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Abstract This work investigates the behavior of the
linear and nonlinear stiffness terms and damping coef-
ficient related to the dynamics of a microelectrome-
chanical resonator. The system is controlled by forcing
it into an orbit obtained from the analytical solution
of the harmonic balance method. The control tech-
niques considered are the polynomial expansion of
Chebyshev, the Picard interactive method, Lyapunov–
Floquet, OLFC control, and SDRE controls. Addition-
ally, in order to study the thermal effects, the effect
of damping with fractional-order was implemented. To
analyze the behavior of the system in fractional-order,
the wavelet-based scale index test was carried out. In
addition, the control robustness is investigated analyz-
ing the parametric errors, and the sensitivity of the frac-
tional derivative variation.

Keywords MEMS · Chaos · Perturbation method ·
Nonlinear dynamics · Optimal control · Lyapunov–
Floquet transformation · Fractional-order · Wavelet

1 Introduction

The interest for smaller devices which are capable of
measuring minimal electric or mechanical signs has
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grown in several technological areas. A prominent
device is themicroelectromechanical system (MEMS),
which is of reduced mass, large-scale production,
and high sensitivity. Consequently, this technology
became popular among manufacturers and attracted
many researchers due to their nonlinear behavior, abil-
ity to convert mechanical energy into electrical energy
and reduced number of variables. MEMS have been
used in different applications, such as sensing, and actu-
ation, being considered for spring and damped systems
[1], nonlinear RCL circuits [2], nonlinear fluids and
surfaces [3].

Microresonators present nonlinear behavior and are
mathematically modeled as in [4,5]. In addition, they
have high amplitude and frequency, which makes the
initial parameters of the project deviate from the fabri-
cation. As a result, many control strategies are imple-
mented in MEMS.

Firstly, Younis and Nayfeh [3] implemented a high-
frequency voltage that suppresses instabilities in elec-
tronic MEMS. A similar study with parametric error
and applying an optimal linear feedback control was
usedwith fractional-order in Tusset et al. [6,7]. Further,
a time delay feedback controller applied in a microres-
onator subjected to AC and DC voltages was shown in
Shao et al. [8]. A third situation was demonstrated in
Rhoads et al. [9], in which the chaotic behavior of a
microcantilever beam was studied for a set of parame-
ters. Other studies analyzed the dynamics of these sys-
tems through bifurcation diagrams considering limited
power and their operating temperature [10].
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The presence of damping in MEMS is a challenge
due to the high constraint of the dynamics of the sys-
tem. Squeeze-film damping is themost common damp-
ing source of MEMS, which is of great interest in the
field. On the other hand, other damping source which
is recurrently under interest is the thermoelastic damp-
ing, which is caused from the irreversible heat flow
generated by the compression and decompression of
the oscillation of the resonator [3]. Hence, the ther-
moelastic effect in the behavior of a MEMS resonator
is investigated. The model of the micro resonator is
considered with the thermal effect of the damping with
fractional-order (FODE system) [11,12]. In addition,
the influence of the damping coefficients neglecting
the fractional-order, linear and nonlinear stiffness on
the dynamics of the system (ODE system) is studied.
TheMEMS system is subjected to electrostatic DC and
AC voltages excitations such that it can exhibit neg-
ative linear stiffness coefficient which modulates the
geometric stiffness to the point that it can overcome
the positive stiffness coefficient [13–16].

To confirm whether the behavior is chaotic or peri-
odic, the use of phase diagrams, time histories, bifur-
cation diagrams and Lyapunov exponents for the ODE
system is considered. For the case of the system in
fractional-order, the wavelet-based index scale test is
carried out [17].

In order to suppress the chaotic behavior, three con-
trol techniques are considered and implemented. The
control proposals consider feedforward and feedback,
the OptimumLinear Feedback (OLFC) control project,
and the state-dependent Riccati equation (SDRE) that
will drive chaotic behavior to a desired periodic orbit
found as a solution of the Harmonic Balance Method
[18–21]. The first applied control technique is obtained
by using the polynomial expansion of Chebyshev and
the interaction of the Piccard and Lyapunov–Floquet
(LF) transformation [22–26]. The second technique,
OLFC, is proposed by Rafikov and Balthazar [27].
The theorem formulated by Rafikov and Balthazar [27]
provides sufficient conditions that allow the use of
a linear feedback control for nonlinear systems. The
SDRE technique was proposed by Pearson [28] and
then expanded byWernli and Cook [29]. Subsequently,
this technique was studied byMracek and Cloutier [30]
and alluded by Friedland [31]. It is one of the most
popular techniques among researchers in the control
field. The SDRE method is a nonlinear control tech-
nique which produces a feedback control law that is a

function of the states. Themethod linearizes the system
by about one point, allowing the use of LQR (Linear
Quadratic Regulator).

In this way, the present paper is organized in the
following structure: Sect. 2 characterizes the mathe-
matical modeling and dynamic analysis. In Sect. 3, the
proposed control by Interaction Piccard Method and
Transformation Lyapunov–Floquet, OLFC, and SDRE
are implemented and analyzed. Section 4 details the
parametric errors and control robustness. In Sect. 5,
the chaos is analyzed and the control for MEMS sys-
temwith a fractional-order is implemented.Andfinally,
the conclusions are given.

