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Abstract In this paper, based on the dynamical sys-
tem method, a new approach for investigating solu-
tions of nonlinear time-fractional partial differential
equations (PDEs) is introduced. By proposing a novel
technique with separation variables, the phase portraits
of system derived from the nonlinear time-fractional
PDEs are analyzed, and the issue of existence for the
solution of the time-fractional PDEs is considered.
Moreover, the dynamical properties of the solution of
the time-fractional PDEs are studied in detail. As exam-
ples, three nonlinear time-fractional models such as
the reaction–diffusion model, the biology population
model and the fluidmodel are studied by using this new
approach. In some special parametric conditions, exact
solutions of these models are obtained. The dynami-
cal properties of some exact solutions are illustrated by
graphs. Compared with the results in current studies,
the results obtained in this paper are new.
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1 Introduction

Since the concept of fractional-order calculus was born
in 1695, there have beenmany definitions of fractional-
order derivative, so far, there are more than a dozen
kinds of definitions. However, the more frequently
used, classical and very widely influential definitions
are still Riemann–Liouville definition, Caputo defini-
tion and Grünwald–Letnikov definition. We all know
that the concept of fractional-order calculus appeared
only one or two decades later than the concept of
integer-order calculus, both of them arose Leibniz’s
times. But the theory of fractional-order calculus devel-
ops very slowly and difficultly than the theory of
integer-order calculus. As far as we know, there should
be three reasons. The first reason which restricts the
development of theory of fractional-order calculus is
that the definitions of fractional-order derivative are too
many to be unified, so they are very inconvenient to use
in scientific and engineering fields. The second reason
is that fractional-order calculus has been lack of appli-
cation background for a long time in the past. The third
reason is that fractional-order calculus has been lack
of effective methods of solving and analytical tools on
investigating solutions of fractional-order differential
equations (FDEs). Phylogeny of fractional-order cal-
culus and cruel reality tells us that the first problem is
almost impossible to solve. However, on the other two
issues, very good improvements have been made since
the 1960s. On the application background of fractional-
order differentialmodels, it is found thatmore andmore
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complex problems can be modeled by FDEs since the
1960s. Now, models that are established by the FDEs
play very important roles in a range of scientific fields
such as physics, chemistry, biology, mechanics, engi-
neering, control theory and many other fields. Many
experts and scholars in the fractional-order fields know
that there are somany references in above fields. Unfor-
tunately, the references are too much to all quote them
at here. Although more and more FDEs are proposed,
compared with the PDEs in the field of integer-order
calculus, the FDEs are still less actually. In order to
meet the shortcomings of the research for solvingmeth-
ods of FDEs, some classical PDEs in integer-order
field are often directly transformed into FDEs. On the
method of solving FDEs, in recent years, many effec-
tive methods have been used to solve FDEs; these
methods contain the Adomian decomposition method
[1,2], homotopy analysis method [3,4], first integral
method [5], invariant analysis method [6,7], fractional
variational iteration method [8–10], invariant subspace
method [11–14], method of fractional complex trans-
formation [15–18],method of separating variables [19–
21], and so forth. Although these methods can be suc-
cessfully used to solve many FDEs, this is far from
enough on discussing existence and dynamical prop-
erties of solutions of a more complex nonlinear FDE.
In addition, the development of new analytical meth-
ods and techniques in the research fields of nonlinear
FDEs is also primary task in the future.

Among the above-mentioned methods, we espe-
cially notice themethod of fractional complex transfor-
mation. In references [15–18], some authors employed
a fractional complex transformation such as u(x, t) =
U (ξ), ξ = pxβ

�(1+β)
+ qxα

�(1+α)
and the Jumarie’s

fractional chain rule [22–24] such as Dα
x f [u(x)] =

f ′(u)Dα
x u(x) = Dα

u f (u)(u′(x))α, and then, they
solved some fractional-order partial differential equa-
tions (PDEs) formed as

P(u, Dα
t u, Dβ

x u, D2α
t u, Dα

t D
β
x u, D2β

x , . . .) = 0.

(1.1)

Finally, many exact traveling wave solutions of some
nonlinear fractional-order PDEs formed as (1.1) have
been obtained. At first glance, the effect of this
method seems to be very good. However, the Jumarie’s
fractional-order chain rule does not hold, which has
been successively verified inRefs. [25–27]. So,we can-
not use the Jumarie’s fractional chain rule to obtain
exact traveling wave solutions of those nonlinear

fractional-order PDEs defined by Riemann–Liouville
derivative and Caputo derivative. Indeed, under the
above two derivative definitions, people cannot truly
obtain exact traveling wave solutions of nonlinear
fractional-order PDEs such as those results in [15–18].
In order to remedy this shortcoming, we introduce a
method for discussing existence and dynamical prop-
erty of solutions of nonlinear fractional-order PDEs
based on our previous works [27–30] and combined
with bifurcation theory of differential dynamics [31–
34]. We call this method the dynamic system method.
As example, by using the introduced dynamic system
method, we will discuss the existence and dynamic
property of solutions of a kind of nonlinear time-
fractional PDEnamed biology populationmodel. Next,
we will introduce the application background of this
model.

In early research, biologists agree that the phe-
nomenon of diffusion (or emigration) is a major fac-
tor in the change of the response biological popula-
tion, which plays an important role in the regulation
of population of biological species. Recently, biolo-
gists have also found that the phenomena of memory
and anomalous diffusion are also two important fac-
tors in the change of the response biological popula-
tion. If only the diffusion phenomenon is considered
in the differential model of biological population, then
the established model must be an nonlinear partial dif-
ferential equation (PDE) of integer order. But if the
phenomena of memory and anomalous diffusion are
taken into account in modeling, the model can only
be an nonlinear fractional partial differential equation
(FPDE). When the phenomena of memory and diffu-
sion are considered, according to the law of population
balance, the total rate of change of biological popula-
tion is satisfied by the following equation

dα

dtα

∫
D
udV +

∫
∂D

u �μ · n̂dA =
∫
D

f dV, (1.2)

where the function u = u( �X , t) denotes population
density which provides the number of individual per-
sons per unit volume, the vector �X = (x, y) denotes
the position in a local region D, the vector function
�μ = �μ( �X , t) denotes the diffusion velocity, the func-
tion f = f ( �X , t) denotes the rate of change of indi-
vidual supplies per unit volume at position �X , the A
denotes the area of the region formed by the bound-
ary of D, the V denotes the spatial volume, the n̂ is
the normal unit vector outward side of boundary of the
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region D, the dα

dtα denotes the fractional-order deriva-
tive defined by Riemann–Liouville type or Caputo type
and

f = f (u), �μ = η(u)∇u, (1.3)

where u > 0, η(u) > 0 and ∇ is the Laplace operator.
According to relations of (1.2) and (1.3), the following
two-dimensional nonlinear degenerate parabolic PDE
(of time-fractional order) for the population density can
be obtained as

∂αu

∂tα
= ∂2φ(u)

∂x2
+ ∂2φ(u)

∂y2
+ f (u),

t > 0, x, y ∈ R. (1.4)

As an example for the modeling of the population
of animals, Gurney and Nisbet [35] employed a spe-
cial case of φ(u). In particular, when φ(u) = u2,
Eq. (1.4) becomes the following normal nonlinear time-
fractional biology populations model [36]

∂αu

∂tα
= ∂2(u2)

∂x2
+ ∂2(u2)

∂y2
+ f (u),

t > 0, x, y ∈ R, (1.5)

where the sign ∂α

∂tα denotes fractional differential opera-
tor defined by the Riemann–Liouville derivative RL

0 Dα
t

or Caputo derivative C
0 D

α
t , and u = u(x, y, t), α ∈

(0, 1). As a special case, when f (u) = hua(1 − rub),
the numerical solutions of Eq. (1.5) are studied by Liu,
Li and Zhang in [37].

