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Abstract Systems subjected to switching random
excitations are practically significant because they
include many safety-critical systems such as power
plants and communication networks. In this paper, the
reliability of multi-degree, nonlinear, non-integrable
Hamiltonian systems subjected to switching random
excitations is investigated. Such a system is formu-
lated as a continuous–discrete hybrid based upon the
Markov jump theory. Stochastic averaging is applied
to suppress the rapidly varying parameters of the
Markov jumpprocess in order to generate a probability-
weighted diffusion equation. The associated backward
Kolmogorov equation is then set up, from which the
approximate reliability function and probability den-
sity of first passage time are obtained. The utility and
accuracy of this approximate procedure are demon-
strated by two examples.
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1 Introduction

In system modeling, the excitations that systems
undergo may change abruptly due to environmental
disturbances or component failures. Abruptly chang-
ing loads occur in many fields, for example in power
plants, communication networks, large-scale structures
and so on. The presence of such loads complicates the
dynamic response and often diminishes system reliabil-
ity. Development of methodology for nonlinear struc-
tures subjected to switching random excitations (SREs)
is much deserving.

Markov jump system (MJS) is basically a conti-
nuous–discrete hybrid formulated as a continuous sys-
tem that can take on different forms, the number of
which is finite. Such a model can adequately describe
the system response under abruptly changing loads.
It has received increasing attention from researchers
since first introduced by Krasovskii and Lidskii [1]
in 1961. In recent years, research in Markov jump
systems has concerned with issues such as station-
ary response [2], stochastic stability [3–5], optimal
vibration control [6,7] and robustness [8]. Most of the
published results are formulated for linear MJSs and
are rarely applicable to nonlinear MJSs. However, the
actual engineering structures are usually nonlinear, and
it is important that they can operate reliably.
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Reliability is mainly concerned with the question of
safety, such as the safety of a building under seismic
excitation and the performance of a vehicle under irreg-
ular road excitation. In structural systems, reliability is
frequently addressed by the first passage problem—a
classic and challenging problem in stochastic theory.
Only when the response is a diffusion process is there
a rigorous theory. At present, the reliability function of
random systems is normally determined by the back-
ward Kolmogorov (BK) equation. In multi-degree-of-
freedom systems, the associated BK equation is a high-
dimensional partial differential equation, which is not
amenable to exact solution.AlthoughMonteCarlo sim-
ulation can be used to solve the first passage prob-
lem, the method requires a large amount of comput-
ing time and core memory. The stochastic averaging
method, which can effectively reduce the size of high-
dimensional stochastic systems, greatly facilitates the
solution of resulting BK equations. In recent years,
the reliability of systems under white noise excita-
tion [9–11], Poisson white noise excitation [12], wide-
band random excitation [13], combined harmonic force
and white noise excitation [14,15], and combined har-
monic force and wideband noise excitation [16,17] has
received a great deal of attention. However, there is lit-
tle research in the reliability of nonlinear systems under
abruptly changing noise.

The purpose of this paper is to present an approx-
imate method for the reliability of nonlinear, Markov
jump, quasi-non-integrable Hamiltonian systems. This
paper is organized as follows. In Sect. 2, the equation
for such systems is set up, and the stochastic averaging
method is applied to derive an averaged Itô stochas-
tic differential equation for the Hamiltonian. The BK
equation for the reliability function of the averaged sys-
tem is established in Sect. 3. Utility and accuracy of the
proposed method are demonstrated in Sect. 4 by two
examples, wherein comparison is made of numerical
results obtained by direct Monte Carlo simulation and
analytical results obtained by solving the averaged BK
equation. A summary of findings is given in Sect. 5.

2 Problem formulation

2.1 Model of switching random excitations

The excitation that structures undergo may switch ran-
domly fromone intensity grade to another. Assume that

the switching of intensity grades follows the Markov
jump rules. The SRE can be expressed as

ξa (t) = ξ[s(t)](t), (1)

where ξa (t) denotes the actual random excitation that
structures undergo and s(t) is a Markov process repre-
senting the intensity grade of the excitation. In appli-
cations, the intensity grades are usually finite, so that
s(t) takes values from a finite set S = {1, 2, . . . , l. In
addition, ξ(u)(t)(u ∈ S) denotes the uth grade random
excitation, which is Gaussian white noise with zero
mean and density 2D(u).