2 Microelectromechanical system (MEMS)

Figure 1 shows a schematic of aMEMSwhich consists
of two fixed plates and a movable plate between them,
at which is applied a voltage V (t) composed of a polar-
ization voltage (DC) Vp, an alternating voltage (AC)
Vi sin(wt), d (distance between the plates), x (horizon-
tal movement) and m (front panel mass).

Considering as in [32–36], the mathematical model
for the MEMS, represented by Fig. 1, can be written as
follows:

mẍ + k1x + k3x
3 + cẋ

= 1

2

C0

(d − x)2
(
Vp + Vi sin(wt)

)

−1

2

C0

(d + x)2
V 2
p (1)

where C0 represents the capacitance of the parallel-
plate actuator, k1 is the linear stiffness, k3 is the nonlin-
ear stiffness and c is the damping coefficient. Equa-
tion 1 represents a lumped-parameters model of a
MEMS device, which can also be considered for a non-
linear dynamic analysis [5–8,12,13,25,26,32–36].

The nonlinear electrostatic terms of Eq. (1) can be
expandedup to the third order basedon theTaylor series
expansion method, which is represented by the follow-
ing equation [32–36]:

ẍ = −μẋ − kl x − knl x
3

+α
(
1 + 2x + 3x2 + 4x3

)
sin(wt) (2)

where μ = c
m , kl = k1

m , knl = k3
m , γ = C0V 2

p

2md2
and

α = 2γ Vi
Vp

.
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Fig. 1 Microelectromechanical
resonator (MEMS)

2.1 Dynamical analysis

Consider Eq. (2) in the state-space notation:

ẋ1 = x2

ẋ2 = −μx2 − kl x1 − knl x
3
1

+α
(
1 + 2x1 + 3x21 + 4x31

)
sin(wt) (3)

Figure 2 depicts bifurcation diagrams that show the
dynamic behavior of Eq. (3) considering the fol-
lowing initial conditions and parameters: x1(0) =
0.0001, x2(0) = 0.0006, α = 0.64, μ = [0:0.8], kl =
[− 10:5], knl = [4:20] and w = 1.

For certain variations of the parameters (μ, kl , and
knl), the system shows an evidence of chaotic and peri-
odic behaviors. Figure 3 shows the variation of the
highest Lyapunov exponent for the same variations
of the parameters (μ = [0:0.8], kl = [− 10:5], and
knl = [4:20]).

It is observed that for individual variations of the
parameters (μ, kl , and knl), Eq. (3) presents chaotic
behavior. In Fig. 4, it is possible to observe the dynamic
behavior of Eq. (3) through the Lyapunovmaps varying
both three parameters in three different combinations.

As shown in Fig. 4a, when the linear stiffness coef-
ficient (kl) is negative, the system obtains the highest
value for the Lyapunov exponent. However, the main
obstacle that needs to be overcome in the design process
is to create a negative linear stiffness (kl < 0). Accord-
ing to the authors in [13], to overcome this seemingly
unphysical condition, the movable plate can be chosen
so that, under a certain reasonable Vp, the stiffness (kl)
is negative.

Considering the parameters: α = 0.64, μ = 0.03,
kl = − 0.352, knl = 9.296 andw = 1, Fig. 5 shows the
dynamic behavior of the system for these parameters
by means of Poincare map, phase plane, time history
of displacement, Lyapunov exponent, and FFT. These
results show the chaotic behavior of the system, which
is even proved by the positive Lyapunov exponent λ1

= 0.093 in Fig. 5d.
To find a periodic orbit which is desired for the con-

trols, the harmonic balance method (HBM) is applied
and shown in the next section.

2.2 Perturbation technique solution by HBM

The harmonic balance method consists of the applica-
tion of a harmonic solution to calculate the steady-state
response of a nonlinear differential equation. Consider
the equation of motion of the system:

ẍ + μẋ + kl x + knl x
3

−α
(
1 + 2x + 3x2 + 4x3

)
sin(wt) = 0 (4)

The solution to be considered to solve the system is
a linear and a nonlinear part of a harmonic solution,
depending on the order of the system. The generalized
solution for the HBM is considered as [18–21]:

x (t) = a sin (ωt) + b sin (2ωt)

+ c cos (2ωt) + d sin (3ωt) + e cos (3ωt)

(5)

Considering the response of the system of the third
order (n = 3), Eq. (5) and their respective derivatives
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Fig. 2 Bifurcation diagram. a kl = [− 10:5], μ = 0.03 and knl = 9.296. b knl = [4:20], μ = 0.03 and kl = − 0.352. c μ =
[0:0.8], kl = − 0.352 and knl = 9.296

are introduced into Eq. (4), and in addition, manip-
ulating trigonometric terms to reduce their order and
selecting each of the respective terms of the given
solution, a system of five equations and five variables
a, b, c, d, and e is obtained,which areEqs. (A.1)–(A.5)
in “Appendix A.”