When α → 1, Eq. (1.5) becomes a classical integer-
order model as follows:

∂u

∂t
= ∂2(u2)

∂x2
+ ∂2(u2)

∂y2
+ f (u),

t > 0, x, y ∈ R. (1.6)

Some properties such as Hölder estimates of solutions
of Eq. (1.6) have been studied by Lu in [38]. In par-
ticular, when f (u) = δu and δ is an nonzero constant,
Eq. (1.6) is a biology population model which satis-
fies theMalthusian growth law [39], where the variable
u denotes the population density and f (u) represents
the population supply due to births and deaths. When
f (u) = δu − κ̂u2 and δ, κ̂ are positive constants,
Eq. (1.6) is a biology population model which satisfies
the Verhulst growth law [39]. When f (u) = −κ̂u p

and κ̂ > 0, Eq. (1.6) is a fluid model in porous
media [40,41]. Of course, we also can be regarded as
that the time-fractional PDE (1.5) obtained directly by
replacing the derivative term of the time part of the

integer-order model (1.6). The reason of using time-
fractional PDEs is that they are naturally related to
models with memory and anomalous diffusion which
exists many biological systems and diffusion-reaction
systems. For example, biological populations (animals)
can remember the change anddistributionof foodquan-
tity affected by season and regional environment, and
they know what season or area there will be a lot of
food. Therefore, the biological population will migrate
to the food-rich area, which will cause the biologi-
cal population density to increase in this area for a
period of time, which indicates that memory is also an
important factor to determine the change and distribu-
tion of the biological population density. Therefore, in
the modeling of this kind of problems, mathematicians
and biologists usually use time-fractional derivatives
to describe or denote memory phenomena. In addi-
tion, the results derived from the time-fractional PDE
(1.5) are more general in nature than the correspond-
ing integer-order PDE (1.6). The resulting solutions
of the time-fractional PDE (1.5) spread faster than the
classical solutions of the corresponding integer-order
PDE (1.6) and may exhibit asymmetry. By the way,
when 0 < α < 1, f (u) = h̃(u2 − r) and h̃, r are
constants, Eq. (1.5) becomes another nonlinear time-
fractional biological population model as follows:

∂αu

∂tα
= (u2)xx + (u2)yy + h̃(u2 − r), (1.7)

which is first appeared in [36]. By using the Ado-
mian’s decomposition method, EI-Sayed et al. studied
the exact solutions and approximate analytical solu-
tions of model (1.7) in [36]. In [42], by using the frac-
tional sub-equation method, the authors studied exact
solutions ofmodel (1.7). In [29], by using themethod of
separation variables combined with the homogeneous
balance principle, Wu and Rui studied exact solutions
of model (1.7).

The rest of this paper is organized as follows: In
Sect. 2, based on the method of separation of variables
and combined with bifurcation theory of dynamic sys-
tem, we will introduce a new and effective way for dis-
cussing the existence of solution and dynamical prop-
erty of solutions for nonlinear time-fractional PDE. In
Sect. 3, by using the new method introduced in Sect. 2,
under the case f (u) = δu + κu2, we will discuss the
existence of solution and dynamical property of solu-
tions for Eq. (1.5).
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2 Summary of method for investigating solutions
of nonlinear time-fractional PDE

Avoided Jumarie’s fractional chain rule, we will intro-
duce a new and effective analytical approach for dis-
cussing the existence of solution and dynamical prop-
erty of solutions for an nonlinear time-fractional PDE
in this section. Compared with the method provided in
references [27–30], the biggest difference between this
new method and the previous method is that it adds
the analysis function of dynamic system, that is, the
method of phase portrait analysis. With the addition of
this function, the newmethod can not only obtain some
exact solutions of time-fractional nonlinear PDEs, but
also discuss the existence, dynamical properties and
dynamical behavior of their solutions. This is some-
thing that the previous method could not achieve. By
using the method in references [27–30], we can only
obtain the exact solution of time-fractional PDEs under
some special conditions or in some specific range of
parameters and adopt the new method to be introduced
in this paper; we can discuss the existence and dynamic
properties of solutions of time-fractional PDEs under
general conditions or in the general range of parame-
ters.

As a general example, we assume that an nonlinear
time-fractional PDE has the following form:

∂αu

∂tα
= F

(
u,

∂u

∂x
,

∂u

∂y
,

∂2u

∂x2
,

∂2u

∂y2
, . . .

)
, (2.1)

where the function u = u(x, y, t) and the sign
∂α

∂tα denotes the fractional differential operator of
Riemann–Liouville typeorCaputo type,α ∈ (0, 1), t >

0, x, y ∈ R. Obviously, Eq. (2.1) is a time-fractional
PDE of 2 + 1-dimension, which contains model (1.5)
and other time-fractional models. In particular, when
u becomes binary function u = u(x, t), Eq. (2.1)
can be reduced by time-fractional PDE of 1 + 1-
dimension, which contains many time-fractional mod-
els such as time-fractional diffusion-wave (dispersive)
models [30], time-fractional reaction–diffusionmodels
[10,12,27], time-fractional heat transfer models [41]
and so on.

Based on our previous works [27–30], under def-
initions of Riemann–Liouville derivative and Caputo
derivative, we, respectively, suppose that Eq. (2.1) has
two forms of exact solutions of separation variable type
as follows:

u(x, t) = [a0 + a1v(x, y)] tγ , (2.2)

or

u(x, t) = [a0 + a1v(x, y)] Eα,1(λt
α), (2.3)

where the function v = v(x, y) is the undetermined
function, the a0, a1, λ are three undetermined coeffi-
cients, the γ is an undetermined constant, all of them
can be determined later, and the Eα,1(λtα) = Eα(λtα)

is theMittag–Leffler function. In many cases, (2.2) and
(2.3) are still general forms for the solutions of Eq. (2.1)
when a0 = 0.But under the case of a0 �= 0, the calcula-
tion often becomes complex or difficultwhenwe search
exact solutions of Eq. (2.1). In this case, we always let
a0 = 0 in (2.2) and (2.3) directly. The above structures
are different from those of the classical method of sep-
aration variables; in the classical method of separation
variables, the solution of Eq. (2.1) always is supposed
that the following product form

u(x, y, t) = G(x, y)T (t), (2.4)

where G(x, y) is a binary function of x and y, T (t)
is a function of t alone, all of them are undetermined.
But, in Eqs. (2.2) and (2.3), the part of T (t) has been
fixed as power function tγ or Mittag–Leffler function
Eα,1(λtα).Thus, under the hypothetical structures (2.2)
and (2.3) of the solutions, the dynamic properties of
the fractional derivative part of Eq. (2.1) can only be
reflected by the properties of the power function tγ and
Mittag–Leffler function Eα,1(λtα). It is easy to know
that the power function tγ has a strong attenuatingprop-
erty when −1 < γ < 0 and the Mittag-Leffler func-
tion Eα,1(λtα) has a super attenuating property when
λ < 0. The greater the absolute value of γ or λ, the
faster the attenuation of the corresponding mechani-
cal process. On the contrary, as in references [11–14],
the function G(x, y) can be fixed as some specific
functions in invariant subspace such as power func-
tion (x+ωy)γ , trigonometric function sin[λ(x+ωy)],
exponential function eη(x+ωy) and so forth, and then,
let the function T (t) to be determined; this is the idea of
invariant subspace method. By using the invariant sub-
space method, we can only obtain the exact solution of
FDE (2.1); it is difficult to discuss the dynamic proper-
ties of fractional dynamic system which was reduced
by FDE (2.1).

According to the definition of fractional derivative
of Riemann–Liouville type, we know that the fractional
derivative of power function is given by the following
formula

RL Dα
t tγ = �(1 + γ )

�(1 + γ − α)
tγ−α, γ > −1. (2.5)
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According to the definition of fractional derivative of
Caputo type, we obtain the following formula of frac-
tional derivative of Mittag–Leffler function

C Dα
t Eα(λtα) = λEα(λtα). (2.6)

As an example, substituting (2.2) into (2.1) and
regarding t as the coefficient of equation, we can obtain
a reduced nonlinear PDE defined by v(x, y) with vari-
able coefficients about t . As in [27–30], by using homo-
geneous balance principle, we let the power exponents
of t of all terms to be equal in this reduced nonlinear
PDE; therefore, we can determine the value of γ in the
range of γ > −1. And then, substituting the value of
γ into this reduced nonlinear PDE again, the variable
t can be divided out because the power exponents of t
of all terms are same; thus, we can obtain a nonlinear
PDE with constant coefficients as follows:

F

(
v,

∂v

∂x
,

∂v

∂y
,

∂2v

∂x2
,

∂2v

∂x2
, . . .

