2

n < E < ω2
n , the periodicity of the resultingmotion

still holds. As the amplitude becomes larger, the influ-
ence of geometric nonlinearity is brought to bear and
the period becomes amplitude-dependent. The exact
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value of the period can be expressed in terms of the
elliptic integral of the first kind [1]. Note, however,
that if the simple pendulum wraps around a cycloid,
even its large-amplitude oscillations are characterized
by the period that is amplitude-independent [2]. Going
back to classical pendula and the influence of energy
levels on its behaviour, it is known that for E > ω2

n ,
rotating/spinning motion around the hinge occurs.

A double pendulum, which consists of two simple
pendula or two compound/physical pendula, behaves
quite differently, involving regular and chaotic motion
associated with a torus, which becomes deformed and
decays. In the regime of small oscillations, the dou-
ble pendulum exhibits coupled harmonic oscillations,
which are linear combinations of normal modes. The
resulting motion can be periodic or quasi-periodic, and
this depends on the fact whether two associated angular
frequencies are commensurable or not. As the energy
level increases, the oscillations become chaotic. Given
the fact that the double pendulum is a Hamiltonian sys-
tem, the KAM theorem [3] holds, stating that if this
system is subjected to a weak nonlinear perturbation,
some of the invariant tori that have ‘sufficiently irra-
tional’ frequencies survive, implying further existence
of some quasi-periodic motion. Motivated by the fact
that Hamiltonian textbook systems, such as the dou-
ble pendulum, had been seen as simple, Richter and
Scholz [4] used numerical approach via Poincaré sec-
tions to demonstrate the bewildering complexity of the
dynamic behaviour that this simple system exhibits.
Shinbrot et al. [5] used a Polaroid® camera to photo-
graph the stroboscopic trajectory of the double pendu-
lum, measuring experimentally the exponential rate of
separation of nearby trajectories, which is characteris-
tic of chaotic systems. They demonstrated good agree-
ment between their experiments and numerical simu-
lations, calculating also the positive Lyapunov expo-
nent, as expected for a chaotic system. Levien and
Tan [6] used optical encoder wheels to catch experi-
mentally and quantify sensitive dependence on initial
conditions, the signature of chaos, in a double pen-
dulum system. Stachowiak and Okada [7] provided
further numerical results concerning the planar dou-
ble pendulum system, exploring chaotic features of
its behaviour via Poincaré’ sections, bifurcation dia-
grams and Lyapunov exponents. A bifurcation param-
eter in their bifurcation diagrams that which illustrate
transformations from regular behaviour into globally
chaotic motion is energy. Rafat et al. [8] investigated

a variation of the simple double pendulum in which
the two particles are replaced by square plates. As
such, this system represents a compound pendulum,
but the centre of mass of the inner plate does not
lie along the line joining the two hinges. The authors
showed that the onset of chaos occurs at a significantly
lower energy than for the simple double pendulum.
Unlike these studies, Jyotirmoy et al. [9] pointed out
the shortage of investigations of the regular behaviour
of a double simple pendulum at lower energy region.
They applied approximate analytical techniques and
provided numerical confirmations to demonstrate the
influence of initial conditions on normal modes. The
following study is aimed at providing deeper insights
into such behaviour, focusing on a double compound
pendulum consisting of two unequal or equal rods at
low energy levels and detecting the initial conditions
for which linear and nonlinear normal modes exist. To
that end, numerical solutions are used, and two approx-
imate analytical techniques are adjusted to determine
these initial conditions and the resulting vibration fre-
quencies.

2 Model and its global behaviour

2.1 Mechanical and mathematical model

The system considered herein has the form of a planar
double compound pendulumhinged at Point O, encom-
passing two uniformmassive rods OA andAB (Fig. 1a)
that may be of unequal masses (m1,m2) and lengths
(l1, l2), or, in a special case analysed later on, of equal
mass m and length l. The generalized coordinates are
taken to be the angles between each rod and the verti-
cal: ϕ and ψ (Fig. 1a). The centres of masses of each
rod are labelled by C1 and C2.

As the first rod OA performs rotation about the fixed
axis and the second rod AB is in plane motion, the
overall kinetic energy is given by:

T = 1

2

(m1

3
+ m2

)
l21 ϕ̇

2 + 1

6
m2l

2
2ψ̇

2

+1

2
m2l2l1ϕ̇ψ̇cos (ϕ − ψ) . (1)

Using the position of the centres of masses noted in
Fig. 1b, the gravitational potential energy canbewritten
down in the following form:
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Fig. 1 a Double pendulum
under consideration; b
gravitational forces and the
coordinates of the centres of
masses

V = −1

2
g(l1(m1 + 2m2)cos(ϕ) + l2m2cos(ψ)). (2)