Solving the systemofEqs. (A.1)–(A.5) in “Appendix
A,” the values of the constants solved inReal space, that
is an approximation of the numerical integration, are
a = 0.34309, b = − 0.00615, c = − 0.80198, d =
0.03027 and e = 0.02952.

Then, such response is shown in the phase portrait of
the chaotic numerical solution and perturbation tech-
nique solution by Eq. (4), which is:

In Fig. 6, it is possible to observe the periodic behav-
ior of Eq. (4) with the solution of the HBM of the third
order. The method allowed to study a lot of orbits, sta-

ble or not, which are related to the equations of motion.
However, most of them are either nonphysical or they
are trajectories far from the trajectory drawn by the
numerical integration of the equations (the chaotic tra-
jectory of the phase plane). For this reason, this trajec-
tory is the onewhichfits on the chaotic trajectory,which
means that is one predicted from the infinite possible
trajectories due to chaos.

With that, the next sectionwill treat about the control
of the systemby considering this trajectory as the aimed
one to lead the chaos to.

3 Control using the optimal control

Chaotic behavior in the system can be avoided with
the performance of a control strategy which, in this
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Fig. 3 Highest Lyapunov
exponent, a kl = [− 10:5], b
knl = [4:20], c μ = [0:0.8]

(b)

(c)

(b)(a)

work, uses an optimal linear feedback control. In this
way, there is the objective of finding the optimal control
such that the response of the controlled system of Eq.
(4) results in a periodic orbit x̃ stable asymptotically.
Considering the introduction of the control signalU in
Eq. (3), it has:

ẋ1 = x2

ẋ2 = −μx2 − kl x1 − knl x
3
1

+α
(
1 + 2x1 + 3x21 + 4x31

)
sin(wt) +U (6)

where x1 = x, x2 = ẋ and U = u + ũ, u is the state
feedback control and ũ is the feedforward control.

3.1 Control I: control using Picard interaction and
Lyapunov–Floquet transformation

Considering that U = U1, where U1 = u1 + ũ1, u1
is the state feedback control, and ũ1 is the feedfor-

ward control, the control that maintains the system in
the desired trajectory. The feedforward control (ũ1) is
given by Sinha et al. [37]:

ũ1 = ¨̃x + μ ˙̃x + kl x̃ + knl x̃
3

−α
(
1 + 2x̃ + 3x̃2 + 4x̃3

)
sin(wt) (7)

where x̃ is desired periodic orbit Eq. (5).
Substituting Eq. (7) into Eq. (6) and defining the

desired trajectory errors as:
[
e1
e2

]
=

[
x1 − x̃1
x2 − x̃2

]
(8)

and substituting u1 in the controlled Eq. (6), it has:

ė1 = e2

ė2 = −μe2 − kle1 − knl (e1 + x̃1)
3

+ 2α (e1 + x̃1)
3 sin(wt)

+ 3α (e1 + x̃1)
2 sin(wt)

+ 4α (e1 + x̃1)
3 sin(wt) + u1 (9)
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Fig. 4 Highest Lyapunov
exponent. a knl = [4:20]
versus kl = [− 10:5]. b
μ = [0:0.8] versus
knl = [4:20]. c
kl = [− 10:5] versus
knl = [4:20]

Equation (9), whose main period is T = π , can
be rewritten in a normalized space-state form, whose
period is one (1), as:

ė(t) = A(t)e(t) + B(t)u1 (10)

where

A(t) = A0 + A1 cos(t) + A2 sin(t)

+ A3 cos(2t) + A4 sin(2t)

+ A5 cos(3t) + A6 sin(3t)

+ A7 cos(4t) + A8 sin(4t) + A9 cos(5t)

+ A10 sin(5t) + A11 cos(6t) + A12 sin(6t)

(11)

withA0 =
[

0 1
− 9.3237 − 0.03

]
; A1 =

[
0 0

0.6849 0

]
;

A2 =
[

0 0
− 3.227 0

]
; A3 =

[
0 0

− 2.209 0

]
; A4 =

[
0 0

0.1613 0

]
; A5 =

[
0 0

0.0948 0

]
; A6 =

[
0 0

6.35 0

]
;

A7 =
[

0 0
− 7.7157 0

]
;A8 =

[
0 0

− 0.3213 0

]
; A9 =

[
0 0

0.5989 0

]
; A10 =

[
0 0

1.8771 0

]
; A11 =

[
0 0

0.0948 0

]
; A12 =

[
0 0

− 0.0498 0

]
and B(t) =

[
0
1

]
.