The Markov jump process s(t) is characterized by
its transition probability matrix given by

Pr {s (t+ �) = j |s (t) = i}
=

{
λi j� + o (�) , i �= j
1 + λi j� + o (�) , i = j,

(2)

where �> 0 is a sufficiently small positive number
and λi j > 0 denotes the transition rate from grade i to
grade j (i �= j) such that

λi i = −
∑l

j=1
j �=i

λi j . (3)

2.2 Nonlinear stochastic system with SREs

Consider an n-degree-of-freedom (DOF) nonlinear
system with SREs. The motion of the system is gov-
erned by n second-order stochastic differential equa-
tions in the generalized displacements. These second-
order equations can always be recast as 2n first-order
equations in the Hamiltonian formulation:

q̇i = ∂ H̃
′

∂pi
(4)

ṗi = −∂ H̃
′

∂qi
− εc̃

′
i j (q,p)

∂ H̃
′

∂p j
+ ε1/2 fi j (q,p) ξak ,

(5)

where i, j = 1, 2, . . . , n; k = 1, 2, . . . ,m; qi and
pi are the generalized displacements and momenta,
respectively; and q = (q1, q2, . . . , qn)T and p =
(p1, p2, . . . , pn)T . The Hamiltonian H̃

′ = H̃
′
(q,p)

can be written in terms of the kinetic and potential
energy terms in the form H̃

′ = T (p) + U (q). The
parameter ε is usually small, so that the damping term

−εc̃
′
i j (q,p) ∂ H̃

′
∂p j

is weak. As described in Eq. (1), the
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switching random excitations ξ
(u)
k (t) (u ∈ S) are inde-

pendent Gaussian white noises with zero means and
correlation function

E
(
ξ
(u)
k (t) ξ

(u)
l (t + τ)

)
= 2D(u)

kl δ(τ). (6)

Equations (4) and (5) can be converted to the follow-
ing Itô stochastic differential equations by adding the
Wong–Zakai correction terms:

dqi = ∂ H̃
′

∂pi
dt, (7)

dpi =
(

− ∂ H̃
′

∂qi
− εc̃

′
i j (q,p)

∂ H̃
′

∂p j
− εD[s(t)]

kl σ
[s(t)]
jl

∂σ
[s(t)]
ik

∂p j

)
dt

+ ε1/2σ
[s(t)]
ik (q,p) dBk(t), (8)

where Bk(t) are standard Wiener processes, and

σ
[s(t)]
ik (q,p) dBk(t) = fi j (q,p) ξ

[s(t)]
k dt. (9)

TheWong–Zakai correction terms can be split into two
parts such that

εD[s(t)]
kl σ

[s(t)]
jl

∂σ
[s(t)]
ik

∂p j
= εg̃[s(t)] (q) + εd̃[s(t)] (q,p)

∂ H̃
′

∂p j
.

(10)

The conservative part εg̃[s(t)] (q) alters the conservative

forces, and the dissipative part εd̃[s(t)] (q,p) ∂ H̃
′

∂p j
mod-

ifies the damping forces. Combining these two parts

with ∂ H̃
′

∂qi
and εc̃

′
i j

∂ H̃
′

∂p j
, Eqs. (7) and (8), respectively,

become

dqi = ∂ H̃ [s(t)]

∂pi
dt, (11)

dpi =
(

−∂ H̃ [s(t)]

∂qi
− εc̃[s(t)]

i j (q,p)
∂ H̃ [s(t)]

∂p j

)
dt

+ ε1/2σ
[s(t)]
ik (q,p) dBk(t), (12)

where H̃ [s(t)] and c̃[s(t)]
i j are the switched Hamiltonian

and the coefficients of damping as modified by the
Wong–Zakai correction. These terms are given by

H̃ [s(t)] = T (p) +U (q) + εŨ[s(t)](q), (13)

c̃[s(t)]
i j = c̃

′
i j (q,p) + d̃[s(t)] (q,p) . (14)

The system described by Eqs. (11) and (12) is a nonlin-
ear stochastic hybrid systempossessingMarkov jumps.
Reliability of the original system can now be studied
in the framework of Markov jump hybrid systems.