)
= 0. (2.7)

We make the following transformation

v(x, y) = v(ξ), ξ = x + ωy, (2.8)

where ξ is a compound variable of x and y. By sub-
stituting the above transformation into (2.7), it can be
reduced to the following nonlinear ODE

F

(
v,

dv

dξ
,
d2v

dξ2
, . . .

)
= 0. (2.9)

In particular, when the highest order of derivatives is
two in the nonlinear ODE (2.9), it can be reduced to a
planar system as follows:
{

dv
dξ = z,
dz
dξ = Q(v, z).

(2.10)

Of course, when the highest order of derivatives is
three in the nonlinear ODE (2.9), it can be reduced
to a three-dimensional system, and so on. Although ξ

does not represent time, we can use the bifurcation the-
ory of dynamical system [31–34] to study the dynami-
cal properties of system (2.10), so as to investigate the
existence and various properties of the solution v(ξ) of
ODE (2.9). And then using structure of solution (2.2)
and transformation (2.8), we can finish investigations
for the existence and various properties of the solutions
of the nonlinear time-fractional PDE (2.1).

Similarly, byusing (2.3), as in the aboveprocessions,
we can also discuss the existence and various properties

of the solutions of the nonlinear time-fractional PDE
(2.1). Here, we omit these introductions because these
processions are very similar. By the way, (2.2) is very
suitable for solving time-fractional PDEs, which are
defined by the Riemann–Liouville derivative, and con-
tains many nonlinear terms, but (2.3) is very suitable
for solving time-fractional PDEs, which are defined
by Caputo derivative and contains many linear terms.
As a reader, you may ask whether the above two spe-
cial solutions’ dynamical property is general for all
solutions of the considered nonlinear time-fractional
PDEs. In fact, we are not entirely sure of this, but
from the results in references [11–14] and [27–30],
we know that the dynamical properties of these two
special solutions are very suitable for most nonlinear
time-fractional PDEs with the phenomenon of mem-
ory or diffusion. We believe that the structures of the
two special solutions are also great help in the study of
other types of time-fractional PDEs.

3 Existence of solution and dynamical properties
of solutions for the time-fractional model (1.5)

In the section, by using the method introduced in
Sect. 2, we will discuss the existence of solution and
dynamical properties of solutions for model (1.5) in a
classical case.

When f (u) = δu + κu2, Eq. (1.5) becomes the
following nonlinear time-fractional PDE

∂αu

∂tα
= (u2)xx + (u2)yy + δu + κu2, (3.1)

where the sign ∂α

∂tα denotes the fractional differential
operator ofRiemann–Liouville type orCaputo type, the
function u = u(x, y, t), 0 < α < 1, t > 0, x, y ∈ R

and the δ, κ are two constants. Equation (3.1) con-
tains three kinds ofmodels such as time-fractional biol-
ogy model, time-fractional reaction–diffusion model
and time-fractional fluid model in porous media.When
α → 1, δ > 0, κ < 0, Eq. (3.1) is a biology popu-
lation model which satisfies the Verhulst growth law
[39]. When δ = 0, Eq. (3.1) is reduced to the follow-
ing nonlinear time-fractional reaction–diffusion model
or time-fractional fluid model in porous media [39,43]

∂αu

∂tα
= (u2)xx + (u2)yy + κu2. (3.2)
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When κ < 0, Eq. (3.2) defines a time-fractional
fluid model. When κ is an arbitrary nonzero constant,
Eq. (3.2) defines a time-fractional reaction–diffusion
model. In addition, when δ and κ are arbitrary nonzero
constants, Eq. (3.1) can be regard as a time-fractional
reaction–diffusion model of 2 + 1-dimension. A sam-
ple nonlinear time-fractional reaction–diffusion model
of 1 + 1-dimension can be written as

δ
∂αu

∂tα
= [G(u)ux ]x + f (u), (3.3)

where G(u), f (u) are two smooth functions of u.

Clearly, [G(u)ux ]x = (u2)xx if G(u) = 2u in
Eq. (3.3). What’s more, Eq. (3.3) becomes a classical
integer-order reaction–diffusion model [44,45] when
α → 1 and G(u) = mum−1, f (u) = κun(1 − u).

We will study Eqs. (3.1) and (3.2) in the order of
simplicity to complexity. First, we investigate the exis-
tence and dynamical properties of solutions of the non-
linear time-fractional fluid model (3.2) in the following
subsection.

3.1 Existence of solution and dynamical properties of
solutions for model (3.2)

If the time-fractional differential operator of Eq. (3.2)
is Riemann–Liouville type, then we suppose that it has
solutions that formed as follows:

u(x, y, t) = [a0 + a1v(x, y)] tγ , (3.4)

where v = v(x, y) is an undetermined function of
space variables x and y, the a0, a1 are two undeter-
mined coefficients and γ is an undetermined constant.
Substituting (3.4) into (3.2), it yields

(a0 + a1v)�0t
γ−α = 2a21(v

2
x + v2y)t

2γ

+ 2a1(a0 + a1v)(vxx + vyy)t
2γ

+ κ(a0 + a1v)2t2γ , (3.5)

where �0 = �(1+γ )
�(1+γ−α)

. In Eq. (3.5), we let all power
exponents of time variable t equal, and it yields

γ − α = 2γ. (3.6)

Solving (3.6), we get

γ = −α. (3.7)

Obviously, γ = −α > −1 because 0 < α < 1 and
�0 = �(1−α)

�(1−2α)
.Plugging (3.7) into (3.5) and then divid-

ing out the variable t−2α of all terms, we have

�0(a0 + a1v) = 2a21

[(
∂v

∂x

)2
+
(

∂v

∂y

)2]

+ 2a1(a0 + a1v)

(
∂2v

∂x2
+ ∂2v

∂y2

)

+κ(a0 + a1v)2. (3.8)

We make a transformation as follows:

v = v(ξ), ξ = x + ωy, (3.9)

where ω is nonzero constant. Under transformation
(3.9), Eq. (3.8) can be reduced to the following non-
linear ODE

2a1(1 + ω2)(a0 + a1v)
d2v

dξ2

= (a0�0 − a20κ) + (a1�0 − 2a0a1κ)v

− a21κv2 − 2a21(1 + ω2)

(
dv

dξ

)2
. (3.10)

Letting dv
dξ = z, Eq. (3.10) can be rewritten as the

following planar system

⎧⎨
⎩

dv
dξ = z,
dz
dξ =

(
a0�0−a20κ

)+(a1�0−2a0a1κ)v−a21κv2−2a21
(
1+ω2

)
z2

2a1(1+ω2)(a0+a1v)
.