Based on Lagrange’s equation of the second kind
d
dt

∂T
∂q̇ − ∂T

∂q = − ∂V
∂q , q ∈ {ϕ,ψ}, the system of fol-

lowing equations of motion is derived:

(m1

3
+ m2

)
l21 ϕ̈ + m2l1l2

2
cos (ϕ − ψ) ψ̈

+m2l1l2
2

sin (ϕ − ψ) ψ̇2

+ (m1 + 2m2) gl1
2

sin ϕ = 0, (3)

m2l1l2
2

cos (ϕ − ψ) ϕ̈ + m2l22
3

ψ̈

−m2l1l2
2

ϕ̇2 sin (ϕ − ψ)

+m2gl2
2

sinψ = 0. (4)

These equations are coupled and nonlinear both with
respect to the generalized coordinates and the general-
ized velocities.

By introducing a set of the following parameters (a
non-dimensional mass ratio, a non-dimensional length
ratio, a non-dimensional time and the square of the
natural frequency ω2

n):

μ = m2

m1
, λ = l2

l1
, τ = ωnt, ω2

n = g

l1
, (5)

the equations of motion can be presented in the follow-
ing non-dimensional form:

(6μ + 2) ϕ̈ + 3λμ cos (ϕ − ψ) ψ̈

+ 3λμ sin (ϕ − ψ) ψ̇2+(6μ + 3) sin (ϕ) = 0,

(6)

3 cos (ϕ − ψ) ϕ̈ + 2λψ̈

−3 sin (ϕ − ψ) ϕ̇2 + 3 sinψ = 0. (7)

2.2 Energy considerations

To get a global insight into the behaviour of this sys-
tem described by Eqs. (1) and (2) at lower energy lev-
els, two non-dimensional energy parameters are intro-
duced: E = T+V

m1gl1
, E0 = T0+V0

m1gl1
. The energy level that

corresponds to the zero value of the kinetic energy, i.e.
to the positions ϕ̇(0) = ψ̇(0) = 0 when the pendula
change the direction of motion, is given by:

E = E0 = V0
m1gl1

= −1

2
(λμcos(ψ0)

+(2μ + 1)cos(ϕ0)). (8)

Note that the subsequent analysis regards the region in
which the generalized coordinates take equal values, or
the values located between −π and π.
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Fig. 2 a Surface ϕ0 − ψ0 − E corresponds to the case of equal pendula μ = 1, λ = 1; b projections of the surface from a onto the
ϕ0 − ψ0 plane; c enlarged version of the part of the blue region from b for −2 < E < −1

Two vertical continuous configurations ϕ (0) =
ψ (0) = 0 and ϕ (0) = ψ (0) = π are associated,
respectively, with the following values of the energy
minimum and maximum:

Emin = −1

2
(λμ + (2μ + 1)), (9)

Emax = 1

2
(λμ + (2μ + 1)). (10)

Two vertical discontinuous configurations ϕ (0) =
0, ψ (0) = π and ϕ (0) = π,ψ (0) = 0 are associated

respectively with two energy levels at which separatri-
ces occur:

Esep = −1

2
(−λμ + (2μ + 1)), (11)

Es = −1

2
(λμ − (2μ + 1)). (12)

The energy levels defined by Eqs. (8)–(12) are used to
plot the surfaceϕ0−ψ0−E that corresponds to the case
of equal pendula μ = 1, λ = 1 (Fig. 2a). Centres and
saddles are clearly visible as well as periodic orbits
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surrounding centres, separatrices connecting saddles
and trajectories between the separatrices correspond-
ing to spinning. The projections of this surface onto
the ϕ0 −ψ0 plane with the energy levels are calculated
fromEqs. (8)–(12) and noted in boxes in Fig. 2b. In this
case, the energy levels (9) and (10) are equal, respec-
tively, to -2 and 2 and correspond to the centres, while
the energy levels (11) and (12) are equal, respectively,
to−1 and 1 and correspond to the separatrices through
saddles. Of interest for this work is the regular periodic
motion that lies in the blue region around the centre
(0,0). The enlarged version of this motion, which is
obtained for −2 < E < −1, is shown in Fig. 2c. Note
that this figure also contains a black solid line and red
circles that will be commented on in the penultimate
section of this article.