Under the assumption of ergodicity of s(t), lim-
iting averaging principle can be applied [18,19].
The Markov jump system (1) is then reduced to a

probability-weightedonewithoutMarkov jumpparam-
eter and, as ε → 0,

dqi = ∂H(q, p;µ)

∂pi
dt, (15)

dpi =
(

− ∂H(q,p;µ)

∂qi
− εc̄i j (q, p;µ)

∂H(q, p;µ)

∂p j

)
dt

+ ε1/2σ̄ik (q,p;µ) dBk (t), (16)

whereµ = [
μ(1), μ(2), . . . , μ(l)

]T
, μ(u) is the station-

ary probability distribution of s(t) for s(t) = u satis-
fying [2]∑l

u=1
μ(u)λui = 0, i ∈ S, (17)

and the transition rates λui are given in Eq. (3). Using
the normalization condition

∑l
u=1 μ(u) = 1, the sta-

tionary probability distribution μ(u)can be calculated.
In the above equations, H(q,p;µ), c̄i j (q,p;µ) and
σ̄ik (q,p;µ) are given by

H(q,p;µ) =
∑

u∈S
[
H̃ (u)(q,p) · μ(u)

]
,

c̄i j (q,p;µ) =
∑

u∈S
[
c̃(u)
i j (q,p) · μ(u)

]
,

σ̄ik (q,p;µ) =
∑

u∈S
[
σ

(u)
i j (q,p) · μ(u)

]
. (18)

The stochastic differential H = H(q,p;µ) can be
derived from Eqs. (15) and (16) using the Itô differ-
ential rule [20]

dH = ε

(
−c̄i j

∂H

∂pi

∂H

∂p j
+1

2
σ̄ik σ̄ jk

∂2H

∂pi∂p j

)
dt

+ ε1/2σ̄ik
∂H

∂pi
dBk (t) . (19)

Since ε is a small parameter, the above relation indi-
cates that H is a slowing varying process, while the
generalized displacements q1, q2, . . . , qn and general-
ized momenta p1, p2, . . . , pn are usually rapidly vary-
ing processes with respect to time. By a theorem of
Khasminskii [21], H converges to a one-dimensional
diffusion process E as ε → 0. The Itô equation for
this diffusion process is obtained by time averaging of
Eq. (19). The effect of stochastic averaging is to aver-
age out the rapidly varying processes so as to yield an
equation for the slowly varying process H, which is
essential for describing the long-term behavior of the
system.

Time averaging of Eq. (19) can be conducted by
traditional methods [22] because the original Markov
jump system (1) has been reduced to a probability-
weighted one without the Markov jump parameters by
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applying the limiting averaging principle. Making use
of Eq. (15), time averaging can be replaced by space
averaging with respect to p1 (pi may be used instead).
Upon stochastic averaging, the limiting process E sat-
isfies of the equation

dE = m̄ (E;µ) dt + σ̄ (E;µ) dB (t) , (20)

where B (t) is unitWiener process. The drift coefficient
m̄ (E;µ) and diffusion coefficient σ̄ (E;µ) are given
by

m̄ (E;µ)

= 1

T (E;µ)∫
ω

(
−εc̄i j

∂H

∂pi

∂H

∂p j
+ 1

2
εσ̄ik σ̄ jk

∂2H

∂pi∂p j

) (
∂H

∂p1

)−1

dz,

(21)

{σ̄ (E;µ)}2 = 1

T (E;µ)

∫
ω

εσ̄ik σ̄ jk
∂H

∂pi

∂H

∂p j

(
∂H

∂p1

)−1

dz,

(22)

where z = (q1, q2, . . . , qn, p2, . . . , pn) is a vec-
tor of order 2n–1, the region of integration is ω =
{z : H (q1, q2, . . . , qn, 0, p2, . . . , pn) < E} and the
parameter

T (E;µ) =
∫

ω

(
∂H

∂p1

)−1

dz. (23)

It is intuitive to replace E by H in Eq. (20) even though
E is only an approximation and is not equal to H. Equa-
tion (20) can be extended so that

dH = m̄ (H ;µ) dt + σ̄ (H ;µ) dB (t) , (24)

where the drift coefficient m̄ (H ;µ) and diffusion coef-
ficient σ̄ (H ;µ) are given by replacing E with H in
Eqs. (21) and (22). The MJS as governed by Eqs. (4)
and (5) possesses an energy envelope given approxi-
mately by the solution H of Eq. (24).