(3.11)

The structure of (3.11) is very much like a dynamical
system except that ξ is independent with time. There-
fore, we can use the method of dynamical system to
study the nonlinear system (3.11). It is easy to know that
system (3.11) is not completely equivalent to Eq. (3.10)
because the dz

dξ is not defined if v = − a0
a1

. However,
the v = − a0

a1
is a travel solution of Eq. (3.10). So we

usually call the v = − a0
a1

a singular line. In order to
obtain a completely equivalent system for Eq. (3.10) in
the condition v = − a0

a1
, we make the following scalar

transformation

dξ = 2a1(1 + ω2)(a0 + a1v)dτ. (3.12)

Under transformation (3.12), the singular system (3.11)
can be reduced to the following regular system
⎧⎨
⎩

dv
dτ ≡ P(v, z) = 2a1(1 + ω2)(a0 + a1v)z,
dz
dτ ≡ Q(v, z) = (a0�0 − a20κ) + (a1�0

−2a0a1κ)v − a21κv2 − 2a21(1 + ω2)z2.
(3.13)

Indeed, systems (3.11) and (3.13) have the same first
integral as follows:
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z2 = h

(a0 + a1v)2

−v
[
3a31κv3 + (12a0a21κ − 4a21�0)v

2 + (18a1a20κ − 12a0a1�0)v + 12a20(a0κ − �0)
]

12a1(1 + ω2)(a0 + a1v)2
, (3.14)

where h is an integral constant. Obviously, system
(3.13) is an integrable system with the first integral.
In order to facilitate the discussion of the related issues
for (3.13) and (3.14) in the below investigation, let us
write

H(v, z) ≡ (a0 + a1v)2z2

+ 1

12a1(1 + ω2)

[
3a31κv3

+(12a0a
2
1κ − 4a21�0)v

2

+(18a1a
2
0κ − 12a0a1�0)v

+12a20(a0κ − �0)
]
v = h. (3.15)

Next, we will discuss equilibrium points of system
(3.13) and their dynamical characteristics. For the con-
venience of discussion, we write Jacobian matrix and
its determinant of system (3.13) as follows:

M(v, z) =
[

∂P
∂v

∂P
∂z

∂Q
∂v

∂Q
∂z

]

=
[

2a21 (1 + ω2)z 2a1(1 + ω2)(a0 + a1v)

(a1�0 − 2a0a1κ) − 2a21κv −4a21(1 + ω2)z

]
,

(3.16)
J (v, z) = detM(v, z)

=
∣∣∣∣ 2a21 (1 + ω2)z 2a1(1 + ω2)(a0 + a1v)

(a1�0 − 2a0a1κ) − 2a21κv −4a21 (1 + ω2)z

∣∣∣∣ .
(3.17)

Obviously, system (3.13) has two equilibrium points
A(v1, 0) and B(v2, 0) at the v−axis, where v1 =
− a0

a1
and v2 = − a0

a1
+ �0

a1κ
. Substituting the above two

equilibrium points into (3.15) and (3.17), it yields

hA = H(v1, 0) = a30(4�0 − 3a0κ)

12a21(1 + ω2)
,

hB = H(v2, 0)

= − (�0 − a0κ)2[(�0 + a0κ)2 + 2a20κ
2]

12a21κ
3(1 + ω2)

, (3.18)

JA = J (v1, 0) = 0,

JB = J (v2, 0) = 2a21(1 + ω2)�2
0

κ
, (3.19)

where �0 = �(1−α)
�(1−2α)

has been given above. According
to bifurcation theory of planar dynamical system [31–
34], we have two lemmas as follows:

Lemma 1 For an equilibrium point of an integrable
system such as (3.13), it has three conclusions as fol-
lows:

(i) The equilibrium point is a saddle point if the value
of determinant of equilibrium point (vi , 0) satis-
fies J (vi , 0) < 0;

(ii) The equilibrium point is a center point if the value
of determinant of equilibrium point (vi , 0) satis-
fies J (vi , 0) > 0 and Trace M(vi , 0) = 0;

(iii) The equilibrium point is a node if the value
of determinant of equilibrium point (vi , 0) sat-
isfies J (vi , 0) > 0 and [Trace M(vi , 0)]2 −
4J (vi , 0) > 0;

(iv) The equilibriumpoint is a cusp point if the value of
determinant of equilibrium point (vi , 0) satisfies
the case of J (vi , 0) = 0 and the Poincaré index
of this equilibrium point is zero.

Lemma 2 Supposing v(x, y) = v(ξ) is a continuous
solution of an nonlinear ODE such as Eq. (3.10) on
the interval ξ ∈ (−∞,∞) and satisfies conditions
limξ→−∞ = a, limξ→∞ = b, it has two conclusions
as follows:

(i) The solution v(ξ) is a homoclinic solution formed
as solitary wave if a = b;

(ii) The solution v(ξ) is a heteroclinic solution formed
as kink or anti-kink wave if a �= b. From expres-
sions (3.16) and (3.19), we know that T race
M(v1,2, 0) ≡ 0 and JA = 0. Also, we know that
JB < 0 if κ < 0 and JB > 0 if κ > 0. By
using Lemma 1, it is easy to know that the equilib-
rium point A(v1, 0) is always a cusp point. We also
know that the equilibrium point B(v2, 0) is a sad-
dle point if κ < 0; the equilibrium point B(v2, 0)
is a center point if κ > 0.

By using Lemma 2, we know that a homoclinic solu-
tion of Eq. (3.10) corresponds to a homoclinic orbit
of system (3.11), a heteroclinic solution of Eq. (3.10)
corresponds to a heteroclinic orbit of system (3.11), a
periodic solution of Eq. (3.10) corresponds to a closed
orbit of system (3.11). In fact, the phase portraits of
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(a) v2 < 0 (b) v2 = 0 (c) v2 > 0

Fig. 1 Phase portraits of system (3.11) in the conditions of κ > 0, a1 > 0

(a) v2 < 0 (b) v2 = 0 (c) v2 > 0

Fig. 2 Phase portraits of system (3.11) in the conditions of κ > 0, a1 < 0

system (3.11) and system (3.13) are almost the same
except for topological structure near the singular line
v = − a0

a1
. Therefore, the phase portraits of the singular

system (3.11) are constructed by the topological struc-
ture around the singular line v = − a0

a1
and the phase

portraits of the regular system (3.13).
According to the above information, under differ-

ent parametric conditions, we draw the phase portraits
(phase diagram) of system (3.11), which are shown in
the figures (Figs. 1, 2, 3, 4) of the below. By the way,
the orbital curves in all graphs do not intersect outside
the equilibrium point. And one orbit corresponds to one
solution of (3.10).

According to information and four bifurcation fig-
ures of the phase portraits given above, we have two
theorems as follows:

Theorem 3.1 Suppose that the parameter κ > 0 in
equations (3.2) and (3.10), the following conclusions
hold.

(i) If h = hA in (3.14), then Eq. (3.10) has a
smooth periodic solution v = v(ξ). Accord-
ingly, Eq. (3.2) has a stable solution with periodic
property and attenuating property, which satisfies
u → 0 when time t → +∞.

(ii) If hB < h < hA in (3.14), then Eq. (3.10) has
a family of smooth periodic solutions v = v(ξ),

Accordingly, Eq. (3.2) has a family of stable solu-
tionswith periodic property andattenuating prop-
erty, which satisfy u → 0 when time t → +∞.

(iii) If h > hA in (3.14), then Eq. (3.10) has a family of
compacton v = v(ξ).Accordingly, Eq. (3.2) has a
family of stable solutions with compacton shape
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Dynamical system method for investigating existence and dynamical property 2429

(a) v2 < 0 (b) v2 = 0 (c) v2 > 0

Fig. 3 Phase portraits of system (3.11) in the conditions of κ < 0, a1 > 0

(a) v2 < 0 (b) v2 = 0 (c) v2 > 0

Fig. 4 Phase portraits of system (3.11) in the conditions of κ < 0, a1 < 0

and attenuating property, which satisfy u → 0
when time t → +∞.

Note A family of solutions is equivalent to a general
solution, when the values of h vary in the range of
hB < h < hA or h > hA, and they contain infinitely
many solutions. Once the value of h is fixed by the ini-
tial condition, the general solution becomes an unique
particular solution.

Theorem 3.2 Suppose that the parameter κ < 0 in
Eqs. (3.2) and (3.10), the following conclusions hold.

(1) If h = hB in (3.14), thenEq. (3.10) has two hetero-
clinic solutions. Thereby, Eq. (3.2) has two stable
solutions with attenuating property, and the two
solutions satisfy u → 0 when time t → +∞.

(2) If hA < h < hB in (3.14), then Eq. (3.10) has a
family of compacton solutions. Thus, Eq. (3.2) has

a family of stable solutions with compacton prop-
erty and attenuating property, all of them satisfy
u → 0 when time t → +∞.

(3) If h = hA in (3.14), then Eq. (3.10) has an
unbounded solution. Correspondingly, Eq. (3.2)
has a solution with unbounded property and atten-
uating property, and it satisfies u → 0 when time
t → +∞.