Factoring the monodromy matrix of Eq. (15) as

ϕ(T ) = Q(t)eRt , where R = φ2(T )
2T is a real con-

stant matrix, Q(t) = φ(T )e−Rt being the Lyapunov–
Floquet transformation matrix [33], and applying the
Lyapunov–Floquet transformation z(t) = Q(t)q(t),
original Eq. (10) reduces to a dynamically equivalent
time-invariant system [21], which is depicted as:

q̇(t) = Rq(t) + Q−1(t)B(t)u1 (12)

where R =
[− 0.06406215 − 0.00345748

− 0.35130756 0.03410286

]
and

Q−1(t) is the inverse of the Lyapunov–Floquet trans-
formation matrix Q(t). The eigenvalues of Eq. (12) are
−0.07517710 and 0.04521781, indicating the instabil-
ity of the normalized system. Using the procedures of
[21,37], the state feedback controller u1 is designed to
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Fig. 5 Dynamics of the
microelectromechanical
oscillator (MEMS), a
displacement in time, b
phase plane, c poincare
map, d Lyapunov exponent,
e FFT
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place the unstable poles of system at −1; −10, as:

u1 = F(t)z(t) (13)

The term F(t)is the time-varying state feedback matrix
defined by:

F(t) = BQ(t)k̄Q
−1

(t) (14)

where B∗ = [0 1] is a generalized inverse matrix B,

and k̄ =
[− 0.935937 0.003457

0.351307 − 10.034102

]
is the matrix

of gains that is chosen when applying the pole place-
ment technique.

Figure 7a, b shows the time histories for the con-
trolled systems of Eq. (11). Figure 7c shows the phase
portrait of the desired and controlled orbits. Figure 7d
shows the desired trajectory errors, and Fig. 7e shows
the signal of the controlU1. These results show that the
proposed control U1 = u1 + ũ1 is efficient and could
lead the system (Eq. (6)) from the initial state x10 and
x20 to the desired state x̃10 and x̃20 .
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Fig. 6 Perturbation technique solution by HBM of third order

3.2 Control II: control using the optimal linear
feedback control

Considering now U = U2 where U2 = u2 + ũ2, u2 is
the state feedback control, ũ2 is the feedforward con-
trol. The feedforward control, which maintains the sys-
tem in the desired trajectory, is given by:

ũ2 = ¨̃x + μ ˙̃x + kl x̃ + knl x̃
3

−α
(
1 + 2x̃ + 3x̃2 + 4x̃3

)
sin(wt) (15)

Substituting Eq. (15) into Eq. (6), taking the desired
trajectory errors of Eq. (8), and also substituting u2
into Eq. (6), it has:

ė1 = e2

ė2 = −μe2 − kle1 − knl (e1 + x̃1)
3

+ 2α (e1 + x̃1)
3 sin(wt) + 3α (e1 + x̃1)

2 sin(wt)

+ 4α (e1 + x̃1)
3 sin(wt) + u2 (16)

Equation (16) can be represented in deviation as:

ė = Ae + G(e, x̃) + Bu2 (17)

According to Tusset et al. [6], if there exist matrices Q
and Rwith positive definite symmetric matrix such that
the matrix:

Q̃ = Q − GT(e, x̃)P − PG(e, x̃) (18)

is positive definite for the limited matrix G(e, x̃), then
the control u2 is optimal and transfers Eq. (16) from
any initial state to final state e(∞) = 0.

Minimizing the functional:

J =
∞∫

0

(eTQ̃e + uT
2 Ru2)dt (19)

the control u2 can be found by solving:

u2 = −R−1BTPe (20)

The symmetric matrix P can be found from the alge-
braic Riccati equation:

PA + ATP − PBR−1BTP + Q = 0 (21)

According to Rafikov and Balthazar [27], to analyze
cases in which the matrix Q̃ is analytically difficult,
it is possible to analyze numerically considering the
function:

L (t) = eTQ̃e (22)

calculated on the optimal debt trajectory, where L(t) is
positive definite for any time interval so that the matrix
Q̃ is positive defined.

3.2.1 Application of the optimal linear feedback
control

Let the matrices A and B of Eq. (16) be represented by:

A =
[

0 1
− kl −μ

]
, and B =

[
0
1

]
(23)

and defined as:

Q =
[
100 0
0 100

]
, and R = [1] (24)

Equation (21) is then solved, obtaining:

P =
[
109.95002 10.3582
10.3582 10.95714

]
(25)

The eigenvalues for the systemwith control are−1 and
−10. The control signal is obtained as:

u2 = −10.3582e1 − 10.9571e2

= −10.3582(x1 − x̃1) − 10.9571(x2 − x̃2) (26)

Figure 8 shows the analyses of the controlled system
comparing to the desired orbit. The times histories
of displacement, velocity, and phase portrait, shown
in Figs. 8a–c, respectively, show that the control U2

led the system to the desired orbit (denoted by Eq. 5)
with a very small error (see Fig. 8d). In addition, Fig-
ure 8e, f shows the signal of the control and L(t) calcu-
lated numerically, respectively. It is observed that L(t)
remains positive, demonstrating that control Eq. (26)
is optimal and that the matrix Q̃ is positive definite.
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Fig. 7 Time histories: a
displacement in time. b
Velocity in time. c Phase
plane. d Desired trajectory
errors. e Signal of the
control
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3.3 Control III: SDRE control design

The proposed SDRE control uses both feedforward and
feedback control [6,7,35,38,39]. The control input is

given as U = U3, where U3 = u3 + ũ3, u3 is the state
feedback control, and ũ3 is feedforward control.