3 Reliability analysis

For most engineering structures, H represents the total
energy. There often exists a critical value Hc that the
structure or some components of the structure will fail
if the total energy of the structure exceeds that critical
value. Let R = R (t |H0 ) be the reliability function,
which is defined as the probability of the concerned
system being in the safe region ωH = [0, Hc) given

the initial Hamiltonian H0 ∈ ωH . The conditional reli-
ability function R (t |H0 ) can be obtained by solving
the following BK equation

∂R

∂t
= m̄ (H0;µ)

∂R

∂H0
+1

2
σ̄2 (H0;µ)

∂2R

∂H2
0

, (25)

together with the initial condition

R (0|H0) = 1, H0 ∈ ωH , (26)

and boundary conditions

R (t |Hc) = 0, t ≥ 0,
R (t |0) = f ini te, t ≥ 0.

(27)

In Eq. (25), m̄ (H0;µ) and σ̄ (H0;µ) are the same as
in Eqs. (21) and (22) with H(t) replaced by the initial
state H (0) = H0. Let the time of first passage be T .
Then the probability distribution function F (t |H0) and
the conditional probability density function p (t |H0) of
the first passage time can be obtained as follows

F (t |H0) = P {T < t |H (0) = H0 ∈ ω} = 1 − R (t |H0) ,

(28)

p (t |H0) = ∂F (t |H0)

∂t
= −∂R (t |H0)

∂t
. (29)

It can be seen that boundary conditions (27) are
only “qualitative,” which is of little use for obtain-
ing quantitative solution. However, when m̄ (H0;µ)

and σ̄ (H0;µ) satisfy certain conditions, the quali-
tative boundary conditions (27) can be replaced by
a quantitative one [9,23]. If lim

H0→0
σ̄ (H0;µ) = 0 and

lim
H0→0

m̄ (H0;µ) �= 0, boundary conditions (27) can be

replaced by

∂R

∂t
= m̄ (H0;µ)

∂R

∂H0
, H0 = 0. (30)

If lim
H0→0

σ̄ (H0;µ) = 0 and lim
H0→0

m̄ (H0;µ) = 0,

boundary conditions (27) can be replaced by

∂R

∂t
= 0, H0 = 0. (31)

4 Examples

To demonstrate the validity and perhaps accuracy of
the method presented in this paper, two examples will
be presented. The switching random excitations are
described by Eq. (1), where s(t) is assumed to be a
two-formMarkov jump process. That means s(t) takes
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values from S = {1, 2}. The transition rate matrix L of
s(t) can be prescribed by

L =
[

λ11 λ12
λ21 λ22

]
=

[− v1 v1
v2 − v2

]
. (32)

The stationary probabilitiesμ(1) andμ(2) are calculated
by applying Eq. (17) and the normalization condition∑l

u=1 μ(u) = 1 to yield

μ(1) = v2

v1 + v2
, μ(2) = 1 − μ(1). (33)

Three special cases are considered with

L1 =
[ −2 2

2 −2

]
, L2 =

[ −1 1
2 −2

]
, L3 =

[ −2 2
1 −1

]
. (34)

The system jumps between the two forms with equal
probabilities if L = L1. Observe that the system is
more likely to take the form s(t) = 1 if L = L2. Finally,
the system is more likely to take the form s(t) = 2 if
L = L3.

Figure 1 shows the sample time history of noise and
the jumpswith L = L1 tomake themunderstood easily.