Proof of Theorem 3.1 (i) When κ > 0 and h = hA,

system (3.11) always has a smooth closed orbit (marked
by black) passing through the two points (v1, 0) and
(vm, 0) no matter how the position of the point (v2, 0)
changes, where (vm, 0) is the point of the closed orbit at
the v-axis.When a1 > 0, the closed orbit is on the right
side of the singular line v = v1 and v ∈ [v1, vm]which
is shown in Fig.1a, b or c. When a1 < 0, the closed
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Fig. 5 Dynamical profiles of solution (3.23) in space (x, t, u) and space (y, t, u)

orbit is on the left side of the singular line v = v1
and v ∈ [vm, v1], which is shown in Fig.2a, b or c.

Substituting h = hA = a30(4�0−3a0κ)

12a21 (1+ω2)
into Eq. (3.14), it

yields

z = ±1

2

√
κ

1 + ω2

√
(v − v1)(vm − v), (3.20)

where v1 = − a0
a1

, vm = 4�0−3a0κ
3a1κ

. Obviously, the

first-order derivative z = dv
dξ exists when v = v1 =

− a0
a1
; this implies that solution of Eq. (3.10) is smooth

under the above conditions. According to Lemma 2,
Eq. (3.10) has a smooth periodic solution and is
bounded and stable. In fact, we can obtain this periodic
solution of Eq. (3.10) in the next process. Substituting
(3.20) into the first equation dv

dξ = z of system (3.11)
and integrating it along the closed orbit of passing point
(vm, 0), it yields∫ v

vm

dv√
(v − v1)(vm − v)

= ±1

2

√
κ

1 + ω2

∫ ξ

0
dξ. (3.21)

Solving (3.21), we obtain a smooth periodic solution
of (3.10) as follows:

v = 1

2

[
(vm + v1)

+ (vm − v1) cos

(
1

2

√
κ

1 + ω2 ξ

)]
. (3.22)

Plugging (3.22) and γ = −α, ξ = x + ωy, v1 =
− a0

a1
, vm = 4�0−3a0κ

3a1κ
into (3.4), we obtain an exact

solution of Eq. (3.2) as follows:

u = 2�0

3κ

[
1 + cos

(
1

2

√
κ

1 + ω2 (x + ωy)

)]
t−α.

(3.23)

(3.23) is a stable solution with periodic property and
attenuating property, which satisfies u → 0 as time
t → +∞ because of t−α → 0 as time t → +∞. In
order to show dynamical property of solution (3.23)
intuitively, taking κ = 2, ω = 0.5, α = 0.45
t ∈ [1, 7], x ∈ [−15, 15] or y ∈ [−30, 30], we plot
dynamical profiles of solution (3.23) in space (x, t, u)

and space (y, t, u), respectively, which are shown in
Fig.5a, b. ��

As can be seen from Fig. 5, in the above parametric
conditions, the density of the biological population is
periodically changed in the local region, but with the
increase in time, because the consumption of the food
is exhausted, the biological population will migrate to
other regions, so that the number of the population in
the region is gradually reduced, the migration is com-
plete until the quantity of the population is decremented
to zero.

(ii) When κ > 0 and hB < h < hA, system (3.11)
has a family of closed orbits around the center point
B(v2, 0), two representative orbits of them are marked
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Dynamical system method for investigating existence and dynamical property 2431

by brown, which are shown in Figs. 1 and 2. When
a1 > 0, all these closed orbits are on the right side
of the singular line v = v1 and v ∈ (v1, vm), which
are shown in Fig. 1a, b or c. When a1 < 0, all these
closed orbits are on the left side of the singular line
v = v1 and v ∈ (vm, v1), which are shown in Fig. 2a,
b or c. From (3.14), we know that the expression of
all these closed orbits is very complex. To facilitate the
discussion, we will give a simple example in the range
of the above conditions. In the range of hB < h < hA,

letting a0 = 0 directly, (3.14) can be reduced to the
following simple expression

z2 = κ

4(1 + ω2)

4h(1+ω2)

a21κ
+ 4�0

3a1κ
v3 − v4

v2
,

hB < h < hA. (3.24)

From Figs. 1 and 2, we can see that every one closed
orbit has two points on the v-axis. We suppose coor-
dinates of the two points are (φM , 0) and (φm, 0) and
φM > φm . Under the above assumption, Eq. (3.24) is
reduced to the following form

z = ±1

2

√
κ

1 + ω2
√

(φM − v)(v − φm)(v − s)(v − s̄)

v
, (3.25)

whereφM , φm are two real roots of equation 4h(1+ω2)

a21κ
+

4�0
3a1κ

v3 − v4 = 0, and s, s̄ are two conjugate complex
roots of this equation, all of them can be solved by com-
puter for the specific values of parameters. According
to Lemma 2, Eq. (3.10) has a family of smooth periodic
solutions. As in the above computational processes, we
also obtain these periodic solutions of Eq. (3.10) in the
next. Under the case a0 = 0, substituting (3.25) into
the first equation dv

dτ = 2a1(1 + ω2)(a0 + a1v)z of
system (3.13) and integrating it along the orbit passing
point (φm, 0), we get∫ v

φm

dv√
(φM − v)(v − φm)(v − s)(v − s̄)

= ± a21
√

κ(1 + ω2)

∫ τ

0
dτ. (3.26)

Solving (3.26), we obtain a common expression of
these periodic solutions as follows:

v = aφm + bφM

a + b

[
1 + β1cn(στ, k)

1 + βcn(στ, k)

]
, (3.27)

where cn(στ, k) is the Jacobian elliptic function, it
is an even function, τ is a parameter and a =

√(
φM − s+s̄

2

)2 − (s−s̄)2
4 ,b =

√(
φm − s+s̄

2

)2 − (s−s̄)2
4 ,

σ = a21
√
abκ(1 + ω2), k =

√
(φM−φm )2−(a−b)2

4ab , β =
a−b
a+b , β1 = aφm−bφM

aφm+bφM
. Substituting a0 = 0 and (3.27)

into (3.12) and then integrating it, we obtain

ξ = 2a21(1 + ω2)(aφm + bφM )

σβ(a + b)

[
β1στ

+β − β1

1 − β2

(
�

(
am(στ, k),

β2

β2 − 1
, k

)
− β f1

)]
,

(3.28)

where the �
(
am(στ),

β2

β2−1
, k
)
is a normal elliptic

integral function of the third kind and k1 = √
1 − k2,

f1 =
√

1−β2

k2+k21β
2 arctan

[√
k2+k21β

2

1−β2 sd(στ, k)

]
. After

substituting (3.27) and γ = −α, ξ = x + ωy, a0 = 0
into (3.4), combining with (3.28), we obtain the exact
solution of Eq. (3.2) as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u = a1
[
aφm+bφM

a+b

(
1+β1cn(στ,k)
1+βcn(στ,k)

)]
t−α,

x + ωy = 2a21 (1+ω2)(aφm+bφM )

σβ(a+b)

[
β1στ

+β−β1
1−β2

(
�
(
am(στ, k), β2

β2−1
, k
)

− β f1
) ]

,

(3.29)

where τ is parameter, the am(στ, k) is a Jacobian ellip-
tic function, a1 is an arbitrary nonzero constant and the
other parameters have been given above. Also, (3.29)
defines a family of stable solutions with periodic prop-
erty and attenuating property, which satisfy u → 0 as
time t → +∞. The dynamical property and profile are
very similar to those of the solution (3.23).