In order to gain adeeper insight into global behaviour
at low energy levels, Poincaré maps are obtained for
zero initial angular velocities. The value of ψ0 and the
initial energy are fixed, while ϕ0 is calculated from the
energy conservation law. Numerical integration is then
carried out with these initial conditions, and the values
of ψ and ψ̇ for which ϕ̇ = 0 from the positive side are
mapped. Figure 3 shows the Poincaré maps created for
different energy values indicated above each map for
two identical physical pendula (μ = 1, λ = 1). When

E=-1.9, two centres and surrounding closed orbits are
seen, implying regular behaviour. As the energy level
increases, the invariant tori become deformed. A sad-
dle is seen when E=-1, where the trajectory passing

through it is the envelope of the Poincaré map. The
map plotted for E = − 0.8 shows progressive motion
with scattered points, which implies chaos. Animation
1 enclosed to this paper contains these Poincaré maps
changing continuously for the increasing energy level.
Animation 2, which is also enclosed to this paper, con-
tains animatedPoincarémaps corresponding to the case
μ = 1, λ = 4/3, illustrating qualitatively the same sce-
nario with a quantitative difference with respect to the
value of the energy.

3 Vibration in normal modes

3.1 Linear oscillations

When the system under consideration performs small
(linear) oscillations, the equations of motion given by
Eqs. (6) and (7) become:

(6μ + 2) ϕ̈ + 3λμψ̈ + (6μ + 3) ϕ = 0, (13)

3ϕ̈ + 2λψ̈ + 3ψ = 0. (14)

Assuming the solution for the response in the form
ϕ = A1cos (ωτ), ψ = A2cos (ωτ) and deriving the
characteristic equation [10], one can calculate two nat-
ural frequencies:

ω1 = √
3

√√√√1 + λ + 3μ + 2λμ −
√

(1 + 3μ)2 + (λ + 2λμ)2 + λ
(−2 − μ + 6μ2

)

λ (4 + 3μ)
, (15a)

ω2 = √
3

√√√√1 + λ + 3μ + 2λμ +
√

(1 + 3μ)2 + (λ + 2λμ)2 + λ
(−2 − μ + 6μ2

)

λ (4 + 3μ)
, (15b)

which are associated with two mode ratios

b1 = A2

A1
= −1 + λ − 3μ + 2λμ + √

λ(1 + 2μ)(−2 + 3μ) + (1 + 3μ)2 + (λ + 2λμ)2

3λμ
, (16a)

b2 = A2

A1
= −1 + λ − 3μ + 2λμ − √

λ(1 + 2μ)(−2 + 3μ) + (1 + 3μ)2 + (λ + 2λμ)2

3λμ
. (16b)

When two physical pendula are identical (μ =
1, λ = 1), these two natural frequencies have the fol-
lowing values:

ω1 =
√
3

7
(7 − 2

√
7) = 0.85569, (17a)
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Fig. 3 Poincaré maps of two identical physical pendula (μ = 1, λ = 1) for different energy values noted above each map
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Fig. 4 a Intersection of the
solutions for motion in a
general case as a function of
the initial amplitude
f = f (A2); b case
corresponding to NNM1,
when the intersection is on
the abscissa; c case
corresponding to NNM2,
when the intersection is on
the abscissa

ω2 =
√
3

7
(7 + 2

√
7) = 2.29517, (17b)

while the mode ratios have different values and the
opposite sign:

b1 = A2

A1
= 1

3

(
−1 + 2

√
7
)

= 1.43, (18a)

b2 = A2

A1
= 1

3

(
−1 − 2

√
7
)

= −2.1. (18b)

Thus, in Mode 1, the pendula oscillate in-phase, while
in Mode 2 they oscillate out-of-phase. The configura-
tions that corresponds toMode 1 andMode 2 are shown
in Fig. 3a. In a general case, the motion is a linear com-
bination of these two normal modes.

Note that themode ratioswill have the same absolute
values when μ = 1, λ = 4/3, i.e. when the masses are
the same, but the second pendulum is longer than the
first one for 33%. The natural frequencies are then:

ω1 = 3
√
14

14
= 0.80178, (19a)

ω2 = 3
√
2

2
= 2.1213, (19b)

while the mode ratios are:

b1 = A2

A1
= 1.5, (20a)

b2 = A2

A1
= −1.5. (20b)

The configurations that correspond to these two
modes: Mode 1 and Mode 2, are shown in Fig. 3b.

3.2 Nonlinear case

3.2.1 Exact solutions

The next task regards the double pendulum perform-
ing large-amplitude oscillations. The corresponding
mathematical model is given by the exact equations
of motion (6) and (7). Of interest here is to find numer-
ically their solutions that have the properties of nonlin-
ear normalmodes (NNM) [11]: i) that they pass through
their equilibrium position at the same time, and ii) that
they vibrate at the same frequency. The initial condi-
tions are assumed to be with nonzero initial amplitudes
and with zero initial angular velocities, i.e. ϕ (0) = A1,
ψ (0) = A2 ϕ̇(0) = 0, ψ̇(0) = 0.