Substituting the desired trajectory errors from Eq.
(8) into the controlled Eq. (6), it has:
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Fig. 8 Time histories of a
displacement and b
velocity, c phase portrait, d
desired trajectory error, e
signal of the control, f L(t)
calculated numerically
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L 
(t)

ė1 = e2

ė2 = −μe2 − kle1 − knl e
3
1 − knl3e

2
1 x̃1 − knl3e1 x̃

2
1

+ α
(
2e1 + 3e21 + 6e1 x̃1 + 4e31 + 12e21 x̃1 + 12e1 x̃

2
1

)
sin(wt)

+ α
(
1 + 2x̃1 + 3x̃21 + 4x̃31

)
sin(wt)

− ˙̃x2 − μx̃2 − kl x̃ − knl x̃
3
1 +U3 (27)

The feedforward control is given by:

ũ3 = −α
(
1 + 2x̃1 + 3x̃21 + 4x̃31

)
sin(wt) + ˙̃x2

+μx̃2 + kl x̃1 + knl x̃
3
1 (28)

Replacing Eq. (28) into Eq. (27), the system of Eq. (27)
can be represented in the following form:
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ė = A(e1, e2)e + Bu3 (29)

where

A(e1, e2) =
⎡

⎣
0 1

−kl − knle21 − 3knle1 x̃ − 3knl x̃21+
α

(
2 + 3e1 + 6x̃1 + 4e21 + 12e1 x̃1 + 12x̃21

)
sin(wt)

−μ

⎤

⎦ , e =
[
x1 − x̃1
x2 − x̃2

]
and B =

[
0
1

]

The quadratic performance measured for the feedback
control problem is given by:

J = 1

2

∞∫

t0

[
eT Q (e) e + uT

f R (x) u f

]
dt (30)

where Q (e) and R (e) are positive definite matrices.
Assuming full state feedback, the control law is given
by:

u3 = −R−1(e)BT(e)P(e)e (31)

P(e) is obtained from the state-dependent Riccati equa-
tion, which is given from:

P(e)A(e) + AT(e)P(e) − P(e)B(e)R−1(e)BT(e)P(e)

+ Q(e) = 0 (32)

The u3 is obtained for each iteration by solving Riccati
equation Eq. (32). Another important factor to consider
is that thematrixA(e) cannot violate the controllability
of the system. Then, Eq. (29) is controllable if the rank
of the matrix M is 2:

M = [
B A(e)B

]
(33)

To obtain a suboptimal solution for the dynamic control
problem, the SDRE control technique has the following
procedure [37]:

1. Define the state-space model with the state-depen-
dent coefficient as in Eq. (27);

2. Define x(0) = x0, so that the rank of M is n and
choose the coefficients of weight matrices Q (x)

andR (x);
3. Solve Riccati Eq. (32) for the state e(t);
4. Calculate the input signal from Eq. (31);
5. Integrate Eq. (6) and update the state of the system

x(t) with this result;
6. Calculate the rank of Eq. (33), if rank = 2 go to

step 3. However, if rank< 2, the matrix A(e) is not
controllable, therefore, should use the last matrix

controllable A(e) that has been obtained, and thus
go to step 3.

Using the matrices:

Q =
[
100 0
0 100

]
, and R = [1] (34)

the feedback control signal u3 is obtained from Eq.
(31).

Figure 9a, b shows the time histories of displacement
and velocity, respectively. The phase portrait shown in
Fig. 9c, d shows the desired trajectory errors, consid-
ering the application of the controlU3 in Eq. (12). The
proposed control U3 is efficient and led Eq. (6) from
the initial state x10 and x20 to the desired state x̃10 and
x̃20 . In addition, Fig. 9e shows the signal of the con-
trol, which is possible to observe the variation of the
proposed control U3 = u3 + ũ3 gains.

4 Analysis of the performance of the proposed
controller

Control techniques can, most of time, reach their pur-
pose. However, they are not always feasible due to
the minimum time required for the system achieves
the desired orbit. Therefore, the analysis of the perfor-
mance for theminimum time required for the controlled
system to achieve a lower system error of 2% is con-
sidered. Similar strategy was used in [26,40].

In Fig. 10, the variation of the control signal and
the settling time of the error is observed considering a
maximum of 2% of error for the steady state.

The three analyzed control techniques were able to
keep the controlled system below 2% of steady-state
error. In Fig. 10a, it is observed that the control by
Picard interaction and Lyapunov–Floquet transforma-
tion took approximately 1.8 (t) to stabilize the system
below 2% error. The Optimal Linear Feedback con-
trol took approximately 1.9 (t) to stabilize the system
below 2% error. However, the state-dependent Riccati
equation control took approximately 3.7 (t) to stabilize
the system below 2% error.
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Fig. 9 Time histories: of a
displacement and b
velocity, c phase portrait, d
desired trajectory errors, e
signal of the control

(a) (b)

(c) (d)

(e)
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It can be seen in Fig. 10c that the proposed controls
used approximately the same control signal, Control I
(maximum absolute amplitude: U1 = 4.746), Control
II (maximum absolute amplitude:U2 = 2.16), Control
III (maximum absolute amplitude: U3 = 6.135).