Examples 1 Consider the following nonlinear quasi-
non-integrable Hamilton system with switching ran-
dom excitations:

ẍ1 +
(
β1−α1x

2
1

)
ẋ1 + ω2

1x1 + aω2
1

(
ω2
1x

2
1 + ω2

2x
2
2

)
x1

= c1ξ
a
1 (t) + c3x1ξ

a
3 (t) + c5 ẋ1ξ

a
5 (t) ,

ẍ2 +
(
β2−α2x

2
2

)
ẋ2 + ω2

2x2 + aω2
2

(
ω2
1x

2
1 + ω2

2x
2
2

)
x2

= c2ξ
a
2 (t) + c4x2ξ

a
4 (t) + c6 ẋ2ξ

a
6 (t) , (35)

where βi , αi (i = 1, 2) , ck (k = 1, 2, . . . , 6) and a are
constants; ωi (i = 1, 2) are the natural frequencies of
the above systems; ξak (t) (k = 1, 2, . . . , 6) are switch-
ing random excitations described by Eq. (1);
ξ
(u)
k (t) (u ∈ S, k = 1, 2, . . . , 6) denote the uth grade
random excitations, which are independent Gaus-
sian white noise with zero mean and intensity 2D(u)

k
(k = 1, 2, . . . , 6).

Let q1 = x1, p1 = ẋ1, q2 = x2, p2 = ẋ2, Eq. (35)
can be rewritten in the form of Eqs. (4) and (5). The
Hamiltonian associated with system (35) is

H̃
′ = 1

2
p21 + 1

2
p22 +U (q) , (36)

where

U (q) = 1

2
ω2
1q

2
1 + 1

2
ω2
2q

2
2 + 1

4
a(ω2

1q
2
1 + ω2

2q
2
2 )

2
.

(37)

The excitation terms for Eq. (35) are only associ-
ated with displacements and velocities, respectively.
As a consequence, the Wong–Zakai correction terms
are only related to the velocities, namely H = H̃

′
.

Using the stochastic averaging method for quasi-non-
integrable Hamiltonian system under switching ran-
dom excitations described previously, one obtains the
averaged Itô stochastic differential equation for the
Hamiltonian

dH = m̄ (H ;µ) dt + σ̄(H ;µ)dB(t). (38)

The drift and diffusion coefficients are

m̄ (H ;µ) = 1

T (H ;µ)

∫
ω

((
−β1 + α1q

2
1

)
p21

+
(
−β2 + α2q

2
2

)
p22 + c21D1 + c22D2

+ c23D3q
2
1 + c24D4q

2
2 + 2c25D5 p

2
1

+2c26D6 p22

) (
∂H

∂p1

)−1

dz, (39)

σ̄ 2 (H ;µ) = 1

T (H ;µ)

∫
ω

(2c 21 D1 p
2
1 + 2c22D2 p

2
2

+ 2c23D3q
2
1 p

2
1 + 2c24D4q

2
2 p

2
2

+ 2c25D5 p
4
1 + 2c26D6 p42

)(
∂H

∂p1

)−1

dz,

(40)

where z= (q1, q2, p2),ω= {
z : H (

q1, q2, 0, p2
) ≤H

}
,

T (H ;µ) =
∫

ω

(
∂H

∂p1

)−1

dz, (41)

Di =
∑

u∈S D
(u)
i μ(u), i = 1, 2, . . . , 6.

(42)

Using the transformations p1 = √
2 (H-U)cosφ, p2 =√

2 (H-U)sinφ and q1 = r
ω1
cos θ, q2 = r

ω2
sin θ , the

integrals in Eqs. (39–41) can be completed as follows:

m̄ (H ;µ)

= c21D1 + c22D2 +
(
−β1 − β2 + 2c25D5+2c26D6

)

×
(
H − 1

4
R2− a

12
R4

)

+
(

α1

4ω2
1

+ α2

4ω2
2

) (
HR2−1

3
R4−1

8
R6

)

+ 1

4

(
c23D3

ω2
1

+ c24D4

ω2
2

)
R2, (43)
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Fig. 1 a Sample time
history of random excitation
with L = L1; b sample time
history of the jumps with
L = L1

Fig. 2 Reliability function
of system (35). a Analytical
results; bMonte Carlo
simulation

σ̄ 2 (H ;µ)

= 2
(
c21D1 + c22D2

) (
H − 1

4
R2 − a

12
R4

)

+ 1

2

(
c23D3

ω2
1

+ c24D4

ω2
2

) (
HR2 − 1

3
R4 − 1

8
R6

)

+3
(
c25D5 + c26D6

) (
H2−H

(
1

2
R2 + a

6
R4

)