In a general case, the solutions for ϕ and ψ do not
pass simultaneously through zero values, i.e. their time
histories intersect at a point that lies at a certain dis-
tance from the τ -axis. Let this distance be labelled by
a function f . By fixing the value of A1, one can treat
this function as being depended on A2: f = f (A2),
as shown in Fig. 4a. An algorithm for detecting nor-
mal modes involves finding A2 for the fixed A1 while
f (A2) = 0. Positive values of A2 (labelled by A(1)

2 in
Fig. 4b) will correspond to nonlinear normal Mode 1
(NNM1) analogous to Mode 1 in the linear case. Neg-
ative values of A2 (labelled by A(2)

2 in Fig. 4c) will
correspond to nonlinear normal Mode 2 (NNM2) anal-
ogous to Mode 2 in the linear case. These NNM1 and
NNM2 solutions are plotted in Fig. 5a as solid lines
together with the solutions for the linear case, which
are shown as green dotted lines. For smaller values of
A1, the solutions for the linear case are the tangents
of the solutions corresponding to the nonlinear case.
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Fig. 5 Case of two identical physical pendula μ = 1, λ = 1 : a
combinations of initial amplitudes yielding vibrations in normal
modes; b influence of initial conditions on the in-phase mode;
c influence of initial conditions on the frequency of the out-of-

phase mode. Green dotes—solutions for the linear system; red
solid line—solutions for A1 in NNM1; and blue solid line—
solutions for A2 in NNM2. (Color figure online)

As the value of A1 increases, the absolute values of
A2 decrease for both NNM1 and NNM2. Note that the
solutions for Mode 2 and NNM2 coincide for larger
values of A1 than for Mode 1 and NNM1.

The moment of time when f (A2) = 0 corresponds
to the quarter of the period, and it can be used to
calculate the frequency ω1 = 2π/τ1 (Fig. 4b) and
ω2 = 2π/τ2 (Fig. 4c). These values are plotted in
Fig. 5b and 6c for both NNMs of two identical pen-
dula (μ = 1, λ = 1), together with the solutions for
the linear case given by Eqs. (18a, 18b). As the initial
amplitudes increase (Fig. 5b), the frequency of NNM1
decreases from the value corresponding to the fre-
quency of the linear Mode 1, Eq. (17a). By decreasing
the absolute values of the initial amplitudes (Fig. 5c),
the frequency of NNM2 increases until the value of the
frequency of the linear Mode 2, Eq. (17b).

Fromaqualitative point of view, these diagramshave
the same form for the case μ = 1, λ = 4/3 (Fig. 6a–

c), whose linear normal modes are shown in Fig. 7c,
d. From a quantitative point of view, the difference is
more apparentwhen comparingFig. 6awith Fig. 5a: the
values of the initial amplitudes for which the solutions
for Mode 1 and NNM1 as well as the solutions for
Mode 2 and NNM2 coincide are different.

3.2.2 Approximate solutions by Lindstedt–Poincaré
method

By introducing the approximated expressions: sin ϕ ≈
ϕ − ϕ3

6 , sinψ ≈ ψ − ψ3

6 , cos (ϕ − ψ) ≈ 1 − (ϕ−ψ)2

2 ,
sin (ϕ − ψ) ≈ ϕ − ψ , into the exact equations of
motion given by Eqs. (6) and (7), the following approx-
imated differential equations of motion are obtained:

(6μ + 2) ϕ̈ + 3

(
λμ

(
1 − 1

2
(ϕ − ψ)2

)
ψ̈

+3λμψ̇2 (ϕ − ψ) + 2μ

(
ϕ − ϕ3

6

)
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Fig. 6 Case μ = 1, λ = 4/3: a combinations of initial ampli-
tudes yielding vibrations in normal modes; b influence of initial
conditions on the in-phase mode; c influence of initial condi-
tions on the frequency of the out-of-phase mode. Green dotes—

solutions for the linear system; red solid line—solutions for A1 in
NNM1; and blue solid line—solutions for A2 in NNM2. (Color
figure online)

Fig. 7 a, bMode shapes
corresponding to the case of
two identical physical
pendula, μ = 1, λ = 1; c, d
mode shapes corresponding
to the case μ = 1, λ = 4/3
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−ϕ3

6
+ ϕ

)
= 0, (21)

3

(
1 − 1

2
(ϕ − ψ)2

)
ϕ̈ + 2λψ̈

−3ϕ̇2 (ϕ − ψ) + 3

(
ψ − ψ3

6

)
= 0. (22)

Their nonlinearity is cubic, which can be seen as
suitable for the application of the Lindstedt–Poincaré
method. However, one should first present these equa-
tions in the appropriate form of perturbed oscillators
whose natural frequencies correspond to the natural
ones obtained for linear oscillations in Sect. 3.1. For
the sake of that, the following transformations to nor-
mal coordinates are introduced:

ϕ = X + Y, (23a)

ψ = b1X + b2Y, (23b)

so that Eqs. (21) and (22) give:

3

(
λμ

(
1 − 1

2
((b1 − 1) X + (b2 − 1) Y )2

)

(
b1 Ẍ + b2Ÿ

) + 2μ

(
−1

6
(X + Y )3 + X + Y

)

−1

6
(X + Y )3 + X + Y

)

+3λμ (−b1X − b2Y + X + Y )
(
b1 Ẋ + b2Ẏ

)2
+(6μ + 2)(Ẍ + Ÿ ) = 0, (24)

2λ
(
b1 Ẍ + b2Ÿ

) + 3

(
1 − 1

2
((b1 − 1) X

+ (b2 − 1) Y )2
) (

Ẍ + Ÿ
) − 3

(
Ẍ + Ÿ

)

(−b1X − b2Y + X + Y )

+3

(
−1

6
(b1X + b2Y )3 + b1X + b2Y

)
= 0, (25)

For the case μ = 1, λ = 4/3, the mode shape ratios
are given by Eqs. (20a, 20b). Substituting these values
into Eqs. (24) and (25), one has:

(
−3X2

4
+ 15XY

2
− 75Y 2

4
+ 14

)
Ẍ

+
(
3X2

4
− 15XY

2
+ 75Y 2

4
+ 2

)
Ÿ

−3X3

2
− 9X2Y

2
− 9XY 2

2
− 9XẎ 2

2

+9Ẋ XẎ ,+45Ẋ2Y

2
− 45ẊY Ẏ − 9Ẋ2X

2

+9X − 3Y 3

2
+ 45Y Ẏ 2

2
+ 9Y = 0, (26)

(
−3X2

8
+ 15XY

4
− 75Y 2

8
+ 7

)
Ẍ

+
(

−3X2

8
+ 15XY

4
− 75Y 2

8
− 1

)
Ÿ − 27X3

16

+81X2Y

16
− 81XY 2

16
+ 3XẎ 2

2
+ 3Ẋ XẎ

−15Ẋ2Y

2
− 15ẊY Ẏ + 3Ẋ2X

2
+ 9X

2
+ 27Y 3

16

−15Y Ẏ 2

2
− 9Y

2
= 0. (27)

The solutions for X and Y are assumed as series expan-
sions that involve a small parameter ε :
X = εX0 + ε3X1, (28a)

Y = εY0 + ε3Y1. (28b)

Their frequencies are assumed as the perturbations of

the linear ones 
10 = ω1 = 3
√
14

14 and 
20 = ω2 =
3
√
2

2 (see Eqs. (19a, 19b)), i.e. as:


1 = 
10 + ε2
11, (29a)


2 = 
20 + ε2
21, (29b)

where the correction terms 
11 and 
21 need to be
determined.

Thus, the velocities and acceleration terms in Eqs.
(26) and (27) should be substituted by the terms:

Ẋ = 
1

(
ε Ẋ0 + ε3 Ẋ1

)
, (30a)

Ẏ = 
2

(
εẎ0 + ε3Ẏ1

)
, (30b)

Ẍ = 
2
1

(
ε Ẍ0 + ε3 Ẍ1

)
, (31a)

Ÿ = 
2
2

(
εŸ0 + ε3Ÿ1

)
. (31b)

Introducing Eqs. (28a, 28b)–(31a, 31b) into Eqs. (26)
and (27), and collecting the terms next to the same
powers of ε, one can derive

ε
(
Ẍ0 + X0

) + 1

336
ε3

(
−3X2

0

(
385Y0 − 36Ẍ0

)

+3X0

(
−360Y0 Ẍ0 − 6

(
−10

√
7Ẋ0Ẏ0
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+ Ẋ2
0 + 7Ẏ 2

0

)
+ 959Y 2

0

)
+ 2700Y 2

0 Ẍ0 + 90Ẋ2
0Y0

− 900
√
7Ẋ0Y0Ẏ0 + 224

√
14
11 Ẍ0 + 336Ẍ1

+35X3
0 + 336X1 + 35Y 3

0 + 630Y0Ẏ
2
0

)
= 0,

(32)

ε
(
Ÿ0 + Y0

) + 1

336
ε3

(
−3X2

0

(
97Y0 − 36Ÿ0

)

+ 3X0

(
−6

(
−2

√
7Ẋ0Ẏ0 + 5Ẋ2

0 + 35Ẏ 2
0

)

− 360Y0Ÿ0 + 95Y 2
0

)
+ 90Y0

(
−2

√
7Ẋ0Ẏ0 + 5Ẋ2

0 + 35Ẏ 2
0

)

+ 35X3
0 + 112

(
2
√
2
21Ÿ0 + 3Ÿ1 + 3Y1

)

+ 2700Y 2
0 Ÿ0 − 541Y 3

0

)
= 0. (33)

The equations next to ε are the equations of motion
of the harmonic oscillator with the natural frequency
equal to unity:

Ẍ0 + X0 = 0, (34a)

Ÿ0 + Y0 = 0, (34b)

and their solutions are:

X0 = Acos(τ ), (35a)

Y0 = B cos (τ ) . (35b)

Equating to zero the coefficients next to ε3 in Eqs.
(32) and (33) and using Eqs. (35a, 35b), one derives

Ẍ1 + X1 =
(
−237A3 + 45

(
4
√
7 − 3

)
A2B + A

(
−45

(
20

√
7 − 9

)
B2 − 896

√
14
11

)
+ 735B3

)

1344
cos (τ )

+
(
−55A3 − 15

(
11 + 12

√
7
)
A2B + 3

(
101 + 300

√
7
)
AB2 − 595B3

)

1344
cos (3τ) , (36)

Ÿ1 + Y1 =
(
15A3 + 9

(
4
√
7 − 83

)
A2B − 45

(
4
√
7 − 77

)
AB2 − 7B

(
939B2 + 128

√
2
21

))

1344
cos (τ )

+
(
125A3 − 3

(
283 + 12

√
7
)
A2B + 15

(
133 + 12

√
7
)
AB2 − 6391B3

)

1344
cos (3τ) . (37)

The coefficients next to cos(τ ) represent the so-called
secular terms and must be equal to zero, which yields:

− 237A3+45(4
√
7−3)A2B+A(−45(20

√
7 − 9)B2

− 896
√
14
11) + 735B3 = 0, (38)

15A3 + 9(4
√
7 − 83)A2B − 45(4

√
7 − 77)AB2

− 7B(939B2 + 128
√
2
21) = 0. (39)

These two equations lead to the correction terms for
the frequencies of motion in Eqs. (29a, 29b), which are
given by:


11 = 3(−79A3 + 15(4
√
7 − 3)A2B + 15(9 − 20

√
7)AB2 + 245B3)

896
√
14A

= −0.071A2 + 0.219B3

A
+ 0.102AB − 0.589B2, (40)


21 = 3(5A3 + 3(4
√
7 − 83)A2B + 15(77 − 4

√
7)AB2 − 2191B3)

896
√
2B

= 0.012A3

B
− 0.514A2 + 2.359AB − 5.187B2. (41)

It is seen that the influence of the initial amplitudes on
the frequency correction terms is of a quadratic power
form. The values of the coefficients in Eqs. (40) and
(41) in front of B2 and A2 imply that the former has
the stronger influence on them than the latter.

Thus, the solutions sought are:

X = A cos
((


10 + ε2
11

)
τ
)
, (42a)

Y = B cos
((


20 + ε2
21

)
τ
)
. (42b)

The accuracy of the solutions given by Eqs. (42a,
42b), (29a, 29b), (40), (41) is checked by comparing
it with numerical solution of the exact equations of
motion. These comparisons are shown in Fig. 8 for dif-
ferent nonzero initial amplitudes and zero initial veloc-

ities. It is seen that the agreement between these two
types of solutions is reasonably good.

Now, based on Eqs. (23a, 23b), one can go back
to the original generalized coordinates (A1 = A +
B, A2 = 1.5A − 1.5B) and use 
1 = 
2 to obtain
the combinations of the initial amplitudes A1 and A2

thatwould result inNNM1andNNM2. These solutions
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Fig. 8 Case μ = 1, λ = 4/3: comparison of the approximate
analytical solutions (solid lines) given by Eqs. (42a, 42b), (29a,
29b), (40), (41) with the numerical solutions (doted lines) of the

exact equations ofmotion for different nonzero initial amplitudes
and zero initial velocities indicated above each figure

are plotted in Fig. 9 as blue circles, together with the
solutions for the linear case (green lines) and the solu-
tions for the exact equations ofmotion (solid lines). The
approximate solutions are found to agree reasonably
well with the numerical ones until the value A1 = 0.3,
approximately.

3.3 Approximate solutions by harmonic balancing

The approximate solution obtained in the previous sec-
tion has a limited range of accuracy, and, thus, the aim
of this section is to look for the solution that will be
accurate for larger values of the initial amplitudes. To
that end, harmonic balancing is to be used.