4.1 Effect of parameter uncertainties

According to Peruzzi et al., Schueller, and Triguero et
al. [26,41,42], the parametric uncertainties are asso-
ciated with differences between real values and the
parameters of the mathematical model.
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Fig. 10 Time histories of
displacement of a desired
trajectory errors
e1 = x1 − x̃1, b desired
trajectory errors
e2 = x2 − x̃2, c signal of the
control

(a) (b)

(c)

To consider the effects of parameter uncertain-
ties on the performance of the controller, the param-
eters used in the control are taken to have a ran-
dom error of ± 20% [7,26,42–44], as given by: μ̄ =
μ (0.8 + 0.4r(t)) , k̄l = kl (0.8 + 0.4r(t)) , k̄nl =
knl (0.8 + 0.4r(t)) and ᾱ = α (0.8 + 0.4r(t)) where
r(t) are distributed random functions.

Figure 11 shows the robustness of the control using
Picard interaction and Lyapunov–Floquet transforma-
tion when the parameters of the system have ran-
dom uncertainties. The uncertainties in the parameters
increase the error because the control with parametric
uncertainties has higher error variations than the con-
trol without uncertainties.

Figure 12 shows the robustness of the control using
Optimal Linear Feedback control when the parameters
of the system have random uncertainties. The uncer-

tainties in the parameters increase the error of the con-
trol because the control with parametric uncertainties
has higher variations of error than the control without
uncertainties. It can also be observed that the Optimal
Linear Feedback control is less sensitive than using
Picard interaction and Lyapunov–Floquet transforma-
tion.

Figure 13 shows the robustness of the control using
the state-dependent Riccati equation control when the
parameters of the system have random uncertainties.
The state-dependent Riccati equation control is more
robust to parametric variations than the other two con-
trols, as there was no increase in error.

In Fig. 14, a comparison of the robustness among
the three control techniques when the systems parame-
ters have random uncertainties is presented. The three
controls were able to keep the error below 2%, demon-
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Fig. 11 Time histories of
displacements of a desired
trajectory errors
e1 = x1 − x̃1, b desired
trajectory errors
e2 = x2 − x̃2

(a) (b)

Fig. 12 Time histories of
displacement of a desired
trajectory errors
e1 = x1 − x̃1, b desired
trajectory errors
e2 = x2 − x̃2

(b) (a) 

strating that they are efficient in carrying and main-
taining the system in the desired orbit, even in the case
of parametric uncertainties. Analyzing Fig. 14a, b, the
control effort using Picard interaction and Lyapunov–
Floquet transformation to reduce the error of e1 influ-
enced its performance in reducing e2, obtaining max-
imum uncertainty and error magnitude. In addition,
comparing the results of Figs. 10b and 14b, it is seen
that the parametric uncertainties influenced the control
performance using Picard interaction and Lyapunov–
Floquet.

5 Chaos analysis and control for system with a
fractional-order

The thermal effect due to the thermoelastic damping
on MEMS plays an important role because it makes
a high constraint on the motion of the MEMS res-
onator [3,31,44–47]. The behavior of heat conduction,
dielectric polarization, electrode-electrolyte polariza-

tion, electromagnetic waves can be properly described
by using the fractional-order system theory [48–52].
For the thermal effect, the damping of the microelec-
tromechanical system is modeled in fractional-order,
which is the main contribution of this work. To con-
firm whether the behavior is chaotic or periodic, the
wavelet-based scale index test is carried out.

Due to differences between the ODE and the FODE
systems, the ODE one cannot be directly extended
to the case of the FODE one [11,50,51]. FODE
may involve Riemann–Liouville Fractional differential
operators with q > 0, described as [52]:

Dqx(τ ) = 1

� (η − q)

τ∫

τ0

x (η)(u)

(τ − u)q−η+1 du (35)

where η is the first integer not less than q. It is easily
proved that the definition is the usual derivatives when
q = 1, with constraint for the choice of memory length
L [52], given by:
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Fig. 13 Time histories of
displacement of a desired
trajectory errors
e1 = x1 − x̃1, b desired
trajectory errors
e2 = x2 − x̃2

(b) (a) 

Fig. 14 Time histories of
displacement of a desired
trajectory errors
e1 = x1 − x̃1, b desired
trajectory errors
e2 = x2 − x̃2

(a) (b)

L ≥ 1

δ20� (q)2
(36)

where � (q) is the gamma function, and δ0 is the
maximum admissible normalized error. For simplic-
ity and without loss of generality, in the following, it
is assumed that: τ0 = 0, 0 < q < 1 [52,53]. Thus, the
discretization of the fractional derivative operator into
Eq. (35) is carried out, as described in [53].

5.1 The wavelet-based scale index

Wavelet techniques have been used to describe the
pattern of motion to verify the presence of chaos in
dynamic systems. The scale parameter is analogous to
the concept of scales used in maps, thus in small scales,
it has more compressed wavelets with rapidly vari-
able details. On large scales, however, there are more
enlarged wavelets, more visible features and slowly
changing. In other words, small scales provide good

resolution in the time domain, while large scales pro-
vide good resolution of the frequency domain.