+ ,
1

12
R4 + 1

16
R6 + a2

80
R8

)
, (44)

T (H ;µ) = 2π2

ω1ω2
R2, (45)

where R is the positive root of the equation
a

4
R4 + 1

2
R2 = H. (46)

The BK equation for system (35) has the same form
as Eq. (25). The associated quantitative boundary con-
dition is described by Eq. (27). Set the critical energy
of system (35) by Hc = 1. When total energy H (t)
is equal to or larger than Hc, system (35) is damaged.
Then, the BK equation will be solved by using finite
difference method [9], where the step length �H0 =
1.0×10−2 and�t = 5×10−3. To validate the accuracy

of the analytical results, direct simulation fromEq. (35)
are also obtained by Runge–Kutta method, where step
length of time is set as �t = 5 × 10−3, and 5×106

samples are used for statistics.
Some numerical results are shown in Figs. 2, 3, 4,

5, 6 for the chosen parameters: ω1 = 1, ω2 = 2,
β1 = 0.01, β2 = 0.01, α1 = 0.01, α2 = 0.01, a = 1,
c1 = 0.1, c2 = 0.1, c3 = 0.1, c4 = 0.1, c5 = 0.1,
c6 = 0.1, D(1)

1 = 2, D(1)
2 = 2, D(1)

3 = 2, D(1)
4 = 2,

D(1)
5 = 2, D(1)

6 = 2, D(2)
1 = 1, D(2)

2 = 1, D(2)
3 = 1,

D(2)
4 = 1, D(2)

5 = 1, D(2)
6 = 1 and L = L1. Figure 2

shows the reliability function R(t |H0) of system (35)
as a function of the initial energy H0 and time t . Fig-
ure 3 displays R(t |H0) of system (35) as a function of t
for the different initial energy H0. It can be seen that the
reliability function is a monotonic decreasing function
of the initial energy and time. In addition, the reliabil-
ity function diminishes more sharply with larger initial
energy value. This is because that, for large H0, the ini-
tial energy value is closer to the critical energy Hc and
the system’s energy is easier to cross the critical value.
That is to say, the system will have a relatively small
reliability. Monte Carlo simulation of Eq. (35) is also
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Fig. 3 Reliability function of system (35) as a function of t .
“Dashed” curves from analytical results; “dots” from Monte
Carlo simulation

Fig. 4 Probability density function of first passage time of sys-
tem (35). “Dashed” curves from analytical results; “dots” from
Monte Carlo simulation

conducted, and the results are provided for compari-
son. The results from direct simulation of Eq. (35) are
shown in Fig. 2b and as colored dots in Figs. (3) and
(4). Note that the two results are in excellent agree-
ment, demonstrating the validity and accuracy of the
proposed procedure.

The probability density function (PDF) of first pas-
sage time of system (35) is plotted in Fig. 4. As H0

decreases, the peak of the PDF curve drifts to the
right, which indicates that a small decrease in the initial
energy can dramatically increase themean value of first
passage time. Figure 4 shows that as H0 increases the
PDF curve gets thinner. This is not surprise; for larger
H0, the system is easier to damage, which indicates that
the PDF of first passage time only has significant value
in a relatively small time interval.

Fig. 5 Reliability function of system (35)with L = L3, L = L1,
L = L2 in Eq. (34) and when the system is fixed at s(t) = 1 and
s(t) = 2. “Dashed” curves from analytical results; “dots” from
Monte Carlo simulation

In Fig. 5, the reliability functions of system (35)
are shown when the transition rates are defined by the
three transition matrices in Eq. (34) and when the exci-
tation is assumed to be fixed at s (t) = 1 and s(t) = 2.
When the system operates in the form s (t) = 2, it has
a smaller intensity of random excitation than when it
operates in the form s(t) = 1. Figure 5 shows that the
switching of the randomexcitation has significant influ-
ence on the reliability of system (35). Figure 5 shows
that the reliability function has the largest value when
s (t) = 2, and that it decreases as the system cycles
through L = L3, L = L1, L = L2 and s(t) = 1. This
is because that when the system cycles from s (t) = 2
through L = L3, L = L1, L = L2 to s(t) = 1, the
probability of the switch random excitation staying in
the larger intensity form s(t) = 1 is increasing.