By introducing the approximations: sin ϕ ≈ ϕ− ϕ3

6 ,

sinψ ≈ ψ − ψ3

6 , cosϕ ≈ 1− ϕ2

2 , cosψ ≈ 1− ψ2

2 , into
the exact equations of motion given by Eqs. (6) and (7),

Fig. 9 Case μ = 1, λ = 4/3: combinations of initial ampli-
tudes yielding vibrations in normal modes. Green dotes—
solutions for the linear system; red solid line—solutions for
A1 (NNM1); and blue solid line—solutions for A2(NNM2);
blue circles—analytical approximate solution by the Lindstedt–
Poincaré method. (Color figure online)
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the following approximated differential equations are
obtained:

6μϕ̈ + 2ϕ̈ + 3λμ

(
1 − ϕ2

2

)(
1 − ψ2

2

)
ψ̈

+3λμ

(
ϕ − ϕ3

6

)(
ψ − ψ3

6

)
ψ̈

+3

(
ϕ − ϕ3

6

)
+ 6μ

(
ϕ − ϕ3

6

)

+3λμ

(
ϕ − ϕ3

6

)(
1 − ψ2

2

)
ψ̇2

−3λμ

(
1 − ϕ2

2

)(
ψ − ψ3

6

)
ψ̇2 = 0, (43)

3

(
1 − ϕ2

2

)(
1 − ψ2

2

)
ϕ̈ + 3

(
ϕ − ϕ3

6

)(
ψ − ψ3

6

)
ϕ̈

+2λψ̈ + 3

(
ψ − ψ3

6

)
− 3

(
ϕ − ϕ3

6

)(
1 − ψ2

2

)
ϕ̇2

+3

(
1 − ϕ2

2

) (
ψ − ψ3

6

)
ϕ̇2 = 0. (44)

Given the existence of cubic nonlinearity, the solutions
for motion are taken in the form that involves the first
and second harmonic:

ϕ = ε Ā1 cos (ωτ) + ε2 B̄1 cos (3ωτ) , (45a)

ψ = ε Ā2 cos (ωτ) + ε2 B̄2 cos (3ωτ) . (45b)

The initial velocities are assumed to be zero ϕ̇(0) =
0, ψ̇(0) = 0, while the initial amplitudes A1 and A2

satisfy:

ε Ā1 + ε2 B̄1 = A1 = ϕ(0), (46a)

ε Ā2 + ε2 B̄2 = A2 = ψ(0). (46b)

Substituting Eqs. (45a, 45b) and its first and second
derivatives into Eqs. (43) and (44), grouping the terms
next to cos (ωτ) and then next to the same power of ε,
one obtains:

−3

8
(4λμ Ā2

2 B̄1ω
2 − 2λμ Ā1 Ā2 B̄1ω

2

−9λμ Ā2
1 B̄2ω

2 − λμ Ā2
2 B̄2ω

2 + 8λμ Ā1 Ā2 B̄2ω
2

+2μ Ā2
1 B̄1 + Ā2

1 B̄1)ε
4 − 3

8

(
2μ Ā3

1 + Ā3
1

−3λμω2 Ā2 Ā
2
1 + 4λμω2 Ā2

2 Ā1 − λμω2 Ā3
2

)
ε3

+(−6μ Ā1ω
2 − 2 Ā1ω

2 − 3λμ Ā2ω
2

+6μ Ā1 + 3 Ā1)ε = 0, (47)
3

8

(
Ā2
1 B̄1ω

2 + 9 Ā2
2 B̄1ω

2 − 8 Ā1 Ā2 B̄1ω
2

−4 Ā2
1 B̄2ω

2 + 2 Ā1 Ā2 B̄2ω
2 − Ā2

2 B̄2

)
ε4

+3

8
(ω2 Ā3

1 − 4ω2 Ā2 Ā
2
1 + 3ω2 Ā2

2 Ā1 − Ā3
2)ε

3

+
(
−3 Ā1ω

2 − 2λ Ā2ω
2 + 3 Ā2

)
ε = 0. (48)

Repeating the same procedure for the terms next to
cos (3ωτ), it follows:

−3

4

(
−2λμ Ā1 Ā2 B̄1ω

2 − 9λμ Ā2
1 B̄2ω

2

−9λμ Ā2
2 B̄2ω

2 + 20λμ Ā1 Ā2 B̄2ω
2

+2μ Ā2
1 B̄1 + Ā2

1 B̄1

)
ε4 + 1

8

(
−2μ Ā3

1 − Ā3
1

+3λμω2 Ā2 Ā
2
1 − 12λμω2 Ā2

2 Ā1 + 9λμω2 Ā3
2

)
ε3

+(−54μB̄1ω
2 − 18B̄1ω

2 − 27λμB̄2ω
2

+6μB̄1 + 3B̄1)ε
2 = 0, (49)

3

4

(
9 Ā2

1 B̄1ω
2 + 9 Ā2

2 B̄1ω
2 − 20 Ā1 Ā2 B̄1ω

2

+2 Ā1 Ā2 B̄2ω
2 − Ā2

2 B̄2

)
ε4

+1

8
(9ω2 Ā3

1 − 12ω2 Ā2 Ā
2
1 + 3ω2 Ā2

2 Ā1 − Ā3
2)ε

3

+
(
−27B̄1ω

2 − 18λB̄2ω
2 + 3B̄2

)
ε2 = 0. (50)

In order to calculate five unknown quantities: Ā1, B̄1,

Ā2, B̄2, ω, one should fix A1 = ϕ(0) and then solve
numerically the system of five equations (47)–(50)
and (46a). The accuracy of the approximate solutions
obtained is compared with the numerical solutions of
the exact equations of motion. These comparisons are
shown inFig. 10 for different nonzero initial amplitudes
and zero initial velocities. The agreement between
these two types of solutions is very good.