(iii) When κ > 0 and h > hA, system (3.11) has a
family of open orbits shaped as bow, four representative
orbits of them are marked by blue, which are shown
in Figs. 1 and 2. These open orbits always appear in
pairs, where one to the right and another to the left. The
symmetry axis of all open orbits is the v-axis. Each pair
of open orbits has two points on the v-axis. According
to Lemma 2, Eq. (3.10) has a family of compacton
solutions, which are defined by even functions. The
expressions of these open orbits are too complex to
obtain exact solutions of Eq. (3.10) by them. But we
can obtain two solutions of them in the special case.
It is easy to know that hA < 0 when κ > 0 and 0 <
4�0
3κ < a0. Without loss of generality, in the range of

h > hA, κ > 0 and 0 < 4�0
3κ < a0, we take h = 0

and a0 = 2�0
κ

, and thus, two representative open orbits
can be reduced to the following simple expression by
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(3.14),

z = ±1

2

√
κ

1 + ω2
√

(η − v)(v − 0)(v − r)(v − r̄)
2�0
a1κ

+ v
, η > 0, (3.30)

and

z = ±1

2

√
κ

1 + ω2
√

(0 − v)(v − η)(v − r)(v − r̄)
2�0
a1κ

+ v
, η < 0, (3.31)

where

η = 2�0

9a1κ

[
− 3
√
109 + 27

√
17 + 8

3
√
109 + 27

√
7

− 10

]
,

r = 2�0

9a1κ

[(
1

2
3
√
109 + 27

√
17

− 4
3
√
109 + 27

√
17

− 10

)

+
√
3

2

(
3
√
109 + 27

√
17 + 8

3
√
109 + 27

√
17

)
i

]
,

r̄ = 2�0

9a1κ

[(
1

2
3
√
109 + 27

√
17

− 4
3
√
109 + 27

√
17

− 10

)

−
√
3

2

(
3
√
109 + 27

√
17 + 8

3
√
109 + 27

√
17

)
i

]
.

Substituting a0 = 2�0
κ

and (3.30) into the first equation
dv
dξ = 2a1(1 + ω2)(a0 + a1v)z of system (3.13) to
integrate it along the orbit of passing point (0, 0), it
results∫ v

0

dv√
(η − v)(v − 0)(v − r)(v − r̄)

= ±a21
√

κ(1 + ω2)

∫ τ

0
dτ. (3.32)

Completing the above two integrals, we obtain a solu-
tion of Eq. (3.10) as follows:

v = Bη

A + B

1 − cn(στ, k)

1 + βcn(στ, k)
, (3.33)

where A =
√(

η − r+r̄
2

)2 − (r−r̄)2
2 , B = √

rr̄ , σ =
a21
√

κAB(1 + ω2), k =
√

η2−(A−B)2

4AB , β = A−B
A+B . Sub-

stituting a0 = 2�0
κ

and (3.33) into (3.12) and then inte-
grating it, we obtain

ξ = 2a21(1 + ω2)

[
2�0

a1κ
τ

− Bη

σβ(A + B)

(
στ − 1

1 − β(
�

(
am(στ, k),

β2

β2 − 1
, k

))
− β f1

)]
, (3.34)

where f1 =
√

1−β2

k2+k21β
2 arctan

[√
k2+k21β

2

1−β2 sd(στ, k)

]
,

k1 = √
1 − k2. Plugging γ = −α, a0 = 2�0

κ
and

(3.33) into (3.4) and combining with (3.34), we obtain
an exact solution of parametric type of Eq. (3.2) as
follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u =
[
2�0
κ

+ a1Bη
A+B

1−cn(στ,k)
1+βcn(στ,k)

]
t−α,

x + ωy = 2a21(1 + ω2)
[
2�0
a1κ

τ − Bη
σβ(A+B)

(
στ

− 1
1−β

(
�
(
am(στ, k), β2

β2−1
, k
))

− β f1
)]

,

(3.35)

where τ is parameter, a1 is an arbitrary nonzero con-
stant and the other parameters such as f1, β, k have
been given above. Also, (3.35) is a stable solution with
compacton property and it satisfies u → 0 as time
t → +∞.

Taking a1 = 0.2, ω = 0.5, κ = 4, α = 0.25,
t ∈ [0.1, 8], τ ∈ [−4, 4], we plot dynamical profiles
of solution (3.35) in space (x, t, u) and space (y, t, u),
respectively, which are shown in Fig. 6a, b. It can be
seen from Fig. 6 that the density of biological popula-
tion reaches the maximum at the center of the region
and decreases gradually at the boundary of the region
under the above parameters. Generally speaking, with
the increase in time, also due to the consumption of
food, biological populationswillmigrate to other areas,
resulting in a gradual decline in the number of popula-
tions in the region to zero.

Similarly, plugging (3.31) into the first equation of
system (3.13) to integrate it along the orbit of passing
point (η, 0) and using (3.4), we obtain an attenuation
solution of Eq. (3.2) as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u =
[
2�0
κ

+ a1Aη
A+B

1+cn(στ,k)
1−βcn(στ,k)

]
t−α,

x + ωy = 2a21(1 + ω2)
[
2�0
a1κ

τ − Aη
σβ(A+B)

(
στ

+ 1
β−1

(
�
(
am(στ, k), β2

β2−1
, k
))

+ β f1
)]

,

(3.36)

where A = √
rr̄ , B =

√(
η − r+r̄

2

)2 − (r−r̄)2
2 and the

other parameters σ, β, f1, β, k are same as in (3.35).
Also, the dynamical property and profile of solution
(3.36) are very similar to those of solution (3.35).
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Fig. 6 Dynamical profiles of solution (3.35) in space (x, t, u) and space (y, t, u)

Proof of Theorem 3.2 (1) When κ < 0 and h = hB,

there are two heteroclinic orbits passing through the
saddle point B(v2, 0), and we mark them red in the
phase portraits of Figs. 3 and 4. When a1 > 0, the two
heteroclinic orbits are on the left side of the singular
line v = v1 and v ∈ (v2, v1), which is shown in Fig.
3a, b or c. When a1 < 0, the two heteroclinic orbits are
on the right side of the singular line v = v1 and v ∈
(v1, v2) which is shown in Fig. 4a, b or c. According
to Lemma 2, Eq. (3.10) has two heteroclinic solutions
and we can obtain them in the next. Substituting h =
hB = − (�0−a0κ)2[(�0+a0κ)2+2a20κ

2]
12a21κ

3(1+ω2)
into Eq. (3.14), it is

reduced to

z2 = − (a1κv + a0κ − �0)
2[3a21κ2v2 + (2a1κ�0 + 6a0a1κ2)v + (3a20κ

2 + 2a0κ�0 + �2
0)]

12a21κ
3(1 + ω2)(a0 + a1v)2

. (3.37)

Also, the expression of (3.37) ismore complex. In order
to obtain the two exact solutions easily, we might as
well let a0 = �0

κ
. Under this parametric condition,

(3.37) can be reduced to

z = ±1

2

√ −κ

1 + ω2

v

√
v2 + 8�0

3a1κ
v + 2�2

0
3a21κ

2

�0
a1κ

+ v
. (3.38)

By substituting (3.38) into the first equation dv
dξ = z of

system (3.11), it results

∫ (
v + �0

a1κ

)
dv

v

√
v2 + 8�0

3a1κ
v + 2�2

0
3a21κ

2

= ±1

2

√ −κ

1 + ω2

∫
dξ.

(3.39)

Completing the two integrals of (3.39) and setting inte-
gral constant as zero, we obtain two implicit solutions
of (3.10) as follows:

ln

(
v + 4�0

3a1κ
+ √

V

)

−
√
6

2
ln

⎛
⎝

√
V +

√
6�0

3a1κ

v
+ 2

√
6

3

⎞
⎠

= ±1

2

√ −κ

1 + ω2 ξ, (3.40)

where V = v2 + 8�0
3a1κ

v + 2�2
0

3a21κ
2 . Substituting γ =

−α, a0 = �0
κ

into (3.4) and combining with (3.40),
we obtain two exact solutions of (3.2) as follows:

123



2434 W. Rui

Fig. 7 Dynamical profiles of solution (3.41) under “+” and “−” in space (y, t, u)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u =
(
2�0
κ

+ a1v
)
t−α,

x + ωy = ±
√

1+ω2

−κ

[
2 ln
(
v + 4�0

3a1κ
+ √

V
)

−√
6 ln

(√
V+

√
6�0

3a1κ

v
+ 2

√
6

3

)]
,

(3.41)

where v is a parameter and V = v2 + 8�0
3a1κ

v + 2�2
0

3a21κ
2 .