Figure 6 displays sample time histories of the total
energy of system (35) for different initial conditions.
The blue line represents the curve of the total energy,
the green line represents the critical energy, and the red
line shows the time when the total energy of system
(35) crosses the critical energy for the first time. The
first passage of the total energy of system (35) out of
the safety region can therefore be visualized.

Examples 2 As a second example, a simplified nonlin-
ear vehicle suspension system subjected to switching
random road roughness is considered. The nonlinear
stochastic motion equations of this vehicle suspension
system can be written in the following dimensionless
form:
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Fig. 6 When H0 = 0.1,
time histories of the total
energy of system (35) for
different initial conditions. a
x10 = 0, x20 = 0, ẋ10 =
0, ẋ20 = √

2H0; b
x10 = 0, x20 = 0, ẋ10 =
−√

2H0, ẋ20 = 0; c
x10 = 0, x20 = 0, ẋ10 =
0, ẋ20 = −√

2H0; d
x10 = 0, x20 = 0, ẋ10 =√
2H0, ẋ20 = 0

ẍ1 + c (ẋ1 − ẋ2)+ω2
1 (x1 − x2) + α (x1 − x2)

3 = 0,

ẍ2 + c (ẋ2 − ẋ1) +ω2
1 (x2 − x1) + α (x2 − x1)

3

+ω2
2x2 = ξa (t) , (47)

where x1 and x2 denote the non-dimensional displace-
ments of vehicle body and wheel, respectively; c is
the coefficient of the damping between the body and
the wheel; α is the coefficient of the nonlinear stiff-
ness; ωi (i = 1, 2) , c and α are constants; and ξa (t) is
the switching random excitation representing the road
roughness. For simplicity, only two irregularity grades
are considered here: ξ(1) (t) for high-intensity irreg-
ularity and ξ(2) (t) for low-intensity irregularity. Let
q1 = x1, p1 = ẋ1, q2 = x2, p2 = ẋ2, Eq. (47) can be
rewritten in the form of Eqs. (4) and (5). The Hamilto-
nian associated with system (47) is

H̃
′ = 1

2
p21+

1

2
p22 +U (q) , (48)

where

U (q) = 1

2
ω2
1 (q1 − q2)

2 +1

2
ω2
2q

2
2+

1

4
α(q1 − q2)

4.

(49)

Since the excitation specified in Eq. (47) is indepen-
dent of velocities, the Wong–Zakai correction terms

are zero. As a result, H = H̃
′
. Applying the method

explained previously, one obtains the averaged Itô
stochastic differential equation for the Hamiltonian as

dH = m̄ (H ;µ) dt + σ̄(H ;µ)dB(t). (50)

The drift and diffusion coefficients are

m̄ (H ;µ)

= 1

T (H ;µ)

×
∫
ω

(
−cp21 − cp22 + 2cp1 p2+D

) (
∂H

∂p1

)−1
dz,

(51)

σ̄ 2 (H ;µ)

= 2D

T (H ;µ)

∫
ω
p22

(
∂H

∂p1

)−1
dz, (52)

where z, ω, T (H ;µ) are identical to those in Exam-
ple 1, and

D =
∑

u∈S D
(u)μ(u). (53)

Introduce the same transformations as in Example 1, it
is found that

m̄ (H ;µ)
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Fig. 7 Reliability function
of system (47). a Analytical
results; bMonte Carlo
simulation

Fig. 8 a Conditional
reliability function of
system (47); b conditional
PDF of first passage time of
system (45). “Dashed”
curves from analytical
results; “dots” from Monte
Carlo simulation

= D + c
∫ 2π

0

[
−2HR2+1

2

(
cosθ

ω1
− sinθ

ω2

)2

R2

+ 1

6

(
cosθ

ω1
− sinθ

ω2

)4

R4

+ 1

2
sin2θR4

]
dθ

/ ∫ 2π

0
R2dθ, (54)

σ̄ 2 (H ;µ)