It is possible to find the Continuous Wavelet Trans-
form (CWT) of signal f at time u and scale s. Suppose
f ∈ L2(R), then the CWT is defined as

W f (u, s) := 〈
f, ψ∗

u,s

〉 =
+∞∫

−∞
f (t) ψ∗

u,s (t) dt (37)

where

ψu, s
∗ := 1√

s
ψ

(
t − u

s

)
, u ∈ R, s > 0 (38)

The frequency component of the signal f as regards
to the wavelet ψu,s at time u and scale s is given by
W f (u, s) [17]. The scalogram of f , denoted by ℘, is
defined as [17]:

℘(s) := ‖W f (u, s)‖ =
⎛

⎝
+∞∫

−∞
|W f (u, s)|2 du

⎞

⎠

1/2

(39)
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Fig. 15 a Time history of
the displacement, b time
history of the velocity, c
phase portrait

(c)

(b)(a)

Knowing this relationship, it is possible to interpret
℘(s) as the energy of the CWT of f at scale s. The
scalogram can be used to detect which is the most rep-
resentative scale (or frequency) of the signal f [17].
The term inner scalogram of f at scale s was defined
in Benítez et al. [17], and can be defined as:

℘inner(s) := ‖W f (u, s)‖J (s)

=
⎛

⎜
⎝

d(s)∫

c(s)

|W f (u, s)|2 du
⎞

⎟
⎠

1/2

(40)

where J (s) = [c (s) , d (s)] ⊆ I is the maximal subin-
terval in I for which the support of ψu,s is included in
I for all u ∈ J (s). Therefore, in Benítez et al. [17] it is
suggested that the normalization of the inner scalogram
be as follows:

℘̄inner(s) = ℘inner(s)

(d (s) − c (s))1/2
(41)

Besides, the authors of Benítez et al. [17] introduced
the Scale index in the scale interval [s0, s1] defined by
relation:

iscale := ℘(smin)

℘ (smax)
(42)

where smax and smin are the smallest scales such that
℘(smin) ≤ ℘(s) ≤ ℘(smax) for all s ∈ [s0, s1]. In
this way, using the definition of the Scale index iscale,
values between 0 and 1 (0 ≤ iscale ≤ 1)were taken into
account. Therefore, this measure (iscale) can be used
to explore the degree of non-periodicity of the signal,
namely if the Scale index is close or equal to zero the
signal is periodic, otherwise, the signal is non-periodic
[17].

5.2 Analysis and control of the fractional-order
system

According to Tusset et al. [11], some techniques of
fractional calculus can be used to analyze the behavior
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Table 1 Error in RMS
(root mean square), and
wavelet-based scale index
test

q3 = 0.5 q3 = 0.6 q3 = 0.7 q3 = 0.8 q3 = 0.9

erms 0.6007 0.5776 0.7086 0.6318 0.8060

iscale 0.992996 0.992827 0.992889 0.992877 0.992562

(a) (b)

(c)

Fig. 16 Error the time history of the displacement y1 = xu1 (q3=1)
− xu1 (q3 
=1)

, a control using Picard interaction and Lyapunov–Floquet

transformation (yrms(lft)), b optimal linear feedback control (yrms(olfc)), c state-dependent Riccati equation control (yrms(sdre))

of Eq. (3) with the fractional-order damping, which is
given as:

dq1x1
dτ q1

= x2

dq2x2
dτ q2

= −μ
dq3x3
dτ q3

− kl x1 − knl x
3
1

+α
(
1 + 2x1 + 3x21 + 4x31

)
sin(wt)

dq3x3
dτ q3

= x2 (43)

where 0 < q1, q2, q3 ≤ 1. Its order is denoted by
q = (q1, q2, q3).

The displacement, velocity and phase portrait for
(q1 = q2 = 1 and q3 = 0.6) case are shown in
Fig. 15. The displacement of the beam has no defined
period demonstrating that the behavior is chaotic. This
means that the inclusion of the fractional-order changes
the displacement of the beam, whose variation of the
chaotic behavior is shown in Table 1, where iscale is
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Table 2 Error in RMS
(root mean square) for
y1 = xu1 (q3=1)

− xu1 (q3 
=1)

q3 = 0.5 q3 = 0.6 q3 = 0.7 q3 = 0.8 q3 = 0.9

yrms(lft) 0.000825 0.000633 0.000454 0.000288 0.000137

yrms(olfc) 0.000783 0.000602 0.000432 0.000274 0.000130

yrms(sdre) 0.000839 0.000647 0.000466 0.000298 0.000142

the wavelet-based scale index test, and erms is the error
variation in RMS.

With the application of the wavelet-based scale
index test (iscale), it is possible to state that the sys-
tem maintained the chaotic behavior. However, con-
sidering the error erms, the variation of q3 influences
the beam movements, generating movements different
from those observed for q3 = 1.