(3.41) defines two attenuation solutions which satis-
fied u → 0 as t → +∞. Under the parameters
a1 = 2, κ = −1, ω = 0.5, α = 0.25, x = 1,
t ∈ [0.1, 10], v ∈ [0, 1], we plot dynamical profiles
of solution (3.41) in space (y, t, u), which are shown
in Fig. 7a, b. ��

(2) When κ < 0 and hA < h < hB, system (3.11)
has a family of open orbits on both sides of the sad-
dle point B(v2, 0), one parts of them are unbounded,
another parts of them are bounded and between the
equilibrium points A(v1, 0) and B(v2, 0). The two rep-
resentative orbits of them are marked by brown which
are shown in Figs. 3 and 4. Here, we only discuss those
bound orbits shaped as bow. According to Lemma 2,
corresponding to those bounded orbits shaped as bow,
Eq. (3.10) has an infinite number of compacton solu-
tions, which are defined by even functions. Letting
a0 = 0 directly, (3.14) can be reduced to the following
simple expression

z2 = (−κ)

4(1 + ω2)

− 4h(1+ω2)

a21κ
− 4�0

3a1κ
v3 + v4

v2
,

hB < h < hA. (3.42)

Suppose that equation− 4h(1+ω2)

a21κ
− 4�0

3a1κ
v3+v4 = 0 has

two real roots φ1, φ2 and two conjugate complex roots
c, c̄, all of them can be solved by computer. Under this
assumption, Eq. (3.42) can be reduced to the following
simple equation

z = ±1

2

√ −κ

1 + ω2√
(v − φ1)(v − φ2)(v − c)(v − c̄)

v
. (3.43)

Substituting a0 = 0 and (3.43) into the first equation of
system (3.13) to integrate it along the orbit of passing
point (φ2, 0), we get

v = bφ1 − aφ2

b − a

[
1 + β1cn(στ, k)

1 + βcn(στ, k)

]
, (3.44)

where τ is a parameter and a =
√(

φ1− c+c̄
2

)2− (c−c̄)2
4 ,

b =
√(

φ2 − c+c̄
2

)2 − (c−s̄)2
4 , σ = a21

√−abκ(1 + ω2),

k =
√

(a+b)2−(φ1−φ2)2

4ab , β = a+b
b−a , β1 = bφ1+aφ2

bφ1−aφ2
. Sub-

stituting a0 = 0 and (3.44) into (3.12) and then inte-
grating it, we obtain

ξ = 2a21(1 + ω2)(aφ2 + bφ1)

σβ(a + b)

[
β1στ

+β − β1

1 − β2

(
�

(
am(στ, k),

β2

β2 − 1
, k

)
− β f2

)]
,

(3.45)
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where k1 = √
1 − k2, f2 = 1

2

√
β2−1

k2+k21β
2 ln[√

k2+k21β
2 dn(στ,k)+

√
β2−1 sn(στ,k)√

k2+k21β
2 dn(στ,k)−

√
β2−1 sn(στ,k)

]
. Plugging (3.44)

and γ = −α, ξ = x + ωy, a0 = 0 into (3.4) and then
combining with (3.45), we obtain the exact solution of
Eq. (3.2) as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u = a1
[
bφ1−aφ2

b−a

(
1+β1cn(στ,k)
1+βcn(στ,k)

)]
t−α,

x + ωy = 2a21 (1+ω2)(aφ2+bφ1)
σβ(a+b)

[
β1στ

+β−β1
1−β2

(
�
(
am(στ, k), β2

β2−1
, k
)

− β f2
) ]

,

(3.46)

where τ is parameter, a1 is an arbitrary nonzero con-
stant and the other parameters have been given above.
Also, (3.46) defines a family of stable solutions with
compacton property, which satisfy u → 0 as time
t → +∞.

(3) When κ < 0 and h = hA, system (3.11) has a
open orbit (marked by black) passing through the point
(v1, 0). When a1 > 0, the open orbit is on the right
side of the singular line v = v1, which is shown in Fig.
3a, b or c. When a1 < 0, the open orbit is on the left
side of the singular line v = v1,which is shown in Fig.

4a, b or c. Substituting h = hA = a30(4�0−3a0κ)

12a21 (1+ω2)
into

Eq. (3.14), it yields

z = ±1

2

√ −κ

1 + ω2

√
(v − v1)(v − vm), (3.47)

where v1 = − a0
a1

, vm = 4�0−3a0κ
3a1κ

. According to
Lemma 2, Eq. (3.10) has an unbounded solution and
we can obtain its expression in the next process. After
plugging (3.47) into the first equation of system (3.11),
integrating it along the orbit of passing point (v1, 0),
we obtain an unbounded solution of (3.10) as follows:

v = vm + (v1 − vm) cosh2
(
1

4

√ −κ

1 + ω2 ξ

)
. (3.48)

Plugging (3.48) and γ = −α, ξ = x + ωy, v1 =
− a0

a1
, vm = 4�0−3a0κ

3a1κ
into (3.4), we obtain an exact

solution of Eq. (3.2) as follows:

u = 4�0

3κ

[
1 − cosh2

(
1

4

√ −κ

1 + ω2 (x + ωy)

)]
t−α.

(3.49)

Also, (3.49) defines a stable solution with attenuating
property and it satisfies u → 0 as time t → +∞.

Next, we investigate the existence and dynamical
properties of solutions of the time-fractional biology
model or reaction–diffusion model in the following
subsection.

3.2 Existence of solution and dynamical properties of
solutions for model (3.1)

If the time-fractional derivative of Eq. (3.1) is Caputo
type, then we suppose that it has solutions formed as
follows:

u(x, y, t) = (a0 + a1v)Eα(λtα), (3.50)

where v = v(x, y) is an undetermined binary function
defined by space variables x and y, the a0, a1 are two
undetermined coefficients and λ is an undetermined
constant. All of them can be determined in the next
discussion. By substituting (3.50) into (3.1), it results

(λ − δ)(a0 + a1v)Eα(λtα)

=
[
2a21(v

2
x + v2y) + 2a1(a0 + a1v)(vxx + vyy)

+ κ(a0 + a1v)2
]
E2

α(λtα). (3.51)

In the left side of Eq. (3.51), letting λ − δ = 0, we get

λ = δ. (3.52)

In the condition of (3.52), Eq. (3.51) can be reduced to[
2a21(v

2
x + v2y) + 2a1(a0 + a1v)(vxx + vyy)

+ κ(a0 + a1v)2
]
E2

α(λtα) = 0. (3.53)

By eliminating the E2
α(λtα) in Eq. (3.53), we obtain

the following nonlinear PDE

2a21(v
2
x + v2y) + 2a1(a0 + a1v)(vxx + vyy)

+ κ(a0 + a1v)2 = 0. (3.54)

As in Sect. 3.1, under the transformation

v = v(ξ), ξ = x + ωy, (3.55)

the nonlinear PDE (3.54) can be reduced to the follow-
ing nonlinear ODE,

2a1(1 + ω2)(a0 + a1v)
d2v

dξ2

= −κ(a0 + a1v)2 − 2a21(1 + ω2)

(
dv

dξ

)2
. (3.56)

Letting dv
dξ = z, Eq. (3.56) can be rewritten as:

dv

dξ
= z,
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(a) a0a1 < 0 (b) a0 = 0, a1 = 0 (c) a0a1 > 0

Fig. 8 Phase portraits of system (3.57) in the conditions of κ < 0

dz

dξ
= −κ(a0 + a1v)2 + 2a21(1 + ω2)z2

2a1(1 + ω2)(a0 + a1v)
. (3.57)

Also, we make the following scalar transformation

dξ = 2a1(1 + ω2)(a0 + a1v)dτ. (3.58)

Under transformation (3.58), the singular system (3.57)
can be transformed into the following regular system,

dv

dτ
= 2a1(1 + ω2)(a0 + a1v)z,

dz

dτ
= −[κ(a0 + a1v)2 + 2a21(1 + ω2)z2]. (3.59)

Systems (3.57) and (3.59) have the same first integral
as follows:

z2 = h

(a0 + a1v)2
− κ

4a21(1 + ω2)
(a0 + a1v)2, (3.60)

where h is an integral constant. Equation (3.60) can be
rewritten as:

H(v, z) ≡ (a0 + a1v)2z2

+ κ

4a21(1 + ω2)
(a0 + a1v)4 = h. (3.61)

Obviously, system (3.59) has only one equilibrium

point N
(
− a0

a1
, 0
)
at the singular line v = − a0

a1
. Sub-

stituting N (− a0
a1

, 0) into (3.61), it yields

hN = H

(
−a0
a1

, 0

)
= 0. (3.62)

As analysis in Sect. 3.1, we know that the point

N
(
− a0

a1
, 0
)

is high-order equilibrium point, it has

character of saddle point when κ < 0 and it has char-
acter of center point when κ > 0.Under different para-
metric conditions, we plot the phase portraits of system

(3.57), which are shown in Figs. 8 and 9, where the sin-
gular line is marked by blue.