= D
∫ 2π

0

[
2HR2−1

2

(
cosθ

ω1
− sinθ

ω2

)2

R2

− 1

6

(
cosθ

ω1
− sinθ

ω2

)4

R4

− 1

2
sin2θR4

]
dθ

/ ∫ 2π

0
R2dθ, (55)

T (H ;µ) = π

ω1ω2

∫ 2π

0
R2dθ, (56)

where R is the positive root of the equation

α

4

(
cosθ

ω1
− sinθ

ω2

)4

R4+1

2
ω2
1

(
cosθ

ω1
− sinθ

ω2

)2

R2

+ 1

2
ω2
2sin

2θR2 = H. (57)

For vehicle suspension system, the total energy rep-
resents the vibration level which is related to driving
safety and ride comfort. A critical value is defined so
that if the value of energy is larger than the critical
value, the car is unsafe or that the vibration of the vehi-
cle is beyond human tolerance. Then, the BK equation
governing the reliability function R (t |H0 ) of system
(47) can be set up in the form of Eq. (25). Solving the
BK equation, the reliability function and the PDF of
the first passage time of system (47) for different initial
conditions can be obtained.

Analytical results are shown as continuous curves in
Figs. 7 and8 for the chosenparametersω1 = 1,ω2 = 1,
c = 0.01, α = 1, D(1) = 0.02, D(2) = 0.01 and L =
L1. Figure 7 shows the reliability function R(t |H0) of
system (47) as a function of the initial energy H0 and
time t . Figure 8 displays R(t |H0) of system (47) as a
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Fig. 9 Conditional reliability function of system (47) with L =
L1, L = L2, L = L3 in Eq. (34) and when the system is fixed at
s (t) = 1 and s (t) = 2. “Dashed” curves from analytical results;
“dots” from Monte Carlo simulation

function of t for the different initial energy H0. Similar
to Example 1, the reliability function is found to be
a monotonic decreasing function of the initial energy
and time. In addition, the reliability function diminishes
more sharply with larger initial energy value. Again,
results from Monte Carlo simulation are also shown in

Fig. 7b and color dots in Fig. 8 for comparison. It is
seen that the agreement is excellent.

In Fig. 9, the conditional reliability function of sys-
tem (47) is shown when the transition rates are defined
by the three transition matrices in Eq. (34) and when
the system is fixed at s (t) = 1 and s (t) = 2. It can
also be seen that neglecting the switching character of
random excitations could introduce large errors in the
evaluation of reliability function.

Figure 10 shows sample time histories of the total
energy of system (47) for different initial conditions.
Again, the blue line represents the curve of the total
energy, the green line represents the critical energy,
and the red line shows the time when the total energy
of system (47) crosses the critical energy for the first
time. The first passage of the total energy of system (47)
out of the safety region can therefore be visualized.

5 Conclusions

Systems subjected to switching random excitations
are practically significant because they include many
safety-critical systems such as power plants and com-

Fig. 10 When H0 = 0.01,
time histories of the total
energy of system (47) for
different initial conditions. a
x10 = 0, x20 = 0, ẋ10 =
0, ẋ20 = √

2H0; b
x10 = 0, x20 = 0, ẋ10 =
−√

2H0, ẋ20 = 0; c
x10 = 0, x20 = 0, ẋ10 =
0, ẋ20 = −√

2H0; d
x10 = 0, x20 = 0, ẋ10 =√
2H0, ẋ20 = 0
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munication networks. In this paper, an approximate
procedure for the reliability analysis of multi-degree-
of-freedom,nonlinear, non-integrableHamiltonian sys-
tems subjected to switching random excitation has
been proposed. Such a system is first formulated in
terms of a continuous–discrete hybrid based upon the
Markov jump theory. Upon stochastic averaging of the
Markov jump process, the hybrid system is reduced
to a probability-weighted Itô equation. The associated
backward Kolmogorov equation is then set up, from
which the reliability function and probability density of
first passage time are obtained. To demonstrate the util-
ity and accuracy of the proposed approximate method,
two examples have been provided, wherein the approx-
imate analytical results are compared with those from
Monte Carlo simulation. It has been found that the ana-
lytical results are generally in good agreement with
Monte Carlo simulation. In both examples, the relia-
bility function decreases as time progresses, or as the
initial energy or the intensity of the switching random
excitations increases. It has also been observed that
neglecting the switching character of random excita-
tions can introduce serious errors in the evaluation of
reliability.
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