The MEMS system with control signalU (Eq. 6), in
fractional-order, is expressed in the following way:

dq1x1
dτ q1

= x2

dq2x2
dτ q2

= −μ
dq3x3
dτ q3

− kl x1 − knl x
3
1

+α
(
1 + 2x1 + 3x21 + 4x31

)
sin(wt) + U

dq3x3
dτ q3

= x2 (44)

Figure 16 shows the robustness of the control in keep-
ing the system on the same orbit obtained with the con-
trol with q3 = 1. It is considered that y1 = xu1 (q3=1)

−
xu1 (q3 
=1)

and xu1 (q3=1)
are the states (x1) obtained with

the control with q3 = 1, and xu1 (q3 
=1)
is the state (x1)

obtained with the control with q3 
= 1. The three ana-
lyzed controls are sensitive to the variation of deriva-
tive order q3, demonstrating the importance of a con-
trol design that also considers the variation in fractional
derivatives.

Table 2 shows the variation of the error in RMS for
each of the controls with the variation of q3. The more
q3 moves away from q3 = 1, the greater the control
error is. In addition, theOLFCcontrol is themost robust
one for these variations, while the SDRE is the most
sensitive one.

6 Conclusions

In this paper, the dynamics of a mathematical model of
a MEMS resonator was analyzed. The dynamic system
showed to be chaotic and was controlled to a desired

periodic orbit through a state feedback control tech-
nique based on the Lyapunov–Floquet transformation,
Optimum Linear Feedback Control and through the
SDRE Control. The desired orbit was obtained by the
Harmonic Balance method.

The dynamic analysis of the linear and nonlinear
parameters of the stiffness coefficient and the damp-
ing coefficient showed that the system has a chaotic
behavior for a set of parameters. It was also observed
that the nonlinear stiffness has a strong influence on the
dynamics of the system. The results demonstrated that
the control proposed in [23] and the Optimum Linear
Feedback control proposed in [27] are a good choice for
the cases inwhich it iswished tominimize the transitory
time of the system to a predetermined orbit. In cases
where the control parameters are subject to parametric
errors, the results show that the SDRE control is more
robust in relation to the other two proposed controls. On
the other hand, for the damping with fractional-order,
the OLFC control has shown to be robust for variations
of the derivative order q3.

The main contribution of this work is the results
obtained throughout the sensitivity of the controls for
parametric errors and fractional derivative variation.
There are some results that were not observed in previ-
ous works, then demonstrating the importance of the
controller design taking into account the parametric
errors and order of the fractional derivative, which is
related to the effects of memory of the material, such
as the behavior observed with thermal phenomenon or
with similar behavior. In addition, the error increases
as the derivative (q3) moves away from the derivative
(q3 = 1), which is the value of the derivative nor-
mally used in the control design, and that the fractional
thermoelastic damping coefficient in the fractional-
order plays an important role, since the dynamics of
the MEMS can be brought to different responses (see
Fig. 15), showing the influence of the order of the
derivative on the displacement of the movable plate.

With those results, it is intended for a future work
to verify the possibility of improving the robustness of
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the controls with the application of additional controls
as adaptive ones.

Acknowledgements The authors acknowledge support from
CNPQ, CAPES, FAPESP and FA, all Brazilian research funding
agencies.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict
of interest regarding the publication of this paper.

Appendix

Variables a, b, c, d, and e for Eq. (5).

− 4aω2 − 4α − 9a2α − 6b2α + 4cα + 24a2cα + 6b2cα − 6c2α + 6c3α + 6adα

− 36acdα − 6d2α + 12cd2α + 36abeα − 6e2α + 12ce2α + 4akl

+ 3
(
a3 − a2d + b2d − c2d + 2bce + 2a

(
b2 + c2 + d2 + e2

))
knl = 0 (A.1)

1

2

(−8bω2 − 3b (−2a (−1 + c) + d + 2cd) α + 9b2eα
+ (

2 + 9a2 − 3c + 3c2 + 3d2
)
eα + 3e3α − 4cωμ

)

+ bkl + 3

4

(
2a2b + 2a (bd + ce) + b

(
b2 + c2 + 2

(
d2 + e2

)))
knl = 0 (A.2)

1

2

(−8cω2 + 4a3α + 9c2 (a − d) α − 2dα − 9a2dα − 3b2dα − 3d3α − 3beα
−3de2α + 3c (−2a + d + 2be) α + a

(
2 + 3b2 + 6d2 + 6e2

)
α + 4bωμ

)

+ ckl + 3
4

(
2a2c + a (−2cd + 2be) + c

(
b2 + c2 + 2d2 + 2e2

))
knl = 0

(A.3)

− 36dω2 + 3a2α − 3b2α − 4cα − 18a2cα − 6b2cα + 3c2α − 6c3α
− 12adα + 24acdα − 18cd2α + 12bdeα − 6ce2α − 12eωμ + 4dkl
+ (−a3 + 3a

(
b2 − c2

) + 6a2d + 3d
(
2b2 + 2c2 + d2 + e2

))
knl = 0

(A.4)

1

2

(
3b3α + b

(
2 + 9a2 − 3c + 3c2 + 3d2

)
α + 9be2α

−6e
(
3ω2 + (a − 2ac + cd) α

) + 6dωμ

)
+ ekl

+ 3
4

(
2abc + 2a2e + e

(
2b2 + 2c2 + d2 + e2

))
knl = 0

(A.5)
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