According to the above information, under some
special conditions, we can obtain exact solutions of
Eq. (3.1). For examples, when κ < 0, by substituting
h = hN = 0 into (3.60), we obtain expressions of two
orbits of straight line (marked by black in Fig. 8a–c) as
follows:

z = ± 1

2a1

√ −κ

1 + ω2 (a0 + a1v). (3.63)

Plugging (3.63) into the first equation dv
dξ = z of (3.57)

to integrate, we get two exact solutions of Eq. (3.56) as
follows:

v1 = 1

a1

[
C exp

(
−1

2

√ −κ

1 + ω2 ξ

)
− a0

]
(3.64)

and

v2 = 1

a1

[
C exp

(
1

2

√ −κ

1 + ω2 ξ

)
− a0

]
, (3.65)

where C is an arbitrary nonzero constant. Substituting
ξ = x + ωy, λ = δ, (3.64) and (3.65) into (3.50),
respectively, we obtain two exact solutions of Eq. (3.1)
as follows:

u1 = C exp

[
−1

2

√ −κ

1 + ω2 (x + ωy)

]
Eα

(
δtα
)

(3.66)

and

u2 = C exp

[
1

2

√ −κ

1 + ω2 (x + ωy)

]
Eα

(
δtα
)
. (3.67)
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(a) a0a1 < 0 (b) a0 = 0, a1 = 0 (c) a0a1 > 0

Fig. 9 Phase portraits of system (3.57) in the conditions of κ > 0

Fig. 10 Dynamical profiles of solution (3.66) in space (x, t, u) and space (y, t, u)

When δ < 0, Eα (δtα) is a decreasing function, it has
property of super attenuation. Thus, when δ < 0, the
amplitude of solutions (3.66) and (3.67) decreases with
the increase in time. Under C = 0.2, ω = 0.1, δ =
−2, α = 0.5, κ = −1, t ∈ [0.1, 12], x ∈ [−4, 4]
and y ∈ [−8, 8], we plot 3D graphs of solution (3.66)
in the space (x, t, u) and space (y, t, u), respectively,
which are shown in Fig. 10a, b.

When κ > 0, h > 0, substituting a0 = 0 into
(3.60), we obtain expressions of each pair of bow-
shapedorbits (markedbygreen, brownor red inFig. 9b)
as follows:

z = ±1

2

√
κ

1 + ω2

×

√√√√
[(

4

√
4h(1+ω2)

a21κ

)2
+ v2

][(
4

√
4h(1+ω2)

a21κ

)2
− v2

]

v
.

(3.68)

By substituting a0 = 0 and (3.68) into the first equation
dv
dτ = 2a1(1+ω2)(a0+a1v)z of (3.59) and integrating

it along the orbit of passing point

(
4

√
4h(1+ω2)

a21κ
, 0

)
, we

obtain
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Fig. 11 Dynamical profiles of the solution (3.71) in space (x, t, u) and space (y, t, u)

v = b cn(στ, k), (3.69)

where b = 4

√
4h(1+ω2)

a21κ
, σ = a21b

√
2κ(1 + ω2), k =

√
2
2 . Plugging (3.69) into (3.58) and then completing
integrals, we get

ξ = 2ba21(1 + ω2)

kσ
arccos[dn(στ, k)]. (3.70)

Plugging a0 = 0, ξ = x + ωy, (3.52) and (3.69) into
(3.50) and then combining with (3.70), we obtain an
exact solution of Eq. (3.1) as follows:{

u = a1b cn(στ, k) Eα(δtα),

x + ωy = 2ba21 (1+ω2)

kσ arccos[dn(στ, k)], (3.71)

where the parameters b, σ, k have been given above.
Solution (3.71) has property of super attenuation when
δ < 0; its amplitude decreases with the increase in
time. Under a1 = 1, ω = 0.1, δ = −2, α = 0.5, κ =
3, t ∈ [1, 7], τ ∈ [0.04, 1.2], we plot 3D graphs of
solution (3.71) in the space (x, t, u) and space (y, t, u),
respectively,which are shown inFig. 11a, b. In addition,
when κ > 0 and h < 0, Eq. (3.60) does not hold, so
Eq. (3.1) has not any real solutions in this case.

As can be seen from Fig. 11, in the above case,
the density of the biological population gradually
decreases from the region center to the boundary direc-
tion. And as time increases, the population will migrate

to other regions because of the consumption of food,
and the number of populations in the boundary region
will decline rapidly to zero.

4 Conclusions

In this work, by avoiding an invalid fractional chain
rule,we introduced a newanalytical approach for inves-
tigating the existence and dynamical property of solu-
tions of an nonlinear time-fractional PDE. By using
this approach, three time-fractional models are studied.
Under the fractional derivative definition of Riemann–
Liouville type, employing (2.2), the existence and
dynamical properties of solutions of model (3.2) are
discussed. Under the fractional derivative definition of
Caputo type, using (2.3), the existence and dynamical
properties of solutions of model (3.1) are investigated.
In some special parametric conditions, different kinds
of exact solutions are obtained, some of them (such
as solutions (3.23) and (3.29)) have periodic property,
some of them (such as solutions (3.35), (3.46) and
(3.71)) have compacton property, some of them [such
as solutions (3.49) and (3.66)] have unbounded char-
acteristic. Most of them have an attenuating property
(decay characteristic) according to increase in time,
which satisfy u → 0 as time t → +∞.
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According to the symmetrical characteristic, this
new approach can also be used to investigate the exis-
tence and dynamical property of solutions of an non-
linear space-fractional PDE. Of course, Eq. (2.3) in this
new approach is very suitable for solving linear time-
fractional PDEs formed as

∂αu

∂tα
= b(x, y)

(
∂2u

∂x2
+ ∂2u

∂y2

)

+ c(x, y)

(
∂u

∂x
+ ∂2u

∂y2

)
+ d(x, y)u, (4.1)

where ∂αu
∂tα is time-fractional derivative of Caputo type.

Substituting (2.3) into (4.1) and then dividing out the
Mittag–Leffler function Eα(λtα) of time variable, it
yields

λ(a0 + a1v) = a1b

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ a1c

(
∂v

∂x
+ ∂v

∂y

)

+ d(a0 + a1v), (4.2)

where v = v(x, y), b = b(x, y), c = c(x, y), d =
d(x, y). Obviously, Eq. (4.2) is a linear PDE; there
are many ways to investigate solutions and dynami-
cal properties of this equation. In particular, when all
coefficients b, c and d become constants, exact solu-
tions of PDE (4.2) can be easily obtained by a simple
transformation v = v(ξ) with ξ = x + ωy.

In addition, we naturally ask that there will be any
other types of solutions for the kind of nonlinear frac-
tional PDEs such as (1.5) besides the above two spe-
cial types of solutions? Our answer is that there may be
other types of solutions, but because there are too few
formulas for fractional derivatives in fractional calcu-
lus, it is difficult to deduce this kind of equations in the
process of solving them. There are still few methods
for solving nonlinear fractional PDEs at present, so it
is very difficult to obtain other types of solutions. We
hope that readers and researchers will pay attention to
this research in the future.
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