The approximate solutions for normal modes, A2 =
ψ (0) = ε Ā2 + ε2 B̄2, are plotted in Fig. 11 as a func-
tion of the fixed value A1 = ϕ (0) = ε Ā1 + ε2 B̄1

as the blue circles. The solutions for the linear case
(green lines) and the solutions for the exact equations
of motion (solid lines) are compared. The approxi-
mate solutions are found to agree reasonably well with
the numerical ones until the value A1 slightly larger
than 0.7, which is considerably larger value than the
one achieved in the previous section by the Lindstedt–
Poincaré method. This is also shown in Fig. 12, illus-
trating the comparison of the analytical results obtained
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Fig. 10 Case μ = 1, λ = 4/3: comparison of the approximate
analytical solutions (solid lines) obtained by harmonic balancing
with the numerical solutions (doted lines) of the exact equations

of motion for different nonzero initial amplitudes and zero initial
velocities indicated above each figure

by both approaches. However, the solution obtained
by the Lindstedt–Poincaré method gives the explicit
expressions for the influence of the initial amplitudes
on the frequencies, unlike harmonic balancing whose
solutions are implicit and semi-analytical.

The results obtained by harmonic balancing are also
added to Fig. 2c to the energy level diagram as the red
circles connected by the thick black line, to emphasized
the combinations of the initial amplitudes that yield the
desirable level of the initial energy, which has been the
main task of this work.
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Fig. 11 Case μ = 1, λ = 4/3: combinations of initial
amplitudes yielding vibrations in normal modes. Green dotes—
solutions for the linear system; red solid line—solutions for A1
(NNM1); and blue solid line—solutions for A2(NNM2); blue
circles—analytical approximate solution by harmonic balancing.
(Color figure online)

Fig. 12 Case μ = 1, λ = 4/3: combinations of initial
amplitudes yielding vibrations in normal modes. Green dotes—
solutions for the linear system; red solid line—solutions for A1
(NNM1); and blue solid line—solutions for A2(NNM2); blue
circles—analytical approximate solution by harmonic balanc-
ing; magenta squares—analytical approximate solution by the
Lindstedt–Poincaré method. (Color figure online)

4 Conclusions

A planar double pendulum moving in a vertical plane,
consisting of two uniform massive unequal or equal
rods, has been considered in this work. The influence
of energy levels on the fixed points (centres and sad-
dles) and the type of trajectories have been determined
(closed trajectories, separatrices and the trajectories
corresponding to spinning). Then, the focus has been
set on the determined domain of low levels of energy
and the linear and nonlinear normal modes that occur
then. First, the case of small (linear) oscillations has

been examined. The mode shape ratios and the asso-
ciated natural frequencies have been found for an in-
phasemode (Mode 1) and an out-of-phasemode (Mode
2). Then, the case of larger-amplitude (nonlinear) oscil-
lations has been investigated via numerical and approx-
imate analytical approaches, focusing on the appear-
ance of in-phase nonlinear normal mode NNM1 (anal-
ogous to Mode 1 in the linear system) and an out-of-
phase nonlinear normal mode NNM2 (analogous to
Mode 2 in the linear system). The combinations of
the initial amplitudes of the pendula for which they
occur have been determined. The corresponding angu-
lar frequencies have also been obtained as the functions
of the initial amplitudes and compared with the linear
case. It has been concluded that as the value of the ini-
tial amplitude of the upper pendulum A1 increases, the
absolute values of the initial amplitude of the lower
pendulum A2 decrease for both NNM1 and NNM2.
Besides this, as the initial amplitudes increase, the fre-
quency ofNNM1decreases from the value correspond-
ing to the frequency of the linear Mode 1. By decreas-
ing the absolute values of the initial amplitudes, the
frequency of NNM2 increases until the value of the fre-
quency of the linear Mode 2. These conclusions have
been obtained based on two approximate analytical
approaches that have been adjusted for this purpose: the
Lindstedt–Poincaré method and harmonic balancing,
and they have been confirmed numerically. Harmonic
balancing is accurate for larger initial amplitudes, but
does not give explicit expressions for the influence of
the initial amplitudes on the angular frequencies, while
the Lindstedt–Poincaré method is accurate for smaller
initial amplitudes, but does give explicit power-form
expressions for the influence of the initial amplitudes
on the angular frequencies.
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